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ABSTRACT

Modern solvers for solving mixed integer programming (MIP) often rely on the
branch-and-bound (B&B) algorithm which could be of high time complexity, and
presolving techniques are well designed to simplify the instance as pre-processing
before B&B. However, such presolvers in existing literature or open-source solvers
are mostly set by default agnostic to specific input instances, and few studies have
been reported on tailoring presolving settings. In this paper, we aim to dive into this
open question and show that the MIP solver can be indeed largely improved when
switching the default instance-agnostic presolving into instance-specific presolving.
Specifically, we propose a combination of supervised learning and classic heuristics
to achieve efficient presolving adjusting, avoiding tedious reinforcement learning.
Notably, our approach is orthogonal from many recent efforts in incorporating
learning modules into the B&B framework after the presolving stage, and to our
best knowledge, this is the first work for introducing learning to presolve in MIP
solvers. Experiments on multiple real-world datasets show that well-trained neural
networks can infer proper presolving for arbitrary incoming MIP instances in less
than 0.5s, which is neglectable compared with the solving time often hours or days.

1 INTRODUCTION AND RELATED WORK

Mixed integer programming (MIP) is a general optimization formulation of various real-world
optimization applications, such as scheduling and production planning. In its commonly studied
linear form, MIP minimizes a linear objective function over a set of integer points that satisfy a finite
family of linear constraints. Due to its NP-hard nature, in modern MIP solvers (SCIP (Gamrath et al.,
2020), GUROBI (Gurobi, 2021), CPLEX (IBM, 2021)), the branch-and-bound (B&B) algorithm is
widely employed. B&B traverses the candidate solutions systematically, in which the set of candidate
solutions is considered to form a search tree with the full set at the root. However, B&B can suffer
from severe scalability issues in branching selections, especially for real-world applications.

Efforts have been made to reduce the time cost of B&B by including an extra step: given an MIP
instance, the solver first pre-processes and simplifies the instance before passing it to B&B. This
step is usually named Presolve, and various presolvers have been designed to reduce the size of
the input instance. Via presolving, the original MIP instance is simplified by removing irrelevant
information e.g. redundant constraints and variables. After presolving, B&B only needs to solve
the smaller simplified instance. Though the presolving step itself does cost extra time, it leads
to a great time saving for the B&B algorithm, and in total improves the performance of the MIP
solver significantly (Achterberg et al., 2019). It has been shown in early studies (Bixby et al., 2004;
Achterberg & Wunderling, 2013b) that, after appropriately presolving, 1.3x speed up can be acquired
and more than 15% unsolvable instances become solvable within the time limit. Due to the page
limit, we place the description of the commonly used presolvers in the Appendix (A.1).

*Correspondence author. The work was in part supported by National Key Research and Development
Program of China (2020AAA0107600), Huawei Technologies, NSFC (62222607), and SJTU Trans-med Awards
Research (STAR) 20210106.
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Figure 1: Presolving in MIP solvers. For each incoming MIP instance, the solver first presolves it
to simplify the problem, which includes multiple rounds and the utilization of multiple presolvers.
Then, the simplified instance is passed to the B&B algorithm and solved.

In existing MIP solvers, presolving is routinely adopted by the default setting, being agnostic to
input instances. As the default setting may not always be suitable, several works (Hutter et al., 2009;
2011; Lindauer et al., 2022) propose to find one single robust configuration (setting) for all problem
instances. However, they still can not tailor presolving for each unseen instance. In this paper, we
argue that tailoring suitable presolving for each individual instance could reach better performances.
Researchers of the latest work (Galabova, 2023) conclude that “an analysis of presolve would
be incomplete without an investigation of this effect for particular instances", which necessitates
instance-specific tailoring presolving. Moreover, the value of instance-specific tailoring in presolving
has been empirically shown in (Frank et al., 2010).

To this end, we try to design an efficient method that can tailor presolving for MIP instances, which
is able to integrate into existing MIP solvers. In general, customized presolving includes how to pick
the next presolver (determine the order), limit the max used rounds of each presolver, and set the time
used for each presolver. Especially, some of the operations can be related to each other, for example,
the order of the presolvers can influence their utilization rate and efficiency. Hence, finding the best
presolving is a challenging task and remains under-studied in literature.

To achieve instance-adaptive presolving, one provable way is using heuristic algorithms to search
for the best presolving. However, heuristic searching can be too time-consuming to serve as a
pre-processor. To improve efficiency, neural networks can be used to fit the behavior of heuristic
algorithms, since neural networks can infer the suitable presolving in a short time. More specifically,
by taking a closer look at the presolving parameters, we argue that the priority is more influential and
can affect the other parameters since priority determines the execution order of presolvers. As shown
in many previous works (Elble, 2010; Lodi & Tramontani, 2013; Galabova, 2023), the performance
of presolving is very sensitive to the order of the presolvers.

In this paper, we propose a hybrid algorithmic neural framework for improving presolving, namely
Learning to Presolve (L2P). Firstly, we modify simulated annealing to search for the most suitable
presolving given each instance. Then, we adapt neural networks that learn the mapping from instance
to the found presolving. When applied to unseen instances, the well-trained neural networks can
infer suitable presolving in a considerably short time (less than 0.5s in the experiments). Besides,
considering the attributes and relations among different presolving parameters, we decide to build
hybrid inference networks, in which the priority is regarded as prior knowledge to guide the learning.

We conduct experiments on popular MIP datasets with scales from small to large and two industry-
level datasets. Results show that there is indeed much room for improvement in the default presolving
of MIP solvers, and the solver can be indeed largely improved when switching the default instance-
agnostic presolving into instance-specific presolving by L2P. This suggests that default presolving
is a performance-limiting factor of the solver and deserves more attention. We consider this task
could be a new direction for using machine learning technologies to further improve MIP solvers.

The related works cover different aspects, including solving MIP instances, presolving in MIP solvers,
and auto configuration, which we leave in Appendix A.2. The highlights of this paper are four-fold:

1) To the best of our knowledge, this is the first work in literature proposing adaptively tailored
presolving w.r.t. MIP solvers. Better presolving could significantly reduce the time consumed in
solving MIP instances but few works in the literature consider improving it.
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2) We propose a hybrid neural framework equipped with heuristic algorithms as supervision to predict
the suitable presolving for each input MIP instance, which combines the advantage of searching
effectiveness of heuristic algorithms and inference efficiency of neural networks.

3) Experimental results on both public and private industrial benchmarks show the effectiveness and
efficiency of our L2P. It has also demonstrated the necessity of adaptively selecting presolving instead
of the default instance-agnostic presolving to boost the performance of the MIP solver.

4) We have open-sourced our code as a benchmark of utilizing machine learning to improve the
presolving in MIP solvers, please refer to our Github repository for more details.

2 FORMULATION AND METHODOLOGY

In this section, first, we introduce presolving and its role in solving MIP. Then, we adopt a simulated
annealing based heuristic searching method that can find the most suitable presolving but with large
time consumption. Finally, we propose a deep learning approach to learn the presolving found by the
simulated annealing with the advantage of efficiency, named learning to presolve (L2P).

2.1 PRELIMINARIES: MIP SOLVER AND PRESOLVING
It is well known that any mixed integer linear programming can be written in canonical form:
min{c'x: Ax < b,x € ZP x R""P}, )

where n is the number of variables, m is the number of constraints, ¢ € R" is the objective coefficient
vector, A € R™*" is the constraint coefficient matrix, b € R™ is the constraint right-hand-side
vector, and p < n is the number of integer variables. We assume the first p variables are integer
variables and the last n — p variables are continuous variables.

In general, the branch-and-bound (B&B) algorithm is utilized to solve the MIP instance to global
optimal, which follows a divide-and-conquer. However, the B&B algorithm requires lots of time
and resources to find the optimal solution if the size of the input MIP instance is large. Therefore, in
modern MIP solvers, presolving is conducted to simplify the original instance, as Fig. 1 shows. In the
popular open-source MIP solver SCIP, multiple presolvers are used to reduce the size of the model by
removing irrelevant information like redundant constraints, strengthening the linear programming
relaxation by exploiting integrality information, and extracting useful information in presolving.

There are three key parameters for each presolver: 1) priority denotes the order in which different
presolvers are executed; 2) max-rounds denotes the maximal number of rounds the presolver
participates in; 3) timing denotes the timing mask of the presolver. In the process of presolving, at
every step, one presolver is selected from the presolver pool based on the priority of each presolver.
When all presolvers are selected, we refill the presolver pool with the presolvers that are used for
less than their max-rounds times. As we can see, the priorities of the presolvers tend to have greater
impacts on the performance of presolving, which is also illustrated in (Elble, 2010).

In existing solvers, the parameters of presolvers are all set by default, no matter how the input
instance varies. Though the default presolving parameters are designed by experts, we consider using
unchanged presolving for changeable inputs is not a good idea. In our opinion, the ideal MIP solver
should analyze the feature of the input instance and tailor suitable presolving parameters. In this way,
the power of presolving is fully utilized, and so is the power of the whole solver. Therefore, we aim
to design a general approach to finding the best presolving parameters given each input instance, in
other words, changed from instance-agnostic presolving to instance-specific presolving.

2.2  SIMULATED ANNEALING FOR SEARCHING BEST PRESOLVING PARAMETERS

We start with a search-based baseline for tuning the presolving parameters. SCIP includes 14
presolvers and 3 parameters (priority, max-rounds, timing) for each, and one needs to traverse total
42 (14 x 3) parameters which can be challenging. For this purpose, we have tried several popular
heuristic tools including Bayesian optimization (BO), simulated annealing (SA), and evolution
strategy, we resort to SA (Van Laarhoven & Aarts, 1987) for its suitability for discrete variables
which take up 2/3 parameters in our case. While BO with Gaussian processes is designed more suited
to continuous variables. Our ablation in Sec. 3.4 shows that SA-based presolving tuning outperforms
BO-based one. We place the detail of SA and how we adapted it in our L2P in Appendix (A.3).
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Figure 2: Our proposed framework L2P for learning to presolve. (Left): in the training process,
we use simulated annealing to search for the most suitable presolving parameters for each MIP
instance, which will be the label to update our neural networks during the network training. (Right):
in the inference process, we use the well-trained neural networks from the training process to tailor
presolving in an instance-specific manner. Multiple criteria including the solving time and the PD
Integral are used to evaluate the performance of the presolving parameters.

2.3 L2P: LEARNING TO PRESOLVE

The drawback of SA is its considerable time cost which can be even higher than the time for B&B to
actually solve the problem. Therefore, we propose to utilize neural networks along with SA, and the
paradigm is termed learning to presolve (L2P). We train the neural networks via the data generated
by SA in the training set and use the well-trained neural networks for inference when testing. The
inference time of neural networks is insignificant and can be readily used in real-world applications.

2.3.1 FRAMEWORK DESIGN

As shown in Fig. 2, our proposed L2P includes the training process and inference process. Specifically,
for each MIP dataset, we first feed the MIP instances from the training set to the simulated annealing
algorithm, which outputs the best presolving parameters for each instance. Then, we regard the data
pair (MIP instance / best presolving parameters) as the (input / label) of our neural networks. The
input instances first pass our feature extractor and acquire the graph-embedding representation. Then,
our inference network takes the embedding and predicts the presolving parameters. Now, for each
input MIP instance, we set the predicted presolving to the corresponding position in the MIP solver,
and let the modified solver solve the MIP instance. Finally, we analyze the results of the running via
multiple criteria including the solving time and primal-dual gap integral. For network updating, we
calculate the loss between the best presolving parameters from the simulated annealing (the label)
and the predicted presolving parameters from the inference network (the prediction). The loss is
passed backward through both the inference network and the feature extractor.

For the inference process, we utilize the well-trained feature extractor and inference network after
training. For every incoming MIP instance unseen before, we feed it to the neural networks and
acquire the predicted presolving parameters. In the same way, we modify the solver and then solve
the instance. Since we save time for simulated annealing, the inference process costs very little time
(less than 0.5s) and the whole framework is able to be embedded into real-world MIP solvers.

2.3.2 FEATURE EXTRACTOR DESIGN

For the design of the feature extractor, we first represent a given MIP instance as a bipartite graph
(G,C,E, V) based on the method in (Gasse et al., 2019). In the bipartite graph, C € R™*¢ corre-
sponds to the features of the constraints; V € R™*4 denotes the features of the variables; and an edge
e;; € E between a constraint node ¢ and a variable node j if the corresponding coefficient A; ; # 0.
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Figure 3: Inspecting the inference network of L2P, follows the data to pass through inside modules.
Inspired by knowledge-based residual learning, we regard the priority information as the prior
knowledge for learning max-rounds and timing via hybrid neural networks. After calculating three
losses, a dynamic loss averaging method is adapted to aggregate them.

We use the same features as the existing work (Prouvost et al., 2020). Next, the bipartite graph is sent
as input into a two-interleaved graph convolutional neural network (GCNN) (Gasse et al., 2019). In
detail, the graph convolution is broken into two successive passes, one from the variable side to the
constraint side, and one from the constraint side to the variable side:

k+1 k O<E k k k+1 k GDS® k k
CZ(' 1) <_fC Cz(' )7 E gC(CE )?V§ )7eij) 3 V; ) <_fV V§‘ )7 E gV(CE )avg' )7eij)
i %

@
where fc, go, fv and gy are 2-layer perceptrons. We adopt the ReLLU as the activation function.
While k represents the number of times that we perform the convolution.

2.3.3 INFERENCE NETWORK DESIGN

As for the inference network, we design the shared-bottom neural networks to predict the priority,
max-rounds, and timing simultaneously, in other words, make three predictions. As Fig. 3 shows, we
first use a hidden layer to process the graph-embedding representation and regard the results as shared
features, which are used for all three predictions. As mentioned in Sec. 2.1, we find that priority
is the most important among all presolving parameters. Since priority determines the order of all
presolvers, it can also balance the influence of all presolvers. In this sense, we believe that priority is
more significant than max-rounds and timing. Therefore, we consider designing special hybrid neural
networks after the shared features to utilize this property.

As Fig. 3 illustrates, there are three output branches after the shared features, corresponding to priority,
max-rounds, and timing respectively. For the priority branch, we use the normal fully connected
layers to make predictions. Then, inspired by the knowledge-based residual learning (KRL (Zheng
etal., 2021b; Liu et al., 2021)), we consider using the priority as the prior knowledge to better predict
the max-rounds and timing. The key idea of KRL is to treat the prior knowledge as a weak learner
and use another neural network model to boost it, which turns out to be a hybrid model. In our
inference network, the priority is considered as the prior knowledge in the other two branches, and
we use two more fully connected layers as the neural network to boost the performance. Due to the
page limit, we place the detailed derivation process and proofs of KRL in Appendix (A.4). As proved
by KRL, these hybrid knowledge-based residual networks help to reduce the difficulty of learning the
parameters and increase the robustness and accuracy of the inference network.

Although the total loss can decrease significantly during the learning process, we observe that the
training of the three output branches always converges at different speeds. In fact, it is the hardest
task for our inference network to predict adequate priorities for presolvers. The loss of the priority
branch can hardly fall as quickly as that of two other branches. Consequently, we have to spend
additional time on training the max-rounds and timing branches despite the learning of them having
already converged, which could easily lead to over-fitting. To avoid this, we exploit a dynamic loss
averaging method (Liu et al., 2019) to respectively assign each output branch a variable weight
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Table 1: Performance on easy, medium, and hard datasets. m and n denotes the average number
of constraints and variables. We calculate the solving time/PD Integral and report the improve-
ment/effectiveness compared to the default setting. For each instance, SA runs for hours/days
but our L2P only needs milliseconds. (see more about time difference in Sec. 3.1.4) We run the
experiments five times with 5 random seeds and report the average results. (refer to Sec. 3.2)

Easy: Set Covering Easy: Max Independent Set Easy: MIRP small
(n = 1000, m = 500) (n =500, m = 1953) (n =709, m = 841)
Time (s) | Imprv. 1 | Effect. T Time (s) | Imprv. T | Effect. 1 Time (s) | Imprv. 1 | Effect. 1
Default 7.22 - - 8.66 - - 56.54 - -
SA 7.21 0.00% 0% 8.66 0.00% 0% 46.67 17.46% 58%
“Random | 727 | 000% | 0% | 869 | 000% | 0% | 5442 | 375% | 21%
SMAC3 7.24 0.00% 0% 8.70 0.00% 0% 50.52 10.64% 42%
FBAS 7.31 0.00% 0% 8.73 0.00% 0% 54.64 3.44% 21%
L2P 7.22 0.00% 0% 8.68 0.00% 0% 50.25 11.12% 46 %
Medium: Corlat Medium: MIK Hard: MIRP large
(n =466, m = 486) (n =413, m =346) (n=4120, m = 6857)
Time (s) | Imprv. 1 | Effect. T Time (s) | Imprv. 1 | Effect. T | PD Integral | | Imprv. 1 | Effect. 1
Default 31.02 - - 237.50 - - 2958.83 - -
SA 15.93 48.63% 65% 228.38 3.84% 7% 1473.75 49.81% 60%
"Random | 2934 | 543% | 22% | 23985 | 000% | 0% | 283426 | 421% | 19%
SMAC3 24.09 22.34% 42% 233.65 1.62% 6% 2574.77 12.98% 40%
FBAS 25.84 16.69% 39% 238.75 0.00% 0% 2746.09 7.19% 20%
L2P 20.24 34.74% 55% 230.33 3.02% 7% 2118.23 28.41% 35%
Hard: Item Placement Hard: Load Balancing Hard: Anonymous
(n=1083, m = 195) (n= 61000, m = 64304) (n=37881, m = 49603)
PD Integral | | Imprv. T | Effect. 1 | PD Integral | | Imprv. T | Effect. T | PD Integral | | Imprv. 1 | Effect. 1
Default 221630.77 - - 5857.95 - - 68319.60 - -
SA 210593.56 4.98% 56% 5550.99 5.24% 36% 44940.63 34.22% 55%
“Random | 22168575 | 0.00% | 0% | 587917 | 000% | 0% | 5313215 | 2223% | 55%
SMAC3 217220.32 1.99% 30% 5733.76 2.12% 38% 42460.63 37.85% 55%
FBAS 222096.19 0.00% 0% 5862.64 0.00% 0% 55181.74 19.23% 55%
L2P 210637.88 4.96 % 42% 5558.61 5.11% 48 % 33278.48 51.29% 55%

when aggregating the three losses. We place the detailed mathematics formulation of dynamic loss
averaging in Appendix (A.5). Intuitively, the branch with a slower converge speed would be assigned
a larger weight and vice versa. In this way, we can accelerate the learning of priority prediction and
thus provide more reliable prior knowledge for the inference of max-rounds and timing.

3 EXPERIMENTS

Please note that except for the following subsections, we have placed the additional experiments and
discussions in the appendix, including the multiple-run results with standard deviation (A.7), ablation
studies by adjusting the size of training data (A.9), experiments on the popular MIPLIB dataset (A.8),
illustration of the searching process (A.10), illustration of the improved presolving parameters (A.11),
and the discussion of limitations and future work (A.12).

3.1 ProTtoCOLS

3.1.1 DATASETS

We follow (Gasse et al., 2019; 2022) and use popular datasets in our experiments. We evaluate our
approach on the four levels of difficulty: easy, medium, hard, and industrial-level datasets:

1) Easy datasets comprise three popular synthetic MIP benchmarks: Set Covering (Balas & Ho,
1980), Maximum Independent Set (Bergman et al.,, 2016) and Maritime Inventory Routing
Problem (MIRP) (Papageorgiou et al., 2014). We artificially generate instances in line with (Gasse
et al., 2019; Sun et al., 2021; Jiang & Grossmann, 2015).

2) Medium datasets include CORLAT (Gomes et al., 2008) and MIK (Atamtiirk, 2003), which are
widely used benchmarks (He et al., 2014; Nair et al., 2020).
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3) Hard datasets from NeurIPS 2021 Competition (Gasse et al., 2022) include Item Placement, which
involves spreading items that need to be placed; Load Balancing, inspired by real-life applications
of large-scale systems; Anonymous, inspired by a large-scale industrial application; and Maritime
Inventory Routing problem (MIRP) with hard problem settings.

4) Private Industrial Benchmarks. We collect real-world data concerning planning and scheduling
in a production planning engine of an influential corporation and formulate them as MIP instances.
The production planning problem is to plan daily production for hundreds of factories according to cus-
tomers’ daily and predicted demand. The problem is subject to material transportation and production
capacity constraints, which aim to minimize the production cost and lead time simultaneously.

For the datasets used in our experiments, we follow the common usage in existing works (Gasse
et al.,, 2019; Han et al., 2023; Wang et al., 2023; Li et al., 2023a) including splitting data into
training and testing sets with 80% and 20% instances. For the easy datasets, we generate 1000
instances for each. For the medium and hard datasets, we directly split the instances provided
by their original benchmarks. Here we list these datasets and their total number of instances:
Corlat(2000) Gomes et al. (2008), MIK(100) Atamtiirk (2003), Item Placement(10000) Gasse et al.
(2022), Load Balancing(10000) Gasse et al. (2022), Anonymous(118) Gasse et al. (2022). The two
industrial datasets contain 1,000 instances for each, as collected from two periods respectively (from
15 May 2022 to 15 Sept. 2022 and from 8 Oct. 2022 to 8 Dec. 2022).

3.1.2 EVALUATION METRICS

Throughout all experiments, we use SCIP 7.0.3 (Gamrath et al., 2020) as the back-end solver, which
is the state-of-the-art open-source MIP solver. Note it is nontrivial to test our approach on the
commercial solvers e.g. Gurobi, for the limited access to their interfaces. Besides, we use Ecole
0.7.3 (Prouvost et al., 2020) and PySCIPOpt 3.5.0 (Maher et al., 2016) for better implementation.
Except for the presolving module, we keep all the other SCIP settings/parameters by default. We use
two popular evaluation metrics, i.e., the average solving time (Time, lower is better), and the average
primal-dual gap integral (PD integral, lower is better). To better show the performance of improving
presolving, we calculate the improvement (Imprv., the higher the better) made by the compared
methods compared to SCIP’s default settings. Moreover, we calculate the effectiveness (Effect., the
higher the better), aka. the "better/win rate". Here "better" means the solving time/PD integral of
improved presolving is better than the solving time/PD integral of SCIP’s default presolving. The
higher effectiveness means more instances the method can find better presolving. The testing is based
on the MIP solver itself, and we directly acquire the solving time/PD integral from the solver. The
solving time/PD integral contains both the presolving process and the B&B process, which is directly
required by SCIP, Ecole, and PySCIPOpt. For details and the mathematics formulation of PD integral,
refer to the documentation ! or our detailed description in Appendix (A.6).

3.1.3 IMPLEMENTATION DETAILS

For SA, we set the initial temperature as 1e5 with the decay rate 0.9 until it reaches the minimum
temperature of le-2. For the neural networks, we use ADAM with a batch size of 32, and learning
rate of le-4, and a hidden size of 64. For the feature extractor, we follow the same settings as (Gasse
et al., 2019) for building graph embeddings. For the hybrid inference networks, we set the hidden
size as 64. The loss functions used in our methods are ListMLE (Xia et al., 2008) for the priority
and Cross-Entropy (Good, 1952) for the max-round and timing. ListMLE is a loss function designed
for ranking, which is suitable for learning the priority since the priority denotes the order/rank of
the presolvers. The number of epochs for training is 10,000. The experiments are conducted in a
Linux workstation with NVIDIA 3090 GPU and AMD Ryzen Threadripper 3970X 32-Core CPU.
Particularly, for the hard datasets in which the instance scale is large, we gradually reduce the batch
size to 4 until they can be put into the GPU wholly. Our work can be readily reproduced via these
settings and our code in the Github repository.

3.1.4 COMPARED METHODS

1) Default: following the same presolving parameters by the default setting of SCIP to solve all MIP
instances. 2) Random: we randomly select the parameters for all presolvers for 10 times and record
the best ones. 3) SMAC3 ((Lindauer et al., 2022)): the latest automatic configuration framework

"https://www.ecole.ai/2021/mldco-competition/#metrics
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Table 2: Performance on two industrial datasets. m and n denote the average number of constraints
and variables respectively. We record the accumulation of the solving time over all instances in the
dataset and report the improvement compared to the default setting.

Industrial Dataset #1 (n = 1494, m = 5583) Industrial Dataset #2 (n = 8456, m = 2392)
Solving Time (s) | | Improvement 1 Solving Time (s) | | Improvement T
Default 21280.31 - Default 2994.69 -
SA 20224.38 4.96% SA 2347.07 21.62%
Random 21387.25 0.00% Random 2887.32 3.57%
L2P (ours) 20420.28 4.06% L2P (ours) 2447.56 18.27%

aims at finding one single configuration for each MIP category. 4) FBAS ((Georges et al., 2018)):
one algorithm selection method designed for MIP, which combines several standard ML techniques
to select a well-performing algorithm based on a feature description of the input MIP instance. 5) SA
(simulated annealing): the sub-module in our L2P that uses the simulated annealing to search for the
best presolving parameters, of which the time consumption is huge. 6) L2P (Ours): our proposed
L2P is orthogonal to other progress made in learning for MIP in previous literature.

For every method in our experiments, they use their own algorithm to improve the presolving (running
time), and then SCIP uses the improved presolving to solve the MIP instance (solving time), where the
solving time/PD integral is used for evaluation. In other words, there are two steps in our experiments:
1) Running step: we use SA/Random/SMAC3/FBAS/L2P to find a better presolving, and deploy
the new presolving in the MIP solver; 2) Solving step (including presolving and B&B): we use the
adjusted MIP solver to solve the MIP instance without further intervention. The metrics (solving
time/PD integral) in the tables are directly acquired by the API from SCIP in the solving step.

In the running step, for each instance, our L2P needs less than 0.05s in the medium datasets, and
less than 0.5s in the hard datasets, while the SA needs hours in the medium datasets and days in
the hard datasets. When we claim that the time consumption of SA is unacceptable, we mean its
running time. Therefore, we can regard SA as an offline method (running for hours/days) while
Random/SMAC3/FBAS/L2P are online methods (running for seconds). The running time of L2P is
negligible compared to the improvement it brings. Therefore, we should focus on the comparison
among online methods, in other words, between our L2P and Random/SMAC3/FBAS.

3.2 EXPERIMENTS ON PUBLIC MIP DATASETS

To verify the performance of our L2P, we conduct experiments on various common MIP datasets
in Table 1. We run the experiments with 5 random seeds and report the average improvement and
effectiveness compared to the default setting. Due to the page limit, we place the detailed standard
deviation results in Appendix (A.7). For the easy datasets, the improvement is not significant. We
consider it is because the MIP solver has made sufficient optimization to these classic problems.
Besides, the easy datasets are constructed by experts in operational research, in which thus there is not
much redundancy. Therefore, even SA cannot find more suitable presolving parameters. However, it
is impossible for the solver to pre-optimize all kinds of MIP instances, especially for real-world
MIP instances. The MIP instances obtained from the real world are constructed by practitioners
with different expertise in operational research. Usually, there is much more redundancy in MIP
instances from the real world than those from the academy. In the medium datasets, we can see that
our proposed methods can make a significant improvement in the Corlat dataset, which can save
more than 1/3 of the solving time. When it comes to hard datasets, we change the evaluation metric
from solving time to the PD integral, and our L2P still reaches good performances. Compared to
SA which needs hours or days to finish searching for each instance, our proposed L2P can make
inferences in merely seconds. It turns out that the special design of our proposed L2P for presolving
does show its value since L2P can outperform the latest SMAC3 in most cases. Considering that
SCIP has been well developed and updated for 20 years, we think our current improvements to SCIP
are meaningful for both methodology development and practical use.

3.3 EXPERIMENTS ON PRIVATE INDUSTRIAL DATASETS

We conduct experiments on two industrial benchmarks provided by our industrial partner in Table 2.
As shown in the caption, the scale of this dataset is large and of relatively high variance. There is still
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Table 3: Generalization test on MIRP small and large datasets. We train L2P on the small/large
dataset and test it on the large/small dataset respectively.

Easy:MIRP small (n = 709, m = 841) Hard:MIRP large (n = 4120, m = 6857)
Solving Time (s) | | Improvement 1 PD Integral | | Improvement 1
Default 56.54 - Default 2958.83 -
Random 54.42 3.75% Random 2834.26 4.21%
L2P (small — small) 50.25 11.12% L2P (large — large) 2118.23 28.41%
L2P (large — small) 52.66 6.86% L2P (small — large) 2680.31 9.41%
g3s - 2P Table 4: Generalization test of our L2P
§3° w.r.t improvement. We train our L2P on
5t Corlat, MIK, and the combined dataset
%‘:: of Corlat and MIK. Then, we evaluate
£ the performance of L2P on the original
£, Corlat and MIK dataset.
s O FullL2P  w.o.DLA  w.o. KRL w.o. Branch w.o. Shared w.o. GCNN _SA to BO train
. . Corlat MIK Corlat + MIK
Figure 4: Performance drop by removing components test
from vanilla L2P on Corlat dataset. We remove the Corlat | 34.74% | 15.52% 33.84%
components one by one from the full version of L2P. MIK L12% | 3.02% 1.87%

a large improvement room for the default setting. SA can find more suitable presolving parameters,
which reduces the solving time by 4.96% and 21.62% on the two datasets, respectively. Our method
still shows a notable improvement compared to the default setting and the performance gain (4.06%
and 18.27%) is close to SA’s, while SA needs hours to run but our L2P only needs seconds. Due to
potential privacy issue, we did not test SMAC3 and FBAS on these datasets.

3.4 GENERALIZATION TEST AND ABLATION STUDY

To test the generalization of L2P, first, we conduct experiments on MIRP small and large datasets.
The two datasets are significantly different in complexity denoted by scale. We train L2P with MIRP
small dataset and observe its performance on MIRP large datasets, and vice versa. The statistics of
the datasets and experiment results are reported in Table 3. We can see that on both tests our L2P
outperforms the baselines when generalized from another dataset, which denotes its generalization
effectiveness. Besides, we add more experiments in Table 4, where the experimental settings are the
same as the settings in Table 1, including the data size and the metric. Instead of training domain by
domain normally, we try multiple train/test settings on different domains. In the first two columns, we
can see that L2P can handle unseen domains (families) of instances. In the last column, we train L2P
with the mixed dataset and L2P still reaches good performance when testing on both two domains.

Fig. 4 shows the effect of removing components in L2P one by one: from the dynamic loss averaging
(DLA), to the hybrid knowledge-based residual learning (KRL), to the output branches, to the shared
feature, to GCNN, and at last, we replace SA with Bayesian optimization. We can see that removing
the KRL module leads to a nearly 10% performance drop. Therefore, the hybrid KRL structure
in L2P is more significant. When we change SA to BO, we note that BO can hardly find better
presolving parameters, as the improvement downgrades from 10% to almost 0%.

4 CONCLUSION AND OUTLOOK

We propose a paradigm of learning to presolve for MIP solvers. Instead of using the default instance-
agnostic presolving as in existing solvers, we use simulated annealing to search for suitable presolving
in an instance-specific manner. Furthermore, we design the hybrid neural networks to learn the results
generated from SA. Experiments on both public and private MIP datasets show its performance and
cost-efficiency. We hope our results and open-source can draw wide attention and further evaluation
could be performed on commercial solvers which we believe is a less-studied yet promising area. One
possible future work is to combine the learning-based solvers e.g. (Zhang et al., 2024) tailored to MIP
and more general methods (L1 et al., 2023c) with our presolve techniques. Also, one may combine
other instance generation models (Li et al., 2023b; Chen et al., 2024) for training set augmentation.
For more discussion of potential limitations and future plans, please refer to Appendix (A.12).



Published as a conference paper at ICLR 2024

REFERENCES

T. Achterberg and R. Wunderling. Mixed integer programming: Analyzing 12 years of progress. In
Facets of Combinatorial Optimization, pp. 449—481. Springer, 2013a.

Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of
progress. In Facets of combinatorial optimization, pp. 449—481. Springer, 2013b.

Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger. Presolve
reductions in mixed integer programming. INFORMS Journal on Computing, 32(2):473-506,
November 2019.

Alper Atamtiirk. On the facets of the mixed—integer knapsack polyhedron. Mathematical Program-
ming, 98(1):145-175, 2003.

Yunsheng Bai, Derek Xu, Yizhou Sun, and Wei Wang. Glsearch: Maximum common subgraph
detection via learning to search. In ICML, pp. 588-598, 2021.

Egon Balas and Andrew Ho. Set covering algorithms using cutting planes, heuristics, and subgradient
optimization: a computational study. In Combinatorial Optimization, pp. 37-60. Springer, 1980.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. Eur. J. Oper. Res., 290:405-421, 2021.

David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John Hooker. Decision diagrams for
optimization, volume 1. Springer, 2016.

Timo Berthold, Matteo Francobaldi, and Gregor Hendel. Learning to use local cuts. arXiv preprint
arXiv:2206.11618, 2022.

Robert Bixby and Edward Rothberg. Progress in computational mixed integer programming—a
look back from the other side of the tipping point. Annals of Operations Research, 149:309-325,
December 2007.

Robert E Bixby, Mary Fenelon, Zonghao Gu, Ed Rothberg, and Roland Wunderling. Mixed-integer
programming: A progress report. In The sharpest cut: the impact of Manfred Padberg and his
work, pp. 309-325. SIAM, 2004.

A. L. Brearley, G. Mitra, and H. P. Williams. Analysis of mathematical programming problems prior
to applying the simplex algorithm. Mathematical Programming, 8:54-83, December 1975.

Xinyan Chen, Yang Li, Runzhong Wang, and Junchi Yan. Mixsatgen: Learning graph mixing for sat
instance generation. In International Conference on Learning Representations, 2024.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization.
In NeurIPS, volume 32, 2019.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient nor-
malization for adaptive loss balancing in deep multitask networks. arXiv preprint arXiv:1711.02257,
2017.

Joseph M Elble. Computational experience with linear optimization and related problems. University
of Illinois at Urbana-Champaign, 2010.

Marc Etheve, Zacharie Ales, Come Bissuel, Oliver Juan, and Safia Kedad-Sidhoum. Reinforcement
learning for variable selection in a branch and bound algorithm. In International Conference on
Integration of Constraint Programming, Artificial Intelligence, and Operations Research, 2020, pp.
176-185, Cham, Switzerland, September 2020. Springer.

Hutter Frank, Hoos Holger, H., and Leyton-Brown Kevin. Automated configuration of mixed integer
programming solvers. In International Conference on Integration of Artificial Intelligence (Al)
and Operations Research (OR) Techniques in Constraint Programming, pp. 186—-202. Springer,
June 2010.

Ivet Galabova. Presolve, crash and software engineering for highs. 2023.

10



Published as a conference paper at ICLR 2024

G Gamrath, D Anderson, K Bestuzheva, WK Chen, L Eifler, M Gasse, P Gemander, A Gleixner,
L Gottwald, K Halbig, et al. The scip optimization suite 7.0: Technical report, 2020.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov, et al. The
machine learning for combinatorial optimization competition (ml4co): Results and insights. In
NeurlPS 2021 Competitions and Demonstrations Track, pp. 220-231. PMLR, 2022.

Alexander Georges, Ambros Gleixner, Gorana Gojic, Robert Lion Gottwald, David Haley, Gre-
gor Hendel, and Bartlomiej Matejczyk. Feature-based algorithm selection for mixed integer
programming. 2018.

Carla P Gomes, Willem-Jan van Hoeve, and Ashish Sabharwal. Connections in networks: A hybrid
approach. In International Conference on Integration of Artificial Intelligence (Al) and Operations
Research (OR) Techniques in Constraint Programming, pp. 303-307. Springer, 2008.

Irving John Good. Rational decisions. Journal of the Royal Statistical Society: Series B (Method-
ological), 14(1):107-114, 1952.

Prateek Gupta, Elias B. Khalil, Didier Chetélat, Maxime Gasse, Yoshua Bengio, Adrea Lodi, and
M. Pawan Kumar. Lookback for learning to branch. arXiv preprint arXiv:2206.14987, 2022.

Gurobi. Gurobi solver. https://www.gurobi.com/, 2021.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
Xiaodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
arXiv preprint arXiv:2302.05636, 2023.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye Hao,
Yong Yu, and Jun Wang. Learning to select cuts for efficient mixed integer programming. Pattern
Recognition, 123(108353):1-11, March 2022.

Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stiitzle. Paramils: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research, 36:267-306, 2009.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International conference on learning and intelligent
optimization, pp. 507-523. Springer, 2011.

IBM. Cplex solver. https://www.ibm.com/hk—en/analytics/cplex—-optimizer,
2021.

Yongheng Jiang and Ignacio E Grossmann. Alternative mixed-integer linear programming models of
a maritime inventory routing problem. Computers & Chemical Engineering, 77:147-161, 2015.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. arXiv preprint arXiv:1705.07115,2017.

Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. Automated algorithm
selection: Survey and perspectives. Evolutionary computation, 27(1):3-45, 2019.

Elias Boutros Khalil, H. Dai, Yuyu Zhang, B. Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In NeurIPS, 2017.

Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey. Data mining and
constraint programming: Foundations of a cross-disciplinary approach, pp. 149-190, 2016.

11


https://www.gurobi.com/
https://www.ibm.com/hk-en/analytics/cplex-optimizer

Published as a conference paper at ICLR 2024

Yufei Kuang, Xijun Li, Jie Wang, Fangzhou Zhu, Meng Lu, Zhihai Wang, Jia Zeng, Houqgiang
Li, Yongdong Zhang, and Feng Wu. Accelerate presolve in large-scale linear programming via
reinforcement learning, 2023.

Sirui Li, Wenbin Ouyang, Max B Paulus, and Cathy Wu. Learning to configure separators in
branch-and-cut. arXiv preprint arXiv:2311.05650, 2023a.

Xijun Li, Fangzhou Zhu, Hui-Ling Zhen, Weilin Luo, Meng Lu, Yimin Huang, Zhenan Fan, Zirui
Zhou, Yufei Kuang, Zhihai Wang, et al. Machine learning insides optverse ai solver: Design
principles and applications. arXiv preprint arXiv:2401.05960, 2024.

Yang Li, Yichuan Mo, Liangliang Shi, and Junchi Yan. Improving generative adversarial networks
via adversarial learning in latent space. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp.
8868—-8881. Curran Associates, Inc., 2022.

Yang Li, Xinyan Chen, Wenxuan Guo, Xijun Li, Wanqgian Luo, Junhua Huang, Hui-Ling Zhen,
Mingxuan Yuan, and Junchi Yan. Hardsatgen: Understanding the difficulty of hard sat formula gen-
eration and a strong structure-hardness-aware baseline. In ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), 2023b.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training
to gradient search in testing for combinatorial optimization. In Advances in Neural Information
Processing Systems, 2023c.

Yang Li, Liangliang Shi, and Junchi Yan. lid-gan: an iid sampling perspective for regularizing mode
collapse. In Proceedings of the 32nd International Joint Conference on Artificial Intelligence,
2023d.

Jiacheng Lin, Jialin Zhu, and Huanggang Wang Tao Zhang. Learning to branch with tree-aware
branching transformers. Knowledge-Based Systems, 252(109455):1-12, November 2022.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin
Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian optimization
package for hyperparameter optimization. J. Mach. Learn. Res., 23(54):1-9, 2022.

Chang Liu, Guanjie Zheng, and Zhenhui Li. Learning to route via theory-guided residual network.
arXiv preprint arXiv:2105.08279, 2021.

Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen, and Junchi Yan. Deep neural
network fusion via graph matching with applications to model ensemble and federated learning. In
International Conference on Machine Learning, pp. 13857-13869. PMLR, 2022a.

Chang Liu, Shaofeng Zhang, Xiaokang Yang, and Junchi Yan. Self-supervised learning of visual
graph matching. In European Conference on Computer Vision, pp. 370-388. Springer, 2022b.

Chang Liu, Zetian Jiang, Runzhong Wang, Lingxiao Huang, Pinyan Lu, and Junchi Yan. Revocable
deep reinforcement learning with affinity regularization for outlier-robust graph matching. In The
Eleventh International Conference on Learning Representations, 2023.

Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with attention. In
CVPR, pp. 1871-1880, June 2019.

Andrea Lodi and Andrea Tramontani. Performance variability in mixed-integer programming. In
Theory driven by influential applications, pp. 1-12. INFORMS, 2013.

Han Lu, Zenan Li, Runzhong Wang, Qibing Ren, Xijun Li, Mingxuan Yuan, Jia Zeng, Xiaokang
Yang, and Junchi Yan. Roco: A general framework for evaluating robustness of combinatorial opti-
mization solvers on graphs. In The Eleventh International Conference on Learning Representations,
2023.

Stephen Maher, Matthias Miltenberger, Jodo Pedro Pedroso, Daniel Rehfeldt, Robert Schwarz, and
Felipe Serrano. PySCIPOpt: Mathematical programming in python with the SCIP optimization
suite. In Mathematical Software — ICMS 2016, pp. 301-307. Springer International Publishing,
2016. doi: 10.1007/978-3-319-42432-3_37.

12



Published as a conference paper at ICLR 2024

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Brendan
O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving mixed
integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takdc. Reinforcement
learning for solving the vehicle routing problem. In NeurIPS, pp. 9839-9849, 2018.

Dimitri J Papageorgiou, George L Nemhauser, Joel Sokol, Myun-Seok Cheon, and Ahmet B Keha.
Mirplib—a library of maritime inventory routing problem instances: Survey, core model, and
benchmark results. European Journal of Operational Research, 235(2):350-366, 2014.

Max B. Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to
cut by looking ahead: Cutting plane selection via imitation learning. In ICML, pp. 17584-17600.
PMLR, July 2022.

Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and
Andrea Lodi. Ecole: A gym-like library for machine learning in combinatorial optimiza-
tion solvers. In Learning Meets Combinatorial Algorithms at NeurlPS2020, 2020. URL
https://openreview.net/forum?id=IVc9hqggibyB.

Qingyu Qu, Xijun Li, Yunfan Zhou, Jia Zeng, Mingxuan Yuan, Jie Wang, Jinhu Lii, Kexin Liu, and
Kun Mao. An improved reinforcement learning algorithm for learning to branch. arXiv preprint
arXiv:2201.06213, 2022.

Ohad Shamir. Are resnets provably better than linear predictors? In Advances in neural information
processing systems, pp. 507-516, 2018.

Haoran Sun, Wenbo Chen, Hui Li, and Le Song. Improving learning to branch via reinforcement
learning, 2021. URL https://openreview.net/forum?id=M_KwRsbhi5e.

Peter JM Van Laarhoven and Emile HL Aarts. Simulated annealing. In Simulated annealing: Theory
and applications, pp. 7-15. Springer, 1987.

Runzhong Wang, Ziao Guo, Wenzheng Pan, Jiale Ma, Yikai Zhang, Nan Yang, Qi Liu, Longxuan
Wei, Hanxue Zhang, Chang Liu, Zetian Jiang, Xiaokang Yang, and Junchi Yan. Pygmtools: A
python graph matching toolkit. Journal of Machine Learning Research, 2024.

Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang, and
Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical sequence
model. arXiv preprint arXiv:2302.00244, 2023.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to learning
to rank: theory and algorithm. In International Conference on Machine Learning, 2008. URL
https://api.semanticscholar.org/CorpusID:207168334.

Kaan Yilmaz and Neil Yorke-Smith. A study of learning search approximation in mixed integer
branch and bound: Node selection in scip. arXiv preprint arXiv:2007.03948, 2020.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 3931-3939, Menlo Park, CA, May 2021. AAAIL

Changwen Zhang, Wenli Ouyang, Hao Yuan, Liming Gong, Yong Sun, Ziao Guo, Zhichen Dong, and
Junchi Yan. Towards imitation learning to branch for mip: A hybrid reinforcement learning based
sample augmentation approach. In International Conference on Learning Representations, 2024.

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205-217, 2023.

Guanjie Zheng, Chang Liu, Hua Wei, Chacha Chen, and Zhenhui Li. Rebuilding city-wide traffic
origin destination from road speed data. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pp. 301-312. IEEE, 2021a.

Guanjie Zheng, Chang Liu, Hua Wei, Porter Jenkins, Chacha Chen, Tao Wen, and Zhenhui Li.
Knowledge-based residual learning. In IJCAI, pp. 16531659, 2021b.

13


https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=M_KwRsbhi5e
https://api.semanticscholar.org/CorpusID:207168334

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 PRESOLVERS IN MIP SOLVERS

Seeing its important role, different presolvers have been devised to modify the MIP instance before
actually solving it. In the most popular open-source solver SCIP Gamrath et al. (2020), 14 presolvers
are used in presolving. In Table 5, we list these presolvers with brief descriptions. For more
information, please refer to the official document of SCIP 2.

Table 5: Brief descriptions of fourteen commonly used presolvers in SCIP. For CPLEX the cases are
similar, while for Gurobi we can not acquire their interfaces since Gurobi is a commercial solver and
not open-source.

Presolver Description
Boundshift converts domain [a,b] to domain [0,b-a]
Convertinttobin converts integer variables with domain [a, a+1] to binaries
Domcol finds dominance relations between variables and derives lower bound
Dualagg aggregates the variables with specific structure
Dualcomp fixes the bound if the combination of continuous variables can compensate
Dualinfer strengthens the bounds on continuous variables
Gateextraction extracts gate-constraints constraints and set-partitioning constraints
Implics implication graph presolver which checks for aggregations
Inttobinary converts integer variables with domain [a,a+1] to binaries
Milp calls the presolve library and uses the postsolve information
Qpkktref tries to add the KKT conditions as additional constraints
Redvub removes redundant variable upper bound constraints
Stuffing investigates singleton continuous variables if can be fixed at a bound
Trivial fixes variables with equal bounds to this value

A.2 RELATED WORK

In this subsection, we discuss the existing works closely related to ours: 1) solving MIP instances,
which is the problem we focus on; 2) presolving and presolvers, which is the insight of this work;
3) Automatic configuration and algorithm selection as our work roughly falls into this category; 4)
machine learning for combinatorial optimization, which is a general approach of combining machine
learning into traditional solvers.

Solving MIP Instances. Machine learning methods have shown the potential to accelerate the solving
of MIP instances. Specifically, many works learn to select branching variables (Etheve et al., 2020;
Quetal, 2022; Gupta et al., 2022) or parameterizing B&B search tree directly (Zarpellon et al., 2021;
Lin et al., 2022). Moreover, node selection is also an appealing scenario where imitating learning can
be leveraged to speed up the solving process (He et al., 2014; Yilmaz & Yorke-Smith, 2020). Due to
the significance of cutting planes to B&B, ML techniques have also been applied to train cut selection
policy to improve the tightening of feasible region (Huang et al., 2022; Paulus et al., 2022; Berthold
et al., 2022). One recent work (Kuang et al., 2023) aims at using RL to improve the solving of linear
programming. However, rare works investigate how another important module in MIP solvers, i.e.,
the presolving module, can benefit from learning-based technologies. We recommend these surveys
for more details (Li et al., 2024; Zhang et al., 2023).

Presolving in MIP Solvers. Presolving plays a key role in MIP, which can improve the model
constraints’ description of the underlying polyhedron of integer-feasible solutions (Achterberg et al.,

https://scipopt.org/doc/html/group_ PRESOLVERS.php
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2019). Several studies (Bixby & Rothberg, 2007; Achterberg & Wunderling, 2013a) have empirically
explored how various components in the MIP solvers affect the solution quality and one consensus is
that presolving is one of the most powerful components. Essentially, presolving can be considered a
set of methods to drop redundant information of model formulation (Brearley et al., 1975), such as
removing redundant constraints, fixing variables, and seeking generalized upper bounds. (Achterberg
et al., 2019) introduced the presolving techniques as used in Gurobi. Despite the significance of
presolving, there is surprisingly relatively limited literature for comprehensive study, especially from
the machine learning perspective for introducing adaptiveness for presolving.

Automatic Configuration and Algorithm Selection. Automatic configuration tries to find a single
robust configuration across a set of problem instances. ParamILS (Hutter et al., 2009) provides a
complete framework for parameter tuning and algorithm configuration. (Hutter et al., 2011) further
uses Bayesian optimization to find better configurations. The open-source SMAC3 (Lindauer et al.,
2022) is a robust and flexible framework for BO in determining well-performing hyperparameter
configurations. Algorithm selection (Kotthoff, 2016; Kerschke et al., 2019) aims at choosing among
a set of algorithms the ones that are likely to perform best for a particular instance. (Georges et al.,
2018) combine several standard ML techniques to select a well-performing algorithm based on a
feature description of input MIP instances. Instead of finding a single configuration for all instances,
we tend to design an instance-specific presolving tailor method. Besides, our L2P focuses on the
presolving module with consideration of presolver order, which is hardly studied in the literature.

Learning for Combinatorial Optimization. There are growing interests in using learning in solving
combinatorial optimization problems (Bengio et al., 2021), researchers have considered adopting
deep learning in several NP-hard problems, such as traveling salesman problem (L.i et al., 2023c;
Khalil et al., 2017), vehicle routing problem (Nazari et al., 2018; Zheng et al., 20212a), job scheduling
problem (Chen & Tian, 2019), maximal common subgraph (Bai et al., 2021), graph matching (Liu
etal., 2023; 2022b; Wang et al., 2024), model fusion (Liu et al., 2022a). Aside from directly lever-
aging learning to problem solving, methods are also developed to provide support to solving, such
as utilizing generative modeling (Li et al., 2022; 2023d) to augment real-world combinatorial in-
stances (Li et al., 2023b; Chen et al., 2024) and evaluating the robustness of combinatorial solvers (L.u
et al.,, 2023). As a classic problem in combinatorial optimization, researchers have tried to utilize the
power of deep learning to accelerate the solving of MIP during B&B (Gasse et al., 2019). However,
no works focus on the presolving part to the best of our knowledge.

A.3 DETAILS OF UTILIZING SIMULATED ANNEALING IN L2P

To find good solutions, SA continuously perturbs the known solution. If the new solution has a better
objective value, it is accepted. Otherwise, it could be accepted by a certain probability, which can
be specified as: This mechanism helps SA jump out of the possible local optima. Generally, an
exponential function is used to set the probability of accepting the worse solution:

—Ay

P=¢T 3)

where T denotes the current temperature and Ay represents the difference between the objective value
of the new and old solution. In the task of this paper, the objective value refers to the solving time/PD
integral of solving MIP instances. By continuously lowering the temperature, SA simulates the
material coming into equilibrium, and thus effectively simulates the physical annealing. In practice,
SA starts initially with T set to a high value, and then it is decreased at each step following a specific
schedule, and SA terminates when the temperature 7" reaches a preset threshold. In this way, the
algorithm is supposed to wander initially towards a broad region of the search space containing good
solutions and gradually drift towards better regions that become narrower and narrower, and finally
move downhill according to the steepest descent heuristic.

When adopting SA to our presolving scenario, we set the first 14 variables as continuous variables
and the last 28 variables as integer variables, corresponding to priority (float), max-rounds (int), and
timing (int) respectively. The difference between continuous variables and integer variables is the
disturbance (for the integer variables we only use +1). As for the object function, the most valuable
one is the solving time. However, when facing large-scale instances, we can not use the solving time
as the objective function if the solving time is clearly more than 3600 seconds. Therefore, instead of
solving the MIP instance to the optimal, we set a time limit and output the current solution.
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Based on the current solution, we design three surrogate objective functions: 1) int ratio: count the
number of variables that are integers and should be integers by the MIP constraints. 2) bound gap:
calculate the gap between the dual bound and primal bound as the bound gap. 3) primal-dual gap
integral: the area between the curve of the solver’s primal bound and dual bound. In our experiments,
we find that all three surrogate objective functions work well. For each dataset, we select the surrogate
objective function with the best performance in SA.

A.4 DETAILS OF KNOWLEDGE-BASED RESIDUAL LEARNING

Inspired by (Zheng et al., 2021b), we decide to utilize the knowledge-based residual learning (KRL)
in our neural networks, regarding the priority information as the prior knowledge. Here we describe
the detailed design of KRL. As Fig. 5 shows, KRL is a residual learning method to combine the prior
knowledge model and the neural network model. Specifically, KRL utilizes a simple but effective
residual unit with domain knowledge:

x' = p(x) + Gy(x) “4)

where p(x) is the prior knowledge model, G4(x) is a neural net model. Intuitively, the prior
knowledge model can help to infer reasonably well. Hence, the neural network model will be
directed to predict the residual x’ — p(x). As (Shamir, 2018) shows, learning the residual value
x’ — p(x) is provable better than learning the original value x when G, satisfies certain criteria and
the output layer is linear. This ensemble significantly increases its robustness and accuracy. Moreover,
theoretically, it is guaranteed to yield superior performance over either a pure domain knowledge
model or a pure deep learning model. (proved in Section 4.3 of the KRL paper (Zheng et al., 2021b))

Figure 5: The knowledge-based residual learning unit. G4: neural layers, p: prior knowledge model.
Credit to (Zheng et al., 2021b).

A.5 DETAILS OF DYNAMIC LOSS AVERAGING.

Imbalance among multiple tasks is one of the most critical issues to be addressed in multi-task
learning, many studies have attempted to balance the convergence rate of different tasks by assigning
an adaptive weight to each task (Kendall et al., 2017; Chen et al., 2017; Liu et al., 2019). Inspired by
them, the motivation of our Dynamic Loss Average method is to average task weighting over time
via adjusting the rate of change of loss for each task. Formally, we define a loss weight: wy, for each

task: k as: Keap(Ra(t — 1)/T)
. Weap(Ry(t —
)= S e (RiE = )T) ©
Ri(t—1) = m (6)

where L (t) denotes the loss of task & at the ¢ iteration and R (-) calculates the relative training
convergence rate of task k, 7 in the softmax operator represents the temperature that controls the
softness of weighting for task-specific loss. In the implementation, temperature 7 is set to 2 and
Ry (t) is initialized as 1 when ¢ = 1,2, but any other effective initialization methods with prior
knowledge can also be applied here.

A.6 DETAILS OF PD INTEGRAL

For the definition of PD integral, the primal-dual integral in the field of mixed integer programming
(MIP) is a measure used to evaluate the performance of MIP solvers. Here we list several documenta-
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Table 6: Performance on easy, medium, and hard datasets. We ran the experiments five times with 5
random seeds and reported the average results with their standard deviations.

MIRP small Corlat MIK MIRP large Item Placement | Load Balancing | Anonymous
Random 3.75% 5.43% <0 4.21% <0 <0 22.23%
SMAC3 10.64%+1.37% | 22.34%+1.08% | 1.62%%0.29% | 12.98%+1.68% | 1.99%+0.11% | 2.12%=+0.09% 37.85%+0.99%
FBAS 3.44%+1.87% 16.69%+2.26% | <0 7.19%+2.43% | <0 <0 19.23%+2.95%
L2P (ours) | 11.12%*1.56% | 34.74%*1.57% | 3.02%+0.28% | 28.41%*1.62% | 4.96%+0.11% | 5.11%+0.21% 51.29%+*1.55%

tion * # of implementing PD integral for understanding it. It provides a quantitative assessment of
how effectively a solver bridges the gap between the primal (the best feasible solution found) and
dual (a bound on the optimal solution) bounds over the course of the solution process. Here we list a
more detailed breakdown:

* Primal and Dual Solutions in MIP: In mixed integer programming, a primal solution refers
to a feasible solution that satisfies all the constraints of the MIP model. The dual solution, on
the other hand, is related to the bounds on the optimal solution value. In linear programming,
this would be equivalent to the solution of the dual problem, but in MIP, it usually refers to a
bound derived from a relaxation of the integer constraints.

* Gap Measurement: The primal-dual integral measures how the gap between the primal and
dual solutions evolves over time. This gap is the difference between the objective value of
the best known feasible solution (primal) and the best known bound (dual).

* Purpose of the Primal-Dual Integral: This measure is especially useful in understanding
the efficiency of a solver in converging to the optimal solution. It can highlight whether a
solver quickly identifies good feasible solutions and tight bounds or whether it struggles to
improve the primal and dual solutions over time.

* Calculation: The primal-dual integral is calculated by integrating the gap over the time taken
for the computation. A lower integral value indicates a more effective solver, as it shows
that the solver was able to keep the primal-dual gap smaller throughout its run.

* Use in Analysis and Benchmarking: This metric is valuable for comparing different solvers
or solution strategies in mixed integer programming. It provides insights beyond just the
final solution quality or computation time, focusing on the overall trajectory of the solution
process.

A.7 EXPERIMENTS WITH 5 RANDOM SEEDS

We conduct experiments with 5 random seeds, following the settings in (Gasse et al., 2019). For the
baseline Random, its approach is already randomly selecting the parameters 10 times and recording
the best ones. Therefore, we do not modify this baseline. Table 6 shows the solving time/PD integral
improvement of the methods on all datasets, the average results with standard deviation are reported.
We can see that our proposed methods can make significant improvements on various datasets.
Compared to SA which needs hours or days to finish searching for each instance, our proposed L2P
can make inferences in merely seconds (less than 0.05s in the medium datasets, and less than 0.5s
in the hard datasets). As for the baselines, we find that SMAC3 reaches comparable performance
while FBAS does not work well except for Corlat and MIK. It turns out that the special design of our
proposed L2P for presolving does show its value since L2P can outperform the latest SMAC3 in most
cases, including instance-specific tailor, hybrid residual networks, dynamic loss, and shared-bottom
branching. As we can see, in these popular MIP datasets, our L2P has shown its performance and
cost efficiency.

*https://www.ecole.ai/2021/ml4co-competition/#metrics
4https ://www.fico.com/fico-xpress—optimization/docs/latest/solver/
optimizer/HTML/PRIMALDUALINTEGRAL.html
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Figure 6: Ablation study: impact of training data size on the performance of L2P in the MIRP and
CorLat dataset.

A.8 EXPERIMENTS ON THE MIPLIB DATASET

In the field of MIP, MIPLIB is the most widely used dataset, and we have thought of this dataset
during our work period. However, the MIPLIB dataset contains diverse instances which are too
diverse to be regarded as one distribution, as in the machine learning dataset we require the data from
an independent identically distribution. Known from their website’, they try to select instances as
diverse as possible with multi-round filtering and clustering. It makes the MIPLIB dataset very hard
to become a good dataset with independent identical distribution.

Nevertheless, we still tried to search for better presolving than default on MIPLIB via heuristics, but
we ended up finding there is little improvement on this benchmark. Since we can not find enough
labels (better presolving) for constructing the dataset, we did not include MIPLIB in our paper. We
plot the search progress below: (represented by the average improvement compared to the default)

Table 7: Searching attempts on the MIPLIB dataset.

Searching step 0 15 30 45 60 75 90 105
Average improvement | -89.6% | -70.0% | -31.6% | -34.0% | -68.1% | -12.2% | -4.31% | -3.84%
Searching step 120 135 150 165 180 195 210 225
Average improvement | -3.26% | -0.18% | -0.09% | 0.04% | 0.69% | -0.75% | -4.34% | -8.29%

Our analysis is as follows: as a standing benchmark for evaluating MIP solvers themselves, instances
of MIPLIB may be well pre-processed such that default presolving is already improved well by the
researchers of the MIP solvers, including manually adding new presolvers and adjusting their default
strategies. Therefore, there is little room for us to further improve the presolving in MIPLIB. While in
the real world, it is impossible to let researchers manually pre-improve with every incoming instance.
Therefore, our method can still make improvements to MIP solvers, as the experiments on multiple
public datasets show.

A.9 ABLATION STUDY OF ADJUSTING THE TRAINING DATA

To see the influence of the training data, we conduct an ablation study by adjusting the number of
training data, from 20%, 40%, 60%, 80%, to 100%. The results are shown in Fig. 6. We can see that
with more training data used, L2P will perform better. But we also notice that after using 80% of the
data, the performance of L2P tends to stabilize. Therefore, the idea of finding a suitable data size for
training indeed makes sense, and we will keep following.

Shttps://miplib.zib.de/Selection_Methodology.html
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Table 8: The improvement (%) compared to default presolving from the searching process of SA.

instance | step O | step 15 | step 30 | step45 | step 60 | step 75 | step 90 | step 105 | step 120 | step 135
avg. -15.7 | 104 16.4 17.5 19.0 23.0 28.3 35.3 38.1 39.2
1 -264 | -2.1 2.1 9.1 9.1 9.1 24.0 24.0 24.0 30.3
2 21,1 | 172 17.2 17.2 17.2 17.2 17.2 439 45.9 46.1
3 -20.8 | 6.2 6.2 6.2 14.3 14.3 22.1 22.1 39.4 394
4 -17.7 | -10.8 -8.9 -8.9 -8.9 17.6 36.1 36.1 36.1 36.1
5 -17.3 | 32 20.8 20.8 20.8 20.8 31.2 31.2 313 33.1
6 -15.5 | 293 29.7 29.7 29.7 29.7 29.7 29.7 29.7 30.6
7 -14.0 | 25.0 25.0 25.0 25.0 25.0 25.0 39.2 433 455
8 -10.8 | -2.1 2.8 2.9 9.9 9.9 9.9 34.6 38.4 38.4
9 -84 8.2 41.8 41.8 41.8 41.8 41.8 41.8 41.8 41.8
10 -5.6 29.7 31.2 31.2 31.2 44.6 46.2 51.0 51.0 51.0

A.10 ILLUSTRATION OF THE SEARCHING PROCESS

To show the information about the generated training set, we plan to show the searching process
of the simulated annealing module of the proposed L2P. As Table 8 shows, we can see that SA can
indeed search for better presolving, and its convergence seems fine. For the time consumption of each
step, the time limit is 3600s. As a result, we find that SA can indeed find better presolving during the
tremendous searching process, but the time consumption of it is unacceptable in practice usage since
the time consumption of SA is even larger than the B&B algorithm. Therefore, we propose L2P to
learn the results of SA while saving running time. Compared to SA which needs hours or days to
finish searching for each instance, our proposed L2P can make inferences in merely seconds (less
than 0.05s in the medium datasets, and less than 0.5s in the hard datasets).

A.11 ILLUSTRATION OF IMPROVED PRESOLVING PARAMETERS

In this paper, we propose the learning to presolve task, which aims at improving the presolving
module in existing MIP solvers. To achieve this goal, we propose our L2P to improve the presolving
parameters. Here, we consider an illustration of the improved presolving parameters that can better
reflect the performance of our proposed method. However, the presolve may not be easy to quantify
due to its complexity. In Fig. 7 8 9, we try to show the illustrations for improved presolving parameters
of 14 different presolvers under the CorLat, MIK, and NeurIPS 21 Anonymous datasets, in Figure
1/2/3, respectively. Due to the space limit, we choose the top four instances for each dataset by their
ranking in the original public zip (not randomly picked). In each figure, we can see that though
these four instances are from the same problem classes, the parameters of the improved presolving
vary a lot, especially with respect to the priority (order of the presolvers). Meanwhile, we can find
that different problem classes show different patterns: some approximately wave-like patterns in
each figure. Moreover, we use Tabel 9 to show the decisions of the trained model L2P of the top
10 instances in the CorLat datasets. The [X,y,z] denotes the priority, max-round, and timing of each
presolver (decided by our L2P). We also place the default parameters of the presolvers to compare.

A.12 DISCUSSION OF LIMITATIONS AND FUTURE WORK

In this paper, we focus on the mixed integer programming (MIP) area and propose the "learning
to presolve" task for the first time. We design a deep learning framework integrated with heuristic
algorithms, which achieves non-trivial performance on multiple public MIP datasets. We hope our
work could lead to a new direction in machine learning for combinatorial optimization (ML4CO) by
proposing a new task definition and becoming a baseline for other researchers.

Here, we try to list some interesting topics which may be a new direction for future work:

1) Extension to non-linear MIP: our method is designed as a plug-in to the MIP solver, focusing only
on the presolve part. As the presolving part is algorithmically agnostic to the blackbox of the MIP

19



Published as a conference paper at ICLR 2024

solver itself and the MIP instance, we can work on the MIP instance as long as the MIP solver can
work on it. We plan to try some experiments about non-linear MIP in future work.

2) About scaling and decomposition: taking the scheduling problem as an example, when the problem
size increases by 10 times, the solving time usually increases by more than 10 times; unless it can be
strictly decomposed into subproblems (DoComponents), it can achieve the speed difference of only
10 times mentioned here; generally speaking, even if the problem size of the same scenario increases
by 10 times, due to the coupling of the problem, the presolve module will also increase more than 10
times the workload. Taking the common dominatedCols, dominatedRows, multiRowBoundStr in
MIP as an example, the judgment method is also O(n?) and above difficulty. In practice, we have
also encountered the situation of high time consumption of presolve operators caused by coupling
problems, and the time consumption bottleneck lies in SymmetryDetection. It is very necessary to
adjust the presolve parameters according to the scenario. Meanwhile, if some problems have strong
decomposition and solving properties (such as continuous scheduling problems, multi-stage planning
problems, etc.), we can also adjust and train the presolving according to the problem scenarios after
decomposition, which shows the general applicability of our method: not only suitable for larger
scenarios but also provide value for decomposable scenarios, which is also a future work direction.

3) Real-world scenarios to use our method: In practice, it is common to repeatedly solve similar MIPs
collected from specific real-world applications, e.g., day-to-day production planning and vehicle
routing problems. These problems are constructed as mathematical programming models (here, we
refer to MIP) by human experts in business scenario understanding and operation research. However,
there might be a bunch of redundancy in these MIP models. Presolving techniques play a key role in
removing redundancy and enhancing the numerical representation of the MIP model. Many modern
MIP solvers such as Gurobi and SCIP are equipped with kinds of advanced presolving operators,
which are hard-coded heuristics designed by experts. However, hard-coded presolving does not take
into account underlying patterns changing among these problems (even if these problems originate
from the same business scenario). Thus, we propose our method to exploit the existing presolving
operators better, to solve those similar MIPs faster and more stably.

4) Usage on more MIP solvers other than SCIP: commercial MIP solvers may not have the APIs
like SCIP, but as long as the presolving module exists, they may have similar parameters to adjust
the presolvers. Their APIs are not exposed since they are commercial solvers and not open-source.
We consider it impossible to directly improve commercial solvers in research papers, as existing
papers mainly conduct experiments on open-source solvers (SCIP) like us. If we cooperate with
the commercial solver company in the future, we can also add our method to their internal strategy,
integrating our machine learning technologies to help users better solve MIPs.

People may think that we can write the presolved MIP to disk and then run it on the commercial
solvers. We have considered this approach before. Presolving using an open-source MIP solver
and then solving the presolved instance using a commercial solver is indeed a feasible approach.
Still, we are concerned that this may raise potential issues, as it requires disabling the presolving
module of the commercial solver. Considering that the presolving module and the subsequent model
solving are not fully decoupled, presolving algorithms may still be executed when solving sub-mips
on non-root nodes and enabling the restart mechanism. If we hastily turn off the presolving module of
the proprietary commercial solver, it may have unpredictable impacts on its performance. Moreover,
the presolving strategy obtained by training on the open-source solver may not be applicable to all
solvers. It may also result in negative optimization (we did not verify this point due to time and paper
topic constraints). Therefore, we choose a more open SCIP solver to provide personalized presolving
settings and complete solving services.
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Figure 9: Presolve parameters on the NeurIPS 2021 competition anonymous dataset.
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