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Abstract

Marked temporal point processes (MTPPs) have emerged as a powerful modeling
tool for a wide variety of applications which are characterized using discrete
events localized in continuous time. In this context, the events are of two types—
endogenous events which occur due to the influence of the previous events and
exogenous events which occur due to the effect of the externalities. However, in
practice, the events do not come with endogenous or exogenous labels. To this
end, our goal in this paper is to identify the set of exogenous events from a set of
unlabeled events. To do so, we first formulate the parameter estimation problem
in conjunction with exogenous event set selection problem and show that this
problem is NP hard. Next, we prove that the underlying objective is a monotone
and α-submodular set function, with respect to the candidate set of exogenous
events. Such a characterization subsequently allows us to use a stochastic greedy
algorithm which was originally proposed in [64] for submodular maximization.
However, we show that it also admits an approximation guarantee for maximizing
α-submodular set function, even when the learning algorithm provides an imperfect
estimates of the trained parameters. Finally, our experiments with synthetic and
real data show that our method performs better than the existing approaches built
upon superposition of endogenous and exogenous MTPPs.

1 Introduction
In recent years, marked temporal point processes (MTPPs) have shown tremendous potential in
modeling the arrival process of the asynchronous events in continuous time [65, 46, 66, 16, 22,
17, 52, 82, 33, 13, 60, 83, 74, 49, 77, 27, 53, 47]. They are extensively used in a wide variety of
applications, e.g., information diffusion in social networks [66, 77, 16, 43, 12, 85, 76], improving
human learning [76, 74], location modeling [83], epidemic forecasting [49, 66], etc. At the outset, an
MTPP event consists of two elements— its arrival time and the mark, where the latter encodes the
category of the event, e.g., the topic of a blog post, the sentiment associated with a tweet, disease of
an individual, etc.

In the context of learning an MTPP, we observe two types of events— endogenous events which
occur due to influence of the previously observed events and, exogenous events which are driven by
the external sources or unobserved events, rather than being influenced by the previously observed
events. For example, a post in social media may be influenced by some external news source, rather
than the previous messages [26, 60, 13]; in epidemic process, an infection may be triggered by
community transmission where the source is other than any previously known infections [50], etc. In
such applications, the observed events appear unlabeled, i.e., they are not tagged with their sources of
influence. Consequently, the existing MTPP models [21, 12, 84, 78, 66] resort to the superposition of
exogenous and endogenous MTPPs. However, such approaches view an event being exogenous or
endogenous with equal likelihood and therefore, they do not focus on identifying which events are
more likely to be exogenous than others. Consequently, they often remain oblivious to the presence
of the exogenous events, which often preclude these models from realizing their full potential. While
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De et al. [13] tackle this problem in the particular context of opinion dynamics in social networks,
their formulation focus only on the mark dynamics and, skirt the effect of exogenous events on the
arrival times. As a result, their framework can not be extended to a generic MTPP model, where the
arrival time is often a key component.

1.1 Our contributions
In order to respond to the above limitations, we make the following contributions.
Learning in conjunction with selection of exogenous events. We design TPP-SELECT, a novel
event selection algorithm which, for any given MTPP model, simultaneously filters the exogenous
events from a stream of unlabeled events as well as train the model parameters over the remaining
(endogenous) events (Section 3). More specifically, we seek to maximize the likelihood of all the
events, jointly with respect to the set of exogenous events and the parameters of the associated
MTPP model. Such a formulation induces a parameter estimation problem in conjunction with the
combinatorial optimization problem for selecting the exogenous events.
Characterization of the objective. Subsequently, we show that our problem is NP-hard due to
the involvement of the candidate exogenous events as an optimization variable. We tackle this
problem using several technical innovations. First, we reformulate it as an instance of a set function
maximization problem, where the objective corresponds to the value of the maximum likelihood,
as a function of the candidate set of exogenous events. Then, based on this representation, we
show that this objective satisfies monotonicity and α-submodularity— a notion of approximate
submodularity [25, 44, 29] for linear MTPP and a wide variety of nonlinear MTPPs (Section 4).
These results reveal an unexplored connection between approximate submodularity and temporal
point process, that is of independent interest.
Approximation guarantee for greedy method in the face of imperfect training. Next, we show
that these properties allow us to use an existing stochastic greedy algorithm [64]. While this algorithm
is known to admit an approximation guarantee for submodular maximization, we show that it also
enjoys an approximation guarantee for maximizing α-submodular functions. Moreover, we show that
this algorithm also admits an approximation guarantee even when the training algorithm provides an
imperfect estimation of the MTPP parameters.

Finally, we perform a comprehensive evaluation of our proposal on both synthetic and real data.
Our experiments with synthetically generated sequences show that TPP-SELECT can accurately
select the exogenous events from a stream of unlabeled events, even though it is completely unsu-
pervised. Our experiments on real datasets show that, despite training on a subset (endogenous)
of events, TPP-SELECT outperforms several baselines as well as the corresponding model which
is trained on the entire dataset in the presence of exogenous events. Our code is available in
https://github.com/noilreed/TPP-Select.

2 Related work

Apart from the works on MTPPs, our work is related to robust learning, subset selection, modeling
external effects in different applications, active learning, etc.
Robust learning. Robust learning focuses on training machine learning models in the presence of
outliers and noisy labels [9, 67, 3, 23, 88, 4, 58]. However, exogenous events are not outlier data,
they are events which follow a different model, other than the central model— which, in our case,
captures the endogenous event dynamics. These robust learning methods predominantly consider
i.i.d. data and focus on designing models and training algorithms which would generalize well across
the data including the outliers. In contrast, the events in our setup have strong temporal dependencies.
Moreover, our objective is to select the exogenous events, so that the model can be trained on the
remaining (endogenous) events to obtain more accurate parameter estimates
Data subset selection. In recent years, there is a flurry of work on data selection [81, 80, 79, 48, 2,
40, 51, 57, 7, 6, 36], which predominantly select a smaller sized subset of data to facilitate efficient
training, by optimizing submodular functions and their variants. However, TPP-SELECT aims to
filter the exogenous events from a sequence of events to help the underlying MTPP model achieve
better predictive performance.
Modeling external effects. Our work is also connected to the methods that model the external effect
in several applications, especially, in web or online social media [19, 60] that aim to model the effect
of exogenous influence on the information diffusion in social media. However, they do not aim to
select the exogenous messages from a stream of unlabeled messages. Iwata et al. [34] aim to learn
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the effect of one user on the post of other users. Such a model can be used to quantify the external
effect. Linderman and Adams [45] aim to learn a probabilistic model which captures latent influence
present in data using mutually exciting processes combined with a random graph model. Furthermore
it infers the latent network structure from the noisy observations. Tanaka et al. [75] model dynamics
of event sequence in the particular application of purchase data modeling. Specifically, it combines
three factors, namely user preferences, influence from other users and media advertisements. These
proposals learn their model using EM algorithm combined with Gibbs sampling method. However,
they do not provide an algorithm to explicitly demarcate between endogenous and exogenous events.
Very recently, Liu and Hauskrecht [47] consider a semi-supervised setting of event outlier detection
for MTPP. However, they assume that they have access to data without outliers, so that the underlying
MTPP model can be trained on this clean data. In contrast, our work applies to an unsupervised
setting, where the training data also contains the exogenous events.
Optimization of submodular functions and their variants. Submodular functions have the ability
to characterize a wide variety of set functions. Moreover, thanks to the existence of a simple
greedy algorithm to maximize such functions, their use is widespread across several subset selection
tasks [81, 80, 79, 48, 2]. Several popular set functions, e.g., facility location, set cover, concave over
modular, etc. are submodular [36, 2, 35]. In this context, there is a recent line of works which focus
on maximizing different variants of submodular functions which include α-submodular functions and
γ-weakly submodular functions [61, 54, 5, 11, 37]. In particular, our work is more focused around
α-submodular functions.
Subset selection in conjunction with model learning. Existing works [7, 51, 36, 39, 14, 15, 57]
have also considered subset selection in conjunction with model parameter estimation. However, in
the context of applications as well as formulations, these works differ from us. Killamsetty et al. [39]
consider simultaneous parameter estimation on training set and subset selection using validation
error in order to facilitate efficient learning without introducing significant error. On the other hand,
the works in [36, 51, 57, 7] focus on selecting coreset— a small representative subset of the entire
data— together with parameter estimation. However, they consider i.i.d data and select subset for
efficient training. In contrast, we partition sequence of events into exogenous and endogenous events
for improved training of point process models. Finally, the works in [14, 15] consider simultaneous
parameter estimation and subset selection. Similar to our work, they aim to find model parameters and
a desired data subset simultaneously by minimizing the underlying loss functions with respect these
variables. However, they focus on human assisted machine learning, whereas our work considers
exogenous event selection in the context of marked temporal point processes. Thus the problem
formulation, results and proofs are significantly different from these works.
Active learning. Active learning methods [81, 28, 69, 42, 24] aim to identify instances in the training
data, in order to reduce the labelling cost. In contrast, our work aims to select samples which are not
influenced by the previous events in a sequence of dependent observations. To that end, it trains the
endogenous MTPP model on the rest of the events. More specifically, active learning methods aim
to find a subset of instances so that the model trained over it gives accurate predictions for all the
samples in the test set. In contrast, our work selects both exogenous and endogenous events and then
trains two separate models (λθ,mθ) and (µ, q) so that they perform well specifically on endogenous
and exogenous events respectively.

3 Problem formulation

In this section, we formulate our problem of learning an MTPP in presence of exogenous events,
starting with an overview of MTPPs.

3.1 Overview of marked temporal point processes
A marked temporal point process is a stochastic process which is characterized using a sequence of
events H = {e = (y, t)}, where t ∈ R+ is the time of occurrence and y ∈ C = {c} is mark of the
event that has happened at time t [17, 12, 65, 10]. The dynamics of the arrival times can equivalently
be represented as a counting process N(t) that counts the number of events occurred until time t.
In this context we also define Ht as the history of events happened until and excluding time t, i.e.
Ht = {ei = (yi, ti)|ei ∈ H, ti−1 < ti < t}. We specify the dynamics of the arrival times using a
conditional intensity function λ(t) which in turn encapsulates the probability that an event occurs in
the infinitesimal time interval [t, t+ dt), described as follows [12, 74, 10]:

λ(t) = Pr (An event will occur between t and t+ dt) = E[dN(t) = 1], (1)
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where dN(t) ∈ {0, 1} is the number of events arriving in the infinitesimal time-interval [t, t+ dt).
On the other hand, we capture the behavior of marks using a probability distribution, i.e.

m(c) = Pr (Mark of an event is c) = Pr (y = c), (2)
which is often modeled as a multinomial distribution over the set of marks C.

3.2 Problem setup

Endogenous and exogenous events. In the context of MTPP, we observe two types of events, viz.,
(i) endogenous events that occur due to the influence of the previously observed events; and, (ii)
exogenous events that are not influenced by the previously observed events but occur due to the
influence of the externalities [21, 13]. The dynamics of the endogenous events are modeled using
a parameterized conditional intensity function λ(t) = λθ(t |Ht) and conditional mark distribution
m(y) = mθ(y |Ht). The arrival time and the mark depend on the previously observed eventsHt,

λθ(t |Ht) = E(dN(t) = 1 |Ht), mθ(y |Ht) = Pr(y |Ht). (3)
Therefore, both λθ and mθ are stochastic quantities. On the other hand, exogenous events are
captured mostly using an independent MTPP in which, the intensity function or the mark distribution
are modeled using a deterministic and mostly time invariant distributions. In our work, we model the
intensity function and the mark distribution for exogenous events as Gamma and Beta noise,

λ(t) = µ ∼ Gamma(αλ, βλ), m(y) = q ∼ Beta(αm,y, βm,y), . (4)
These distributions allows µ ∈ (0,∞) and q ∈ (0, 1). α• and β• are hyperparameters. We further
assume that both the arrival times and the marks of the exogenous events are i.i.d. random variables.
Use of superposition of MTPP models and their limitations. Suppose, if at all possible, the train-
ing observationsHT gathered during the time-window [0, T ) were already tagged with endogenous
or exogenous labels. In such a case, one could first build the set of exogenous events S and the
endogenous events HT \S and then, use maximum likelihood estimation to learn {α•, β•} and θ
separately using the set of exogenous events S and the endogenous eventsHT \S, respectively.

In practice, the difference between the exogenous and the endogenous events is not evident in the
training data. Specifically, these events are not tagged with endogenous or exogenous labels and
therefore, it is not possible to construct the set of exogenous events S, well in advance. Existing
works [21, 12, 84, 77] tackle this problem by maximizing the likelihood corresponding to the
superposition of exogenous and endogenous MTPPs. In such case, the intensity function becomes
λ(t) = µ+ λθ(t |Ht) and the mark distribution incorporates the effect of exogenous events using
additive offsets.

Maximizing the likelihood associated with the superposition of two MTPPs, often turns out to be
suboptimal as shown in our experiments (Section 6). This is because, such an approach does not aim
to find out the set of exogenous events S which maximizes likelihood function. In fact, due to the
absence of any informed choice about S, such a likelihood function assumes that all the partitions
between exogenous and endogenous events {(S,HT \S)} are equally likely (Appendix B.1). Such
an assumption may not be true in general. We ameliorate this limitation by selecting partition
{(S,HT \S)} along with the model parameters, which induces the highest value of the likelihood,
across all possible partitions and the hypothesis class.

3.3 Problem statement
We aim to select the exogenous events from a given stream of unlabeled events and simultaneously
train these MTPP models (3) on the remaining events which are endogenous in nature.
Selecting exogenous events in conjunction with parameter estimation. Given a stream of events
HT recorded in the time interval [0, T ), we aim to pick S ⊆ HT— the candidate set of k exogenous
events, i.e., |S| ≤ k— and concurrently, train the parameters θ on the set of the endogenous events
HT \S . Using the intensity functions and the mark distributions defined in Eq. (3)— (4), our goal is
to solve the following regularized log-likelihood maximization problem:

maximize
θ∈Θ,S⊆HT

L(θ;S,HT ), subject to, |S| ≤ k, (5)

with, L(θ;S,HT ) =
∑

ei∈HT \S

[
−ρ ‖θ‖22 + log(λθ(ti |Hti)) + logmθ(yi |Hti)

]
−
∫ T

0

λθ(τ |Hτ ) dτ

+ |S|E[logµ]− TE[µ] + |S|E[log q]. (6)
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Here, ρ is the coefficient of the L2 regularizer, k is a pre-specified integer with k ≤ |HT |. The
above problem poses a subset selection task in conjunction with likelihood maximization. Parameter
estimation along with subset selection has also been addressed in the context of human assisted
learning [15, 14], efficient learning [18, 38].

Next, we derive an equivalent representation of our optimization problem (6) as an instance of
cardinality constrained set function maximization problem.
Reformulating (6) as a set function optimization problem. Given a fixed set of the exogenous
events S, the optimal value of the model parameters θ∗(HT \S) becomes dependent only on the
endogenous eventsHT \S . Therefore, if we define:

F (S) = L(θ∗(HT \S);S,HT ) (7)

then the optimization problem (6) becomes equivalent to solving the following optimization problem.
maximize
S⊆HT

F (S), subject to, |S| ≤ k (8)

Hardness analysis. Given the optimal set of exogenous events S∗, one can easily compute the
optimal parameters θ∗(HT \S∗) for the problem (5) in polynomial time, if the objective (6) is
concave with respect to θ for any fixed S. However, in general, both S∗ and θ∗(HT \S∗) can not
be solved in polynomial time. We formally state this result in the following proposition (Proven in
Appendix B.2).

Proposition 1 Solving the optimization problem in Eq. (5) is NP-hard.

4 Our proposed framework for maximizing F (S)
In this section, we present our framework to maximize F (S). More specifically, we first show that
the set function F (S) defined in Eq. (7) is monotone and α-submodular for a wide variety of MTPPs.
Then, we present TPP-SELECT, an approximation algorithm based on a scalable stochastic greedy
algorithm [56], which identifies the optimal set of exogenous events from a set of unlabeled events, for
any given MTPP model. Finally, we show that such an algorithm enjoys an approximation guarantee
even when the learning algorithm provides an imperfect estimate of the trainable parameter θ.

4.1 Characterization of F (S)

First, we show that F (S) enjoys several useful properties for a wide variet of MTPPs, which allows
us to leverage a stochastic greedy algorithm that offers approximation guarantee. Before formally
stating those properties, we first present the formal definitions of monotonicity and α-submodularity.

Definition 2 A function F (S) is monotone non-decreasing if F (S ∪ {e}) − F (S) ≥ 0 for all
e ∈ HT \S. F (S) is α-submodular if F (S ∪ {e}) − F (S) ≥ α(F (T ∪ {e}) − F (T )) for all
e ∈ HT \T and S ⊆ T ⊂ HT [28, 86, 20].

Monotonicity and α-submodularity of F (S) with linear MTPPs. First, we consider a linear
marked temporal point process which is built upon Hawkes process [12, 77, 66]. Here, we model
the intensity function λθ(t |Ht) and the mark distribution mθ(y |Ht) for the endogenous events as a
linear combination of multiple triggering kernels {κ•(t, ti) > 0}, i.e.,

λθ(t |Ht) = θ>λ κλ(t), mθ(y |Ht) = logistic(y · θ>mκm(t)) (9)

where θ>• κ•(t) =
∑d
v=1 θ•,v

∑
ei∈Ht κ•,v(t, ti). Here, d is the dimension of κ and θ =

{θλ,v,θm,v | v ∈ [d]} is the set of trainable parameters. In general, κ•,v(·, ·) captures differ-
ent forms of dependencies. For example, in the particular case of information diffusion in
social networks, λθ may correspond the rate of message of a user u with d neighbors and,
κ•,v(t, ti) = e−ω•(t−ti) · 1(ti is posted by user v) which captures the scenario the effect of an
previously occurred event ei decays over time with the decay factor ω• > 0. In the subsequent
theorems, we formally state that F (S) is a monotone and submodular set function (Proven in
Appendix C.1).

Theorem 3 (Monotonicity of linear MTPP) Assume that the endogenous events follow a linear
MTPP (9). Then the set function F (S) defined in Eq. (7) is monotone in S if ρ ≥ ρmin =
(0.5/e) · κ2

max,λ · exp
(
− 2E[log(µ · q)]

)
, where µ and q are the intensity and the mark distribu-

tion for the exogenous events and κmax,λ = maxt≤T ‖κλ(t)‖22.
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We would like to hightlight that for several linear MTPP models, such an assumption on the regular-
ization parameter ρ is quite loose. For examples, in the previously discussed example of information
diffusion with exponential kernels, if we have κmax,λ = 1 and an exogenous event distribution
µ, q ∼ Gamma(1, 1), we have ρmin < 0.1.
Theorem 4 (α-submodularity of linear MTPP) Given that the same conditions in Theorem 3 as
well as

∥∥∫∞
0
κλ(t)dt

∥∥
2
≤ K < ∞, κmax,• = maxt≤T ‖κ•(t)‖2, κmin,• = minv∈[d],t≤T |κ•,v(t)|.

If K,κmax,•, κmin,• > 0, then the set function F (S) is α-submodular in S with α ≥ αF , where

αF =
log
[√

2eρ/κ2
max,λ

]
+ E[log(µ · q)]

κmax,λ

2κmin,λ
+ log

4κmax,λ

κ2
min,λ

+ log
(√

2ρκmax,λ

κmin,λ
+K

)
+

κ2
max,m log 2

2ρ +
√

κ2
max,m log 2

ρ + E[log(µ · q)]

In the previously discussed example of linear MTPP, which has an exponential kernel having decay
factor ω, we have α∗F = O(log ρ/(log ρ+ beωT )), where b is a data dependent constant. Hence, by
choosing a low decay factor ω, one can obtain a high value of αF .

Proof sketches of Theorem 3 and 4: We prove Theorem 3 in two steps. In the first step, we show that
F (S ∪ {e})−F (S) ≥ minθλ [ρ‖θλ‖2

2− log(θ>λ κλ(t))] + exp
(
− 2 ·E[log(µ · q)]

)
. In the second

step, we show that this lower bound is greater than E[logµ+log q]+log
[√

2eρ/κ2
max

]
which proves

the theorem. To prove Theorem 4, we aim to bound [F (S ∪ {e})− F (S)]/[F (T ∪ {e})− F (T )].
To bound the numerator, we use the result of Theorem 3. To bound the denominator, we first
show that F (T ∪ {e}) − F (T ) ≤ ρ‖θ∗(HT \(T ∪ {e}))‖2

2 − log(θ∗λ(HT \(T ∪ {e}))>κλ(t)) +

log[1 + exp
(
−y · θ∗m(HT \(T ∪ {e}))>κm(t)

)
]. These individual terms are finally bounded using

minimum and maximum possible values of ‖θ‖2.
Monotonicity and α-submodularity of Nonlinear MTTPs. Next, we consider nonlinear MTPPs
that do not have any fixed parameterized form, which are trained using deep learning methods [17, 87,
89]. Such models use a sequence encoder— either a recurrent neural network [17] or a transformer [87,
89]— to first derive an embedding hi of the history of eventsHti happened until time ti and then use
hi to capture the generative process of the next event. Characterization of F (S) for such a general
MTPP is an extremely challenging task. Therefore, we focus on a class of nonlinear MTPPs which
satisfy the following conditions on the intensity function and the mark distribution, i.e.,

λmine
−a‖θ‖2 ≤ λθ(t |Ht) ≤ λmaxe

a‖θ‖2 , mmine
−b‖θ‖2 ≤ mθ(· |Ht) ≤ 1. (10)

Here, λmax, λmin,mmin are constants such that: λθ=0(t |Ht) ∈ [λmax, λmin]. We would like to high-
light that many popular MTPP processes including recurrent marked temporal process (RMTPP) [17],
self-attentive point process [87], transformer Hawkes process [89], neural Hawkes Process [52], etc.
satisfy the above conditions. In fact, such an exponential bound is tight for the intensity function used
in RMTPP [17], since its intensity function uses an exponential activation function in the last layer.
In Appendix C.3, we discuss the representations of different MTPPs in the form defined in Eq. (10).
Next, we show the monotonicity and submodularity of F (S) in the following theorems (Proven in
Appendix C.2)

Theorem 5 (Monotonicity of nonlinear MTPP) Assume that the endogenous events follow a
nonlinear MTPP with exponentially bounded intensity function, as described in Eq. (10) with
λmax ≤ exp(−E[log(µ · q)]). Then the set function F (S) defined in Eq. (7) is monotone in S
if ρ ≥ 0.25 a2/ (log [1/λmax] + E[log(µ · q)]), where µ and q are the intensity and the mark distri-
bution for the exogenous events.

Theorem 6 (α-submodularity of nonlinear MTPP) Given the same conditions in Theorem 5 and∫∞
0
‖λ0(t |Ht)‖2dt ≤ Λmax <∞, the set function F (S) is α-submodular in S with α ≥ αF , where

αF is equal to
log
[
exp

(
−a2E[log(µ · q)]/4

)
/λmax

]
Λmax + (a+ b)

√
log(1/λminmmin) + Λmax

ρ
+ 2 log(1/λminmmin) + E[log(µ · q)]

(11)

We would like to point out that λθ(t |HT ) = λ0 > 0 for the nonlinear MTPPs having exponential
bounds. Indeed, in practice, we encounter several existing models [17, 89, 87] that choose activation
functions, e.g., Softplus, exponential function, having nonzero intensity functions even when the
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parameters θ = 0. However, for the linear MTPPs described in Eq. (9), λθ(t |Ht) = 0 for
θ = 0. Therefore, the set of nonlinear MTPPs considered above does not cover the class of linear
MTPPs (9) and therefore, the results and the proofs in Theorems 5- 6 are different from Theorems 3– 4.
Appendix D characterizes other types of nonlinear MTPPs.

4.2 TPP-SELECT: Approximation algorithm for maximizing F (S)

Finally, we present TPP-SELECT, an approximation algorithm based on a stochastic greedy
algorithm proposed in [56] in order to solve the optimization problem defined in (8).

Algorithm 1 Stochastic greedy algorithm [56]

Require: The set of observed eventsHT , the final
time T , the regularization parameter ρ, the
number of exogenous events k.

1: S ← ∅
2: for i ∈ [k] do
3: Randomly draw a subset V fromHT \S
4: for v ∈ V do
5: θ ← TRAIN(L;S ∪ {v})
6: F (S ∪ {v})← L(θ;S,HT )

7: θ̂(HT \(S ∪ v)) = θ
8: end for
9: v∗ ← argmaxv∈V F (S ∪ {v})

10: S ← S ∪ {v∗}
11: end for
12: Return S, θ̂(HT \(S ∪ v∗))

Outline of TPP-SELECT. In Algorithm 1, we
summarize TPP-SELECT to maximize F (S). It
is a randomized iterative algorithm based on the
stochastic greedy algorithm proposed in [56],
which keeps picking up one element per each of
k iterations (refer to the for loop in line no. 2).
In each iteration, given the current estimate of
S , Algorithm 1 picks up a candidate exogenous
event v which maximizes F (S ∪ {v}). How-
ever, in contrast to the well known (determin-
istic) greedy algorithm [61], stochastic greedy
algorithm computes the maximum only on a
subset of elements— sampled from the current
candidate set of elements.
Advantage over deterministic greedy algo-
rithm. The stochastic greedy algorithm is the
randomized version of well known greedy al-
gorithm [61]. If we put V = HT \S, then the
stochastic greedy algorithm becomes equivalent to the greedy algorithm. However, we need to train
the model |V| times (due to the for loop in lines 4–8) per each iteration. As a result, the deterministic
greedy algorithm would have been extremely inefficient, as it needs to greedily search for the optimal
event over all the possible candidate events V . Therefore, reducing the search space to a subset V
would significantly improve the efficiency.
Approximation guarantees. Next, we provide the approximation guarantee of Algorithm 1 for
solving the optimization problem defined in (8). Existing works [56, 37], provide approximation
guarantees of Algorithm 1 when the exact value of F (S) is available. However, in the context of our
problem, a training algorithm may not provide the optimal value of model parameters θ∗(HT \S),
even when the MTPP model is linear. Hence, we mostly obtain an imperfect estimate of the model
parameters θ∗(HT \S). To this end, we derive the approximation guarantee of Algorithm 1 when the
underlying training algorithm provides an imperfect estimate of the model parameters θ∗(HT \S).

We would like to highlight that the following approximation guarantees apply to the cardinality
constrained maximization problem of any monotone α-submodular function and therefore is of
independent interest.

Theorem 7 Assume that the training algorithm TRAIN() in Algorithm 1 provides imperfect estimates
of the underlying model parameters, with L(θ∗(HT \S);S;HT ) − L(θ̂(HT \S);S;HT )) ≤ ε for

all S and that it runs with |V| = O
(
|HT |
k log(1/δ)

)
(cf. line number 3). Then,

E[F (S)] ≥ (1− exp (−α∗F )− α∗F · δ) · F (S∗)− kε (12)

where the expectation is taken over many draws of V (cf. line number 3), S∗ is the solution of the
optimization problem (8) and α∗F is the submodularity ratio, computed using Theorems 4 and 6.

The above approximation guarantee in the presence of imperfect parameter estimates is related to
several existing works [20, 63, 31, 30, 32, 72]. However, they do not focus on cardinality constrained
maximization of α-submodular functions in general and not the well known stochastic greedy
algorithm in particular. Note that, when we have a perfect training algorithm, i.e., ε = 0, Theorem 7
reduces to similar results in [56, 37].
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Figure 1: Snapshots of output of Algorithm 1 during one third, two third and final stages of executions.
The exogenous intensity µ is tuned in such a way that |S| = 0.3 |HT |. Moreover, we also set
k = 0.3 |HT |. Top half (bottom half) of each figure indicates ground truth exogenous events S
(endogenous events HT \S). Blue, green and red events indicate predicted endogenous events,
correctly predicted exogenous events and wrongly predicted endogenous events. We observe that, the
algorithm is able to predict the exogenous events with significant accuracy, as the number of wrongly
predicted exogenous events is significantly lower than the correctly predicted exogenous events. The
classification accuracy of final stage is 0.806.

5 Experiments with synthetic data

In this section, we create synthetic examples containing endogenous or exogenous label and evaluate
TPP-SELECT from both qualitative and quantitative perspectives.

5.1 Experimental setup

Data generation. At the very outset, we generate data using linear MTPP defined in Eq. (9). More
specifically, we set the number of marks |C| = 2. In order to sample the endogenous events,
we set d = 2 and draw unidimensional parameters θλ,v, θm,v ∼ Unif[0, 1] for v ∈ {1, 2}. We
use the triggering kernel κλ,v(t, ti) = exp(−ωλ(t − ti) and κm,v = exp(−ωm(t − ti)), where
ωλ, ωm ∈ Unif[0, 1] for v ∈ [d]. For exogenous messages, we sample µ and q using the exogenous
distribution (4) with αλ, βλ, αm, βm = 1. Finally, we use Ogata’s thinning algorithm [62] to generate
both endogenous and exogenous events.
Baselines. We compare our method against several data selection based unsupervised robust learning
methods: (i) EM algorithm [70] which first assigns a constant probability p which models the
likelihood of an event e being exogenous and then estimates it along with model parameters θ using
expectation maximization; (ii) K-means [70] which uses K-means clustering to cluster the events in
K = 2 groups and then label the smallest size cluster as S, the exogenous event set; (iii) Principal
Component Analysis (PCA) [71] which first finds a low-dimensional projection of the representation
vector of the events, then sorts them in the decreasing order of the reconstruction error and finally,
choose top-k events as the exogenous event set S; and, (iv) Facility-Location [1] which maximizes a
facility location function to select the set of exogenous events S. For K-means, PCA, we directly
used implementation available in Keras [8]. For Facility location, we used apricot library [68].

5.2 Results

TPP-Select EM K-means PCA Fac-loc
0.806 0.554 0.620 0.562 0.299

Table 1: Accuracy of exogenous event selection in
synthetic data in the figure 1 for different methods.

We qualitatively show how TPP-SELECT keeps
selecting the exogenous events throughout the
progression of Algorithm 1. To that aim, we
tune the exogenous intensity µ in such a way
that |S| = 0.3 |HT | and run Algorithm 1 with
k = 0.3 |HT |. Figure 1 summarizes the results,
which shows that: (i) the algorithm is able to predict the exogenous events with remarkable accuracy,
as the number of wrong predictions is significantly lower than the correct predictions; (ii) the
performance of algorithm is strikingly accurate during the initial stage, as the number of wrong
predictions of exogenous events is significantly low; and, (iii) even when TPP-SELECT makes wrong
predictions about e ∈ S, there always exists some correct ground truth exogenous event around it
which indicates that TPP-SELECT was almost able to predict them correctly.

Next, we compare our method against the baselines. Table 1 summarizes the results, which shows
that our method outperforms the baselines.
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TPP-
SELECT

EM PCA Fac-Loc

Club 0.32 ±0.02 0.18 ±0.02 0.28 ±0.01 0.25 ±0.01
Election 0.58 ±0.03 0.31 ±0.01 0.19 ±0.00 0.44 ±0.03
Series 0.18 ±0.02 0.27 ±0.02 0.26 ±0.01 0.16 ±0.01
Verdict 0.33 ±0.04 0.27 ±0.01 0.18 ±0.00 0.10 ±0.01
BookOrder 0.96 ±0.01 0.41 ±0.03 0.92 ±0.01 0.46 ±0.01

Table 2: Accuracy of exogenous event selection of TPP-SELECT, EM [70], PCA [71] and Facility-
Location [1] across all datasets, when we inject |S| = 0.4|HT | exogenous events. Numbers in bold
font (underline) indicate the best (second best) performer. We observe that in a majority of the cases,
TPP-SELECT outperforms the baselines.

6 Experiments with real data
In this section, we provide a comprehensive evaluation of our proposal on several real world datasets,
which shows that our method outperforms several data selection based robust learning methods, as
well as the underlying base MTPP model which is trained over all observations including exogenous
events. Appendix G contains additional experiments.

6.1 Experimental setup

Datasets. We considered five real world datasets, also summarized in Appendix F, which are (i) Club,
(ii) Election, (iii) Series, (iv) Verdict and (v) BookOrder. Among these datasets, the first four datasets
were gathered from the works [12, 84, 41], whereas, the last dataset were gathered from [17] 1.
Baselines. We compare our method against the four data selection based unsupervised robust learning
methods, presented in Section 5.1.

6.2 Results
Comparison with baselines. We first compare the performance of TPP-SELECT against the base-
lines in terms of the classification accuracy for exogenous event selection. To that aim, we inject 40%
exogenous events and present to the event selection methods for identifying these events. Here, we
consider recurrent marked temporal point process (RMTPP) [17] as our base MTPP model (λθ,mθ).
Note that, unlike synthetic dataset, K-means is not able to predict any exogenous events correctly. We
believe that this poor performance is due to the complexity of the underlying generative process in real
datasets, which renders the feature distance between events to be the poor predictors of exogenous
labels. Table 2 summarizes the results of our method and the other baselines, which shows that (i) our
method consistently outperforms the baselines in majority of the cases, as it aims to select the events
in conjunction with the model parameters, whereas the baselines except for EM algorithm selects the
events in a model-agnostic manner; (ii) except for Series and Verdict datasets, EM algorithm fares
poorly across all other datasets, which we believe is due to the time-invariant modeling of probability
of the exogenous events; and (iii) PCA is the second best winner in majority of the datasets.
Comparison with the base MTPP model. Next, we investigate how well TPP-SELECT performs in
comparison to the underlying base MTPP which models the event dynamics using the superposition
between endogenous and exogenous MTPPs and thus, is trained on the entire sequence of events
including the exogenous events. Given a sequence of observed events, we split it into 80% training
and 20% test sets. We use TPP-SELECT on the training set HT , where it simultaneously selects
the exogenous events S and trains the model parameters (λθ,mθ) on the endogenous eventsHT \S .
Once we train the model, we use Ogata’s thinning algorithm [62] to simulate future events to
predict the unseen events in the test set T . To this end, we evaluate the performance on in terms of
mean absolute error (MAE), i.e., 1

|T |
∑
e=(t,y)∈T E[|t − t̂|] and mark prediction error (MPE), i.e.,

1
|T |
∑
e=(t,y)∈T Pr(y 6= ŷ). Here, MAE and MPE measure the errors in predicting the arrival times

and the marks of the future events.

Table 3 summarizes the results, which shows that TPP-SELECT performs better than the underlying
base MTPP model across all datasets. Such observations imply that a model aware exogenous event
filtering improves the predictive performance than learning a superposition of two models.

1The datasets are public and anonymized. We collect them from https://github.com/paramita1024/demarcation/tree/master/data
and https://github.com/musically-ut/tf_rmtpp/tree/master/data/real. They are under MIT License. No dataset contains personally identifi-
able information or offensive content.
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Time prediction error in terms of MAE E(|t− t̂|) Mark prediction error Pr(y 6= ŷ)
Base model: RMTPP Base model: THP Base model: RMTPP Base model: THP

TPP-SELECT Base MTPP TPP-SELECT Base MTPP TPP-SELECT Base MTPP TPP-SELECT Base MTPP
Club 3.57±0.15 3.67±0.05 11.51±0.07 11.93±0.08 0.60±0.11 0.59±0.05 0.36±0.01 0.42±0.01
Election 8.50±0.02 8.50±0.01 30.79±0.02 30.99±0.03 0.43±0.02 0.67±0.03 0.38±0.00 0.41±0.01
Series 1.15±0.05 1.71±0.07 9.12±0.17 9.99±0.20 0.59±0.00 0.69±0.01 0.57±0.00 0.58±0.00
Verdict 2.27±0.00 2.27±0.00 7.88±0.01 8.11±0.05 0.57±0.00 0.71±0.01 0.57±0.00 0.60±0.01
BookOrder 0.07±0.00 0.07±0.00 0.09±0.00 0.11±0.01 0.45±0.00 0.49±0.00 0.37±0.01 0.44±0.00

Table 3: Performance in terms of E(|t− t̂|), i.e., the mean absolute error (MAE) for time prediction
(left half) and the misclassification error Pr(y 6= ŷ) for the mark prediction (right half) for TPP-
SELECT and the corresponding base MTPP model which is the superposition of endogenous and
exogenous MTPP models. Here, this base MTPP model is learned over the entire sequence of
observed events. In all experiments, we considered 80% training and 20% test set.
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Figure 2: Variation of mean absolute error E(|t − t̂|) and mark prediction error (MPE) Pr(y 6= ŷ)
against k, the maximum number of exogenous events, on Club dataset. We observe that in both the
cases when k is too small or high, then TPP-SELECT performs poorly. However, there exists a sweet
spot of k, where TPP-SELECT shows its best performance.

Effect of k. Finally, we investigate how k, the pre-specified number of exogenous events, impacts the
performance of TPP-SELECT. Figure 2 summarizes the results, which show that (i) TPP-SELECT
performs poorly when k is either too small or too large, and (ii) there exists a sweet spot of k, where
TPP-SELECT shows the best peformance.

7 Conclusion

In this paper, we aim to identify the set of exogenous events from a set of unlabeled events for
learning marked temporal point process. To that goal, we have developed TPP-SELECT, a novel
framework that selects the possible set of exogenous events from a set the observed events, under
any given MTPP model. More specifically, we first cast this problem as an instance of exogenous
event set selection problem, in conjunction with parameter estimation problem which is NP-hard, in
general. However, we show that solving such a problem is equivalent to maximizing a monotone and
α-submodular set function which leads us to develop TPP-SELECT— an approximation algorithm
built upon a stochastic greedy algorithm which was originally proposed in [64]. In this work, we
show that it also enjoys an approximation guarantee for α-submodular set function maximization,
even when the learning algorithm provides an imperfect estimate of the trained parameters. Our
experiments show that TPP-SELECT is able to outperform a wide variety of baselines based on
data-selection from robust learning literature.

Our work opens several venues of future work. For example, our method can be easily applied to
identify external influence in Twitter— such a situation can immediately beneficial in a wide variety
of applications that include viral marketing, misinformation detection, etc. However, by deploying
our method as-it-is can lead to privacy leakage of users. To counter this effect, one can design a
differentially private framework to mitigate this effect, by building upon the work by Mitrovic et al.
[59]. In our work, we do not consider a multivariate point process. It would be interesting to develop
exogenous event selection method for such processes. Finally, it would be valuable to extend our
method to an online setting, where the task is to select the set of exogenous events in the face of
an online stream of events.
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