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ABSTRACT

The remarkable achievements of both generative models of 2D images and neural
field representations for 3D scenes present a compelling opportunity to integrate
the strengths of both approaches. In this work, we propose a methodology that
combines a NeRF-based representation of 3D scenes with probabilistic modeling
and reasoning using diffusion models. We view 3D reconstruction as a perception
problem with inherent uncertainty that can thereby benefit from probabilistic in-
ference methods. The core idea is to represent the 3D scene as a stochastic latent
variable for which we can learn a prior and use it to perform posterior inference
given a set of observations. We formulate posterior sampling using the score-
based inference method of diffusion models in conjunction with a likelihood term
computed from a reconstruction model that includes volumetric rendering. We
train the model using a two-stage process: first we train the reconstruction model
while auto-decoding the latent representations for a dataset of 3D scenes, and then
we train the prior over the latents using a diffusion model. By using the model to
generate samples from the posterior we demonstrate that various 3D reconstruc-
tion tasks can be performed, differing by the type of observation used as inputs.
We showcase reconstruction from single-view, multi-view, noisy images, sparse
pixels, and sparse depth data. These observations vary in the amount of infor-
mation they provide for the scene and we show that our method can model the
varying levels of inherent uncertainty associated with each task. Our experiments
illustrate that this approach yields a comprehensive method capable of accurately
predicting 3D structure from diverse types of observations.

1 INTRODUCTION

3D prediction using neural networks (Mildenhall et al., 2020; Sitzmann et al., 2019; Park et al.,
2019) has garnered significant attention, tackling two main challenges: 3D reconstruction (pre-
dicting 3D representations from limited observations) and 3D generation (sampling new 3D scenes
using generative models conditioned on signals like text or images). While 3D generation employs
probabilistic generative models, 3D reconstruction is in most cases an ill-posed problem that requires
incorporating prior knowledge and could therefore benefit from probabilistic inference methods.

In this work, we propose a probabilistic framework for 3D reconstruction. By combining a gen-
erative prior over latent 3D representations with a likelihood term from a reconstruction model,
our approach predicts the full posterior distribution of a scene’s 3D structure given sparse or noisy
observations. This framework leverages a volumetric renderer based on a shared conditional neural
field (CNF), trained in two stages:

1. Auto-decoding optimizes the shared CNF and latent representations for scenes in the train-
ing set.

2. A diffusion model captures the prior distribution over the latent representations.

Our method uses a tri-plane latent structure (Chan et al., 2021; Chen et al., 2022) for efficient repre-
sentation, balancing global and local 3D information. Diffusion-based posterior sampling, guided by
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Figure 1: Examples of various 3D prediction tasks performed by generating posterior samples with
our method. For each task we show the observation, three samples of the scene and an uncertainty
map computed from the variance of 10 samples. Two different views are shown in subsequent rows.
Top: reconstruction from half of an image. The variance is high in the hidden half of the scene.
Middle: reconstruction from only a few pixels (5% of a single image). Bottom: reconstruction
from a few depth values (5% of a full depth image from a single direction). Samples and uncertainty
map suggest sparse depth is enough to reconstruct the 3D shape and uncertainty remains only about
color.

reconstruction gradients, enables probabilistic reasoning and uncertainty quantification. In contrast
to previous work suggesting amortizing posterior inference (Kosiorek et al., 2021a) in a varia-
tional autencoder setting, which experimentally demonstrated only limited results. By guiding the
Langevin sampling with the gradient of the reconstruction model we combine the strength of two
recently successful methods (1) iterative sampling with diffusion models and (2) gradient based
optimization for translating observations to 3D representations.

We validate our method on tasks like single-view reconstruction, reconstruction from sparse pixels
or depth, and noisy observations, demonstrating improved coverage of ground truth structures and
generating uncertainty maps for unobserved regions.

Our contributions are as follows:

1. A probabilistic framework for 3D reconstruction, leveraging a diffusion prior and NeRF-
based decoder.

2. A two-stage training approach: auto-decoding latent 3D representations and training a dif-
fusion model as a prior.

3. Demonstrations on diverse 3D reconstruction tasks, showcasing robustness to sparse and
noisy observations.

4. Enhanced reconstruction quality and uncertainty quantification through posterior sampling.

All code, models, and data will be released upon publication.

2 RELATED WORK

Latent variable models over 3D scenes Early approaches like GQN (Eslami et al., 2018) used
variational autoencoders for probabilistic reasoning in simple 3D scenes but lacked specialized 3D
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geometry. Later, NeRF-based models (Kosiorek et al., 2021b) integrated rendering pipelines but
did not fully leverage NeRF’s capacity for complex scenes. Our work advances this by replacing
amortized inference with high-capacity diffusion models and Langevin posterior sampling. Other
efforts (Shen et al., 2022; Sünderhauf et al., 2022; Goli et al., 2023) modeled uncertainty but lacked
data-driven priors like ours.

Generating 3D with 2D Generative models Given limited 3D ground truth data, several
works (Poole et al., 2022; Watson et al., 2022; Liu et al., 2023) use pretrained 2D diffusion models
to infer 3D representations. In a similar approach, Liu et al. (2024) use a 2D prior to compute 3D
uncertainty maps. While these approaches achieve impressive generative visual results, they do not
explicitly reason about the 3D structure of the scene, which leads to less consistency in generation
(see experiment in Sec. C in the appendix) and prevents them from performing the full range of 3D
probabilistic reasoning tasks, e.g. reconstruction from depth information.

Generative models of observed 3D representations Despite data scarcity, some works (Shue et al.,
2022; Erkoç et al., 2023) train diffusion models directly on 3D datasets using representations like
tri-planes or neural fields. Our approach uniquely avoids reliance on 3D ground truth, using only
2D datasets to generate 3D scenes.

Generative models of latent 3D representations Inspired by (Dupont et al., 2022), we enhance
conditional neural fields (CNFs) with a compressed tri-plane representation and diffusion-based
posterior sampling. Similar models (Bautista et al., 2022; Yang et al., 2023) focus on generative
tasks rather than reconstruction, while (Chen et al., 2023) unify training stages but lack our latent
compression. Concurrent work (Le et al., 2024) explores full posterior inference but with different
objectives.

The concurrent work of Le et al. (2024) shares a similar motivation to ours. It focuses on specific
type of noisy observations using a 3D modeling of the corruption field, and extensively demonstrate
the advantages of the full posterior distribution over the maximum only (MAP inference). In Zhang
et al. (2024) a 3D generative model is trained based on a Gaussian splatting representation which
could also be combined with posterior sampling in future research.

3 BACKGROUND

3.1 AUTO-DECODING 3D REPRESENTATIONS

Recent advances in 3D scene representation have leveraged deep neural networks. NeRF (Milden-
hall et al., 2020) introduced a method to reconstruct 3D scenes by training a neural network on
multi-view images, requiring separate models for each scene. Subsequent work, such as Pixel-
NeRF (Yu et al., 2021) and IBRNet (Wang et al., 2021), developed generalizable models that inte-
grate prior knowledge of 3D scenes, reducing the number of views needed. These models often rely
on conditional neural fields (CNFs), where a shared neural field is conditioned on scene-specific
representations.

Recent studies (Dupont et al., 2022; Bautista et al., 2022; Chen et al., 2023; Yang et al., 2023)
proposed the use of CNFs to train representations of scenes that can later be used in downstream
tasks. Such models use an auto-decoding approach (Bojanowski et al., 2019; Park et al., 2019),
where the representations are optimized for each scene concurrently with the training of the shared
CNF.

Tri-plane representations (Chan et al., 2021; Chen et al., 2022) have proven effective, maintaining
spatial structure and balancing global and local information. These representations condition the
CNF by interpolating queried 3D positions across orthogonal planes, as shown in Fig. 2.

3.2 POSTERIOR SAMPLING WITH DIFFUSION MODELS

Diffusion models, such as Denoising Diffusion Probabilistic Models (DDPM)(Ho et al., 2020), gen-
erate high-quality samples by reversing a forward diffusion process that progressively adds noise.
Many different variants (Sohl-Dickstein et al., 2015; Song et al., 2020) use U-Net architectures (Ron-
neberger et al., 2015) to predict noise and iteratively refine samples. Given a noisy input xt, the
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Figure 2: The reconstruction model mapping latent representations to images of a 3D scene. The
latent decoder D1 maps the latent vector zi corresponding to scene i into three multichannel planes
(tri-planes) {T1i, T2i, T3i}. Given an image and a camera position from which the image was taken,
a ray is projected onto the scene from each pixel of the image, and multiple 3D points are sampled
along the ray. Each 3D point pj , is projected onto the multichannel tri-planes where each plane
produces a feature vector fj using bilinear interpolation. The three feature vectors are concatenated
to form one feature vector f∗

j , and the decoder D2 is used to produce RGB and σ values for each
3D point along the ray. Volumetric rendering is then used to generate a single RGB value to be
compared to the ground truth value of the pixel in the image.

denoised sample xt−1 and the clean estimate x̂0 are computed as:

xt−1 ∼ N
(

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
, β̃tI

)
,

x̂0(xt, t) =
1√
ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
.

(1)

Where, ᾱt =
∏t

s=0 αs and β̃t is the noise variance. Diffusion models are widely used as priors for
image restoration tasks (e.g., denoising, inpainting) (Choi et al., 2021; Chung et al., 2023; Kawar
et al., 2022), with posterior sampling defined as:

∇xt
log pt(xt|y) = ∇xt

log pt(xt) +∇xt
log pt(y|xt) (2)

This approach combines the prior score ∇xt
log pt(xt) with the likelihood gradient ∇xt

log pt(y|xt),
often referred to as guidance. While exact likelihoods typically depend on clean images x0, approx-
imations have been proposed, as detailed in Sec. 4.3.

4 METHOD

In this section we describe our method both at training time and at inference time. Training is based
on two stages: (1) training the reconstruction model (RM) while optimizing the latent representa-
tion of the training scenes (auto-decoding), and (2) training a diffusion model over the latents as a
prior. At inference time we use the trained prior and the reconstruction model to perform posterior
sampling of the latents. For all implementation details please refer to Sec. B in the appendix.

4.1 TRAINING THE REPRESENTATION AND RECONSTRUCTION

The reconstruction model is a CNF followed by a volumetric renderer. Conditioned on a scene rep-
resentation, the CNF predicts the values of 3D positions within the scene that are subsequently used
by the volumetric renderer. The CNF is trained while concurrently auto-decoding the representation
of each scene. The role of the reconstruction model is to form a mapping from the representation
vectors to the values of the observations, i.e. image pixels, and also serve as the model through
which the representation is optimized, effectively mapping the 3D scene observations back into the
representation.
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functa, as reported in ours
(Dupont et al., 2022)

latent dim 1024 1024
PSNR train 24.4 27.67
PSNR test 23.1 26.9

Table 1: Reconstruction from latent.

Figure 3: Novel view reconstruction for held out 3D scenes. Each pair shows the ground truth image
(left) and the reconstructed image (right). Top row: SRN cars. Bottom row: Objaverse chairs.

The model is depicted in Fig. 2. The latent vector zi ∈ Rd, corresponding to the i-th scene, is first
reshaped into a 2D map of shape r × r × c. The latent decoder D1 decodes zi into a 3D tensor
T ∈ RR×R×3C using a series of ResNet blocks. T is reshaped to form a tri-plane representation
T1i, T2i, T3i ∈ RR×R×C . The tri-planes structure is used for reconstruction as follows: given an
image of a scene, rays are projected from each pixel into the 3D scene, and multiple 3D points
are sampled along each ray. Each 3D point is projected onto the tri-planes, and using bi-linear
interpolation, each plane produces a single corresponding feature vector f ∈ RC . The three feature
vectors are concatenated to form f∗. The decoder D2, an MLP, transforms f∗ into RGB and σ
values for the corresponding 3D position. This process is repeated for all 3D points along the ray
and volumetric rendering is applied on the ray’s points to generate a single RGB value for the pixel
from which the ray was projected into the scene.

The reconstruction model (RM) and the latents are trained using the auto-decoding approach as
following: at each training iteration, a minibatch of scenes B is randomly selected along with the
corresponding latent vectors, where for each scene a random set of images, and random set of pixels
within the images are used. The minibatch is used to apply a forward pass of the reconstruction
model on the latents, and backpropagate the loss between the model’s output and ground-truth pixel
values to all network weights and latent values.

Lrec =
∑
i∈B

∑
x∈Xi

∥x−RMϕ(zi)∥2 (3)

where B is a random minibatch of scenes, and Xi is a random set of pixels from a random set
of images from each scene i. The network weights are updated using ∂Lrec/∂ϕ, and the latents
are updated using ∂Lrec/∂zi. In this way the latent representation for each scene is optimized
while the network weights converge to their final values. For all experiments in the paper we use a
latent dimension of 1024, which forms a highly compressed representation of the scenes. For more
implementation details, see Sec. B in the appendix.

Fig. 3 shows examples of reconstruction for a few selected scenes using two models that were trained
on the SRN Cars (Sitzmann et al., 2019) and Objaverse-lvis chair category (Deitke et al., 2022). See
Sec. A in the appendix for details about the datasets.

After training the reconstruction models, 125 images of held-out test scenes are used to optimize
the scene latents while freezing the reconstruction model’s weights, and the latents are then used to
reconstruct novel views of the scenes. The results show that the latent representation captures the
3D scenes with high fidelity. In Tab. 1 we compare the reconstruction accuracy of our compressed
representation to Dupont et al. (2022). Our results are favorable, and we argue that this is due to the
spatial structure of the tri-plane representation.

4.2 TRAINING THE PRIOR

The goal of the second stage is to obtain a prior over the latent representation. This is achieved
by training a generative model based on a Denoising Diffusion Probabilistic Model (DDPM) (Ho
et al., 2020) on the latent data obtained in the first stage. As is standard in diffusion models, the
model is based on a U-net architecture (Ronneberger et al., 2015) that is trained to denoise the latent
representations {zi}Nn=1 ∈ Rd. To comply with the U-net architecture, the latents are reshaped to be
{zi}Nn=1 ∈ Rr×r×c. The training loss is computed by:

Lgen = Ez∈{z},ϵ∈N (0,1),t∈U [0,T ] ∥ϵθ
(√

ᾱtz +
√
1− ᾱtϵ, t

)
− ϵ∥2 (4)
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Figure 4: Samples from the trained diffusion model. Each row corresponds to a different sample of
the latent representation, corresponding to a different 3D scene, and each column shows a different
view reconstructed from the same scene. Left: SRN cars. Right: Objaverse-lvis chairs.

Our implementation is based on Graikos et al. (2022). Fig 4 shows examples of random samples
generated from the learned prior. Each image is generated by first sampling a latent from the prior,
corresponding to a sampled scene (rows), and then using the reconstruction model to render im-
ages of the scene from different views (columns). The resulting samples show both coherence and
diversity.

4.3 SAMPLING FROM THE POSTERIOR

As described in Sec. 3.2, different methods have been proposed to sample from posterior distribu-
tions given a trained diffusion model as a prior. These methods consist of adding a likelihood term
to each step in the iterative process of sampling from the prior. Here, the likelihood term comes
from applying the reconstruction model (RM) on the estimated latent, and computing a squared loss
compared to the given observation y , which corresponds to a Gaussian log-likelihood.

log p(y|z) = −s∥y −RMϕ(z)∥2 + const. = −Lrec + const. (5)

where s is a scaling factor corresponding to the assumed variance of the reconstruction.

The method is depicted in Fig. 5, and described in Alg. 1. In more detail, at each step t the out-
put of the U-net ϵθ(zt, t) is used to compute the one-step denoised latent zt−1 and a fully de-
noised estimate ẑ0 (Eq. 1). The clean estimate is fed to the reconstruction model (RM) which
outputs a prediction of the input views. A gradient of the log-likelihood with repsect to zt can
be computed by back-propagating the reconstruction error (Eq. 5) between the predicted images
and the observed ground-truth images. However, this requires back-propagating through the U-
net at each step. In order to accelerate inference, we approximate this gradient by computing
z̃0(zt−1) = 1√

ᾱt

(
zt−1 −

√
1− ᾱtϵθ(zt, t)

)
, and the gradient with respect to zt−1. When using

many sampling steps we empirically observe that the difference between zt and zt−1 is negligible
and this approximation can be used to efficiently compute the posterior score:

∇zt log pt(zt | y) ≈ ∇zt log pt(zt) +∇zt−1 log p
(
y | z̃0(zt−1, t)

)
, (6)

Repeating this process for t = T...1 forms an approximated Langevin sampling process from the
posterior distribution.

As the reconstruction loss is calculated with no regards to pixel order or quantity, this approach
allows training a single prior model, and then use it to generate posterior samples for various types
of conditioning signals. Examples include conditioning on many images, few images, or even a few
random pixels per scene. Moreover, the desired inference task does not even need to be known at
training time, as long as a corresponding reconstruction term can be formulated and differentiated
at inference time.

5 EXPERIMENTS

For all experiments we use the same model and the same configuration.
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Algorithm 1: Posterior Sampling
Input: images y, scale s
Initialize zT ∼ N(0, 1)
for t = T to 1 do

ϵ← U-netθ(zt, t)

zt−1 ∼ N
(

1√
αt

(
zt − 1−αt√

1−ᾱt
ϵ
)
, β̃

)
z̃0(zt−1) =

1√
ᾱt

(
zt−1 −

√
1− ᾱtϵ

)
Lrec = ∥y −RMϕ (z̃0(zt−1))∥2

zt−1 ← zt−1 − s∂Lrec/∂zt−1

Figure 5: Left: The posterior sampling algorithm. Right: Illustration of a single step in the iterative
process. Conditioned on the previous estimate zt, the U-net predicts the noise, which is used to
compute both zt−1 and z̃0. The latter is fed to the reconstruction model to predict an image from the
given view which is compared to the ground truth image y. The error is backpropagated through the
frozen networks to compute a gradient which is then added to zt−1.

more information less information

Figure 6: Posterior samples given a single view for Objaverse chairs. Each row corresponds to
a different sample of the scene, and each column shows a different view. The observation in the
example on the left carries high information about the scene, resulting in very similar samples. The
observations in the middle and right scenes are less informative, and therefore result in more diverse
samples, where the chairs are completed with different possible configurations of legs, armrests and
backrests. These example demonstrate a coherent merging of observed data and prior information.

GENERATING CONDITIONAL SAMPLES

We show results of generating posterior samples given one observed image per scene. In Fig. 6, three
examples from Objaverse chairs are shown. In the scene shown on the left, the given image contains
enough information to predict any view of the scene with certainty. This results in multiple samples
(rows) that are almost identical. In the other examples the observed image is less informative and
does not provide enough information about the scene from all angles. Therefore, samples from the
posterior exhibit more diversity in the way they complete the missing information. More concretely,
the chairs observed from uninformative views are predicted to have different possible leg, armrest
and backrest configurations. Note that while the samples are different, the generated latent is a 3D
representation, so each sample can be used to predict a coherent set of images from different views.

In Fig. 1, we demonstrate the ability of the method to perform more diverse probabilistic reasoning
tasks. We show prediction from half-image inputs, from a sparse set of pixels of one image (5%),
and from a sparse set of depth map pixels (5% of a depth map from a single view). For each scene we
show three samples, showing two different views for each, and an uncertainty map. The uncertainty
is computed by generating 10 samples of the scene, rendering corresponding 10 images for each view
and computing the variance in the rendered images. Using our method for partial RGB observations
(half-image or sparse pixels) is trivial to implement since the reconstruction model operates per pixel
and can be used to predict any subset of pixels in the scene. In the case of depth data, we implement
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observed
images

TensoRF
(Chen et al., 2022)
(80 images)

Posterior
Sampling
(5 images)

σ = 0.04 σ = 0.2 σ = 0.4 σ = 0.8 σ = 0.04 σ = 0.2 σ = 0.4 σ = 0.8

Figure 7: 3D reconstruction from noisy images. Reconstruction from 80 images without a prior
(TensoRF) quickly deteriorates as noise increases. Using our prior to perform posterior sampling
results in a much more robust method, significantly outperforming TensoRF even when using an
order of magnitude less images (5 images).

a different reconstruction loss comparing the predicted σ values to ground truth values without using
the RGB prediction and the renderer in Fig. 2. Given a depth pixel value, the ground truth value
of σ is set to 1 for the 3D point on the ray sampled at the given depth value, and 0 for all the other
3D points. We emphasize that this reconstruction model is formulated at inference time and is not
used at training. The results show the different plausible predictions of the scene and the resulting
uncertainty. For the first case we see that the uncertainty is high for the hidden half of the scene as
expected. For the other two cases, samples generated from sparse pixel observations demonstrate
a high degree of similarity, suggesting, perhaps surprisingly, that even just 5% of the pixels from a
single view is sufficient for accurate 3D scene prediction. In case of the sparse depth data, the only
uncertain aspect is the object color.

In Fig. 7, we evaluate the robustness of our method in 3D reconstruction from noisy images by
comparing it to TensoRF (Chen et al., 2022) without a prior. By generating samples from multiple
scene images under increasing noise levels, we demonstrate that posterior sampling significantly
improves resilience to noise. While TensoRF, trained on 80 images, experiences a sharp performance
drop as noise increases, our method maintains stable performance even with only 5 input images.

6 CONCLUSION

In this work we introduced a methodology that combines the strengths of NeRF-based 3D recon-
struction together with the probabilistic reasoning of diffusion models. Our method views 3D recon-
struction as an ill-posed perception problem that requires reconciling the observed information with
prior knowledge. We showed that (1) 3D scenes can be efficiently represented by compact latent
vectors, using a reconstruction model that consists of a tri-plane representation, which preserves
spatial structure within the 3D model; and (2) this representation is amenable to training a strong
diffusion-model based prior that can later be used to solve various inference tasks. We highlight the
importance of predicting the full posterior distribution rather than optimizing for an average sample
with higher PSNR (see Sec. C). Averaging tends to produce oversmoothed results that may score
well numerically but fail to capture the full variability of plausible 3D structures. By emphasiz-
ing diverse posterior samples, our approach better represents the inherent uncertainty in 3D scene
synthesis, leading to more robust and generalizable models and solving various 3D reconstruction
tasks.

Limitations and future work: A main challenge that remains in 3D reconstruction is scaling to
more complex and more diverse data towards developing methods that can reliably predict real 3D
scenes from different levels of observations. Another challenge is the slow sampling time with diffu-
sion models. While our results are demonstrated on small scale data, we believe that the compressed
representation and the principled way of handling uncertainty that we propose, combined with re-
cent developments in accelerating diffusion model sampling, are key for scaling up these models to
larger and more complex datasets.
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A DATA

We use two datasets in our experiments. The first dataset is SRN Cars (Sitzmann et al., 2019), which
comprises 3,200 scenes with 250 images each. We randomly divide the images in each scene evenly
between training images and test images, and we use 3,000 scenes for training, holding out 200
scenes for testing. The second dataset we use is the Objaverse-lvis chair category (Deitke et al.,
2022), which comprises 439 instances with 100 images generated for each scene. While this dataset
is smaller, it is more diverse in terms of shapes. We use 80% of the images in each scene for training,
and hold out 8 scenes for testing and visualizations. For both datasets we use image resolution of
128× 128.

B IMPLEMENTATION DETAILS

In this section we describe the implementation details of our model and experiments. All code,
models and data will be made available upon publication.

TRAINING THE REPRESENTATION AND RECONSTRUCTION MODEL

The weights of the reconstruction model ϕ are randomly initialized, while the latent representations
zi are initialized to zero. The size of the data set corresponds to the number of latent vectors, each
latent representing a single scene {zi}Ni=1 (N scenes = N latents).

During training, the images of each scene optimize only its respective latent, while the entire model,
including decoders, is jointly trained.

The latent representation zi dimensions are d = 1024, r = 16, c = 4. D1 is constructed us-
ing a series of six ResNet blocks where at each block the number of channels is the following:
[4, 32, 64, 96, 128, 192]. Blocks are followed by a self-attention layer and alternating upsam-
pling. The resulting 3D tensor T is divided into two tensors responsible for generating RGB and
density, TRGB ∈ RR×R×3CRGB , Tσ ∈ RR×R×3Cσ , respectively. TRGB is reshaped to form a tri-
plane representation T1i, T2i, T3i ∈ RR×R×CRGB . Similarly, Tσ forms a tri-plane representation
T ′
1i, T

′
2i, T

′
3i ∈ RR×R×Cσ . Dimensions are R = 128, CRGB = 48, Cσ = 16.

For each scene i, we randomly select 4096 rays from pixels in the training images. Along each ray,
we sample 220 3D points and project them onto the tri-planes of both the RGB and density planes
separately.
For each (RGB and density), this projection extracts three feature vectors from the three planes for
further processing. Three vectors are concatenated into a single feature vector f∗

RGB ∈ R3CRGB for
RGB and f∗

σ ∈ R3Cσ for density. While the density feature vector f∗
σ produces density for 3D points

by simply summing its elements, the RGB feature vector f∗
RGB is passed through D2 to produce a

single RGB value. D2 is an MLP of 7 layers. Once all 3D points along the ray have RGB and
density values, volumetric rendering, a parameterless process, produces a single RGB value to be
compared with the pixel’s color.

We train the model with a minibatch B size of 2 scenes, and with an Adam optimizer using three
different learning rates: 1e-3 for the latents, 1e-4 for the D1 parameters and 1e−3 for D2 parameters.

Our model is based on the code published in Chen et al. (2022).

At test time, a new latent (initialized to zeros) is coupled with the new scene and optimized using
the learned/frozen decoders.

TRAINING THE PRIOR

As in Sec.4.1, latent representation zi dimensions are d = 1024, r = 16, c = 4. The diffusion
model used is implemented by Graikos et al. (2022) with the following parameters: The noise
scheduler is a linear schedule with parameters T = 1000, β0 = 1e−4, βT = 2e−2. The U-net
parameters are model channels = 64, num resnet blocks = 2, channel mult = (1, 2, 3, 4),
attention resolutions = [8, 4], num heads = 4. We train the model with a minibatch B size of
32 scenes, and with an Adam optimizer with learning rate equal to 1e-3.
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The reconstruction model and the diffusion model were trained on an NVIDIA GeForce RTX 4090
for Approximately one day each.

C EXPERIMENTS

GENERATING 3D WITH 2D GENERATIVE MODELS

As mentioned in Sec. 2, 2D generative models for 3D generation approaches do not fully capture
the underlying 3D structure of a scene. To evaluate the impact of explicit 3D structure reasoning,
we trained a Neural Radiance Field (NeRF) on images generated by both standard 2D diffusion
models and our proposed model, which incorporates an inherent understanding of 3D structure.
Tab. 2 results indicate that NeRF trained on images from our model produces more consistent 3D
reconstructions, highlighting the importance of explicit 3D reasoning in generative models for robust
3D scene synthesis.

Method PSNR↑ SSIM↑

3Dim (SRN cars) 28.53 0.96
Ours (SRN cars) 34.7 0.98

zero123 (Objaverse chairs) 26.8 0.925
Ours (Objaverse chairs) 43.4 0.99

Table 2: 3D Consistency Comparison: To evaluate 3D consistency, we compare our model with
3Dim (Watson et al., 2022) and Zero-1-to-3 (Liu et al., 2023), trained on SRN Cars and Objaverse
Chairs, respectively. Given an input image of a scene, each model generates multiple novel views,
which are then used to train a TensoRF (NeRF) model. Since higher 3D consistency in the generated
images facilitates NeRF training, models producing more consistent views enable NeRF to achieve
a higher PSNR. Our results demonstrate that NeRF trained on images from our model attains the
highest PSNR, highlighting the benefits of our model’s built-in 3D structural understanding for
improved 3D scene synthesis.

POSTERIOR SAMPLING

Posterior sampling involves two types of computations: 1) denoising, using the diffusion as a prior
to generate a plausible latent, and 2) reconstruction, using the reconstruction model to align the
latent with the observed views.

For all experiments we use the same model using the same inference process. We generate posterior
samples using 1000 iterations as described in Alg. 1 with the same scale factor s =5e-3 for all
experiments. The only exception is the experiment with noisy data in Fig 7, where the scale factor
for most extreme noise level σ = 0.8 was decreased to a value of s =3e-3, corresponding to the
high noise variance in the observation.

FULL POSTERIOR VS HIGHER PSNR

In Fig. 8, we present two examples (rows) of conditional posterior sampling, where the leftmost im-
age serves as the observed image. The reconstructions are displayed alongside their corresponding
PSNR values. We generate 20 samples from the posterior distribution and showcase three individual
samples under ”single samples,” highlighting the variability in reconstruction quality—some being
closer to the ground truth than others. Additionally, we display the averaged reconstructions using
5, 10, and 20 latent samples. While averaging improves numerical PSNR scores, it often leads to
oversmoothed results that fail to capture the full diversity of plausible 3D structures.
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Figure 8: Averaging latent samples results in higher PSNR scores but fails to capture the full pos-
terior distribution. In the first row, the bottom half of an image is used as guidance, while in the
second row, the top half is used. Since most generated samples closely match the ground truth,
averaging leads to a higher PSNR but collapses the distribution into a single reconstruction, limiting
the diversity of plausible outcomes. In the third row, guidance is provided using only a few pixels
from a depth image. The generated samples vary in color, as color information is not available from
the depth input. Averaging across multiple samples produces an intermediate color that achieves a
higher PSNR but fails to reflect the full posterior, which contains diverse color variations.
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