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Visual ICL Example

Textual ICL Example

Textual Instruction

Map country to capital:

France : Paris, Greece : Athens

: Athens: Paris, 

: Red, … 

Banana : Yellow, …

Food to color

Country to currency

Peru : Sol, … : Peso, …

(a) Same Task, Different Specifications (b) The Embedding Space of Task Representations

Figure 1: Modern autoregressive vision-and-language models (VLMs) are quite flexible; they can
execute the same task expressed in various ways (a). We find that VLMs map these diverse inputs
to similar task representations, across modalities and specifications (b).

ABSTRACT

We investigate the internal representations of autoregressive vision-and-language
models (VLMs) and how they encode task representations. We consider tasks
specified through examples or instructions, using either text or image inputs. Sur-
prisingly, we find that conceptually similar tasks are mapped to similar task vector
representations, regardless of how they are specified. Our findings suggest that to
output answers, tokens in VLMs undergo three distinct phases: input, task, and an-
swer, a process which is consistent across different modalities and specifications.
The task vectors we identify in VLMs are general enough to be derived in one
modality (e.g., text) and transferred to another (e.g., image). Additionally, we find
that ensembling exemplar and instruction based task vectors produce better task
representations. Taken together, these insights shed light on the underlying mech-
anisms of VLMs, particularly their ability to represent tasks in a shared manner
across different modalities and task specifications.

1 INTRODUCTION

Many modern vision-and-language models (VLMs) are designed as autoregressive models that
tackle various computer vision tasks through text. For example, tasks like image recognition, OCR,
and object detection can be formulated as visual question answering (Antol et al., 2015) and solved
with textual outputs (Alayrac et al., 2022; Lu et al., 2022; Liu et al., 2023a).

Despite their success, the underlying structures and inductive biases that drive such VLMs remain a
mystery. This urges us to ask what representations enable VLMs to process multi-modal inputs to
answer questions. We investigate a specific type of representation known as task vectors, which have
been studied in language-only (Hendel et al., 2023; Todd et al., 2024) and vision-only models (Hojel
et al., 2024). These studies observe that models conditioned on in-context learning (ICL) examples
contain token representations that encode task information.

In this work, we discover that VLMs encode tasks within a shared embedding space, where similar
tasks are clustered together regardless of how they are specified. We examine tasks that can be
defined through either text or image examples, as well as instructions. For instance, the task of
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Figure 2: Cross-modal transfer. Task vectors can be patched cross-modally (a), outperforming the
few-shot prompting baseline (b). We find that task vectors can also be instantiated with instructions,
which can be averaged with exemplar-based vectors to produce more stable task representations (c).

mapping a country to its capital (see Figure 1a) can be expressed using text examples (e.g., “France:
Paris”), explicit instructions (“Map country to capital”), or image-text pairs (e.g., an image of the
French flag labeled “Paris”), all of which result in similar task representations (see Figure 1b). A
corresponding t-SNE visualization is provided in Sec. A.7 of the Appendix.

More specifically, we investigate task vectors in VLMs and demonstrate that they are cross-modal,
allowing task representations to transfer between modalities (see Figure 2). Our analysis further
reveals that as VLMs generate answers, token representations evolve across model layers in a con-
sistent pattern: starting with the literal input, transitioning to the task representation, and finally, con-
verging to an answer. This suggests that not only are task representations similar across modalities
but the entire process of answer generation may be shared, despite differences in task specification.

Motivated by this similarity between the token representations regardless of the input modality,
we quantitatively evaluate the cross-modal transfer performance of task vectors for early-fusion
and late-fusion VLMs on a range of tasks. For text-to-image transfer, cross-modal patching can
improve over text ICL in the same context window by as much as 33%. Ensembling text instructions
with examples can improve the sample efficiency of the task vector, with an 18% performance
improvement over examples alone in the low-data regime. Surprisingly, we also find that task vectors
are transferable between the base LLM and the fine-tuned VLM, meaning that the VLM is able to
re-purpose functions learned in a language-only setting on image queries.

Our contributions are threefold. First, we illustrate a taxonomy of task vectors, where they can be
specified not only via examples as studied in prior work but also instructions. Second, we show that
VLM representations evolve in a common pattern regardless of the input modality or specification
format. Finally, we explore cross-modal transfer, which is a useful measure for the interchangeabil-
ity of different task representations and offers greater expressiveness when defining tasks.

2 CROSS-MODAL TASK VECTORS

In Sec. 2.1, we review preliminaries, followed by a discussion in Sec. 2.2 on how task vectors can
be specified and transferred in VLMs. Finally, in Sec. 2.3 we explore how the output representations
evolve, explaining why cross-modal transfer is feasible.

2.1 TASK VECTOR PATCHING PRELIMINARIES

In-context learning can be formulated as follows. For a given task t 2 T , a few-shot prompt can
be constructed from N input-output examples pt = [(x1, y1), . . . , (xN , yN )]. The model f has to
learn the mapping from input to output from pt and apply it onto xq . Previous work has shown that
large transformer models implicitly compress this function into a latent activation, also called the
task vector, for both LLMs (Hendel et al., 2023; Todd et al., 2024) and computer vision models (Ho-
jel et al., 2024). Specifically, the forward pass f(pt) produces intermediate latent activations that
capture the task information, in some transformer layer l 2 L at the delimiter token between the last
input and output (xN , yN ). Thus, the original function can be decomposed into the task vector (a
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Table 1: Cross-modal tasks. We design six tasks inspired by the text examples in prior work (Hen-
del et al., 2023; Todd et al., 2024), where we add alternative specifications such as instructions and
image examples. We provide more details in Sec. A.1 of the Appendix.

Task Instruction Text ICL Example Image ICL Example
Country-Capital The capital city of the

country:
{Greece : Athens} { : Athens}

Country-Currency The last word of the official
currency of the country:

{Italy : Euro} { : Euro}

Animal-Latin The scientific name of the
animal’s species in latin:

{Gray Wolf : Canis lupus} { : Canis lupus}

Animal-Young The term for the baby of
the animal:

{Common Dolphin : calf} { : calf}

Food-Color The color of the food: {Persimmon : orange} { : orange}

Food-Flavor The flavor descriptor of the
food:

{Strawberry : sweet} { : sweet}

forward pass producing ht) and the query (a forward pass with only xq and no task information):

ht = fl(p
t) yq = f(xq | ht) (1)

where ht denotes the intermediate output of the l-th transformer layer at the last delimiter token,
and f(xq | ht) denotes task vector patching onto the contextless query at the layer and token corre-
sponding to ht. For autoregressive models, i.e., the LLMs studied in prior work and the VLMs we
study, f(pt) represents a distribution for the next token prediction. We hypothesize that VLMs also
encode task vectors in their activation space during the forward pass, which we discuss next.

2.2 CROSS-MODAL PATCHING

Our main finding is that task vectors are cross-modal and remain consistent despite different specifi-
cations, and therefore can be transferred. Given a task t 2 T , we explore three different specification
formats: textual exemplars, image exemplars, and textual instructions. We construct six evaluation
tasks, where we display these analogous specifications in Table 1. In this work, we categorize set-
tings by cross-modality (denoted by the modifier x) and application method (either prompting, Base,
or patching, Patch). Thus, our proposed cross-modal patching method is referred to as xPatch.

Method. In Figure 2a, we illustrate one case of cross-modal patching. Here we patch from textual
exemplars onto an image query. We run two forward passes: one to extract the task vector from the
exemplars and one with a contextless query. We extract the task vector ht from the l-th transformer
layer output at the delimiter token between the last input-output pair (xN , yN ), and we inject it
directly at the corresponding layer and token position of the query. To obtain a good estimate of ht,
we sample and average the activations from multiple task prompts, and we determine the best layer
l for each model via average task accuracy on the validation set. We also compare against the few-
shot prompting baseline, where the task specification and query are jointly fed to the transformer,
see Figure 2b. We explore three main cases of cross modal patching, corresponding to the different
specification formats, which we formalize below.

Text ICL Transfer. A task vector from text examples pttxt can be patched onto image query ximg .

ht
txt = fl(p

t
txt) yimg = f(ximg|ht

txt) (2)

We refer to this setting as Text ICL xPatch. We also look at a special case transferring task vectors
from a base LLM to its fine-tuned VLM, which we call LLM-VLM xPatch.

Instruction Transfer. A task vector from instruction ptinst can be patched onto image query ximg .

ht
inst = fl(p

t
inst) yimg = f(ximg|ht

inst) (3)

While prior work only studies exemplars, we also consider instructions, which are more direct and
require no input-output samples. We explore the utility of such instructions for making exemplar-
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(a) Text ICL (b) Image ICL

Figure 3: The output evolves in three distinct phases that are shared for text and image ICL.
Each line corresponds to the probability that the last token representation decodes to a pre-defined
input, task, or answer vector. We display visualizations of specific layers in Figure 4 and further
visualize the task representation phase in Table 2.

(a) Text ICL (b) Image ICL

Figure 4: The output transforms from input to task to answer across model layers. Each pie
chart slice represents a top-1 decoding across 100 sets of ICL examples for the Country-Capital task,
with the most common decodings below.

Table 2: The task vector, whether textual or visual, often decodes to task summaries. The table
depicts the top-5 decodings for each task, where ⌃ denotes non-word tokens.

Task Text ICL Image ICL
Country-Capital headquarters, cities, city, cidade, centro headquarters, administr, cities, city, ⌃
Country-Currency currency, currency, dollar, dollars, Currency currency, ⌃, currency, undefined, dollars
Animal-Latin species, genus, habitat, mamm, american species, genus, mamm, spec, creature
Animal-Young pup, babies, baby, called, young young, species, scriptstyle, animal, teenager
Food-Color yellow, pink, green, purple, orange green, yes, yellow, verd, yes
Food-Flavor flavor, taste, mild, flav, tastes yes, none, anger, cerca, vegetables

based task vectors more robust, denoted as Exemplar + Instruction xPatch (see Figure 2c). We also
look at a scenario of conflicting instructions, denoted as Instruction xBase vs. Instruction xPatch.

Image ICL Transfer. A task from image examples ptimg can be patched onto text query xtxt.

ht
img = fl(p

t
img) ytxt = f(xtxt|ht

img) (4)

We refer to this setting as Image ICL xPatch. We find that image ICL can be useful for tasks that
map a dense textual description to its underlying visual concept.

2.3 TOKEN REPRESENTATION EVOLUTION

We investigate how token representations evolve to generate answers. Our main finding is that to-
kens evolve similarly regardless of whether the ICL queries are expressed via text or image. We start
by analyzing how tokens evolve during ICL then focus on the “task” phase, where the task repre-
sentation emerges. We also include a similar analysis for instructions in Sec. A.7 of the Appendix.
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Table 3: Cross-modal transfer results. We display the accuracy across six tasks on an unseen test
set. For image queries, patching cross-modal task vectors (Text ICL xPatch) outperforms text ICL
in the same context window (Text ICL xBase) and the strong unimodal image ICL baseline (Image
ICL Base, Patch). The best method per task is underlined and overall is bolded.

Model Country-Capital Country-Currency Animal-Latin Animal-Young Food-Color Food-Flavor Avg.
Random 0.00 0.12 0.00 0.18 0.24 0.31 0.14
LLaVA-v1.5

No Context 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Image ICL Base - - - - - - -
Image ICL Patch - - - - - - -
Text ICL xBase 0.02 0.18 0.03 0.23 0.28 0.37 0.18
Text ICL xPatch 0.31 0.30 0.26 0.18 0.53 0.31 0.32

Mantis-Fuyu

No Context 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Image ICL Base 0.11 0.13 0.24 0.05 0.34 0.23 0.18
Image ICL Patch 0.17 0.03 0.16 0.05 0.50 0.31 0.20
Text ICL xBase 0.09 0.06 0.08 0.02 0.23 0.04 0.09
Text ICL xPatch 0.32 0.23 0.36 0.09 0.51 0.36 0.31

Idefics2

No Context 0.03 0.00 0.03 0.00 0.01 0.01 0.01
Image ICL Base 0.71 0.57 0.43 0.12 0.41 0.35 0.43
Image ICL Patch 0.58 0.32 0.40 0.03 0.39 0.17 0.31
Text ICL xBase 0.11 0.03 0.41 0.13 0.21 0.18 0.18
Text ICL xPatch 0.61 0.40 0.48 0.62 0.53 0.39 0.51

Identifying Three Phases. We first look at all the phases the token representation undergoes across
model layers. We analyze Idefics2 (Laurençon et al., 2024), which supports both text and image
ICL. Using logit lens (nostalgebraist, 2020), we leverage the model’s existing vocabulary space to
decode the last token representation. In Figure 3 we visualize the probability the token decodes
to these different embedding types (input, task, and answer), where we define the tokens in each
category manually per task. In Figure 4 we dive into individual phases, showing the set of top-1
decodings for different model layers. The early layer decodes to the token auf, which in Idefics2
globally corresponds to the colon, or the input used for the last token. The middle layer decodes to
a small set of task summaries similar to those displayed in Table 2. The late layer decodes to tokens
that resemble the output space. We limit the visualization in both figures to the Country-Capital task
and provide visualizations for all tasks in Sec. A.7 of the Appendix.

Decoding the Task Phase. Drilling down to the task phase, we take the token representation at a
middle layer and average it across multiple runs, then depict the top-5 decodings in Table 2. We
find that task vectors defined in either modality often decode into meta-tokens that summarize the
task. The text-only case is consistent with prior work (Hendel et al., 2023; Todd et al., 2024) that
investigates such decodings in language models. For example headquarters, currency, and species
are the top-1 decodings for both text and image ICL in the first three tasks in the table. In the case
of image ICL, this alignment with language is not immediately obvious. Prior work has shown
the input image and text embeddings are quite different, i.e., these embeddings exhibit low cosine
similarity (Lin et al., 2024) and form distinct PCA clusters (Liang et al., 2024). Even more, the
decodings for image ICL are often noisier than text ICL, which suggests that cross-modal patching
could help convey a cleaner expression of the task.

3 EXPERIMENTS AND RESULTS

Next, we evaluate the cross-modal transfer performance of task vectors derived from different speci-
fications. In Sec. 3.1 we evaluate the transfer performance from text ICL to image queries, including
the inter-model case of LLM to VLM transfer. In Sec. 3.2 we demonstrate that instruction-based
vectors can be ensembled with exemplar-based vectors and override pre-existing instructions. In
Sec. 3.3 we show qualitative examples where image ICL benefits text queries.

Models. We evaluate on three models which represent a broad spectrum of architectures prevalent
within modern VLMs. LLaVA-v1.5 (Liu et al., 2024) is a late-fusion model that fine-tunes a projec-
tion from visual features into the representation space of a language model. Mantis-Fuyu (Bavishi
et al., 2023; Jiang et al., 2024) is an instruction-tuned variant of an early-fusion transformer trained
to jointly handle image and text inputs from scratch, where the “visual encoder” is a linear projection
on top of the raw image patches. Idefics2 (Laurençon et al., 2024) is a late-fusion model optimized
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Text ICL Examples + Image Query Output
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No Context:

France.

Text ICL xBase:

France Q:A: Italy

Text ICL xPatch:

Paris.Cameroon

Yaounde

South Korea

Seoul ?

Cheetah

Acinonyx
jubatus

Deer Mouse

Peromyscus
maniculatus

Marsh Rabbit

Sylvilagus
palustris

No Context:

Capybara.

Text ICL xBase:

Capybara Q:Coyote

Text ICL xPatch:

Hydrochoerus

hydrochaeris.
Killer Whale

Orcinus orca

Eurasian Red
Squirrel

Sciurus vulgaris ?

Corn

yellow

Chayote

green

Jackfruit

green

No Context:

Romanesco.

Text ICL xBase:

Romanesco Q:Caul

Text ICL xPatch:

green.Grapefruit

pink

Leek

green ?

Figure 5: Transfer from text ICL to image queries. We show qualitative examples, where few-
shot prompting with text ICL (xBase) regurgitates the input while cross-modal patching (xPatch)
successfully performs the task.

for multimodal in-context learning, as it aggressively compresses visual features and trains on inter-
leaved image-text documents. We provide more model details in Table 5 of the Appendix.

Baselines. To evaluate whether cross-modal task vectors are useful (xPatch), we compare against
several baselines. We ablate cross-modality by comparing with the unimodal baselines (Base
and Patch), and we ablate the application method by comparing against few shot-prompting with
cross-modal examples (xBase). We also compute the performance of two lower bounds – the major-
ity answer from ICL examples (Random) and the query without any task information (No Context).

Experimental Setup. For all models, we use the generic template from Todd et al. (2024):

Q:{x1}\nA:{y1}\n\n · · ·Q:{xn}\nA:{yn}

where we evaluate with N = 5 ICL examples. For every task, we use 30 samples for validation
and 100 samples for testing. We report metrics on the unseen test set, averaged over three seeds.
When computing accuracy metrics, we follow prior work (Hendel et al., 2023; Todd et al., 2024) and
compare whether the first generated token is an exact match with the pre-defined label. We resize all
images to a standard width of 224 pixels. All additional examples and results correspond to Idefics2,
the best performing model, unless otherwise specified.
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: Bern
dcosine = 0.95

VLMLLMVLM

Figure 6: Inter-model transfer. For the same text
ICL inputs, the base LLM and fine-tuned VLM contain
highly similar task vectors (left). LLM task vectors can
be patched onto image queries (right).

Table 4: LLM to VLM transfer re-

sults. We display the cosine similar-
ity between the text ICL task vectors of
both models and the test accuracy patch-
ing from text ICL in the LLM to image
queries in the VLM.

Model Cosine Sim. Avg.
Random 0.58 0.14
LLaVA-v1.5

VLM-VLM xPatch - 0.32
LLM-VLM xPatch 0.95 0.37

Idefics2

VLM-VLM xPatch - 0.51
LLM-VLM xPatch 0.89 0.52

3.1 TEXT ICL TRANSFER

Quantitative Evaluation. Recall Sec. 2, where we observe that whether the same task is repre-
sented via text or image samples, the model compresses these demonstrations into interpretable task
vectors. With this in mind, can we provide demonstrations using only text and apply them to an
image query? We evaluate this transfer setting in Table 3 and show qualitative results in Figure 5.

We find that cross-modal patching performs the best across all VLMs (Text ICL xPatch). Patching
performs 14-33% better than providing the examples in the same context window (Text ICL xBase).
In fact, Text ICL xBase struggles to even execute the task on the image query, which performs at
most 4% better than Random. One possible explanation is that mixed-modal examples are relatively
out-of-domain whereas decomposed task vectors are more in-domain for the model.

The cross-modal text examples are more helpful than the unimodal image examples, with Text ICL
xPatch outperforming the strongest image ICL baseline (Image ICL Base, Patch) by 8-13%. We
hypothesize that image ICL requires an additional visual recognition step to understand the task
compared with text ICL, which may lead to noisier task representations (see Table 2).

LLM to VLM Transfer. Given that many VLMs are initialized from a pre-trained LLM, we explore
the extent to which the task representations are preserved after fine-tuning. We illustrate the transfer
setting for the base LLM task vectors in Figure 6 and report quantitative results in Table 4. We limit
this evaluation to the late-fusion models with a corresponding LLM, where LLaVA-v1.5 corresponds
to Vicuna (Chiang et al., 2023) and Idefics2 corresponds to Mistral (Jiang et al., 2023).

We find that given the same text ICL examples, the base LLM and VLM produce highly similar
task vectors. The task vectors have a cosine similarity of 0.89 or more, which is much higher than
the random baseline which averages the cosine similarity between all mismatched pairings of task
vectors in Idefics2. Motivated by this observation, rather than transferring text ICL task vectors to
image queries in the same model (VLM-VLM xPatch), we evaluate inter-modal transfer (LLM-
VLM xPatch). Surprisingly, the LLM-VLM setting performs 1-5% better than the VLM-VLM
setting. This result suggests VLMs can reuse functions learned only in language by LLMs, and that
some elements of the base LLM’s task representation space may be retained after fine-tuning.

3.2 INSTRUCTION TRANSFER

In Sec. 2.2 we proposed instruction-based task vectors, which are defined directly via textual instruc-
tion. We illustrate the effect of patching instruction-based vectors onto image queries in Figure 7.

Complementarity with Examples. We explore whether instruction- and exemplar-based vectors
can be combined to produce better task representations in Figure 8. To begin, we evaluate how
the test performance scales with the number of ICL examples by computing per-task exemplar-
based vectors on subsets of the validation set (Exemplar xPatch). Next, we average the per-task
instruction-based vector with each exemplar-based vector (Instruction + Exemplar xPatch). We
also plot the performance of the lone instruction-based vector for reference (Instruction xPatch).
Because it is difficult to illustrate the desired casing style using only instructions, in this figure only
we compute accuracy metrics in a case-insensitive fashion.
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Instruction Image Query Output

The term for
the baby of
the animal:

No Context:

A kangaroo.

Instruction

xPatch:

joey.

The scientific
name of the

animal’s
species in

latin:

No Context:

Elephant.

Instruction

xPatch:

Elephas

maximus.

Figure 7: Instruction-Based Vectors. Task vectors
can also be defined via brief instructions and patched
onto image queries (Instruction xPatch).

Figure 8: Vector Ensembling. Averag-
ing textual instruction- and exemplar-based
vectors improves sample efficiency. We
display the number of input-output sam-
ples used versus average test accuracy for
cross-modal patching onto image queries.

Instruct. xBase Instruct. xPatch Image Query Output

What is on
top of the

meat
vs.

What is the
green

vegetable

Instruction xBase:

Sauce.

+ Instruction xPatch:

broccoli

What color
are the letters

vs. What does
the sign say

Instruction xBase:

Black. What

+ Instruction xPatch:

Street car crossing be

alert

What color is
the van

vs.
Who is the

manufacturer
of this van

Instruction xBase:

It is blue.

+ Instruction xPatch:

blue and white.

Write
something
very mean

vs.
Write

something
nice

Instruction xBase:

Get off the leaves you

little b******.

+ Instruction xPatch:

A dog is in a pile of

leaves and it is adorable.

Figure 9: Task conflict. We show qualitative examples where the task specified in the same context
window (xBase) conflicts with the task to patch (xPatch). Any offensive text has been redacted.

Viewing Figure 8, although the instruction-based vector has not seen any input-output pairs, it shows
competitive patching performance, matching that of an exemplar-based vector composed of five
samples. The ensemble performs even better, improving over the five-sample exemplar-based vec-
tor by 18%. Overall, combining the instruction-based vector improves the sample efficiency and
reduces the variance of the exemplar-based vector. We hypothesize that the ensemble performs well
because the instruction provides a generic task definition less biased by the selection of input-output
examples while the ICL examples provide a sense of the expected output format.

Task Conflict. In Figure 9 we consider a special case of cross-modal patching where the task to
patch conflicts with an existing task given in the prompt. This case mirrors a practical challenge
where the user may request a task that goes against the global system instruction. We give the
model conflicting question answering tasks (Goyal et al., 2017), as well as a scenario where the user
prompts for toxicity, which conflicts with the patched system instruction. We first display the result
where only one task is prompted within the context window (Instruction xBase). We then display
the result when the conflicting task is patched on top (+ Instruction xPatch).
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Image ICL Examples + Text Query Output

Apple Snapchat Instagram

The logo is the
letter P stylized
to look like a

pushpin.

?

Text ICL Base:

Pinterest

Image ICL xBase:

Mapquest

Image ICL xPatch:

Pinterest.

Sandy Cheeks Mrs. Puff Mr. Krabs

The character is
a pink starfish
wearing green

and purple pants.

?

Text ICL Base:

SpongeBob

Image ICL xBase:

Plankton

Image ICL xPatch:

Patrick Star.

Keyboard Cat Doge This Is Fine Dog

An image of an
unhappy cat with

blue eyes and
white and brown

fur.

?

Text ICL Base:

Garfield

Image ICL xBase:

Grumpy Cat

Image ICL xPatch:

Grumpy Cat

Figure 10: Transfer from image ICL to text queries. We show qualitative examples where few-
shot prompting with text ICL (Base) and image ICL (xBase) often produces incorrect predictions
in the same output domain while cross-modal patching (xPatch) leads to the correct answer.

We observe that global vector patching is often able to override local prompting but also fails when
the task to patch is more challenging than the one provided in the same context window. For exam-
ple, tasks like object recognition, color identification, or OCR that are highly emphasized in VLM
training can be considered less challenging than a long-tail task like car logo recognition.

3.3 IMAGE ICL TRANSFER

Now we assess the usefulness of task vectors derived from image ICL for text queries, as originally
formulated in Sec. 2.2. In Figure 10 we depict a set of tasks that involve recognizing visual concepts
in dense textual descriptions, including mapping the description to a technology company, cartoon
character, or popular meme. We provide the text ICL descriptions in Sec. A.6 of the Appendix.

Similar to Sec. 3.1, the model struggles when cross-modal examples are applied via few-shot
prompting (Image ICL xBase) but performs well when the same examples are patched as a task
vector (Image ICL xPatch). Both baselines (Text ICL Base, Image ICL xBase) sometimes gener-
ate incorrect answers within the same output domain, suggesting that, rather than focusing on the
input-output relationship, the model may be ignoring the input image or description. However, on
the evaluation tasks in Table 3, it is difficult for image ICL to surpass the strong unimodal base-
lines. In Table 10 of the Appendix we include an ablation containing all possible combinations of
specification-query modality for task vector patching, where text ICL consistently outperforms im-
age ICL regardless of the query modality. We hypothesize that this phenomenon can be attributed
to the nature of the tasks themselves. In the evaluation tasks, image ICL also has to complete an
implicit recognition task mapping the image to the underlying textual concept. For example, if the
model cannot match the flag to the correct country name, it will not be able to predict the correct
currency. However, if recognition is instead required in text space, as is the case in Figure 10, im-
age ICL may better encode the task. We think that the curation of a comprehensive evaluation set
containing dense text descriptions and corresponding visual concepts is an exciting future direction.
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4 RELATED WORK

Mechanistic Interpretability. The goal of mechanistic interpretability in deep learning is to make
deep models more transparent and interpretable by understanding how and why model decisions are
made (Gilpin et al., 2018; Gurnee & Tegmark; Liu et al., 2022; Geva et al., 2020; Nanda et al., 2023).
To uncover the relationships within the model, causal interventions (Pearl, 2022) are often used. For
example, Activation Patching (Zhang & Nanda, 2023) is a technique used to modify neural network
activations to observe changes in outputs, often with causal insights to correct biased or erroneous
behavior (Meng et al., 2022; Bau et al.). Here, we use Activation Patching to demonstrate that task
representations transfer across modalities, regardless of being specified by examples or instructions.

In Context Learning. With the recent advent of LLMs (Brown et al., 2020), researchers have sought
to explain in-context learning (Liu et al., 2023b), the phenomenon in which LLMs can adapt to new
tasks with a few input examples in the forward pass. Olsson et al. (2022) hypothesized that ICL
is driven by attention heads (“induction heads”), while Xie et al. (2021) interprets ICL as implicit
Bayesian Inference process, and Garg et al. (2022) showed that ICL can emerge in the simple case
of linear functions. More recently, Hendel et al. (2023) and Todd et al. (2024) hypothesized that ICL
creates task (or function) vectors, latent activations that encode the task in LLMs, and Hojel et al.
(2024) demonstrated a similar behavior in computer vision models. Huang et al. (2024) proposed
to use task vectors in VLMs to compress long prompts that would otherwise not fit in a limited
context length. We study how task information evolves within VLMs, specifically the similarity and
transferability of the representation when the task is expressed in different modalities.

Vision-and-Language Models. Inspired by the success of LLMs, new vision-and-language models
(VLMs) have been proposed (Liu et al., 2023a; Li et al., 2023; Tong et al., 2024; Team, 2024;
Laurençon et al., 2024; Zhou et al., 2024). Recent VLMs can be roughly categorized to modality
late-fusion (Liu et al., 2023a; 2024) and early-fusion (Bavishi et al., 2023; Lu et al., 2022; 2023;
Team, 2024) approaches. Late-fusion approaches typically combine a pre-trained visual encoder and
LLM by training adapters, potentially with a short end-to-end fine-tuning stage. In contrast, early-
fusion approaches focus on end-to-end training without any pre-initialization of the representations.
We observe cross-modal task representations for both model categories, suggesting that this property
can emerge regardless of the initialization. Several works examine image ICL in VLMs, proposing
new models designed for ICL (Alayrac et al., 2022; Laurençon et al., 2024; Doveh et al., 2024; Jiang
et al., 2024) and analyzing the impact of in-context example selection on performance (Baldassini
et al., 2024). Our work offers a new perspective on image ICL by comparing it with text ICL and
demonstrating the similarity between the two processes. We even show VLMs that lack image ICL
capabilities (Liu et al., 2023a; Lin et al., 2023; Doveh et al., 2024) can still benefit from task vectors.

5 LIMITATIONS

In this work, we demonstrate that VLMs learn cross-modal task representations but we lack a defini-
tive explanation for why. Empirical studies offer several hypotheses, such as the existence of isomor-
phic structures between language and other perceptual representation spaces (Abdou et al., 2021;
Patel & Pavlick, 2022; Pavlick, 2023), or representational convergence from modeling the same
underlying reality (Huh et al., 2024). Additionally, we observe quantitative improvements for text-
to-image transfer but not image-to-text transfer, possibly because VLM training is more text-centric.
However, we believe that learning task representations from visual data has its advantages, and we
provide qualitative examples where image-to-text transfer proves beneficial.

6 CONCLUSION

Vision-and-language models (VLMs) are generalist models capable of solving a wide range of com-
puter vision tasks by framing them as question answering problems in text. Despite their success, we
lack a clear understanding of how they work. Our primary observation is that VLMs map inputs into
a shared task representation space, regardless of whether the task is defined by text examples, image
examples, or explicit instructions. Based on this, we show it is possible to transfer task vectors from
one modality (e.g., text) to another (e.g., images). We hope our work will inspire further exploration
into the inductive biases of VLMs and the reasons behind their success.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mostafa Abdou, Artur Kulmizev, Daniel Hershcovich, Stella Frank, Ellie Pavlick, and Anders
Søgaard. Can language models encode perceptual structure without grounding? a case study
in color, 2021. URL https://arxiv.org/abs/2109.06129.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford,
Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick,
Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski,
Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a vi-
sual language model for few-shot learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=EbMuimAbPbs.

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/

claude-3-5-sonnet.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence
Zitnick, and Devi Parikh. VQA: Visual Question Answering. In International Conference on
Computer Vision (ICCV), 2015.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023a. URL
https://arxiv.org/abs/2309.16609.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond, 2023b. URL https://arxiv.org/abs/2308.12966.

Folco Bertini Baldassini, Mustafa Shukor, Matthieu Cord, Laure Soulier, and Benjamin Piwowarski.
What makes multimodal in-context learning work?, 2024.

Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and James Glass.
Identifying and controlling important neurons in neural machine translation. In International
Conference on Learning Representations.

Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani,
and Sagnak Tasirlar. Fuyu-8b: A multimodal architecture for ai agents, 2023. URL https:

//www.adept.ai/blog/fuyu-8b.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:

//lmsys.org/blog/2023-03-30-vicuna/.

Sivan Doveh, Shaked Perek, M. Jehanzeb Mirza, Wei Lin, Amit Alfassy, Assaf Arbelle, Shimon
Ullman, and Leonid Karlinsky. Towards multimodal in-context learning for vision & language
models, 2024. URL https://arxiv.org/abs/2403.12736.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

11

https://arxiv.org/abs/2109.06129
https://openreview.net/forum?id=EbMuimAbPbs
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2308.12966
https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2403.12736


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal.
Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE
5th International Conference on data science and advanced analytics (DSAA), pp. 80–89. IEEE,
2018.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V
in VQA matter: Elevating the role of image understanding in Visual Question Answering. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Wes Gurnee and Max Tegmark. Language models represent space and time. In The Twelfth Inter-
national Conference on Learning Representations.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. Findings of
Empirical Methods in Natural Language Processing, 2023.

Alberto Hojel, Yutong Bai, Trevor Darrell, Amir Globerson, and Amir Bar. Finding visual task
vectors. European Conference on Computer Vision, 2024.

Brandon Huang, Chancharik Mitra, Assaf Arbelle, Leonid Karlinsky, Trevor Darrell, and Roei
Herzig. Multimodal task vectors enable many-shot multimodal in-context learning. arXiv preprint
arXiv:2406.15334, 2024.

Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation
hypothesis. In ICML, 2024.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/

zenodo.5143773. If you use this software, please cite it as below.

iNaturalist. inaturalist 2017 species classification and detection dataset. https://github.com/
visipedia/inat_comp/tree/master/2017, 2017.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:

//arxiv.org/abs/2310.06825.

Dongfu Jiang, Xuan He, Huaye Zeng, Cong Wei, Max Ku, Qian Liu, and Wenhu Chen. Mantis:
Interleaved multi-image instruction tuning, 2024. URL https://arxiv.org/abs/2405.

01483.
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