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Abstract

Training models on synthetic data is an effective strategy001
for improving large multimodal models (LMMs) due to the002
scarcity of high-quality paired image-text data. Existing003
methods generate multimodal datasets but do not address004
specific reasoning deficiencies in LMMs. In contrast, hu-005
mans learn efficiently by focusing on past failures. In-006
spired by this, we propose a synthetic data generation ap-007
proach that analyzes an LMM’s reasoning failures using008
frontier models to generate and filter high-quality exam-009
ples. Our method produces a 553k-example multimodal in-010
struction tuning dataset, leading to improved LMM perfor-011
mance, even surpassing models trained on equivalent real012
data demonstrating the high value of generating synthetic013
data targeted to specific reasoning failure modes in LMMs.014

1. Introduction015

Recent advancements in large language models (LLMs) can016
be attributed largely to scaling models and training data.017
However, high-quality data availability limits further scal-018
ing [38, 41]. As a result, synthetic data generation is gain-019
ing traction for augmenting datasets. High-quality syn-020
thetic data generation has grown more feasible with increas-021
ing LLM capabilities, enabling synthetic data production at022
scale [7, 13, 14, 20, 34, 44]. Synthetic data is particularly023
valuable for training large multimodal models (LMMs),024
which combine an LLM with a vision encoder to enable025
text generation conditioned on multimodal inputs. Real data026
for training LMMs is relatively scarce due to the lack of027
naturally-occurring images paired with high-quality text.028

Existing approaches for generating multimodal synthetic029
data face two key limitations. First, they depend on real im-030
ages paired with synthetic text generated by another LMM,031
restricting their use when image data is scarce. Second, they032
generate data arbitrarily without prioritizing useful exam-033
ples, leading to inefficiencies in both data generation and034
training. For a broader discussion of previous methods, see035

Section 6 in the supplementary material. Unlike standard 036
synthetic data generation, humans learn efficiently by fo- 037
cusing on examples tied to past reasoning failures. Ericsson 038
et al. [8] suggest expert learning benefits from explicit in- 039
struction, error diagnosis, and targeted feedback. Humans 040
learn from failures [3, 6], so focusing on past errors aids 041
mastery, while problems involving familiar reasoning tend 042
to be overlooked. 043

Inspired by this observation, we propose a synthetic data 044
generation approach based on an LMM’s reasoning failures. 045
We first evaluate the LMM on a benchmark dataset and use 046
a strong frontier model to analyze its errors. The frontier 047
model then generates related question-answer pairs and im- 048
age descriptions, which can link to existing images or guide 049
synthetic image generation. Finally, we ensure quality using 050
an LMM-as-a-judge filtering process. Our approach gener- 051
ates a 553k-example multimodal dataset from LLaVA-1.5- 052
7B’s [22] reasoning failures. Training experiments show 053
our synthetic data improves LLaVA’s performance across 054
various downstream tasks, even surpassing training on real 055
datasets, unlike prior work requiring significantly more ex- 056
amples to match real data performance [12]. Our method 057
achieves greater gains compared to previously-proposed 058
synthetic datasets, demonstrating the value of grounding 059
synthetic data in model failure analysis. 060

2. Dataset construction 061

Diagnosing model failures To generate our tailored syn- 062
thetic data, we first analyze reasoning failures in a base- 063
line LMM using a more advanced frontier LMM. The fron- 064
tier model is selected for its superior multimodal reasoning 065
capabilities and high accuracy on diverse vision-language 066
benchmarks. Reasoning failures are identified by evaluating 067
both models on the training sets of vision-language bench- 068
marks, and selecting samples where the baseline LMM pro- 069
duces incorrect responses, while the frontier model suc- 070
ceeds. This process generates a subset of failure cases per 071
benchmark, providing a focused challenging dataset, which 072
we denote as Model Failure Sets (MFS). 073
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Original Sample Analyze Failure
Modes

Question: What 
colors are in this 
sweater?

Answer: Pink, 
green, white

LLaVA: Pink

- Focus on Dominant Features: By 
focusing solely on the dominant 
color, Model A failed to account for 
other significant colors present in 
less prominent but still important 
parts of the sweater (white and 
green)
- Pattern and Detail Recognition: 
The patterns on the upper part of 
the sweater include both green 
and white. Model A appears to 
have missed or overlooked these 
details when analyzing the image. 
This indicates a gap in recognizing 
and interpreting detailed patterns 
or secondary elements and 
integrating them…

- Contextual Limitation: The 
question asked for "colors" in 
plural, suggesting multiple colors 
should be identified. If Model A 
does not sufficiently process the 
textual prompt to anticipate 
multiple answers, this can…

Suggest New 
Samples

Q: What patterns and textures are 
visible on the models' outfits?
A: Stripes, polka dots, floral designs
Image Description: Models walking 
on a fashion runway, wearing outfits 
with mixed patterns and textures 
including stripes, polka dots, and…

Q: What colors and artistic 
techniques are visible in the painting?
A: Various colors (red, blue, yellow, 
green) with cubism, surrealism, and 
impressionism techniques.
Image Description: An abstract 
painting featuring a mixture of colors 
and artistic styles such as cubism, 
surrealism, and impressionism…

Q: How many primary colors are in 
this sweater?
A: Three

Q: What colors are mainly used in 
the painting?
A: Pink, green, white
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Figure 1. Illustration of our approach. Given a sample from an existing dataset which LLaVA answers incorrectly, we prompt a frontier
model to analyze LLaVA’s reasoning failures and propose new synthetic samples which require similar types of reasoning.

Synthetic data generation Using the resulting MFS, we074
guide the frontier model through a structured multi-turn075
process to diagnose the failure reasons of the baseline LMM076
and generate new training samples that address these fail-077
ure modes, as illustrated in Figure 2 in Section 7.3 of the078
supplementary material (SM). In the first steps, the fron-079
tier model is prompted to describe the image and analyze080
reasoning errors by examining the question, ground truth081
answer, and the incorrect response generated by the base-082
line LMM. Next, the frontier model is instructed to propose083
new challenging samples designed to target the identified084
failure modes, which consist of a detailed image descrip-085
tion, a clear question, and a deterministic answer. We ex-086
plore two different approaches for sourcing images: utiliz-087
ing existing real images (Method 1), or using synthetically088
generated images (Method 2).089

Specifically, in Method 1, we leverage the original im-090
age from a failed sample and prompt the frontier model to091
generate 10 new question-answer pairs per sample, follow-092
ing the prompt in Figure 2, omitting the final step. This093
is especially effective for benchmarks like InfoVQA and094
ScienceQA, since text-to-image models often struggle with095
precise text rendering and spatial accuracy. In Method 2, the096
frontier model generates a question-answer pair and a de-097
tailed image prompt using the prompt in Figure 2. Each im-098
age prompt is then fed into a text-to-image diffusion model099
to generate 10 synthetic images at varying guidance scales,100
producing 100 fully synthetic samples per failed sample.101

To enhance data diversity, we use a variation of our102
prompt instructing the frontier LMM to “provide examples103
that challenge Model A’s weaknesses using scenarios from104

entirely different domains or situations”. This instruction 105
is added to Step 4 in Figure 2 to encourage samples genera- 106
tion in different domains. Domain-similar samples preserve 107
the original theme, while non-similar samples offer broader 108
contextual diversity for improved generalization, see Fig- 109
ure 6 in Section 7.3 (SM). We also enforce constraints on 110
question format and instructions, as detailed in Section 7.3. 111

Filtering We apply a filtering process using the same 112
frontier LMM which produced the samples. The LMM is 113
instructed to evaluate each synthetic sample given an image, 114
question, and answer on a scale of 1 to 3, where 1 indicates 115
an incorrect sample, 2 being partially correct, and 3 fully 116
correct. The prompt used for filtering is provided in Figure 117
3 in Section 7.4 (SM). Only samples rated 3 were included 118
in the final dataset to ensure quality and reliability. 119

Dataset overview Our synthetic dataset consists of 120
553,992 samples incorporating both real and generated im- 121
ages derived from the MFS of LLaVA-1.5-7B, with Vicuna- 122
1.5-7B [46] base LLM, on four benchmark training sets: 123
VizWiz [11], InfoVQA [27], ScienceQA [25], and OK- 124
VQA [26]. These benchmarks were chosen to ensure a wide 125
range of visual and reasoning challenges, as detailed in Sec- 126
tion 7.2 (SM). We use GPT-4o [30] as the frontier LMM 127
for analyzing the reasoning failures of LLaVA-7B due to 128
its strong multimodal reasoning capabilities, and FLUX.1- 129
schnell Labs [18] text-to-image model to generate the syn- 130
thetic images. Table 3 in Section 7.2 (SM) provides an 131
overview of each benchmark, including the original size of 132
the training split, the MFS size of LLaVA-7b, and the total 133
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Dataset Model N Nsyn EM Score

InfoVQA

LLaVA 624,610 0 26.7
LLaVAreal 634,684 0 31.6
LLaVAsyn 634,684 10,074 30.8
LLaVAsyn 687,071 62,461 33.0
LLaVAsyn 710,610 86,000 34.3

ScienceQA

LLaVA 624,610 0 70.7
LLaVAreal 630,195 0 70.0
LLaVAsyn 630,195 5,585 71.8
LLaVAsyn 646,594 21,984 73.0

OK-VQA

LLaVA 624,610 0 57.0
LLaVAreal 633,619 0 54.3
LLaVAsyn 633,619 9,009 61.3
LLaVAsyn 687,071 62,461 61.3
LLaVAsyn 749,532 124,922 61.5

Table 1. In-domain evaluation of baseline LLaVA, LLaVA models
trained using synthetically augmented data (LLaVAsyn) and using
training data augmented with real in-domain data (LLaVAreal).

number of synthetic samples retained after filtering.134
As previously described, we utilize two methods for syn-135

thetic data generation, depending on the dataset: for In-136
foVQA and ScienceQA, we apply Method 1, which gen-137
erates new question-answer pairs based on the original real138
images. For OK-VQA, we employ Method 2, generating139
synthetic images along with corresponding question-answer140
pairs, and for VizWiz we apply both methods. Overall, our141
final dataset consists of 42% real-image-based samples and142
58% fully synthetic samples. All samples in the final dataset143
contain a single-turn conversation, featuring a question and144
a short answer. Our filtering approach effectively removes145
lower-quality synthetic samples, with synthetic-image sam-146
ples exhibiting higher removal rates compared to real-image147
samples, further details in Section 7.2 (SM). Examples of148
our dataset can be seen in Section 11 (SM).149

Additionally, the large volume of filtered data ensures150
broad coverage of LLaVA-7B’s reasoning failures across151
benchmarks, as listed in Section 9.5 (SM).152

3. Experiments153

Details of experimental setting We fine-tune LLaVA-154
1.5-7B using a subset of the LLaVA-Instruct-1.5-mix-665K155
dataset [23], which contains 665K user-GPT conversations156
focused on visual prompts. Since our approach targets157
image-grounded reasoning, we use only the 624K samples158
with images. We then augment this visually oriented subset159
with our synthetic MFS data (Section 2). The final training160
set combines real image-text conversations with targeted161
synthetic examples to address reasoning failures.162

For fine-tuning, we used Vicuna-1.5-7B weights as the163
LLM backbone and leveraged the pretrained multimodal164
projector from LLaVA-1.5-7b. We followed the original165
LLaVA training procedure, ensuring a fair comparison to166

existing methods, with training details provided in Section 167
8 (SM). We refer to models trained with a mixture of the 168
original LLaVA-Instruct dataset and our synthetic data as 169
LLaVAsyn. As a baseline, we report the performance of 170
LLaVA trained under the same setting but without any ad- 171
ditional synthetic data added to the training dataset (i.e., 172
Nsyn = 0). Additionally, for each dataset from which rea- 173
soning failures were derived for synthetic data generation, 174
we report the performance of a LLaVA model trained on an 175
equivalent amount of real data sourced from the correspond- 176
ing training dataset (denoted as LLaVAreal). This provides 177
a measure of the efficiency of our synthetic data relative to 178
training on real in-domain data. 179

We used a variety of multimodal reasoning benchmarks 180
for evaluating models. For in-domain evaluations (i.e., eval- 181
uating on a withheld validation set corresponding to the 182
training set from which reasoning failures were derived), 183
we used the InfoVQA, OK-VQA and ScienceQA validation 184
sets. Since InfoVQA and ScienceQA questions rely heavily 185
on reading text contained in the images, we further evalu- 186
ated models on TextVQA [33] and OCR-Bench [9]. Finally, 187
because our synthetic dataset was designed to enhance the 188
model’s reasoning capabilities, we chose MMBench [24] 189
and MMMU [45] as additional OOD benchmarks. 190

Synthetic data augmentation results Table 1 provides 191
in-domain evaluation results utilizing synthetic data derived 192
from InfoVQA, ScienceQA, and OK-VQA. Notably, aug- 193
menting the LLaVA-Instruct dataset with our synthetic data 194
achieves performance comparable to or better than using 195
an equivalent amount of real domain-specific data in most 196
cases. This result is particularly significant given that the 197
synthetic samples were generated using only a small subset 198
of the original training data: specifically, only those exam- 199
ples where LLaVA scored 0.0 while GPT scored 1.0. For 200
instance, with OK-VQA, the original training set consists 201
of 9,009 samples, but we utilized only 607 training sam- 202
ples which LLaVA failed on in order to generate 9009 syn- 203
thetic samples, resulting in a performance boost of 13% 204
on the OK-VQA test set. Similarly, our approach utilized 205
only 28% of the ScienceQA training dataset to generate full 206
synthetic replacements, yet still resulted in better perfor- 207
mance than training directly on the real dataset. We also ob- 208
serve that performance improves as the amount of synthetic 209
data used for data augmentation increases. In practice, it 210
may be desirable to combine synthetically generated data 211
which was derived from reasoning failures across differ- 212
ent datasets. We therefore provide results for two different 213
sized mixtures of our synthetic data derived from InfoVQA, 214
ScienceQA, and OK-VQA reasoning failures in Table 2. In 215
addition to in-domain evaluations for these three datasets, 216
we provide results for the four other datasets mentioned 217
previously to measure the impact on OOD generalization. 218

3



Base LLM N Nsyn Augmentation Data TextVQA OCR-Bench InfoVQA OK-VQA ScienceQA MMBench MMMU

Vicuna-7B 624,610 0 N/A (baseline) 47.0 31.9 26.7 57.0 70.7 52.3 36.4

Vicuna-7B 687,071 62,461

ALLaVA 47.9 34.0 28.4 50.4 71.2 50.2 36.7
CoSyn-400K 47.1 31.8 28.5 55.8 71.5 52.4 34.6
SimVQA 46.8 31.6 26.6 54.4 71.1 53.5 34.7
Ours 47.4 33.2 33.1 60.8 73.1 52.5 36.2

Vicuna-7B 749,532 124,922
ALLaVA 47.2 34.1 28.8 49.4 66.5 43.5 34.2
CoSyn-400K 46.8 32.7 29.6 57.7 70.9 51.9 36.9
Ours 47.4 34.5 33.2 61.1 73.0 52.5 37.4

Gemma-2B 624,610 0 Ours 39.9 28.3 21.8 51.7 62.3 29.2 32.3
749,532 124,922 40.9 29.9 29.8 54.8 65.2 30.7 31.7

Qwen2-7B 624,610 0 Ours 45 31.4 26.7 59.2 77.9 63 42.3
749,532 124,922 46.2 32.5 27 60.6 80.7 63.5 42.2

Table 2. Training data augmentation experimental results. N denotes the total number of training examples, Nsyn denotes the number
of synthetic examples in the training dataset generated using our approach. The first section of the table compared the same base LLM
(Vicuna) trained on various datasets with our dataset, while the second section compares different LLM backbones trained on our dataset.

We also provide results for LLaVA models trained on219
three alternative synthetically generated datasets: ALLaVA,220
CoSyn-400k, and SimVQA. From Table 2, we observe that221
our synthetic data outperforms all baselines in the maxi-222
mum data augmentation setting (Nsyn = 124, 922). When223
augmenting training sets with half as much data, we ob-224
serve that our synthetic data produces the greatest improve-225
ments in-domain, whereas the ALLaVA dataset, which con-226
tains only real images paired with synthetic text, performs227
slightly better in other OOD settings. Finally, training228
LLaVA on the mixed synthetic dataset yields similar in-229
domain performance to training it separately on failures230
from each individual dataset (Table 1).231

To evaluate the generalization ability of our synthetic232
dataset, we trained models using the same datasets but233
with different backbone LLMs. In the following experi-234
ments, we used Gemma-2B [35] and Qwen2-7B [42] as235
base LLMs. We adopted the LLaVA two-phase training236
procedure: pretraining on the LLaVA 558k dataset [23]237
followed by instruction fine-tuning. Table 2 indicates that238
our synthetic data in its maximum augmentation setting,239
Nsyn = 124, 922, outperform the baseline for both LLaVA-240
Gemma-2B and LLaVA-Qwen-7B almost on all bench-241
marks. Notably, despite being generated based on LLaVA-242
Vicuna-7B failure mechanisms, our synthetic data enhance243
the performance of other models whether they are of same244
size (Qwen2-7B) or smaller (Gemma-2B).245

4. Analysis and Ablations246

We analyzed the quality of our dataset, as detailed in Sec-247
tion 9 (SM). We conducted a human evaluation of our248
dataset (Section 9.1) and found that fully synthetic sam-249
ples match or slightly exceed the fidelity of real-image-250
based sample. The evaluation also demonstrates excellent251
alignment between generated questions, answers, and im-252

age prompts. In Section 9.2, we tested our data in low re- 253
source setting by replacing portions of the original dataset 254
with fully synthetic samples. Even with up to 25% substi- 255
tution, the model finetuned on our dataset matches or out- 256
performs the baseline LLaVA, highlighting the efficiency 257
of our targeted dataset. Section 9.3 quantitatively describes 258
the impact of filtering on data quality and shows that our fil- 259
tering approach improves model performance. Section 9.4 260
compares two frontier LMMs for synthetic data generation, 261
showing that Qwen2-VL [39] produces samples with lower 262
downstream performance than GPT-4o (See example in Fig- 263
ure 5). Finally, Section 9.5 identifies reasoning failures 264
and shows that targeted synthetic data improves LLaVA- 265
Instruct’s performance on related benchmarks. 266

5. Conclusion 267

We introduced a new approach for generating multimodal 268
synthetic data based on analyzing a model’s reasoning fail- 269
ures. This led to a multimodal instruction tuning dataset 270
with over 553k synthetic examples derived from LLaVA’s 271
failures. Experiments show that our data significantly im- 272
proves LLaVA’s performance on InfoVQA, ScienceQA, 273
and OK-VQA, even surpassing training on an equivalent 274
amount of real data. Furthermore, models trained on our 275
synthetic dataset exhibit improvements in OOD evaluations 276
and outperform training on other existing synthetic datasets 277
when training data augmentation is scaled, showing con- 278
sistent improvements across different base models. We also 279
showed that training LLaVA only on examples derived from 280
specific failure modes improves its performance on tasks 281
which require corresponding forms of reasoning. Ablations 282
and human evaluations confirm the effectiveness and qual- 283
ity of our approach, highlighting the potential of targeted 284
synthetic data generation to address model deficiencies. 285
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6. Related Work532

Synthetic datasets for training LMMs. Chen et al. [5]533
introduced ALLaVA, a 1.3M-sample dataset of real images534
with annotations and QA pairs from a frontier LMM, but535
it lacks failure-driven data generation and synthetic images.536
Li et al. [21] generate synthetic QA pairs for real chart im-537
ages, focusing on chart VQA. Yang et al. [43] use code-538
guided generation (e.g., LaTeX, HTML) to create text-rich539
synthetic images. In contrast, our approach is broadly appli-540
cable across domains and leverages text-to-image diffusion541
models for greater image diversity.542

Synthetic data generation from model failures. Prior543
work has explored leveraging model failures for synthetic544
data generation. Jain et al. [15] identify failure-related di-545
rections in a vision model’s latent space to guide diffusion546
models in generating corrective images. Chegini and Feizi547
[4] use ChatGPT and CLIP to generate text prompts for548
diffusion models based on vision model failures. In lan-549
guage models, DISCERN [28] iteratively describes errors550
for synthetic data generation, while Lee et al. [20] uses in-551
correct answers from a student LLM finetuned on specific552
tasks as input to a teacher LLM which generates new ex-553
amples to use for training. Unlike prior work, which gen-554
erates single-modality data (text-only or image-only) and555
focuses on classification tasks, our approach generates mul-556
timodal image-text datasets aimed at training models for557
open-ended text generation.558

Generating synthetic data from frontier models to teach559
new skills. AgentInstruct [29] is an agentic framework for560
generating synthetic data from a powerful frontier model561
(e.g., GPT-4) to teach new skills to a weaker LLM. Sim-562
ilarly, Ziegler et al. [47] utilize few-shot examples anno-563
tated by humans and retrieved documents with produce syn-564
thetic data from LLMs for teaching specialized tasks to565
models. Prompt-based methods for synthetic data genera-566
tion from LLMs without seed documents [10, 36] as well as567
knowledge distillation from a teacher model [16] have also568
been proposed. Unlike our work, these prior studies focus569
on language-only data generation and use seed documents570
(e.g., raw text, source code) or prompts as a basis for data571
generation rather than an analysis of model failures.572

7. Dataset generation 573

7.1. Compute Infrastructure 574

To generate our dataset, we queried GPT-4o through the 575
Azure OpenAI API and deployed Qwen2-VL on Nvidia 576
RTX A6000 GPUs. Using Intel® Gaudi 2 AI accelerators 577
from the Intel® Tiber™ AI Cloud, we generated 1.024 mil- 578
lion images from the VizWiz failed samples and 535k im- 579
ages derived from OK-VQA. 580

7.2. Dataset statistics 581

Our synthetic dataset is derived from the MFS of LLaVA- 582
1.5-7B on four benchmark training sets: VizWiz [11], In- 583
foVQA [27], ScienceQA [25], and OK-VQA [26], se- 584
lected to cover diverse visual and reasoning challenges. 585
VizWiz consists of real-world images captured by visually 586
impaired users, often requiring detailed scene understand- 587
ing. OK-VQA focuses on visual question answering which 588
requires external knowledge. InfoVQA involves text-rich 589
images where reading comprehension is crucial, assessing 590
the model’s ability to extract and interpret textual informa- 591
tion from images. ScienceQA includes multimodal scien- 592
tific reasoning questions which require both spatial and log- 593
ical reasoning, making it valuable for evaluating complex 594
reasoning capabilities. To generate the synthetic images, 595
we utilized FLUX.1-schnell Labs [18] text-to-image model 596
with a resolution of 1024×1024 pixels and guidance scale 597
range of 3 to 13. 598

Table 3 provides statistics detailing the quantity of syn- 599
thetic examples in our dataset which were derived from rea- 600
soning failures on different benchmarks. Additional discus- 601
sion of the dataset composition is provided in Section 2. 602

Our filtering approach successfully removes poor-quality 603
samples, with the following removal rates across bench- 604
marks: for VizWiz, 81% of synthetic-image samples and 605
34% of real-image samples were removed. This indicates 606
that generating entirely synthetic samples is more challeng- 607
ing than generating synthetic text alone for real images. 608
OK-VQA had a lower removal rate of 29% for synthetic 609
images, possibly resulting from simpler and less ambigu- 610
ous visual content. Among real-image-based samples, Sci- 611
enceQA experienced a similar removal rate (29%), likely 612
due to the complexity of spatial and scientific reasoning 613
tasks. In contrast, InfoVQA exhibited a significantly lower 614
removal rate of only 5% with an average filtering score of 615
2.9 (out of 3), indicating the strong capability of GPT-4o in 616
handling text-based images. 617
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DatasetImage Type Original Failures Filtered

VizWizreal 20,523 7,785 100,280
VizWizsyn 20,523 7,785 190,172
InfoVQAreal 10,074 5,250 95,783
ScienceQAreal 5,585 1,562 39,090
OK-VQAsyn 9,009 607 128,667

Table 3. Dataset statistics across benchmarks, including original
training set size, number of failure samples (LLaVA-1.5-7b: 0,
GPT-4o: 1), and synthetic samples with filtering score 3.

7.3. Data generation prompt618

Figure 2 shows the prompt used to generate fully synthetic619
question-answer, image samples based on the failure modes620
of an LMM. To enhance data diversity, we use a variation of621
our prompt, expending step 4 to generate examples in dif-622
ferent domains. Figure 6 compares fully synthetic samples623
with generated images, within similar and non-similar do-624
main of the original failed sample. we notice that domain-625
similar samples preserve the original theme, while non-626
similar samples cover a more diverse contextual range to627
improve generalization. Additionally, we created samples628
where we both enforced and relaxed constraints on ques-629
tion format (e.g., multiple-choice, true/false) and instruc-630
tions (e.g., requiring responses like ”Unanswerable” when631
information was insufficient or limiting answers to short re-632
sponses, see the Shiba Inu example from Figure 9).633

7.4. Filtering prompt634

Figure 3 provides the prompt which we used for the filter-635
ing stage of our synthetic data generation pipeline. See Sec-636
tion 2 of the main paper for additional filtering details.637

8. Training hyperparameters638

To train our model, we used 8 Nvidia RTX A6000 GPUs us-639
ing the hyperparameters from Table 4. We employed Deep-640
Speed ZeRO stage 3 [1] for distributed training.641

Batch Size/GPU 16
Number of GPUs 8

Gradient Accumulation 1
Number of epochs 1

LLaVA Image Size 576
Optimizer AdamW

Learning Rate 2e− 5
BF16 True

LR scheduler cosine
Vision Tower openai/clip-vit-large-patch14-336

Language Model lmsys/vicuna-7b-v1.5

Table 4. Hyperparameters to train our model.

You are analyzing the performance of
a vision-language model (called Model
A). Model A’s answer could deviate from
the ground truth due to limitations in
visual understanding, interpretation, or
reasoning.
Step 1: Describe the image.
Step 2: Given a question, the Ground
truth answer, and Model A’s generated
answer, describe any key visual
elements that might influence Model A’s
interpretation.
Step 3: Analyze the reasoning steps Model
A might have used to generate its answer,
considering both the visual and textual
information. Identify any weaknesses,
errors, or gaps in Model A response
compared to the ground truth.
Step 4: Suggest 10 additional challenging
detailed examples to address these
limitations.
Step 5: Transform each example into a
detailed prompt designed to generate
a clear and realistic image using a
text-to-image generation model.

Figure 2. Prompt used to generate fully synthetic image-text sam-
ples based on the failure modes of an LMM (Method 2).

Given sample containing an image, a
question, and an answer, your task is
to grade the sample from 1 to 3 based
on the following criteria:
Score 1: The answer is incorrect.
Score 2: The answer is correct, but
it is one of several possible valid
answers.
Score 3: The answer is correct,
specific, and the only valid answer.
The image provides all the necessary
context for the answer.

Figure 3. Filtering prompt

9. Additional Analysis 642

9.1. Human evaluation of dataset quality 643

Three of the authors of this work conducted a human eval- 644
uation by assessing three different aspects of our generated 645
samples: (1) the alignment of the question and answer in 646
relation to the image prompt, (2) the alignment between 647
the image prompt and the generated image, and (3) the cor- 648
rectness of the answer given the question and image. The 649
first evaluation reflects the quality of reasoning, the second 650
evaluates the fidelity of the image generator’s output, and 651
the third combines both aspects. Scores range from 1 to 652
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3, where 1 indicates an irrelevant alignment, 3 signifies a653
relevant alignment, and 2 represents a partially relevant or654
ambiguous alignment. We evaluated 200 samples in total,655
with 101 containing real images and 99 being fully syn-656
thetic. The overall correctness score for answers was 2.78,657
with real-image-based samples scoring 2.75 and fully syn-658
thetic samples scoring 2.81, indicating that fully synthetic659
samples achieve a level of fidelity equal to or even slightly660
exceeding that of real-image-based samples. For the syn-661
thetic samples specifically, we also measured the alignment662
between the image prompt and the generated image (2.66),663
and the alignment of the generated question and answer664
with the image prompt (2.84), indicating the high quality665
of reasoning in the generated responses.666

9.2. Training data substitution vs. augmentation667
and impact of synthetically generated images668

Our previous experiments augmented an existing 624k sam-669
ple training dataset (LLaVA-Instruct) with our synthetic670
data. In domains where data is scarce, training datasets of671
this size may not be available. To investigate the utility of672
our synthetic data in such low-resource settings, we con-673
ducted experiments in which we randomly substituted dif-674
ferent quantities of examples from the original dataset with675
our synthetically generated data1. The results of this exper-676
iment are provided in rows 2-3 of Table 5. Even when up677
to 25% of the original dataset is substituted with our syn-678
thetic data, we achieve performance that is either as good or679
better than the baseline LLaVA model across a broad range680
of downstream tasks. This is despite the fact that the orig-681
inal LLaVA training dataset utilizes real images, whereas682
our synthetic data used in this experiment contained only683
synthetically generated images. The fact that our synthetic684
data achieves similar or better performance than an existing685
real data source is significant, as prior studies have shown686
that training on synthetically generated image data is often687
much less efficient than training on an equivalent amount688
of real image data [12]. Table 5 also shows the impact of689
using real vs. synthetic images in our pipeline. Specifi-690
cally, we compare the effectiveness of our synthetic data691
derived from Vizwiz reasoning failures when paired with692
real images (from Vizwiz) or synthetically generated im-693
ages. In the training data augmentation setting, we observe694
that synthetic images generally achieve similar results as695
utilizing real images. Synthetic images even surpass the696
performance of real images in TextVQA, OK-VQA, and697
MMBench. This demonstrates the high quality of our syn-698
thetic images and their potential to serve as replacements for699
real images in low-resource settings where data is scarce.700

1We used synthetic data derived from Vizwiz failures in this setting.

9.3. Impact of filtering on data quality 701

To investigate the impact of filtering on the quality of syn- 702
thetically generated data, we repeated our in-domain evalu- 703
ation experiments for ScienceQA and OK-VQA using raw 704
unfiltered data. In the maximum synthetic data augmenta- 705
tion setting (last row of each section in Table 1), using unfil- 706
tered data reduces EM from 73.0 to 72.2 on ScienceQA and 707
from 63.3 to 58.8 on OK-VQA. This shows that our filter- 708
ing approach improves model performance when using our 709
synthetic examples for training data augmentation. Further- 710
more, using only synthetic examples which were assigned 711
the lowest rating in our filtering process decreases the EM 712
score on OK-VQA to 57.5, which highlights the difference 713
in quality between the lowest-scoring and highest-scoring 714
synthetic examples identified during filtering. 715

9.4. Comparison of LLM synthetic data generators 716

We compared two frontier LMMs, GPT-4o and Qwen2-VL- 717
7B [39], for generating synthetic data grounded in LLaVA- 718
7B failures. Qwen2-VL-7B was selected due to its high ac- 719
curacy on vision-language benchmarks. Our results show 720
that using samples generated by Qwen2-VL leads to re- 721
duced downstream performance compared to those pro- 722
duced by GPT-4o, with a decrease of 2% on InfoVQA 723
and 6.5% on OK-VQA. Additionally, samples generated 724
by Qwen2-VL received lower filtering scores: 1.9 (Qwen2- 725
VL) vs. 2.5 (GPT-4o) for OK-VQA, and 2.6 (Qwen2-VL) 726
vs. 2.9 (GPT-4o) for InfoVQA. Based on our manual anal- 727
ysis, we hypothesiize that these differences may result from 728
the detailed and precise reasoning provided by GPT-4o, re- 729
sulting in synthetic samples that are better tailored to ad- 730
dress identified reasoning failures. In contrast, samples gen- 731
erated by Qwen2-VL-7B sometimes demonstrate lower di- 732
versity, which could limit their effectiveness in addressing 733
the broad range of failure modes. Figure 5 provides an ex- 734
ample of these observed differences in the reasoning pro- 735
cesses of GPT-4o and Qwen2-VL-7B models, as well as the 736
corresponding generated fully synthetic samples. 737

9.5. Correcting specific types of reasoning failures 738

Our synthetic data generation approach explicitly identifies 739
different types of LMM reasoning failures. To systemat- 740
ically categorize these failures, we encoded each reason- 741
ing explanation using sentence transformers [32] and clus- 742
tered them using k-means. Figure 4 presents the resulting 743
clusters, highlighting prevalent failure modes such as opti- 744
cal character recognition (OCR) and object detection errors. 745
Based on this analysis, we further investigated whether tar- 746
geted synthetic data can effectively address these specific 747
failure cases and enhance LLAVA’s reasoning capabilities. 748

Specifically, we augmented LLaVA-Instruct with 10,579 749
synthetic samples from our VizWizsyn-MFS addressing ob- 750
ject detection reasoning failures and repeated the second 751
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Train Data N Nsyn TextVQA OCR-Bench InfoVQA OK-VQA ScienceQA MMBench MMMU

Baseline 624,610 0 47.0 31.9 26.7 57.0 70.7 52.3 36.4

Substitute w/
syn images

624,610 62,461 47.1 31.6 26.5 56.9 70.8 52.3 35.3
624,610 156153 46.9 31.1 27.0 57.0 70.6 51.2 37.9

Augment w/
syn images

645,222 20,612 46.7 32.0 27.0 57.4 71.2 53.4 34.9
687,071 62,461 47.7 31.8 25.8 59.4 71.2 52.3 36.4

Augment w/
real images

645,222 20,612 46.9 32.5 27.2 57.4 70.6 53.1 35.0
687,071 62,461 47.2 32.2 27.2 56.9 71.2 52.3 33.8

Table 5. Ablation experiments comparing baseline LLaVA to LLaVA models trained with synthetic data generated from VizSiz failures.
We investigate substitution and augmentation strategies for synthetic data, as well as the use of synthetic vs. real images.

Feature 
misinterpretation

8.0%

Blurriness and 
partial visibility

12.4%

Weakness in 
visual analysis

18.6% Incomplete contextual 
understanding

24.0%

Other

11.3%

Text recognition 
errors

9.2%

Object recognition 
failure

10.8%

Overgeneralization

5.6%

Figure 4. Figure shows the clusters of LLAVA reasoning failures
described by GPT-4o.

Dataset LLAVA LLaVAsyn

CIFAR-10 [17] 82.1 81.2
Food-101 [2] 13.4 13.2
iNaturalist [37] 20.6 52.0
MNIST [19] 75.1 80.5
F-MNIST [40] 9.8 10.0
Oxford-pets [31] 39.6 96.4

Table 6. Image classification accuracy of LLaVA and a LLaVAsyn

model augmented only with synthetic examples corresponding to
object recognition failures.

stage of LLaVA finetuning. The model was then evaluated752
on CIFAR-10 [17], Food-101 [2], iNaturalist [37], MNIST753
[19], Fashion-MNIST [40], and Oxford-Pets (Binary) [31]754
by formatting samples as multiple-choice questions. Table755
6 presents a comparison of LLaVA and LLaVAsyn. The756
results show that LLaVAsyn surpasses LLaVA on four out757
of six datasets, with particularly notable improvements on758
iNaturalist, MNIST and Oxford-Pets. This demonstrates the759
significant impact of our synthetic dataset in addressing spe-760

cific reasoning failures within LLAVA. By systematically 761
incorporating targeted synthetic samples, we can mitigate 762
common failure cases, leading to measurable performance 763
improvements across multiple benchmarks. Our findings 764
highlight the effectiveness of leveraging targeted synthetic 765
data to refine model reasoning and suggest that incorporat- 766
ing such data-driven interventions can significantly enhance 767
the robustness and generalization of LMMs. 768

10. Detailed OOD results for models fit to dif- 769

ferent subsets of synthetically generated 770

data 771

Table 7 provides additional evaluation results for mod- 772
els trained individually on real and synthetic data derived 773
from Vizwiz, InfoVQA, ScienceQA, and OK-VQA. All re- 774
ported values are the official evaluation metrics correspond- 775
ing to each dataset. The first two rows of each section 776
in Table 7 provide a direct comparison of the efficiency 777
of our synthetic data to real data; we observe that aug- 778
menting the LLaVA-Instruct dataset with our synthetic data 779
achieves as good or better performance across most settings 780
as augmenting with real domain-specific data. Furthermore, 781
significant performance gains are achieved relative to the 782
LLaVA baseline when our synthetic data is derived from 783
a dataset in the same domain as the benchmark. For ex- 784
ample, synthetic data generated from reasoning failures on 785
InfoVQA significantly improve LLaVA’s performance on 786
tasks which require fine-grained text understanding such as 787
OCR-Bench and InfoVQA. 788

11. Examples from our dataset 789

In this section, we present examples from our dataset and 790
highlight its weaknesses and limitations. Figure 6 shows a 791
comparison of fully synthetic similar vs non-similar sam- 792
ples. Figures 7 show sampled examples from VizWiz and 793
InfoVQA highlighting the diversity of question types and 794
demonstrating the overall quality of generated images and 795
text. Figure 9 shows our synthetic data generated from 796

4



Train Dataset N Nsyn TextVQA OCR-Bench InfoVQA OK-VQA ScienceQA MMBench MMMU

Baseline 624,610 0 0.47 0.32 0.27 0.57 0.71 52.30 0.36

Vizwiz
645,133 0 0.47 0.28 0.26 0.59 0.71 51.74 0.38
687,071 62,461 0.48 0.32 0.26 0.59 0.71 52.25 0.36
749,532 124,922 0.47 0.32 0.27 0.59 0.70 53.02 0.37

InfoVQA

634,684 0 0.47 0.32 0.32 0.58 0.70 52.50 0.37
634,684 10,074 0.47 0.33 0.31 0.59 0.70 52.16 0.36
687,071 62,461 0.47 0.34 0.33 0.57 0.71 52.69 0.37
710,610 86,000 0.48 0.33 0.34 0.56 0.71 52.53 0.38

ScienceQA
630,195 0 0.47 0.29 0.26 0.58 0.70 52.88 0.36
630,195 5,585 0.47 0.32 0.27 0.57 0.72 53.19 0.37
646,594 21,984 0.47 0.32 0.26 0.56 0.73 53.12 0.38

OK-VQA
633,619 0 0.47 0.30 0.27 0.54 0.71 53.35 0.36
633,619 9,009 0.47 0.33 0.28 0.61 0.71 52.68 0.35
687,071 62,461 0.47 0.33 0.27 0.61 0.71 51.96 0.35

Table 7. Training data augmentation experimental results. N denotes the total number of examples used for training, while Nsyn denotes
the number of synthetic examples in the training dataset which were generated using our approach.

Q: What kind of day is this? 
When the provided information is 
insufficient, respond with 
'Unanswerable’.

A: Unanswerable.

GT: Overcast.

Model A likely analyzed the visual information of the 
overcast sky and the absence of sunlight, which are 
strong indicators of an overcast day. However, it may 
have struggled with interpreting the specific term 
\"overcast\" in the question, leading to the incorrect 
answer \"Unanswerable.\" This issue could arise 
because Model A may not have been trained to 
recognize or interpret the specific term \"overcast\" in 
the context of weather conditions. It may have relied 
solely on visual cues and not considered the textual 
aspect of the question, which could have led to the 
incorrect answer. Additionally, the presence of the kite 
in the image may have distracted Model A from 
focusing on the weather-related aspects of the scene. 

- Textual Interpretation: Model A needed to comprehend 
the question, which asked about the type of day 
(implying weather conditions).

- Inadequate Sky Assessment: Model A may not have 
effectively interpreted the cloudy sky or recognized it 
as an indicator of overcast weather.

- Missed Contextual Cues: The diffused lighting and 
lack of shadows, which are critical for indicating 
overcast conditions, might have been overlooked or 
misinterpreted by Model A.

- Insufficient Correlation with Question: Model A might 
have failed to correlate the visual cues with the 
question's requirement about identifying the type of day.

Failure Modes

Original Sample

Synthetic Samples

Q
w

en
2-

V
L

G
P

T-
4o

Q: What type of situation is 
this? A: Traffic jam.

Q: What time of day do you 
think it is? A: Evening.

Q: What event is being 
depicted? A: Graduation.

Q: What is the farmer 
doing? A: Plowing the field.

Q: What is the person 
doing? A: Reading.

Q: What is the person 
doing? A: Biking.

Q: What is the person 
doing? A: Skateboarding.

Q: What is the person 
doing? A: Taking photos.

Figure 5. Comparison of GPT-4o and Qwen2-VL for generating Failure-Grounded Synthetic Datasets: GPT-4o demonstrates stronger
reasoning capabilities, identifying multiple reasoning failures such as missed contextual cues and a lack of correlation between visual
elements and the question. In contrast, while Qwen2-VL correctly answering the original question, identifies fewer failure modes and is
less accurate in diagnosing LLaVA’s reasoning failures, sometimes focusing on less relevant aspects, such as the kite in the sky. As a result,
Qwen2-VL’s generated samples are less diverse, often repeating the same question, whereas GPT-4o’s samples provide broader coverage
of identified reasoning failures. Note: GPT-4o’s reasoning is 2–3 times longer than Qwen2-VL’s; only a portion of GPT-4o’s reasoning is
shown here, while Qwen2-VL’s reasoning is presented in full.

the OK-VQA dataset, while Figure 10 corresponds to the797
VizWiz dataset. These are fully synthetic examples, includ-798
ing generated image, along the question and answer. Fig-799
ure 8 provides additional fully synthetic text & image ex-800
amples derived from VizWiz and OK-VQA.801

Figure 11, 12 and 13 illustrate examples derived from802
the ScienceQA, InfoVQA and VizWiz benchmarks respec-803
tively, where the images are real but the questions and an-804
swers are synthetically generated.805

Lastly, Figures 14 and 15 show some incorrect examples 806
for each benchmark. 807
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Figure 6. Comparison of fully synthetic similar and non-similar
samples. Similar samples maintain a children’s characters-based
theme like the original sample, while non-similar samples address
the failure modes by introducing diverse contexts.

Q: What prominent color is 
found at the bottom of the 
tube?
A: Green

VizWiz InfoVQA

Real image/Synthetic Text

Q: What percentage of children walked to 
school by foot in 2015?
A: 8.3%

Q: What prominent color is found at the 
bottom of the tube?
A: Green

Q: Is Saturn's volume more than 12 times 
the volume of Uranus?
A: Yes.

ScienceQA 

Figure 7. Examples of generated synthetic question-answer pairs
for real images from VizWiz, InfoVQA, and ScienceQA.

Synthetic image/Synthetic Text

VizWiz

Q: What artistic medium is shown in the 
image?

A: Mosaic tiles

Q:What type of hat is the person wearing 
(baseball cap, fedora, beanie)?
A: Fedora

OkVQA

Figure 8. Examples of fully synthetic samples, using Method 2 as
described in 2, both question-answer pairs and images were gen-
erated.
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OkVQA– Synthetic Image/Synthetic Text 

Q: Is it more likely to find a 
coffee mug or a pillow in this 
room?
A: Coffee mug
Prompt: A modern office 
space with desks, chairs, 
computers, and office 
supplies, arranged in a 
professional and organized 
manner, with some papers 
and stationery items on the 
desks.

Q: What type of clothing is 
this?
A: Kimono
Prompt: A traditional 
Japanese kimono displayed on 
a mannequin, with intricate 
designs and vibrant colors. 
The background is minimal, 
with a soft-focus effect. The 
kimono's patterns and texture 
are detailed and realistic

Q: What equipment is the 
person using to catch fish?
A: Fishing rod
Prompt: A person standing on 
a boat under a clear sky, 
casting a fishing rod into the 
water, with fishing gear and a 
cooler in the background

Q: Which breed is generally 
smaller and has a more fox-
like appearance? When the 
provided information is 
insufficient, respond with 
'Unanswerable'. Answer the 
question using a single word or 
phrase?
A: A Shiba Inu
Prompt: A Shiba Inu with a 
smaller, fox-like appearance 
and a curled tail, walking in a 
Japanese garden.

Figure 9. Examples of generated samples from OK-VQA with
synthetic images and synthetic text.

VizWiz – Synthetic Image/Synthetic Text 

Q: What type of animal skin is 
shown in the image?
A: Reptile scales
Prompt: A close-up image of 
reptile scales, showing their 
overlapping structure and 
textured surface.

Q: What type of clothing is 
this?
A: Kimono
Prompt: A traditional 
Japanese kimono displayed on 
a mannequin, with intricate 
designs and vibrant colors. 
The background is minimal, 
with a soft-focus effect. The 
kimono's patterns and texture 
are detailed and realistic

Q: What sport is this individual 
engaged in?
A: Skateboarding
Prompt: A person 
skateboarding in a park, mid-
action on a skateboard ramp. 
The background includes 
trees, a clear sky, and other 
park elements. The 
skateboarder is wearing 
casual streetwear and 
protective gear

Q: What musical instrument is 
this?
A: Violin
Prompt: A violin lying in its 
case with a bow next to it. The 
background is a wooden 
surface. The image is detailed, 
showing the strings, tuning 
pegs, and fine tuners of the 
violin.

Figure 10. Examples of generated samples from VizWiz with syn-
thetic images and synthetic text.
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ScienceQA– Real Image/Synthetic Text 

Q: Based on the temperature data, did the aquariums lose or gain 
thermal energy?
A: Lose thermal energy

Q: In Pair 1, what color represents the North pole?
A: Green

Q: Which country's maritime 
boundary is outlined in green?
A: Kiribati

Q: Which month has the 
highest average precipitation 
in Salt Lake City?
A: December

Figure 11. Examples of generated samples from ScienceQA with
real images and synthetic text.

InfoVQA– Real Image/Synthetic Text 

Q: What percentage of 
Canadian dwellings are row 
houses?
A: 6.3%

Q: What fraction of the grain 
grown in the US is used to feed 
farmed animals?
A: More than 70%

Q: What is the recommended 
distance to maintain from 
others after an earthquake?
A: 1 meter

Q: What percentage of bloggers 
spend 10 hours or more each 
week blogging?
A: 15%

Figure 12. Examples of generated samples from InfoVQA with
real images and synthetic text.
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VizWiz– Real Image/Synthetic Text 

Q: According to the package, is 
the "sweet caramel latte" 
artificially flavored?
A: Yes
 

Q: What category does this 
product belong to as indicated 
on the top left corner?
A: Tech

Q: What brand is the monitor?
A: Dell

Q: How can a user navigate 
between different items?
A: Using Prev and Next buttons

Figure 13. Examples of generated samples from VizWiz with real
images and synthetic text.

Q: What ingredient needs to be 
added to prepare the contents?
A: Water

VizWiz ScienceQA 

InfoVQA

Real image/Synthetic Text

Q: By how many particles does 
Solution B exceed Solution A in 
terms of solute particles? A. 5 
particles B. 7 particles C. 2 
particles,
A: B.

Q: What is the total capacity of ER Beds in regions H and K combined?
A: 464

Figure 14. Examples from our dataset real image-synthetic text,
where the sample is ambiguous or incorrect.
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Synthetic image/Synthetic Text

VizWiz OkVQA

Q: Are there any people in 
the image?
A: Unanswerable
Prompt: An overexposed 
image with excessive 
lighting, washing out most 
of the details

Q:Which type of cookie is 
next to the oatmeal raisin 
cookie? When the provided 
information is insufficient, 
respond with 
'Unanswerable'. Answer 
the question using a single 
word or phrase.
A: Chocolate chip
Prompt: A collection of 
different types of cookies 
(chocolate chip, macarons, 
oatmeal raisin) with clear 
visual details.

Figure 15. Examples from our dataset synthetic image-synthetic
text, where the sample is ambiguous or incorrect. For readability,
the ScienceQA image was cropped to focus on the region of inter-
est.
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