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Abstract

Multimodal alignment aims to construct a joint latent vector
space where two modalities representing the same concept
map to the same vector. We formulate this as an inverse
problem and show that, under certain conditions, perfect
alignment can be achieved. When perfect alignment can-
not be achieved, it can be approximated using the Singular
Value Decomposition (SVD) of a multimodal data matrix.
Experiments on synthetic multimodal Gaussian data verify
the effectiveness of our perfect alignment method compared
to the popular contrastive alignment method. We discuss
how these findings can be applied to visual data and sensor
data for unsupervised cross-modal transfer. We hope these
findings inspire further exploration of the applications of
perfect alignment for cross-modal learning.

1. Introduction
Humans naturally perceive the same concept through mul-
tiple senses, a capability artificial intelligence (AI) aims to
replicate with multimodal data. However, integrating di-
verse data types remains challenging due to differences in
abundance, information richness, and annotation difficulty.
For example, images and videos are plentiful and easy to
label, while modalities like MRI, ECG, or IMU are scarce
and harder to annotate. This diversity raises a fundamental
question: How can we unify visual representations across
such varied modalities to effectively transfer knowledge and
improve AI performance? This challenge is especially im-
portant for modalities that are uncommon or more complex.

To interpret multimodal data, AI methods typically align
the semantic meanings of different modalities within a
shared latent space at the output of modality-specific en-
coders. For instance, models can associate an image with
descriptive text [8] or with corresponding sounds, videos or
other sensors [4]. While such alignment is often achieved
through large-scale learned methods and specialized loss
functions, these approaches remain fundamentally approxi-
mate and often lack theoretical rigor and interpretability.

Prior work explores contrastive alignment through geo-

metric [9], probabilistic [1, 3], and information-theoretic [6,
7] perspectives. However, these analyses primarily reinter-
pret existing alignment frameworks rather than proposing
new methodologies. In this work, we reframe multimodal
alignment as a linear inverse problem, a class of problems
well-studied in linear algebra and signal processing. This
reframing enables the derivation of a representation space
with perfect alignment between two modalities. We de-
fine perfect alignment as the existence of modality-specific
encoders that map training instances from distinct modali-
ties to identical latent representations. Notably, we demon-
strate that empirical risk minimization and linear regression
emerge as special cases of this framework, bridging classi-
cal machine learning paradigms to multimodal alignment.

We validate our perfect alignment approach on synthetic
multimodal data, demonstrating that our method achieves
strong alignment and competitive performance compared
to contrastive learning-based methods. These results sug-
gest that our framework has the potential to generalize to
real multimodal data, motivating further exploration of per-
fect alignment for cross-modal tasks. Our work offers in-
sights into the Platonic representation hypothesis [5], which
posits that representations of the same semantic concepts
from different modalities converge to a shared latent space.
While our results neither fully confirm nor refute this hy-
pothesis, they empirically demonstrate the existence of a
perfect alignment space between two modalities, enabling
tasks like zero-shot classification, cross-modal retrieval, and
transfer learning. Our contributions are:
• Theoretical Framework: A novel inverse problem for-

mulation for multimodal alignment, providing closed-
form solutions for perfect alignment.

• Empirical Validation: Successful alignment on syn-
thetic data, demonstrating the potential for tasks like zero-
shot classification and cross-modal retrieval.

2. Methods
We propose a method to achieve perfect alignment be-
tween two modalities by solving an inverse problem to con-
struct the aligned latent space. To formalize this, we first
define key notation and assumptions.
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Figure 1. Data generation model: Latent concepts zi are transformed through modality-specific matrices S(1),S(2) to generate obser-
vations in different modalities x(1)

i ,x
(2)
i . Our goal is to recover alignment matrices A(1),A(2) that invert these transformations. Ideally,

the learned transformation preserves the latent structure such that a sample from a concept class in the original latent space remains in that
class grouping in the estimated latent space

• Superscripts (e.g., (1), (2)) denote modalities.
• Subscripts (e.g., i, j) index samples in a dataset.
• Lowercase bold letters (e.g., x, z) represent vectors.
• Uppercase bold letters (e.g., A, X) indicate matrices.
• Calligraphic letters (e.g., X , Z) denote vector spaces or

sets.

Definition 2.1 (Perfect Alignment). Let X (1) and X (2) de-
note the input spaces of two modalities, with Z being their
shared latent space. Given a dataset D = {(x(1)

i ,x
(2)
i )}ni=1

of corresponding multimodal instances, perfect alignment is
defined by the existence of encoder functions f (1) : X (1) →
Z and f (2) : X (2) → Z satisfying:

∀(x(1),x(2)) ∈ D, f (1)(x(1)) = f (2)(x(2)) = z, (1)

where z ∈ Z is the unified semantic representation of the
shared concept underlying the pair (x(1),x(2)).

Let Z ⊆ Rk be a ground truth latent space representing
semantic concepts. We assume each modality m ∈ 1, 2 is
generated via linear transformations:

x
(m)
i = S(m)zi, (2)

where for sample i:
• zi ∈ Z ⊆ Rk is the latent concept vector
• S(m) ∈ Rdm×k is the modality-specific generation matrix
• x

(m)
i ∈ X (m) ⊆ Rdm is the observed data in modality m

For aligned pairs (x
(1)
i ,x

(2)
i ) generated from the same

zi, our goal is to recover projection matrices A(1) ∈ Rk×d1

and A(2) ∈ Rk×d2 such that:

A(1)x
(1)
i = A(2)x

(2)
i = zi ∀i ∈ 1, . . . , n. (3)

This reduces to solving the system:

A(1)X(1) −A(2)X(2) = 0, (4)

where X(m) = [x
(m)
1 · · ·x(m)

n ] ∈ Rdm×n in which each
column x

(m)
i represents the i-th data point in modality m.

When Eq. (4) holds, we achieve perfect alignment as
defined in Theorem 2.1, where the encoder functions f (1)

and f (2) correspond to the linear transformations A(1) and
A(2), respectively. To recover these matrices we construct
the combined matrices:

A =
[
A(1) A(2)

]
∈ Rk×d, X =

[
X(1)

−X(2)

]
∈ Rd×n,

(5)
where d = d1 + d2.

This allows us to rewrite Eq. (4) as the linear inverse
problem:

AX = 0, (6)

where 0 ∈ Rk×n is the zero matrix. The goal is to find a
non-trivial solution A ̸= 0 that satisfies this equation.

Theorem 2.2 (Existence of Perfect Alignment). Given
the inverse problem AX = 0 defined in Eq. (6), where
X ∈ Rd×n is a given data matrix and A ∈ Rk×d is un-
known, if X has a left null space N (XT ) of dimension
dim(N (XT )) ≥ k, then there exists a closed-form solu-
tion for A. Specifically, the rows of A can be formed by
any k linearly independent vectors spanning N (XT ).

Proof. The proof involves recognizing that any vector a in
the left null space of X satisfies aTX = 0. Therefore, if
X has a null space of dimension at least k, we can select
k linearly independent vectors from this null space to form
the rows of A. This ensures that AX = 0 is satisfied. A
full proof is given in Appendix Sec. 7.1.

Corollary 2.3 (Approximate Alignment). If X ∈ Rd×n has
a left null space N (XT ) with dim(N (XT )) < k, an ap-
proximation to AX = 0 can be obtained by selecting the k
basis vectors corresponding to the smallest singular values



of X. This approximation minimizes the Frobenius norm
∥AX∥F .

Proof. This is a direct application of Eckhart-Young-
Mirsky theorem. The full proof is shown in Sec. 7.1.

Method for Finding A. To determine A, compute the
Singular Value Decomposition (SVD) of X:

X = UΣVT ,

where U ∈ Rd×d. Assuming k ≤ d, Extract the last
k columns of U, denoted ud−k+1, . . . ,ud, which corre-
spond to the basis vectors of the left null space of X (if
dim(N (XT )) ≥ k) or its smallest singular values (other-
wise). The solution for A is:

A∗ =

u
T
d−k+1

...
uT
d

 , (7)

where uj is the jth column of U. This method achieves
perfect alignment when dim(N (XT )) ≥ k and an optimal
approximation in the Frobenius norm otherwise.
Remark 2.4 (Assumption on k and d). The assumption
k ≤ d is valid because the latent space dimension k is
typically smaller than the data dimension d in representa-
tion learning. This reflects the common goal of compress-
ing high-dimensional data into a lower-dimensional space
while preserving essential semantic information.
Remark 2.5 (Achievability and Computational Cost of Per-
fect Alignment). Perfect alignment is often not achievable
in practice because the number of data points n is large,
thus X becomes a wide matrix and the left null space of
X has limited dimensionality. Furthermore, computing A
via full SVD of X ∈ Rd×n has a time complexity of
O(d2n + dn2 + n3). For large d and n, this becomes
prohibitive, motivating approximate methods like gradient
descent. When only the k smallest singular vectors are
needed, truncated SVD reduces this to O(dnk), making it
feasible for moderate k.
Remark 2.6 (Comparison to Linear Regression). Stan-
dard linear regression minimizes argminW ∥Y −WX∥2F ,
which is a special case of our alignment objective
argminA ∥AX∥2F when:
• A(1) = Id (identity mapping for modality 1)
• X(1) = Y (one modality is the regression target)
• A(2) = W (learned regression weights for modality 2)
• X(2) = X (second modality is the data)
Remark 2.7 (Connection to Empirical Risk Minimization
(ERM)). ERM seeks a model f ∈ F that minimizes the
empirical risk:

Remp(f) =
1

n

n∑
i=1

ℓ(f(xi),yi).

Our framework extends this to two hypothesis classes
F (1),F (2), minimizing:

Remp(f
(1), f (2)) =

1

n

n∑
i=1

ℓ
(
f (1)(x

(1)
i ), f (2)(x

(2)
i )

)
,

where f (1), f (2) are linear transformations A(1),A(2), and
ℓ is the alignment loss ∥AX∥2F .

2.1. Error Metrics for Perfect Alignment

Let ẑ(m)
i = A(m)x

(m)
i denote the latent vectors estimated

from modality m. We define two error metrics to evaluate
alignment quality:
1. Cross-Modal Alignment Error (CMAE): Quantifies

the discrepancy between latent representations from dif-
ferent modalities. CMAE is computed as:

CMAE =
1

n

n∑
i=1

∥∥∥ẑ(1)i − ẑ
(2)
i

∥∥∥
2
. (8)

Note that for normalized latent vectors (i.e., ∥ẑ(m)
i ∥2 =

1), minimizing CMAE is equivalent to maximizing their
cosine similarity—the same objective as the InfoNCE
loss used in contrastive learning [6]. Unlike contrastive
methods, our framework does not assume normalized la-
tent vectors; thus, cosine similarity is not directly appli-
cable as a metric.

2. Modality Latent Reconstruction Error (MLRE):
Measures fidelity to the true latent space Z , applicable
only in synthetic experiments where zi is known. For
modality m, MLRE is:

MLRE(m) =
1

n

n∑
i=1

∥∥∥zi − ẑ
(m)
i

∥∥∥
2
. (9)

3. Experiments
Data Generation. We generate synthetic data from a
ground-truth latent space Z ⊆ R2, modeled as a mixture
of two Gaussian distributions:

Z ∼ π1N (µ1,Σ1) + π2N (µ2,Σ2), (10)

where π1 = π2 = 0.5, µ1 = [0, 1]T , µ2 = [4, 5]T , and
Σ1 = Σ2 = I2 (the 2D identity matrix).

The data generation process proceeds as follows:
1. Sample n = 2000 vectors: DZ = {zi}2000i=1 , zi ∼ Z .
2. Project DZ into two modalities using randomly gener-

ated matrices S(1),S(2) ∈ R2×2, where each entry is
uniformly sampled from [−5, 5]:

DX(1) = {x(1)
i = S(1)zi}2000i=1 , (11)

DX(2) = {x(2)
i = S(2)zi}2000i=1 . (12)

Fig. 1 illustrates this pipeline, showing the latent space
clusters and their projections into the two modalities.



Figure 2. Aligned Latent Space: Recovered latent space Ẑ from
synthetic data using our alignment method (see Sec. 3). Colors
denote ground-truth cluster membership.

Table 1. Alignment Errors: Modality Latent Reconstruction Er-
ror (MLRE), Cross-Modal Alignment Error (CMAE) and Normal-
ized CMAE (NCMAE) across alignment methods. Perfect Align-
ment achieves near-zero CMAE (even after normalization), while
contrastive alignment exhibits higher errors. Normalized CMAE
computes alignment error for L2-normalized latent vectors.

Alignment MLRE(1) MLRE(2) CMAE NCMAE

Perfect (Ours) 10.9 10.9 3.66e−15 3.14e−16

Contrastive[8] 8.73 4.34 5.44 0.0298

Alignment and Reconstruction Errors. Using the
method in Sec. 2, we compute A(1) and A(2), then evaluate
CMAE and MLRE as defined in Sec. 2.1. Tab. 1 shows:
• Near-perfect alignment: CMAE ≈ 3.66 × 10−15 con-

firms latent representations from both modalities coincide
almost exactly. This value is likely floating-point error.

• High reconstruction error: MLRE ≈ 10.9 indicates the
estimated latent space Ẑ differs from the ground-truth Z .

Figure 2 visualizes Ẑ , where aligned points ẑ(1)i and ẑ
(2)
i

overlap perfectly but form clusters distinct from the original
GMM. This arises because solutions to AX = 0 are non-
unique—any linear transformation of the basis in Eq. (7)
yields valid solutions. While perfect alignment is achieved,
perfect reconstruction requires identifying a specific trans-
formation that maps Ẑ to Z , a more constrained problem
that requires more information about Z

Key Insight: Despite high MLRE, the transforma-
tions preserve cluster structure (Gaussianity). This en-
ables class separation in Ẑ and demonstrates that perfect
alignment—not exact latent space recovery may suffice for
cross-modal transfer tasks.
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Figure 3. Contrastive Alignment TSNE Plots: TSNE visual-
ization of latent representations for five activity classes (Bowling,
Clap, Draw circle (clockwise), Jog, Basketball shoot) after con-
trastive alignment of video and IMU data on the UTD-MHAD [2]
dataset. Notice how the latent representations of the RGB (o) and
IMU (x) data seldom overlap, indicating imperfect alignment.

4. Limitations and Future Work

While our method demonstrates strong performance on syn-
thetic data, several challenges remain for real-world appli-
cations. Scaling to real datasets, such as aligning visual
and wearable sensor data for human activity recognition,
is a primary goal. As illustrated in Fig. 3, t-SNE visualiza-
tions of latent representations generated through contrastive
alignment of video and IMU data show relative class group-
ing but imperfect alignment between the modalities. We
believe our perfect alignment approach can close this gap,
enabling more precise cross-modal generation and transfer.

A key limitation is computational cost: perfect alignment
in high-dimensional spaces is expensive, and our method
assumes data is generated via linear transformations. In
practice, real-world data is often highly non-linear, making
direct application challenging.

To address these issues, we propose applying our per-
fect alignment method to the output space of pretrained
modality-specific encoders. We are currently exploring two
strategies: (1) using variational autoencoders (VAEs) for
feature extraction, and (2) applying perfect alignment to the
output features of pretrained CLIP encoders.

5. Conclusion

We introduced a method for perfect multimodal alignment
by formulating the problem as an inverse projection onto
a shared latent space. Experiments on synthetic data show
near-zero alignment error. Importantly, the transformation
preserves the relative structure of the data, potentially al-
lowing for class identification in the estimated latent space.
These results highlight the promise of our alignment tech-
nique for multimodal analysis and motivate further research
into perfect alignment on complex, real-world datasets.
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7. Appendix

7.1. Proofs of Theorem 2.2 and Corollary 2.3
Theorem 2.2 Restated (Existence of Perfect Alignment).
Given the inverse problem AX = 0 constructed in Eq. (6),
where X ∈ Rd×n is a given matrix and A ∈ Rk×d is un-
known, if X has a left null space of at least k dimensions,
then there exists a closed-form solution for A. Specifically,
the rows of A can be formed by any k vectors that constitute
a basis for the left null space of X .

Proof. Let N (XT ) denote the left null space of X , defined
as:

N (XT ) = {y ∈ Rd | XTy = 0}

By the rank-nullity theorem:

dim(N (XT )) = d− rank(X)

The theorem assumes dim(N (XT )) ≥ k. Therefore, there
exist k linearly independent vectors {v1,v2, . . . ,vk} ⊆
N (XT ).

Construct A ∈ Rk×d by setting these vectors as its rows:

A =


vT
1

vT
2
...

vT
k


For each row vT

i of A, we have:

vT
i X = 0T (since vi ∈ N (XT ))

Therefore, the matrix product satisfies:

AX =


vT
1 X

vT
2 X
...

vT
k X

 =


0T

0T

...
0T

 = 0

The rows of A are linearly independent by construc-
tion, as they form a basis for a k-dimensional subspace of
N (XT ). This completes the proof that such an A exists and
satisfies AX = 0.

The closed-form solution arises from the fact that
N (XT ) can be explicitly computed via:
• Singular Value Decomposition (SVD): If X = UΣV T ,

then N (XT ) is spanned by the last d−rank(X) columns
of U .

• Reduced Row Echelon Form: For XT , the null space ba-
sis vectors correspond to the free variables in rref(XT ).
Thus, any k linearly independent vectors from these

computed bases will satisfy the requirements for A.

Corollary 2.3 Restated (Approximate Alignment in
Frobenius Norm). If X ∈ Rd×n has a left null space with
fewer than k dimensions, an approximation of the solution
to AX = 0 can be obtained by selecting the basis vectors
corresponding to the k smallest singular values of X . This
approximation minimizes the Frobenius norm ∥AX∥F .

Proof. Let X = UΣV T be the SVD of X , where U ∈
Rd×d and V ∈ Rn×n are orthogonal matrices, and Σ ∈
Rd×n contains the singular values σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0
with r = rank(X).

The left null space of X is spanned by columns of U cor-
responding to zero singular values. When dim(N (XT )) <
k, we instead use the k columns of U associated with the
smallest singular values σd−k+1, . . . , σd. Constructing A
as:

A =

u
T
d−k+1

...
uT
d

 ,

we compute:

AX =

σd−k+1v
T
d−k+1

...
σdv

T
d

 .

The Frobenius norm ∥AX∥2F =
∑d

i=d−k+1 σ
2
i is mini-

mized because the Eckart-Young-Mirsky theorem ensures
that truncating to the smallest k singular values yields the
optimal low-rank approximation in the Frobenius norm.
Any other choice of vectors would include larger singular
values, increasing the norm.

7.2. Additional Experiments:

Error Metric Value

MLRE using S(1)† 2.98× 10−16

MLRE using S(2)† 6.47× 10−16

Table 2. Sanity check: MLRE when using pseudo-inverse of
ground-truth transformation matrices S(m)†. These near-zero er-
rors validate our MLRE metric’s ability to detect perfect recon-
struction.

Robustness Test We vary 3 parameters to determine how
it affects these errors, the number of data points n, the di-
mension of the data d, and the size of the latent dimension
k. We further evaluate the method when the generated data
x̂(m) has standard Gaussian noise added to it. The results
are shown in Fig. 4.

7.3. Notation Reference:
We construct a table of our notation in Tab. 3



Figure 4. Robustness Analysis: CMAE/MLRE results using the proposed perfect alignment solver under varying parameters. (Columns
1-2) changes the number of data samples n, (Columns 3-4) varies the dimension of the data d, (Columns 5-6) alters the size of the latent
dimension k. The first row shows the results without noise, the second row shows the results when the generated data has standard gaussian
noise added to it..

Table 3. Notation Reference

Symbol Description Domain/Type

X (m) Input space of modality m Vector space
Z Shared latent space Vector space
x
(m)
i Data point i from modality m Rdm (column vector)

S(m) Ground-truth transformation matrix for modality m Rdm×k

zi Latent concept vector for data point i Rk

f (m) Encoder function for modality m X (m) → Z
A(m) Learned projection matrix for modality m Rk×dm

X(m) Data matrix for modality m Rdm×n

A Combined projection matrix Rk×d (d =
∑

dm)
X Stacked data matrix Rd×n

0 Zero matrix in AX = 0 Rk×n

U,Σ,VT SVD components of X U ∈ Rd×d, Σ ∈ Rd×n, V ∈ Rn×n

π1, π2 Mixture weights for GMM π1 + π2 = 1
µ1,µ2 GMM mean vectors R2

Σ1,Σ2 GMM covariance matrices R2×2

n Number of data points N
dm Dimension of modality m N
d Combined data dimension d =

∑
dm

k Latent space dimension N
−−− Matrix concatenation operator –
Id Identity matrix Rd×d


	Introduction
	Methods
	Error Metrics for Perfect Alignment

	Experiments
	Limitations and Future Work
	Conclusion
	Acknowledgments
	Appendix
	Proofs of Theorem 2.2 and Corollary 2.3
	Additional Experiments:
	Notation Reference:


