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ABSTRACT

Follow-the-Regularized-Leader (FTRL) algorithms are a popular class of learning
algorithms for online linear optimization (OLO) that guarantee sub-linear regret,
but the choice of regularizer can significantly impact dimension-dependent fac-
tors in the regret bound. We present an algorithm that takes as input convex and
symmetric action sets and loss sets for a specific OLO instance, and outputs a reg-
ularizer such that running FTRL with this regularizer guarantees regret within a
universal constant factor of the best possible regret bound. In particular, for any
choice of (convex, symmetric) action set and loss set we prove that there exists an
instantiation of FTRL which achieves regret within a constant factor of the best
possible learning algorithm, strengthening the universality result of Srebro et al.,
2011.

Our algorithm requires preprocessing time and space exponential in the dimension
d of the OLO instance, but can be run efficiently online assuming a membership
and linear optimization oracle for the action and loss sets, respectively (and is
fully polynomial time for the case of constant dimension d). We complement
this with a lower bound showing that even deciding whether a given regularizer is
α-strongly-convex with respect to a given norm is NP-hard.

1 INTRODUCTION

Online Linear Optimization (OLO) is one of the most fundamental problems in the theory of online
learning. Here, a learner must repeatedly (for T rounds) select an action xt from some bounded
convex action set X . Simultaneously, an adversary selects a linear loss function ℓt from a bounded
convex loss set L, and the learner receives loss ⟨xt, ℓt⟩. The learner would like to minimize their
total loss, and more specifically minimize their regret: the gap between their total loss and the loss
of the best fixed action x∗ ∈ X in hindsight.

By choosing the action set X and loss set L appropriately, online linear optimization captures
many other learning-theoretic problems of interest. For example, when X = ∆d (distributions
over {1, 2, . . . , d}) and L = [0, 1]d, this captures the classical problem of learning with experts.
Similarly, when the loss set L is the ℓ2 unit ball, this variant of OLO is the core subproblem involved
in online convex optimization (specifically, of a Lipschitz function with domain X ). Even more gen-
erally, the works of Gordon et al. (2008) and Abernethy et al. (2011) demonstrate how to reduce the
problems of linear ϕ-regret minimization (including swap regret minimization) and Blackwell ap-
proachability to different instances of OLO. These problems in turn have many applications extend-
ing past learning theory, from designing algorithms for computing correlated equilibria in repeated
games, to producing calibrated forecasts, to constructing classifiers satisfying a variety of fairness
criteria (Farina et al., 2021; Okoroafor et al., 2024; Chzhen et al., 2021).

For this reason, it is an extremely relevant problem to understand the best possible regret bounds
achievable for different instances of OLO. Here, the state-of-the-art leaves something to be desired.
It is well-known that learning algorithms such as Follow-The-Regularized-Leader (FTRL) achieve
regret that scales with O(

√
T ), and that this dependence on T is tight. However, the dependence

of the optimal regret on the sets X and L (e.g., how the constant factor in the above regret bound
depends on the dimension d of these sets) is in general poorly understood.
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Moreover, FTRL is not a single algorithm, but a family of algorithms parametrized by a convex
function f : X → R called the regularizer. The actual regret bounds achieved by FTRL can
vary greatly depending how the choice of regularizer interacts with the geometry of X and L. For
example, running FTRL with the quadratic regularizer results in an O(

√
dT ) regret algorithm for

the learning with experts problem; however, running FTRL with the negative entropy regularizer
results in an algorithm with a tight O(

√
T log d) regret bound, with an exponential improvement in

dimension over the quadratic choice of regularizer. On the other hand, there exist other instances
(choices of X and L) where the quadratic regularizer is optimal. Understanding what the optimal
choice of regularizer is for a given instance of OLO is a major open problem.

1.1 OUR CONTRIBUTIONS

For any action set X and loss set L, the optimal possible regret bound (as T goes to infinity) scales
as Rate(X ,L)

√
T + o(

√
T ), for some constant Rate(X ,L). Our goal in this paper is to design

learning algorithms which approximately achieve this optimal regret bound. Specifically, we want
to algorithmically construct learning algorithms with worst-case regret at most C · Rate(X ,L)

√
T

for some universal constant C that holds for any choice of action set and loss set in any dimension.
For technical reasons, we restrict our attention in the following results to action sets X and loss sets
L that are centrally symmetric – it is an interesting open direction to extend these results to fully
general choices of X and L.

We begin by showing that the optimal regret bound is achieved by some instantiation of Follow-The-
Regularized-Leader. We do so by extending earlier work of Srebro et al. (2011) who, by analyzing
the martingale types of Banach spaces, demonstrated that there is always an instance of FTRL which
achieves regret O(Rate(X ,L)(log T )

√
T ). In Theorem 7, we show that a more careful analysis of

these martingale types allows us to remove this log T factor and prove that some variant of FTRL is
within a universal constant of optimal.

Although the above argument proves the existence of a near-optimal instance of FTRL, it is highly
non-constructive. In the remainder of the paper we study the following algorithmic question: given
sets X and L (e.g., via oracle access), how can we compute the optimal regularizer for these sets?
Ultimately, we provide an algorithm that takes as input X and L (via standard oracle access to both
sets), runs in time exp(O(d2 log d)), and outputs a regularizer f with the property that the worst-case
regret of FTRL with f is at most a universal constant times Rate(X ,L)

√
T (Theorem 1).

The main technical ingredient in this algorithm is a new method for optimizing over the set of convex
functions that are α-strongly convex with respect to a given norm. This is important for the above
problem because one can show that for any regularizer f , the regret of running FTRL with that
regularizer is bounded by O(

√
DαT ) if the range of f over X (the maximum value of f minus the

minimum value of f ) is at most D and if f is α-strongly-convex with respect to the norm induced
by the dual set of the loss set L. We can show that this regret-bound is constant-factor-optimal for
the near-optimal variant of FTRL in Theorem 7, and hence it suffices to try to minimize Dα over all
convex functions f .

To do this, we first show that we can approximate any smooth convex function f as a maximum of
several “quasi-quadratic” functions: quadratic functions gx0 centered at some point x0 with a small
cubic term which guarantee that that the contribution of gx0 to the Hessian of f decays far from
x0. Note that these are not just approximations of the values of f , but also also the gradients and
Hessians of f ; in particular, if the original function was α-strongly-convex with respect to some
norm, our approximation will be similarly strongly-convex.

By restricting our quasi-quadratic functions to be centered at points belonging to a (large but) finite
discretization of X , we demonstrate how to optimize over this set of approximations by solving a
large convex program with variables for the values, gradients, and Hessians of the quasi-quadratic
functions at each point in the discretization. Solving this convex program involves implementing a
separation oracle to verify whether a specific approximation is α-strongly-convex with respect to an
arbitrary norm.

As stated earlier, this approach takes time exponential in the dimension of the action and loss sets
(although is completely independent of the time horizon T , and thus efficient for constant dimension
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d). We complement this with a lower bound showing that even verifying whether a regularizer f is
α-strongly-convex at a specific point x ∈ X requires exponentially many oracle queries to L.

2 RELATED WORK

Applications of Online Linear Optimization. The problem of Online Linear Optimization (and
its generalization, Online Convex Optimization) are central problems in the field of online learning
– we refer the reader to Hazan et al. (2016) for a general-purpose introduction. Traditionally OLO
is studied in the case where the action sets and loss sets are unit balls in a standard norm (e.g. the
ℓ1, ℓ2, or ℓ∞ norms). However, there are many motivating settings where we wish to minimize
regret with less standard sets. Several authors (Takimoto & Warmuth, 2003; Kalai & Vempala,
2005; Koolen et al., 2010; Audibert et al., 2014) study variants of OLO where the action space has
some combinatorial structure – for example, X could be the spanning tree polytope, or the polytope
formed by all s-t paths in a graph. Minimizing external regret in extensive form games – one
standard method for computing coarse correlated equilibria Farina et al. (2020) – involves solving
an instance of OLO where X is the sequence form polytope. Finally, as mentioned earlier, the work
of Abernethy et al. (2011) and Gordon et al. (2008) allows us to translate any instance of Blackwell
approachability or ϕ-regret minimziation to a (usually non-standard) instance of OLO.

Follow-The-Regularized-Leader and Mirror Descent. The Follow-The-Regularized-Leader al-
gorithm can be thought of as a form of mirror descent, a family of first-order optimization algorithms
that generalize gradient descent by using arbitrary distance-generating functions. Originally, mir-
ror descent was proposed by Nemirovski & Yudin (1978) as an offline optimization algorithm with
ℓp norm constraints and ℓq Lipschitz assumptions, and was shown to have minimax optimal query
complexity. Sridharan & Tewari (2010) studied the optimality of mirror descent for online linear
optimization when the action and loss vectors are in the unit ball of two Banach spaces dual to each
other, proving the existence of a regularizer for mirror descent that almost achieves the minimax rate
under an adaptive adversary. Later, Srebro et al. (2011) extended this approach to cases where the
action and loss vectors come from independent convex balls in primal and dual Banach spaces. The
existence of such strongly convex regularizers is also linked to the Burkholder method introduced
by Foster et al. (2018) for more general online learning problems. In particular, the authors pro-
pose that given an online learning instance and a target regret bound, the existence of a Burkholder
function for that instance guarantees the existence of a prediction strategy that achieves the desired
regret. Notably, taking the dual of this Burkholder function for the online linear optimization (OLO)
problem results in a strongly convex regularizer that can be used effectively with FTRL Foster et al.
(2018).

Many modern learning algorithms are actually variants of mirror descent / FTRL (Block, 1962;
Zinkevich, 2003; Kivinen & Warmuth, 1997; Littlestone, 1988; Kakade et al., 2010; Warmuth &
Kuzmin, 2007). Recently, Jin & Sidford (2020) used a variant of mirror descent to solve infinite-
horizon MDPs, achieving linear runtime in the number of samples. Aubin-Frankowski et al. (2022)
extended mirror descent to optimize convex functionals on an infinitesimal space, demonstrating
that the primal iterations of Sinkhorn’s algorithm for entropic optimal transport in a continuous
domain are an instance of mirror descent. Wibisono et al. (2022) studied alternating mirror descent
for two-player bilinear zero-sum games, proving a regret bound of O

(
T 1/3

)
. Mirror descent has

also been used in the context of stochastic optimization Nemirovski et al. (2009). Authors in Duchi
et al. (2010) study mirror descent for composite loss functions under both stochastic and online
settings. Lei & Tang (2018) relaxed the subgradient boundedness condition from Duchi et al. (2010)
and extended their analysis to examine the generalization performance of multi-pass SGD in non-
parametric settings. Dani et al. (2008); Cesa-Bianchi & Lugosi (2011); Bubeck et al. (2012) applied
mirror descent to address the problem of online linear optimization with bandit feedback. Allen-Zhu
& Orecchia (2014) introduced a novel interpretation of mirror descent as optimizing a dual-based
lower bound for the objective. Building on this perspective, they proposed a coupling between
mirror descent and gradient descent that achieves an accelerated convergence rate. (Yuan et al.,
2020; Shahrampour & Jadbabaie, 2017) applied mirror descent in distributed settings. Lobos et al.
(2021) utilized mirror descent for a constrained online revenue maximization problem with unknown
parameters. Authors in (Bansal & Coester, 2021; Lu et al., 2020; Balseiro et al., 2023) employ
mirror descent for online resource allocation problems. Mirror descent has also been instrumental
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in primal-dual methods for solving structured saddle-point problems (Nesterov, 2009; Tiapkin &
Gasnikov, 2022; Bayandina et al., 2018; Sherman, 2017; Jambulapati & Tian, 2024; Jambulapati
et al., 2020).

3 PRELIMINARIES

3.1 ONLINE LINEAR OPTIMIZATION

We begin by defining the problem of online linear optimization (OLO). In this problem, every round
t (for a total of T rounds) the learner must pick an action xt from a convex action set X ⊂ Rd.
The adversary then picks a loss vector ℓt from a convex loss set L, after which the learner suffers
loss ⟨xt, ℓt⟩ and observes the loss vector ℓt. The learner would like to minimize their total loss,
and more specifically minimize their total regret: the gap between their loss and the loss of the best
action in hindsight. Formally, given a sequence of learner actions x = (x1, x2, . . . , xT ) and losses
ℓ = (ℓ1, ℓ2, . . . , ℓT ), the regret of the learner is given by

Reg(x, ℓ) =

T∑
t=1

⟨xt, ℓt⟩ −
T∑

t=1

min
x∗∈X

⟨x∗, ℓt⟩.

The learner chooses their actions according to some learning algorithm A, which can be thought of
as a function A mapping a sequence of losses ℓ = (ℓ1, ℓ2, . . . , ℓT ) to a sequence of actions x =
(x1, x2, . . . , xT ) in such a way that xt depends only on the history of losses ℓ1, ℓ2, . . . , ℓt−1 until
round t−1. We define the T -round regret RegT (A) to be the worst-case regret suffered by algorithm
A against an adversarially chosen sequence of losses, i.e., RegT (A) = supℓ∈LT Reg(A(ℓ), ℓ).

One of the fundamental results in online learning is that there exist algorithms A that guarantee
O(

√
T ) regret (e.g., online gradient descent), which is the best possible dependency one can hope

for in terms of T . However, the optimal scaling factor in front of the
√
T depends on the geometry

of the action and loss sets X and L and is the primary focus of interest in this paper. To this end,
define Rate(A) = lim supT→∞

1√
T

· RegT (A) to be the worst-case scaling factor achieved by
the algorithm A, and Rate(X ,L) = infA Rate(A) to be the best possible scaling factor achieved
by any algorithm for this action set and loss set. Our goal is to understand how to approximate
Rate(X ,L) and design corresponding optimal algorithms for any choice of action set and loss set.

3.2 REGULARIZERS AND FOLLOW-THE-REGULARIZED-LEADER

One of the most popular classes of learning algorithms for online linear optimization is the class of
follow-the-regularized-leader algorithms. Follow-The-Regularized-Leader (FTRL) is an algorithm
parameterized by a convex function f : X → R (the “regularizer”) and a learning rate η > 0 (which
we will generally set equal to 1/

√
T ). At round t, it plays the action xt given by

xt = argmin
x∈X

(
ηf(x) +

t−1∑
s=1

⟨x, ℓs⟩

)
. (1)

Intuitively, FTRL always plays an action that is approximately the best response to the current
empirical loss (with the regularizer preventing this action from overfitting too rapidly to the actions
of the adversary). The class of FTRL algorithms contains many popular algorithms for special cases
of online linear optimization, including online gradient descent and multiplicative weights.

It can be shown that as long as f is strongly convex, FTRL will incur O(
√
T ) regret and thus have

non-infinite rate – however, the value of Rate(X ,L) can depend significantly on the choice of f .
For example, when X = ∆d and L = [0, 1]d (the classic setting for learning from experts), it is
known that:

• If we use the quadratic regularizer f(x) = ∥x∥2, the resulting rate of the FTRL algorithm
is Rate(A) = Θ(

√
d). (This corresponds to running online gradient descent).
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• If we use the negative entropy regularizer f(x) =
∑

i xi log xi, the resulting rate of the
FTRL algorithm is Rate(A) = Θ(

√
log d). (This corresponds to running multiplicative

weights / Hedge).

We will soon see that the optimal rate is achieved by some instantiation of FTRL (Theorem 12), and
therefore much of our focus will be on computing a suitable regularizer f for a given pair of action
set and loss set (X ,L). To this end, it is useful to understand the guarantees the standard analysis
of FTRL grants us for a specific choice of regularizer. Before we can state these, we will need to
introduce some terminology regarding convex sets and their associated norms.

First, we will make the standard assumption in convex optimization that all of our convex sets are
bounded and contain an open ball. In particular, we have the following assumption:
Assumption 1. We assume the action and loss sets are symmetric, they include a ball of radius r
and are included in a ball of radius R: B(0, r) ⊆ X ,L ⊆ B(0, R).

The symmetry assumption allows us to define norms corresponding to X and L. In general, the
norm provided by a bounded symmetric convex set C is defined as follows:
Definition 1. Given a bounded symmetric convex subset C ⊆ Rd, we define the natural norm ∥.∥C
corresponding to C as

∀v ∈ Rd, ∥v∥C ≜ inf{α > 0, v
α ∈ C}. (2)

It is easy to check that ∥.∥C defined in Equation equation 2 is a norm Leonard & Lewis (2015).

Given a symmetric convex set C, we can also define a norm on linear functionals over C by con-
structing the appropriate dual convex set.
Definition 2. Given a symmetric convex set C ⊆ Rd, the dual set Cc is defined as Cc ≜ {x ∈ Rd :
∀y ∈ C, ⟨x, y⟩ ≤ 1}.
Note that if C is symmetric, bounded, and full-dimensional, the dual set Cc is symmetric, bounded,
and full-dimensional. The dual norm ∥v∥Cc is the norm corresponding to the dual set.

We also need to define the notion of strong convexity with respect to an arbitrary norm ∥.∥C :
Definition 3. A convex function f : X → R is strongly-convex with respect to norm ∥.∥C if for every
x, y ∈ X and every sub-gradient g of f at x: f(y) ≥ f(x) + ⟨y − x, g⟩+ α

2 ∥y − x∥2C .

Now we are ready to state the standard regret bound for FTRL with regularizer f . As we see, the
regret bound depends on both the strong convexity of f with respect to the dual norm of L, and the
range of f over X :
Fact 1. [Theorem 5.2 in Hazan et al. (2016)] Let FTRL(f) be the FTRL algorithm initialized with
regularizer f and learning rate η = 1/

√
T . If 0 ≤ f(x) ≤ C2 for all x ∈ X and f is α-strongly-

convex with respect to Lc on X (see Definition 3), then Reg(FTRL(f)) ≤ O(C
√
αT ).

3.3 CONVEX OPTIMIZATION AND ORACLES

We will in general assume that we have oracle access (i.e., access to membership oracles, separation
oracles, linear optimization oracles) to the sets X and L. For a more comprehensive definition of
these oracles, see Appendix C.

4 MAIN RESULT AND OVERVIEW

Our main contribution is to propose an algorithm for computing a regularizer g such that running
FTRL with g achieves the optimal regret of O

(
Rate(X ,L)

√
T
)

for the online linear optimization
problem, as defined in Section 3.1. In particular, we state our main result in the following theorem.
Theorem 1 (Algorithmic optimal online linear optimization). Given access to a linear optimiza-
tion oracle for L, which can minimize any linear function c⊤x over L up to accuracy δlin in time

LINOL (δlin), there is a cutting-plane algorithm that runs in time
(
dR
r

)O(d2) · LINOL

((
r
dR

)Θ(d)
)

and calculates a regularizer g which satisfies

5
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1. supx∈X |g| = O(Rate(X ,L)2),

2. g is 1-strongly convex w.r.t ∥.∥Lc .

Furthermore, given access to a membership oracle to X and the regularizer g (which can be precom-
puted and summarized via a exp(O(d2))-dimensional vector as described in Section 7) there is a

cutting-plane algorithm that runs FTRL with regularizer g with running time O
(
d2 lnO(1) (dRT )

)
per round and which guarantees regret O(Rate(X ,L)

√
T ).

The starting point of our proof of the above theorem is to demonstrate the existence of a regularizer
that enables FTRL to achieve the optimal minimax regret, up to a constant factor.
Theorem 2. There exists a regularizer f0 so that running FTRL with f0 yields a regret of
Reg(x, ℓ) ≤ O(Rate(X ,L)

√
T ).

We prove Theorem 2 in Appendix A, where we eliminate the additional log(T ) factor from the regret
analysis of the regularizer in Srebro et al. (2011), proving that it achieves the optimal regret bound
of O

(
Rate(X ,L)

√
T
)

, up to universal constants. This improvement is made possible by a novel
analytic estimate for the norm growth of certain martingales. In particular, we prove in Theorem 7
that the regularizer from Srebro et al. (2011) can be chosen to be 1-strongly convex with respect to
∥.∥Lc while being bounded by O

(
Rate(X ,L)2

)
on the domain X . Theorem 2 then follows from

Theorem 7 and Fact 1.

This allows us to restrict our attention to the problem of finding the optimal regularizer over X which
is 1-strongly-convex with respect to ∥.∥Lc . To effectively do this optimization, it is important that
the resulting regularizer has not only bounded values, but also bounded gradients. Note that this is
not a priori achieved by the regularizers guaranteed to exist by Theorem 7, and in fact several optimal
regularizers used in practice (e.g. the negative entropy regularizer) do have unbounded gradients.
Nonetheless, in Section 5 and Appendix B, we demonstrate how to use Gaussian smoothing to obtain
a new regularizer that (1) achieves the same optimal regret when used in FTRL, and (2) has smooth
derivatives (Theorem 3).

Our next step is to show that we can effectively optimize over the space of smooth convex functions
defined over X . To do so, we show that given a near-optimal smooth regularizer f , we can ap-
proximate it using “quasi-quadratic” functions such that the resulting regularizer f̃ remains (1) α/2
strongly convex with respect to ∥.∥Lc , and (2) bounded by O

(
Rate(X ,L)2

)
on X . Notably, the

set of quasi-quadratic functions (with a discretized set of centers) is finite-dimensional, and so the
optimal regularizer can be encoded by a finite-dimensional vector Ĩ. We carry this out in Section 6.

Finally, in Section D, we demonstrate how to optimize over this set by writing an explicit convex
program such that f̃ is a feasible solution to this program, but also such that any feasible solution so
that any feasible solution I from this set yields a regularizer g(I) with near optimal regret. Solving
this convex program can be done via standard cutting-plane methods, except for one of the con-
straints that involves checking whether a candidate regularizer g is α-strongly-convex with respect
to ∥.∥Lc . In Section E, we demonstrate how to construct a separation oracle for this constraint, and
finally establish the existence of this algorithm.

As seen in Theorem 1, computing and storing this optimal regularizer takes time that is exponential
in the dimension of the problem. In Section 8, we establish a lower bound based on the result
of Bhattiprolu et al. (2021) that even checking the strong convexity of the Euclidean norm squared
regularizer with respect to ∥.∥Lc requires an exponential number of queries in the dimension.

5 A SMOOTH OPTIMAL REGULARIZER

While Theorem 2 promises the existence of an ideal regularizer which achieves the optimal rate, this
regularizer is not computable. To design an algorithm, we aim to approximate f0 with a parametric
family of functions. At a high level, we plan to accomplish this by locally approximating the reg-
ularizer at a finite set of points with simple parameteric functions. Based on Fact 1, our goal is to
construct the approximation so that (1) it preserves the strong convexity of f0, (2) it is bounded by
O(Rate(X ,L)2) on X , ensuring that the resulting regret matches the bound in Theorem 2.

6
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To preserve the strong convexity, a first order approximation of f0 is insufficient as it flattens the
function’s curvature. Therefore, we rely on a second order approximation of f0 around a discretized
set of points S ⊆ X . For these approximations to remain close to f0 locally around each xi ∈ S ,
we require f0 to have a Lipschitz-continuous Hessian. However, the regularizer from Srebro et al.
(2011) does not necessarily possess smooth derivatives. We side-step this issue by proposing an
alternative regularizer that not only achieves the optimal rate ofO(Rate(X ,L)

√
T ) but also features

smooth derivatives 2. This regularizer can then be approximated by our strategy.
Theorem 3 (Existence of smooth regularizer). There exists a regularizer f so that running FTRL
with f has regret bound Reg(FTRL(f)) ≤ O(Rate(X ,L)

√
T ). In addition, the derivatives of f

are bounded as |Dif(x)[v, . . . , v]| = O(Rate(X ,L)2 di/4

ri ).

Proof. The proof follows from combining Theorems 8 and 7 with Fact 1.

We construct the smooth regularizer f of Theorem 3 by adding Gaussian noise to f0, and prove that
(1) the Gaussian smoothing does not impact performance; running mirror descent with f̃ achieves
the same regret bound as running mirror descent with f , and (2) the derivatives of f are sufficiently
smooth due to the Gaussian smoothing (see Theorem 8.)

6 APPROXIMATING THE SMOOTH REGULARIZER

Now that we can restrict our attention to smooth regularizers, we can attempt to approximate them
via low-degree polynomial functions. Using the derivative bound for the smooth regularizer f in
Theorem 3, it is easy to obtain a Hessian L-Lipschitz property for L = Rate(X ,L)2 d3/4

r3 , defined
as: ∥∥∇2f(x0)−∇2f(x1)

∥∥ ≤ L ∥x0 − x1∥ , (3)

for all x0, x1 ∈ Rd. Using the Hessian smooth property in equation 3, we can show that the quadratic
approximation of f around x0 remains valid locally. However, we also need to build an approxima-
tion for f with the property that it also achieves almost the same maximum on X as f0. We impose
this condition on our approximations by adding a norm-cubic term to the quadratic approximation
of f at x0. Hence, our final approximation of f around x0 takes the following form:

fx0(x) = f(x0) + ⟨∇f(x0), x− x0⟩+
1

2
(x− x0)

⊤∇2f(x0)(x− x0)− L
3 ∥x− x0∥3. (4)

We refer to a function of the form in equation 4 as “quasi-quadratic,” centered at x0. The intuition
for this approximation is that the norm cubic term adds a decay to the Hessian of the function as
we move away from x0; this decay guarantees that fx0

(x) is always a lower bound for f , and in
particular can be estimated by f from above and below with the margin L ∥x− x0∥3. We show this
in Lemma 1. On the other hand, this decay is slow enough so that from the L-Hessian smoothness of
f we can prove that the Hessian of the approximation remains almost the same as the Hessian of f ,
at least locally around x0; therefore, the strong convexity property can be preserved (see Lemma 3.)
Lemma 1 (estimating f by the approximator). We have the following relation between the value of
f and fx0 :

fx0
(x) + L

6 ∥x− x0∥3 ≤ f(x) ≤ fx0
(x) + L

2 ∥x− x0∥3.

The proof of Lemma 1 is in Section F.1. Finally, we combine these local approximations around
a discretization set S in X by taking their maximum. In particular, we define a piece-wise quasi-
quadratic function f̃ to approximate f as f̃(x) = supi∈[N ] fxi

(x). The observation is that while f̃
remains strongly convex and suitably bounded on X , it is also efficiently encoded by f(xi), ∇f(xi),
and ∇2f(xi) at discretized points S = {xi}Ni=1, since each fxi

(x) does not use more than zeroth,
first, and second order information of f at xi’s. Therefore, we can narrow our search for suitable
regularizers from all convex functions on Rd to the selection of the value, gradient, and Hessian of
a piece-wise quasi-quadratic function at a finite set of points. In fact, in the next section we write a
convex program to minimize the maximum value of these piecewise quasi-quadratic regularizers.
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7 A CONVEX PROGRAM FOR CALCULATING AN IDEAL REGULARIZER

In the previous section, we showed how to approximate f with a set of quasi-quadratic approx-
imators, which only uses the value, gradient, and Hessian information of f at a finite set of
points S = {xi}Ni=1. Here, we hope to search in the space of such approximators by defin-
ing a convex program whose variables are the function’s value, gradient and Hessian at S, de-
noted by {rxi

, vxi
,Σxi

}Ni=1. Before rigorously defining the program, we first provide motiva-

tion for its definition. In particular, we want the instance Ĩ =
(
{r̃xi}Ni=1, {ṽxi}Ni=1, {Σ̃xi}Ni=1

)
where r̃xi ≜ f(xi), ṽxi ≜ ∇f(xi), Σ̃xi ≜ ∇2f(xi), corresponding to the smoothed regularizer
f in Theorem 2, to be a feasible point. On the other hand, for any instance I = (r,v,Σ) =(
{rxi

}Ni=1, {vxi
}Ni=1, {Σxi

}Ni=1

)
, we can define a regularizer g(I)xi (x) as

g(I)(x) ≜ max
i∈[N ]

g(I)xi
(x), (5)

where imitating the approximation that we derived for f in equation 4, g(I)xi (x) denotes a quasi-
quadratic function:

g(I)xi
(x) = rxi

+ ⟨vxi
, x− xi⟩+ 1

2 (x− xi)
⊤Σxi

(x− xi)− L
6 ∥x− xi∥3 . (6)

With this terminology, it is clear that f̃ = gĨ . Besides having Ĩ as a feasible point of the program, we
also want to impose constraints so that for the optimal solution of the program, I∗, the regularizer
g(I

∗) is strongly convex and suitably bounded on X . First, note that from Lemma 9, α-strong
convexity of f with respect to ∥.∥Lc is equivalent to the condition

v⊤∇2f(x)v ≥ α (7)

for all x ∈ X and v ∈ L. Hence, we also add the condition v⊤Σxiv ≥ α, ∀v ∈ L to the program.
While this condition asserts strong convexity of g(I) for all feasible instances I at the discretization
points, it does not guarantee strong convexity elsewhere. The reason is that the approximator in
equation 6 is not strongly convex for points far from xi. Therefore, in order to guarantee strong
convexity for g(I) everywhere, we need to make sure that at any point x ∈ X , the maximum
in equation 5 is attained by a function g(I)xi where xi is sufficiently close to x. Building on this
observation, we introduce the concept of “locality” for an arbitrary instance I:

Definition 4. We define an instance I = (r,v,Σ) as ϵ-local if, for every x,
∥∥∥xî(x) − x

∥∥∥ = O(ϵ)

where î(x) ≜ argmaxi∈[N ] g
(I)
xi (x).

Note that ϵ-locality is guaranteed for f̃ = g(Ĩ) by Lemma 1. Specifically, if there is a point xi ∈ S
such that ∥xi − x∥ = O(ϵ), then according to Lemma 1, the point xî(x) where gxî(x)

attains its
maximum in equation 5 at x, must also be within a distance of O(ϵ) from x. To ensure that the
maximum equation 5 is attained at an xî(x) that is close to x, we enforce a slightly relaxed version
of the lower bound from Lemma 1 on g(I) at the discretization points:

g(I)xi
(xj) +

15L
96 ∥xj − xi∥3 ≤ rxj

, i, j = 1, . . . , N. (8)

As noted in Lemma 1, f̃ satisfies the inequality fx0
(x) + L

6 |x − x0|3 ≤ f(x). The reason we
apply a slightly weaker version of this inequality in equation 8 will become evident when we design
a separation oracle for the feasibility set of the convex program. At a high level, this condition
ensures that not only is Ĩ a feasible instance for our program, but that a small neighborhood around
it also remains feasible. As we will see, even after enforcing the condition in equation 8, an arbitrary
feasible instance I does not achieve O(ϵ)-locality like Ĩ. Instead, we can only prove that it is
O(ϵ1/3)-local (see Lemma 2). The reason is that equation 8 is only enforced at the discretization
points, whereas f̃ satisfies it for any x ∈ X as shown in Lemma 1.

Finally, we aim to minimize the maximum value of g(I) over X to obtain a suitable regularizer for
FTRL. As mentioned earlier, we smooth the theoretical regularizer f0 from Srebro et al. (2011) by

8
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adding Gaussian noise, resulting in f , which ensures bounded gradients and Hessians. To achieve
a similar smoothness condition on the regularizer g(I) that correspond to a feasible instance of our
program, we enforce the conditions ∥vxi

∥∞ ≤ c0 and Σxi
≼ c2I for constants c0, c2 (we use

the infinity norm instead of the 2-norm to maintain a linear constraint.) With the discretization set
S = {xi}Ni=1 fixed, the final program is structured as follows:

minimize r (9)

subject to rxi
+ ⟨vxi

, xj − xi⟩+ 1
2 (xj − xi)

⊤Σxi
(xj − xi)− 17L

96 ∥xj − xi∥3 ≤ rxj
∀i, j ∈ [N ]

∥vxi∥∞ ≤ c0 i ∈ [N ]

Σxi
≼ c2I ∀i ∈ [N ]

v⊤Σxiv ≥ α ∀v ∈ L, ∀i ∈ [N ]

r ≥ rxi
∀i ∈ [N ]

r, rxi
≤ C0 ∀i ∈ [N ].

Next, to establish the locality property for feasible points of the program, we state in Lemma 2 that
for any arbitrary x ∈ X , the maximum in equation 5 is attained at a discretization point xi ∈ S that
is not too far from x. Specifically, given that every point in X has a discretization point xi within a
distance of ϵ, we show that the maximum in equation 5 is achieved by xî which is no further than
O(ϵ1/3) from x. Additionally, we prove that the value of g(I) at x is close to g(I)xi (x).

Lemma 2 (Convex program feasibility → Locality of regularizer g). Assume that I = (r,v,Σ) is

feasible for LP equation 9, for ϵ satisfying ϵ ≤ γ2

{
L√
dc0
, L
c0

√
dc32
, L
c2
,
√
c0
√
d, c0

√
d

c2

}
, then suppose

for xi, xj and x ∈ X we have ∥xi − x∥ ≤ ϵ and ∥xj − x∥ ≥ γ
(

ϵ
√
dc0
L

)1/3
for some universal

constant γ, then

g(I)xi
(x) > g(I)xj

(x) +
√
dc0ϵ,

and if ∥xj − x∥ ≤ γ
(

ϵ
√
dc0
L

)1/3
, then

|g(I)xj
(xi)− g(I)xj

(x)| ≤ γ2
√
dc0ϵ,

for some constant γ2.

The proof can be found in Section F.2. To prove strong convexity of g(I) for a feasible point I, we
must first establish the strong convexity of the local approximators g(I)xi , defined in equation 6. This
is demonstrated in Lemma 3 below. Specifically, we prove that if the quadratic form of the Hessian
variable Σxi

is lower bounded by the norm squared ∥.∥2Lc in all directions, then g(I)xi (x) is strongly
convex locally around xi.

Lemma 3. [Local strong convexity of the approximators] Suppose the PSD matrix Σ is such that
for all v, v⊤Σv ≥ α ∥v∥2Lc . Then, the function

g(x) = r + ⟨v, x− x0⟩+ 1
2 (x− x0)

⊤Σ(x− x0)− L
6 ∥x− x0∥3

for arbitrary x0, v, r, L is α/2-strongly convex with respect to ∥.∥Lc in the neighborhood
∥x− x0∥ ≤ α

2R2L . Consequently, if f is α-strongly convex with respect to ∥.∥L, then fx0(x) is
α
2 strongly convex with respect to ∥.∥L for ∥x− x0∥ ≤ α

2R2L .

The proof of Lemma 3 is in Section F.3. Finally, by combining Lemmas 14 and 2, we show that
the barrier g(I) constructed from a feasible point of the matrix program has a suitable upper bound
on X , satisfying the desired strong convexity. Additionally, we prove that the feasible region can
be approximated both from the inside and outside by Euclidean balls, a key property necessary for
constructing a separation oracle for the feasible set later.

9
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Theorem 4 (Convex program solution → optimal regularizer). Assume we are given a smooth
barrier function f : Rd → R with |f(x)| ≤ C2,∀x ∈ X , which is c̃1 Lipschitz, c̃2 gradient
Lipschitz, L̃ Hessian Lipschitz, and α ∥.∥Lc -strongly convex in X . Additionally, if for every two
points in the cover xi, xj ∈ X̃ we have ∥xi − xj∥ ≥ ϵ̄, then the convex program in equation 9
with c0 = c̃1 + Lϵ̄3, c2 = c̃2 + Lϵ̄3, L = L̃, C0 = C2 + Lϵ̄3, and discretization parameter
ϵ ≤ γ3 min

{
L√
dc1
, L
c1

√
dc23

, L
c2
,
√
c1
√
d, c1

√
d

c2
, α3

512R6L2c1
√
d

}
for small enough constant γ3 is fea-

sible. Furthermore, the function g(I
∗), corresponding to the optimal solution I∗ = (r∗,v∗,Σ∗) is

convex and satisfies the following properties:

1. |g(I∗)(x)| ≤ C2 + γ2ϵ
√
dc0 for constant γ2.

2. For any feasible instance I ∈ PI , g(I)(x) is α
2 strongly convex with respect to ∥.∥Lc .

3. BLϵ̄3/288(Ĩ) ⊆ PI ⊆ B
2
√

(N+1)C0
2+Nd(c20+c22)

(Ĩ).

Proof of Theorem 4 can be found in Section F.4.

8 LOWER BOUND ON MEMBERSHIP ORACLE QUERY COMPLEXITY FOR L

In the above sections we demonstrated an algorithm for computing an optimal regularizer that runs
in time exp(O(d2)). In this final section, we show that this is in some sense necessary, by showing
that just checking the α-strong convexity of a given regularizer g with respect to ∥.∥Lc at point
x ∈ X requires an exponential number of queries to a membership oracle MEML(δ). In particular,
even in the simple case where ∇2g(x) = I (i.e., the quadratic regularizer), an exponential number
of queries is needed. The lower bound is a reduction to Theorem 1.2 in Bhattiprolu et al. (2021).
Theorem 5 (Exponential lower bound). Given ϵ, for large enough dimension d, there exists a dis-
tribution over convex bodies L such that for every fixed set of queried points S ⊆ Rd,

1. PL (S ∩ {v| ∥v∥L ≤ 1} = S ∩B1(0)) ≥ 1− ϵ

2. There exists direction ṽ with ∥ṽ∥Lc = 1 such that ∥ṽ∥2 ≤ 1
d1−ϵ ,

where B1(0) is the Euclidean ball with radius 1.

The proof of Theorem 5 is provided in Section F.5. At a high level, Theorem 5 asserts that there
exists a distribution over norm balls L such that (1) even with ed

1−ϵ

queries it is not insufficient to
distinguish between L and the Euclidean unit ball, while (2) the Identity Hessian is not α = 1

d1−ϵ

strongly convex with respect to the dual norm ∥.∥Lc .

Of course, it is possible that there is a method for computing the optimal regularizer that sidesteps
to need to be able to verify how convex an arbitrary function is – we leave this as an interesting open
problem.
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Sébastien Bubeck, Ronen Eldan, and Nicolò Cesa-Bianchi. Towards minimax policies for online
linear optimization with bandit feedback. In Conference on Learning Theory, pp. 449–472. JMLR
Workshop and Conference Proceedings, 2012.
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A IDEAL REGULARIZER AND PROVING BETTER MARTINGALE TYPE FOR
p = 2

Here, we state the existence of an ideal regularizer such that running FTRL with this regularizer
achieves the optimal rate up to a constant. This result is adapted from Srebro et al. (2011), except
that they prove the same regularizer results in a regret bound which is off by a logarithmic factor
of log(T ); this log factor is indeed not desirable for our purpose as we are interested in long time
horizon regimes when T can potentially be exponentially large in dimension. Our contribution here
is that we improve the result of Srebro et al. (2011) for p = 2 case and shave off this log factor. We
further show a type of continuity condition for this ideal regularizer that we use for our smoothing
arguments in Section B.

First, we state the result of Sridharan & Tewari (2010); Rakhlin et al. (2010) that we build upon; it
is known from the work of Sridharan & Tewari (2010); Rakhlin et al. (2010) that the optimal rate
for adversarial online linear optimization translates into a property on the growth of the norm ∥.∥X c

of an arbitrary Rademacher martingale sequence. We state this property rigorously in Theorem 6,
which is stated as Theorem 4 in Srebro et al. (2011).

Theorem 6 (Restatement of Theorem 4 in Srebro et al. (2011)). Given the optimal rate for online
linear optimization with action and loss sets X ,L ∈ Rd isO(C

√
T ), then for a Rademacher random

vector ϵ ∈ {±}n and any sequence of functions xi(ϵ) : {±}i → Rd, where xi is a function of the
first i coordinates in ϵ, we have

E

∥∥∥∥∥∑
i

ϵixi(ϵ)

∥∥∥∥∥
X c

≤ O(C) sup
0≤i≤n

sup
ϵ

∥xi(ϵ)∥L . (10)

The main contribution of authors in Srebro et al. (2011) is that they translate equation 10 to the
existence of a suitable barrier for mirror descent. In particular, they prove the following key Lem-
mas 4, 7. We start with Lemma 4 which translates property equation 10 to a more refined argument
about the growth of martingale norms that are defined based on the action and loss sets.

Lemma 4 (Restatement of Lemma 12 in Srebro et al. (2011) for r = 2). For 1 < r < 2, if there
exists a constant C > 0 such that for any natural number n and any sequence of mappings (xi)ni=1,
xi : {±}i → Rd and Rademacher random vector ϵ ∈ {±}n satisfy

E

∥∥∥∥∥
n∑

i=1

ϵixi(ϵ)

∥∥∥∥∥
X c

≤ Cn1/r sup
0≤i≤n

sup
ϵ

∥xi(ϵ)∥L ,

then for p < r and αp = 20C
r−p , for any sequence (xi)

n
i=1 as described above, we have the following

inequality:

E

∥∥∥∥∥
n∑

i=1

ϵixi(ϵ)

∥∥∥∥∥
X c

≤ αp sup
ϵ

(∑
i

∥xi(ϵ)∥pL

)1/p

. (11)

The next Lemma states how authors in Srebro et al. (2011) translate the property in Equation equa-
tion 11 to the existence of the ideal regularizer:

Lemma 5 (Restatement of Lemma 11 in Srebro et al. (2011)). For constant C̃, the following state-
ments are equivalent:

1. For all n and sequence of mappings (xi)ni=0 where xi : {±}i−1 → Rd:

Eϵ

∥∥∥∥∥
n∑

i=1

ϵixi(ϵ)

∥∥∥∥∥
p

X c

≤ C̃p

(
n∑

i=1

E∥xn(ϵ)∥pL

)

2. There exists a 2-homogeneous non-negative convex function f0 on Rd which is 1-strongly
convex w.r.t ∥.∥Lc and ∀x, 1q ∥x∥

q
Lc ≤ f0(x) ≤ C̃q

q ∥x∥qX , where 1
p + 1

q = 1.

14
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The existence of such regularizer from Lemma 5 then implies a C̃T 1− 1
p regret bound for FTRL.

Nonetheless, the reason they end up with a log(T ) factor in the regret is that they need to use
Lemma 4 with a power p < 2 slightly less than two, as the constant αp reciprocally depends on
2 − p, so p has to be Θ(1/ log(T )) less than 2. We improve Lemma 4 in Lemma 6 below, for the
case of p = 2, and shave off the αp factor which is causing the additional log(T ). This enables us
to show a tighter upper bound for the regularizer on domain X in Theorem 7.
Lemma 6 (Improving the Martingale Type for p = 2). Suppose for the norm ∥.∥X c we have

E

∥∥∥∥∥x0 +
n∑

i=1

ϵixi(ϵ)

∥∥∥∥∥
X c

≤ D(n+ 1)1/2 sup
0≤i≤n

sup
ϵ

∥xi(ϵ)∥L , (12)

for arbitrary vector valued functions xn : {±1}n−1 → Rd and Rademacher sequence (ϵi)
n
i=1,

ϵi ∼ ±1. Then, we have

E

∥∥∥∥∥x0 +
n∑

i=1

ϵixi(ϵ)

∥∥∥∥∥
X c

≤ D

(
n∑

i=1

∥xi(ϵ)∥2L

)1/2

.

Proof. First, note that if we average equation 12 over x0 and −x0 and extend the functions xi(ϵ) to
also depend on a Rademacher variable ϵ0 at time zero, then we get

E

∥∥∥∥∥
n∑

i=0

ϵixi(ϵ)

∥∥∥∥∥
X c

≤ D(n+ 1)1/2 sup
0≤i≤n

sup
ϵ

∥xi(ϵ)∥L . (13)

Now let ci = ∥xi∥L. Take a fresh rademacher sequence (ϵ̃j)
∞
j=1. We will define the sequence

(ϵi)
n
i=1 based on the randomness of ϵ̃j’s: define ϵ̂i = 1 if

∑ti+1

j=ti+1 ϵ̃j ≥ ∥xi∥
δ and ϵ̂i = −1 if∑ti+1

j=ti+1 ϵ̃j ≤ −∥xi∥
δ . From symmetry, it is easy to check that ϵi’s are indeed i.i.d distributed

uniformly on {±1}. Next, for a given positive δ > 0, define the sequence of indices (ti)
n
i=1 and the

alternative sequence (x̃i)
m
i=0 such that for all i, x̃ti = x̃ti+1 = · · · = x̃ti+1−1 = xi

∥xi∥L
δ, and ti is

the first index such that |
∑ti+1

j=ti+1 ϵ̃j | ≥
∥xi∥
δ . Now from this definition. we have that x̃i’s satisfy∥∥∥∥∥∥xi −

ti+1∑
j=ti+1

x̃j

∥∥∥∥∥∥
X c

≤ δ

∥∥∥∥ xi
∥xi∥L

∥∥∥∥
X c

. (14)

But for tsum =
∑n

i=0 ti equation 14 implies:∥∥∥∥∥∥
n∑

i=0

ϵixi(ϵ)−
tsum∑
j=0

ϵ̃j x̃j

∥∥∥∥∥∥
X c

≤ (n+ 1)δ
n

max
i=0

∥∥∥∥ xi
∥xi∥L

∥∥∥∥
X c

.

The key observation is for all i ∈ [n], the distribution of ti is sub-exponential and the sum concen-
trates around its expectation. In particular,

P

(
ti ≥ κ

(
∥xi∥L
δ

)2
)

≤ e−O(κ). (15)

It is sufficient for us to show that the sum
∑n

i=1 ti is at most O
(∑n

i=1

(
∥xi∥L

δ

)2)
with at least

constant probability p. Call this event E . First, we use Chebyshev inequaility to show P(E) = Ω(1).
Note that Equation equation 15 imlies

Et2i = O

(
∥xi∥L
δ

)4

,

which implies

V ar(
∑
i

ti) = O

(∑
i

(
∥xi∥L
δ

)4
)
.

15
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Therefore, from Chebyshev inequality

P

 n∑
i=1

ti ≥
n∑

i=1

(
∥xi∥L
δ

)2

+ l

√√√√ n∑
i=1

(
∥xi∥L
δ

)4
 ≤ 1

l2
,

which implies

P

(
n∑

i=1

ti ≥ (l + 1)

n∑
i=1

(
∥xi∥L
δ

)2
)

≤ 1

l2
,

hence we showed that E happens with at least constant probability. Furthermore, It is easy to check
that conditioned on E , ϵi’s are still Rademacher variables. On the other hand, using equation 13 for

sequence (x̃i) and m = Θ

(∑n
i=0

(
∥xi∥L

δ

)2)
:

E

∥∥∥∥∥∥
m∑
j=1

ϵ̃j x̃j(ϵ̃)

∥∥∥∥∥∥
X c

≤ Dm1/2 sup
0≤i≤n

sup
ϵ

∥x̃i(ϵ)∥L . (16)

but from positivity of norm

E

∥∥∥∥∥∥
m∑
j=1

ϵ̃j x̃j(ϵ̃)

∥∥∥∥∥∥
X c

≥ E

∥∥∥∥∥∥
m∑
j=1

ϵ̃j x̃j(ϵ̃)

∥∥∥∥∥∥
X c

∣∣∣ E
P(E)

≥ E

[∥∥∥∥∥
n∑

i=1

ϵixi(ϵ)

∥∥∥∥∥
X c

∣∣∣ E]P(E)− (n+ 1)δ
n

max
i=0

∥∥∥∥ xi
∥xi∥L

∥∥∥∥
X c

= E

∥∥∥∥∥
n∑

i=1

ϵixi(ϵ)

∥∥∥∥∥
X c

P(E)− (n+ 1)δ
n

max
i=0

∥∥∥∥ xi
∥xi∥L

∥∥∥∥
X c

≥ 1

2
E

∥∥∥∥∥
n∑

i=1

ϵixi(ϵ)

∥∥∥∥∥
X c

− (n+ 1)δ
n

max
i=0

∥∥∥∥ xi
∥xi∥L

∥∥∥∥
X c

.

Note that the equality in the third line above is because the size of ti’s is independent of ϵ’s. Plugging
this back into equation 16

E

∥∥∥∥∥
n∑

i=1

ϵixi(ϵ)

∥∥∥∥∥
X c

≤ Θ

D
√√√√ n∑

i=0

∥xi∥2L

+ (n+ 1)δ
n

max
i=0

∥∥∥∥ xi
∥xi∥L

∥∥∥∥
X c

.

Sending δ → 0 finishes the proof.

Next we state and prove Lemma 7. This Lemma in similar to Lemma 7 for the case p = 2, i.e. it
translates the margtingale property to the existence of an ideal regularizer, except that we show an
additional useful Lipschitz property for the regularizer which we use for smoothing the regularizer
in Section B. The proof of Theorem 7 directly follows from combining Lemmas 7 and 6.
Lemma 7 (Martingale type → ideal regularizer). For constant C, the following statements are
equivalent:

1. For all n and sequence of mappings (xi)ni=0 where xi : {±}i−1 → Rd:

Eϵ

∥∥∥∥∥x0 +
n∑

i=1

ϵixi(ϵ)

∥∥∥∥∥
2

X c

≤ C2

(
∥x0∥2L +

n∑
i=1

E∥xn(ϵ)∥2L

)

2. There exists a 2-homogeneous non-negative convex function f on Rd which is α-strongly
convex w.r.t ∥.∥Lc and ∀x, 12 ∥x∥

2
Lc ≤ f0(x) ≤ C2

2 ∥x∥2X . Furthermore, f is Lipschitz
continuous as

|f0(x1)− f0(x2)| ≤ C2 ∥x1 − x2∥X (∥x1∥X ∨ ∥x2∥X ) .
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Proof. This is Lemma 11 in Srebro et al. (2011), except that we are claiming an additional Lipschitz
continuity here for f0, which we need to show regularity properties for the gaussian smoothed func-
tion later on. To show the Lipschitz continuity, we note that from the proof of Lemma 11 in Srebro
et al. (2011), f0 is defined as the Fenchel dual of a barrier f∗0 , i.e. f0(x) = sup⟨x, z⟩−f∗0 (z), where
1
C2 ∥x∥2X c ≤ f∗0 (x) ≤ ∥x∥2L. Therefore, defining z(x) ≜ argmaxz⟨x, z⟩ − f∗0 (z), we have

0 ≤ f0(z(x)) ≤ ∥x∥X ∥z(x)∥X c −
1

C2
∥z(x)∥2X c ,

which implies

C2 ∥x∥X ≥ ∥z(x)∥X c .

Therefore, for x1, x2 ∈ X we have

f0(x1) ≥ ⟨x1, z(x2)⟩ − f∗0 (z(x2)) ≥ ⟨x2, z(x2)⟩ − f∗0 (z(x2))− ∥x1 − x2∥X ∥z(x2)∥X c

≥ f0(x2)− C2 ∥x1 − x2∥X ∥x2∥X .

Noting the reverse symmetric inequality f0(x2) ≥ f0(x1) − C2 ∥x1 − x2∥X ∥x1∥X completes the
proof.

B SMOOTHING THE REGULARIZER

The goal of this section is to show the existence of a regularizer which enables FTRL to achieve the
optimal regret for arbitrary pair (X ,L) of action and loss sets which also has smooth derivatives. We
achieve this by using Gaussian smoothing of the regularizer f0 from Srebro et al. (2011). First, we
state Theorem in which we prove that FTRL with this regularizer indeed achieves the optimal rate
O
(
Rate(X ,L)

√
T
)

; note that this is a log(T ) improvement over the result of Srebro et al. (2011),
and in addition the regularizer satisfies a desirable Lipschitz property. We then proceed to smooth
this regularizer by adding Gaussian noise and showing the smoothness properties we want.

Theorem 7 (Existence of an ideal regularizer for mirror descent). There exists a 2-homogeneous
continuous regularizer f0 : Rd → R which satisfies

1. maxx∈X |f0(x)| ≤ O(Rate(X ,L)2)

2. f0 is 1-strongly convex w.r.t ∥.∥Lc on X , where ∥.∥Lc is the dual norm of ∥.∥L.

3. f0 satisfies the following Lipschitz continuity condition: ∀x1, x2:

|f0(x1)− f0(x2)| ≤ O(Rate(X ,L)2) ∥x1 − x2∥X (∥x1∥X ∨ ∥x2∥X ) .

Proof. Directly from the relation between optimal rate of online optimization and Equation equa-
tion 10, which we state in Theorem 6, with Lemmas 7 and 6.

For the regularizer f0 given by Theorem 7, we define the Gaussian smoothed function f : Rd → R:

f(x) = Ey∼N(x,σ2I)f0(y). (17)

We start by showing that strong convexity property with respect to arbitrary norms is inherited for
f0 to f .

Lemma 8 (Strong convexity of the smoothed function). If f0 is α strongly convex w.r.t ∥.∥Lc , the f
is also α strong convex w.r.t ∥.∥Lc .

Proof. From α strong convexity of f , for 0 ≤ γ ≤ 1 we have

f0(γx1 + (1− γ)x2) ≤ γf0(x1) + (1− γ)f0(x2)− α
γ(1− γ)

2
∥x1 − x2∥2 .

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Now consider the gaussian random variable η ∼ N(0, σ2I) and write f̃(x1) = Eηf(x1 + η),
f̃(x2) = Eηf(x2 + η). Then

f(γx1 + (1− γ)x2) = Eηf0(γx1 + (1− γ)x2 + η)

= Ef0(γ(x1 + η) + (1− γ)(x2 + η))

≤ γEf0(x1 + η) + (1− γ)Ef0(x2 + η)− α
γ(1− γ)

2
∥x1 − x2∥2Lc

= γf0(x1) + (1− γ)f0(x2)− α
γ(1− γ)

2
∥x1 − x2∥2Lc .

Lemma 9 (Strong convexity → Hessian lower bound). If f is twice continuously differentiable
and α strongly convex with respect to ∥.∥Lc , then for its hessian at arbitrary point x and arbitrary
direction v we have

v⊤∇2f(x)v ≥ ∥v∥2Lc . (18)

Proof. From Taylor series around x1 at points x2 and γx1 + (1− γ)x2:

f(x2) = f(x1) + ⟨∇f(x1), x2 − x1⟩+
1

2
(x2 − x1)

⊤∇2f(x1)(x2 − x1) + o(∥x2 − x1∥2),

f(γx1 + (1− γ)x2)

= f(x1) + ⟨∇f(x1), (1− γ)(x2 − x1)⟩+
1

2
(1− γ)2(x2 − x1)

⊤∇2f(x1)(x2 − x1) + o(∥x2 − x1∥2).

Therefore

γf(x2) + (1− γ)f(x1)− f(γx1 + (1− γ)x2) =
1

2
γ(1− γ)(x2 − x1)

⊤∇2f(x1)(x2 − x1) + o(∥x2 − x1∥2).

Therefore, α strong convexity is equivalent to equation 18 for all directions v.

Lemma 10 (Norm and norm squared Gaussian integral). Given a two-homogeneous function f0
satisfying 1 and maxx∈X |f0(x)| ≤ C2, then for f defined in equation 17

|f(x)| ≤ C2

r2
σ2d+ C2 ∥x∥2X ,

Ey∼N(x,σ2I)f0(y)
2 ≤ 8C4

(
∥x∥4X +

4

r4
dσ4

)
.

Proof. Note that from the property (1) in Theorem 7 and the 2-homogeneity of f0, we have for all
y ∈ Rd, f0(y) ≤ C2 ∥y∥2X . Now using triangle inequality and Lemma 11, we can write

|f(x)| ≤ Ey∼N(x.σ2I)|f0(y)|

≤ EC2 ∥y∥2X
≤ EC2 ∥y − x∥2X + C2 ∥x∥2X

≤ EC2 1

r2
∥y − x∥2 + C2 ∥x∥2X

=
C2

r2
σ2d+ C2 ∥x∥2X .

Furthermore

Eyf0(y)
2 ≤ EyC

4 ∥y∥4X ≤ 8C4E
(
∥x∥4X + ∥y − x∥4X

)
≤ 8C4

(
∥x∥4X +

1

r4
E ∥y − x∥4

)
≤ 8C4

(
∥x∥4X +

4

r4
dσ4

)
.

18
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Lemma 11 (Norm comparison). The ∥.∥X can be upper bounded by the Euclidean norm ∥.∥ as

∀y ∈ Rd,
1

R
∥y∥ ≤ ∥y∥X ≤ 1

r
∥y∥ .

Proof. Note that for any y ∈ Rd, for α = ∥y∥ /r we have y/α ∈ X . Therefore, from the definition
of ∥.∥X :

∥y∥X = inf{α > 0,
y

α
∈ X} ≤ ∥y∥

r
.

Furthermore, for α < ∥y∥
R , then

∥∥ y
α

∥∥ > R, which means y /∈ X (since X is contained in a ball of
radius R). Therefore, ∥y∥X ≥ ∥y∥

R .

Lemma 12 (Gaussian smoothing). For arbitrary unit direction v, given the smooth regularizer
defined in equation 17 we have

|Df(x)[v]| ≤ 1

σ

√
Ef0(y)2

|D2f [v, v]| ≤ 4

σ2

√
Ef0(y)2,

D3f(x)[v, w, u] ≤ 5

σ3

√
Ef0(y)2.

Proof. Consider the function f0(y)e
− (y−x)2

2σ2 ; it is continuous in both y, x due to continuity of f0 by
Lemma 7, and its partial derivative with respect to x in direction v is f0(y)⟨y−x

σ2 , v⟩ which is again
continuous wrt x and y. Therefore, from the Leibnitz rule, for arbitrary direction v, Df(x)[v] exists
and is equal to

Df(x)[v] = Ey⟨
y − x

σ2
, v⟩f0(y).

Therefore, from Cauchy Schwarz

|Df(x)[v]| ≤ 1

σ2

√
E⟨y − x, v⟩2

√
Ef0(y)2 =

1

σ

√
Ef0(y)2.

For the second derivative

D2f(x)[v, w] = Ey

(
⟨y − x

σ2
, v⟩⟨y − x

σ2
, w⟩f0(y)−

1

σ2
⟨v, w⟩f0(y)

)
which gives

|D2f(x)[v, w]| ≤
(

1

σ2

√
Eη∼N(0,1)η4 +

1

σ2

)√
Ef0(y)2 =

4

σ2

√
Ef0(y)2.

where η is normal gaussian with variance one. Similarly for the third derivative

D3f(x)[v, w, u] = Ey

(
⟨y − x

σ2
, v⟩⟨y − x

σ2
, w⟩⟨y − x

σ2
, u⟩f0(y)−

1

σ2

∑
u,v,w

⟨v, w⟩⟨y − x

σ2
, u⟩f0(y)

)
.

Therefore,

|D3f(x)[v, w, u]| ≤
(

1

σ3

(
Eη6

)1/2
+

1

σ3

√
Eη2

)√
Ef0(y)2

=
1

σ3
(
√
15 + 1)

√
Ef0(y)2 ≤ 5

σ3

√
Ef0(y)2.
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Corollary 1 (Final smoothed derivatives). For the smoothed barrier defined in Equation equation 17
and x ∈ X , we have

|f(x)| ≤ C2(
σ2

r2
d+ 1)

|Df(x)[v]| ≤ C2

σ

√
8

(
1 + 4

1

r4
dσ4

)

|D2f [v, v]| ≤ 4C2

σ2

√
8

(
1 + 4

1

r4
dσ4

)
,

D3f(x)[v, w, u] ≤ 5C2

σ3

√
8

(
1 + 4

1

r4
dσ4

)
.

Proof. Directly by combining Lemmas 10 and 12.

Theorem 8 (Existence of a smooth regularizer). Given that there exists a 2-homogeneous regular-
izer f0 : Rd → R that is α-strongly convex w.r.t ∥.∥Lc and that maxx∈X |f0(x)| ≤ C2, then there
also exists a smooth regularizer f which is α-strongly convex w.r.t ∥.∥Lc and

|f(x)| = O(C2),

|Df(x)[v]| = O(C2 d
1/4

r
),

|D2f [v, v]| = O(C2 d
1/2

r2
),

|D3f(x)[v, w, u]| = O(C2 d
3/4

r3
).

Proof. It is enough to set σ = r
d1/4 in Corollary equation 1.

C CALCULATING THE REGULARIZER

In this section, building upon the properties that we showed for feasible points of the program 9, we
show how to compute a suitable regularizer g(I

o) on X . To do so, we build a separation oracle for
PI . We start by defining the notions of separation oracle, as well as membership and linear opti-
mization oracle. Before defining these oracle, we need to state the definition of set neighborhoods.
Definition 5 (Membership Oracle). For convex set D ∈ Rd, a membership oracle receives a vector
y ∈ Rd and real number δ > 0 and with probability 1 − δ asserts y ∈ B(D, δ), or it asserts y /∈
B(D,−δ). We denote the computational cost of a query to our membership oracle by MEMX (δ).
Definition 6 (Set neighborhoods). For a subset D ⊆ Rd, let B(D, δ) be the set of points that are
within distance δ of D, and B(D,−δ) be the set of points that where a ball of radius δ around them
is completely included in D.
Definition 7 (Separation Oracle). For a convex set L ⊆ Rd, a separation oracle receives a vector
y ∈ Rd and real number δ > 0 and either asserts y ∈ B(L, δ), or it returns a unit vector c ∈ Rd

such that c⊤y ≤ c⊤x + δ for all x ∈ B(L,−δ). We denote the computation time of separation
oracle by SEPL(δ).
Definition 8 (Linear Optimization Oracle). For a convex set L ⊂ Rd, a linear optimization oracle
receives a unit vector c ∈ Rd and real number δlin and returns a point y ∈ C such that ∀x ∈ C,
c⊤y ≤ c⊤x + δlin. We denote the computational cost of calling the linear optimization oracle by
LINOL (δlin).

Separation, Membership, and Linear Optimization oracles are known to be equivalent and can be
used to implement convex optimization over convex sets. Grötschel et al. (2012) Next, we state a
simplified version of Theorem 42 in Lee et al. (2018) (or Theorem 15 in Lee et al. (2015)) on how
to build a linear optimization oracle from a separation oracle for a convex set, which we use in the
proof of Theorem 10.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Theorem 9 (Theorem 15 in Lee et al. (2018) or Theorem 42 in Lee et al. (2015)). LetK be a convex
set satisfying B2(0, r) ⊂ K ⊂ B2(0, 1) and let κ = 1

r . For 0 ≤ ϵ < 1, with probability 1 − ϵ, we
can compute x ∈ B(K, ϵ) such that

c⊤x ≤ min
x∈K

c⊤x+ ϵ ∥c∥2

with an expected running time of O
(
nSEPδ(K) log(nκϵ ) + n3 logO(1)

(
nκ
ϵ

))
, where δ =(

ϵ
nκ

)Θ(1)
.

Next, we state how we solve the optimization problem in Theorem equation 9 based on a separation
oracle that we build for its feasibility set PI in Section E.
Theorem 10 (Computing the Regularizer - abstract). In the context of Lemma 4 Then, given arbi-
trary accuracy parameter 0 < ϵ1 < 1, there is a cutting-plane method that approximately solves the
program in equation 9 and obtains an almost feasible instance Io, in the sense that

1. maxx∈X |g(Io)(x)| ≤ C2 + γ2dc̃1ϵ+ ϵ1

2. g(I
o)(x) is α/4 strongly convex with respect to ∥.∥Lc ,

and runs in time (assuming N ≥ d)

O

(
N
(
C0

2 + c21 + c22
)
(c2 ∨ 1)R

ϵ1ϵLr

)O(d)
LINOL

 (r ∧ 1)

R2α

(
ϵ1ϵ̄L

N
(
C0

2 + c20 + c22
))Θ(1)

 .

Proof. The program equation 9 is a linear optimization problem over the convex set PI , for which
we can exploit the separation oracle that we constructed in Lemma 13. In particular, the result
directly follows from a simplified version of Theorem 42 in Lee et al. (2015) (or Theorem 15 in Lee
et al. (2018)), a classical result on how to build a linear optimization oracle from the separation
oracle for a convex set. For convenience of the reader, we have restated this result in Theorem 9.
According to this theorem, for any 0 < ϵ1 < 1, with probability 1− ϵ1 we can compute an instance
Io such that its corresponding barrier g(I

o) satisfies

1. maxx∈X |g(Io)(x)| ≤ maxx∈X |g(I∗)(x)|+ ϵ1, where I∗ is the optimal solution to the LP.

2. Io is ϵ1 close to a feasible instance I(r) in Euclidean distance.

Now applying Lemma 4 we conclude the first argument, namely maxx∈X |g(Io)(x)| ≤ C2 +
γ2dc̃1ϵ+ϵ1. Now we need to show that g(I

o) roughly remains Ω(α) strongly convex w.r.t ∥.∥Lc . For

this, note that given x ∈ X , if ∥xj − x∥ ≥ γ
(

ϵ
√
dc0
L

)1/3
and ∥xi − x∥ ≤ ϵ, then from Lemma 2

and the feasibility of I(r) we have rxi > g
(Ir)
xj (x) +

√
dc0ϵ where rxi is the variable of the valid

instance Ir. But picking ϵ1 ≤
√
dc0ϵ
2R2 we get that g(I

o)
xi (x) > g

(Io)
xj (x). Therefore, again the maxi-

mum at x is achieved by one of the functions g(I
o)

xj (x) where xj is not farther than γ
(

ϵ
√
dc0
L

)1/3
of

x. But then similar to Equation equation 55 in Lemma 14, for all î ∈ I and arbitrary direction v:

v⊤∇2g(I
r)

xî
(x)v ≥ α

2
∥v∥2Lc .

On the other hand, ∥Io − Ir∥ ≤ ϵ1 implies
∥∥∥∇2g

(Ir)
xî

(x)−∇2g
(Io)
xî

(x)
∥∥∥
F
≤ ϵ1. Therefore, using

ϵ1 ≤ α
4r2 we conclude

v⊤∇2g(I
o)

xî
(x)v ≥ α

4
∥v∥2Lc ,

which is the desired property. Finally, using the third argument in Lemma 4, we have the following
runtime based on Theorem 9:

O

(
N · SEPPI (δ) log

(
1

δ

)
+N3 logO(1)

(
1

δ

))
,
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for

δ ≜

 ϵ1Lϵ̄
3

N
√
(N + 1)C0

2 +Nd (c20 + c22)

Θ(1)

=

(
ϵ1ϵ̄L

N
(
C0

2 + c20 + c22
))Θ(1)

.

Note that from Lemma 13, for this choice of δ we have

SEPPI (δ) = O

(
N
(
C0

2 + c21 + c22
)
c2R

ϵ1ϵLr

)O(d)
LINOL

 (r ∧ 1)

R2α

(
ϵ1ϵ̄L

N
(
C0

2 + c20 + c22
))Θ(1)

+ d2

+O
(
N2d2

)
,

which completes the proof.

Next, we appropriately instantiate the constants of the convex program equation 9 based on Theo-
rem 8 and Lemma 4 in Theorem 1 below. We find the running time of our cutting-plane method to
solve this program based on Theorem 10.

Theorem 11 (Restatement of Theorem 1). Assuming R > 1, r < 1 for simplicity, given that
the best achievable rate for online linear optimization with action and constraint sets (X ,L) is
O(Rate(X ,L)

√
T ), there exists an algorithm that runs in time(

dR

r

)O(d2)(
LINOL

(( r

dR

)Θ(d)
))

,

and calculates a regularizer g(I
o) given by the representation (Σ,v, r) as described in Section equa-

tion 7, which satisfies

1. supx∈X |g(Io)| ≤ 2Rate(X ,L)2

2. g(I
o) is 1-strongly convex w.r.t ∥.∥Lc .

Proof. Let C ≜ Rate(X ,L). From Theorem 8 there exists a 2-homogeneous barrier which is c̃1 =

O(C2 d1/4

r ) Lipschitz, c̃2 = O(C2 d1/2

r2 ) Gradient Lipschitz, L = O(C2 d3/4

r3 ) Hessian Lipschitz, and
1-strongly convex w.r.t ∥.∥Lc . Therefore, to enjoy the properties of Lemma 4, assuming that we
guarantee,

ϵ̄3 ≤ min{ c̃1
L
,
c̃2
L
,
C2

L
} (19)

then we get that c0, c2, C0 are of the same order as c̃1, c̃2, C2, respectively (this follows from the
definition of c0, c2, C0 which involves the term Lϵ̄3). Now following the condition of Lemma 4, we
consider a cover of accuracy ϵ such that

ϵ ≤ min{ 1

r2
,
r6

C6d2
,
r

d1/4
, C

d3/8

r1/2
, rd1/4,

r7

R6C6d11/8
}.

where we set L = γ5C
2 d3/4

r3 for small enough constant γ5. For simplicity if either R or C were
smaller than one, we upper bound them by one, so we can assume R,C ≥ 1 without loss of gener-
ality. Similarly if r < 1, we can take r = 1, so without loss of generality we assume r = 1. Then,
the above bound simplifies to

ϵ ≤ r6

R6C6d2
. (20)

Furthermore we consider the discretization set X̃ to be points each entry is of the form kϵ̄ for an
integer k. Then, to guarantee equation 19 we should have

ϵ̄3 ≤ r2

d1/2
. (21)
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On the other hand, rounding every point x to its closest multiple of ϵ̄ in each coordinate implies that
the cover has accuracy as small as ϵ =

√
dϵ̄. Hence, to satisfy condition equation 20 we set

ϵ̄ ≜
γ4r

6

R6C6d2
√
d
,

ϵ ≜
γ4r

6

R6C6d2
,

for small enough constant γ4. Then, it is easy to check that condition equation 21 is automatically
satisfied. Furthermore, with this choice of ϵ̄ we see that γ2dc̃1ϵ ≤ C2

2 for small enough constant γ4
(γ2 is defined in Lemma 10); hence, from the guarantee of Lemma 10

max
x∈X

|g(I
o)(x)| ≤ C2 + γ2dc̃1ϵ+ ϵ1 ≤ 3

2
C2 + ϵ1,

where recall ϵ1 is the accuracy parameter for our solver in Lemma 10. Setting

ϵ1 =
C2

2
,

we conclude

max
x∈X

|g(I
o)(x)| ≤ 2C2.

Note that the attained constant two behindC2 does not matter since the parameterC of the smoothed
barrier in Theorem 8 can be off by a universal constant from Rate(X ,L). Now since the regularizer
f̃ is α = 1 strongly convex, Lemma 10 also guarantees that the regularizer that we find, g(I

o)(x), is
1
4 strongly-convex with respect to ∥.∥Lc . Finally from the runtime guarantee of Lemma 10, finding
such regularizer has runtime

O

(
NR

r

)O(d)(
LINOL

(( r

NR

)Θ(1)
))

,

where we used the fact that C2
0 + c21 + c22 = O(C4R4d2) and d ≤ N , and that we can upper bound

C by R (Note that we dropped the d in the term NRd
r since N is already exponentially large in

d). Furthermore, the cover that we considered has size at most N = |X̃ | = O
(
R
ϵ

)d
=
(
dR
r

)O(d)
.

Therefore, the overall runtime is(
dR

r

)O(d2)(
LINOL

(( r

dR

)Θ(d)
))

.

D ONLINE LINEAR OPTIMIZATION

Here we show how to run FTRL with regularizer gI
o

that is based on the instance Io which we
computed in Section C for a general instance of the online linear optimization problem as we defined
in Section 3.1; as we mentioned, our approach results in the optimal information theoretic rate up to
universal constants.

Theorem 12 (Optimal online optimization). Consider the problem of online linear optimization
with action and loss sets (X ,L) as described in Section 3.1. Given access to the regularizer gI

o

for
the instance Io of the program 9 that we can compute as described in Theorem 1 and a membership
oracle for X , there is a cutting-plane algorithm to run FTRL with regularizer gI

o

, with running time

O
(
Td2 lnO(1) (dRT ) (MEMX (δ) + 1)

)
,

which guarantees regret O(Rate(X ,L)
√
T ).
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Proof. We run FTRL with the regularizer g(I
o); namely, to calculate each step 1 ≤ t ≤ T , we solve

the following convex optimization using separation oracle for X :

xt = argmin
x∈X

Gt(x) (22)

Gt(x) ≜ ⟨x,
t−1∑
s=1

gs⟩+ gI
o

(x), (23)

up to accuracy O( αr
R2T ), namely for x̃t being the output of the algorithm we have

Gt(x̃t)−Gt(xt) ≤ O(
αr

R2T
)|sup
x∈X

Gt(x)− inf
x∈X

Gt(x)| = O(
αr

R2T
Rate(X ,L)2). (24)

Note that we used the property that for the regularizer gI
o

that we calculate in Theorem 10 we have
supx∈X |g(Io)| ≤ 2Rate(X ,L)2. Then, from Theorem 1 in Lee et al. (2018), there is a cutting-plane
method whose number of queries to a membership oracle for X is

O
(
d2 lnO(1) (dRT )

)
in addition to O

(
d2 lnO(1) (dRT )

)
arithmetic operations.

But since xt is the global minimizer of Gt we have ∇Gt(xt) = 0, and further from α/4 strong
convexity of Gt w.r.t. ∥.∥Lc :

Gt(x̃t)−Gt(xt) ≥
α

4
∥xt − x̃t∥2Lc ≥ αr

4
∥xt − x̃t∥2 ,

which combined with equation 24 implies

∥xt − x̃t∥ ≤ Rate(X ,L)
R
√
T

.

Then, from the mirror descent guarantee we have the following regret bound for the sequence xt

E

(
max
x∗∈X

T∑
t=1

⟨xt, gt⟩ − ⟨x∗, gt⟩

)
= O(Rate(X ,L)

√
T ). (25)

On the other hand, using the fact that ∥gt∥ ≤ R and that L ⊆ BR(0),

E

(
T∑

t=1

⟨xt, gt⟩ − ⟨x̃t, gt⟩

)

E

(
T∑

t=1

∥xt − x̃t∥ ∥gt∥

)
≤ Rate(X ,L)

√
T . (26)

Combining equation 25 and equation 26 completes the proof for the regret guarantee.

E SEPARATION ORACLE

Here we show a separation oracle for the feasible polytope PI of program 9.
Lemma 13 (Linear optimization oracle for L → Separation Oracle). The polytope PI for I =
(r,v,Σ) defined in equation 9 has a separation oracle with computational cost

SEPK(δ) = O

(
2c2R

3

δr3

)d (
LINOL

(
δ (1 ∧ r) /(8αR2)

)
+ d2

)
+O

(
|X̃ |2d2

)
,

where LINOL
(
δ (1 ∧ r) /(8αR2)

)
is the cost of a linear optimization oracle for L with parameter

δ = (1 ∧ r) /(8αR2).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Proof. We can readily check if conditions (1) and (2) hold for the instance I , and if not, that
condition defines the direction c for which ⟨I, c⟩ ≥ ⟨Ĩ, c⟩ for all Ĩ ∈ PI . To check condition (3) we
can do singular value decomposition in O(d3) Condition (4) is a bit trickier since it might be hard
to directly maximize v⊤Σxi

v over L. Therefore, we work with the discretization set S̃d of the unit
d-dimensional sphere; in particular, for every unit direction ṽ ∈ S̃d, we consider condition (5) with
a margin δm, namely

v⊤Σxi
v/ ∥v∥2Lc ≥ α(1 + δm). (27)

This margin allows us to easily obtain a feasible solution in PI which satisfies v⊤Σxiv ≥ α for
all v ∈ L, using condition in equation 27 which is only for the discretization points; moreover, we
check equation 27 with our linear optimization oracle which has error δlin in calculating ∥v∥Lc ;
namely, suppose equation 27 holds for all ṽ ∈ S̃d given that we substitute ∥v∥Lc in equation 27 with
the output of LINOL (δlin). Then, we are guaranteed that for every ṽ ∈ S̃d:

ṽ⊤Σxi ṽ/ (LINOL (δlin) [ṽ])
2 ≥ α(1 + δm). (28)

Now from the fact that ∥ṽ∥Lc ≥ r and LINOL (δlin) [ṽ] ≥ ∥ṽ∥Lc − δlin, picking δlin ≤ rδm
2 , we

get that

ṽ⊤Σxi ṽ/ ((1− δlin/2) ∥ṽ∥Lc)
2 ≥ α(1 + δm), (29)

which using the fact that we picked δlin ≤ δm/4 implies

ṽ⊤Σxi
ṽ/ (∥ṽ∥Lc)

2 ≥ (1− δlin/2)
2
α(1 + δm) ≥ α (1 + δm/2) . (30)

Now for arbitrary direction v ∈ Sd on the unit sphere, we bound the value of the quadratic form the
closest point in the discretization set: namely for ṽ ∈ S̃d where ∥ṽ − v∥ ≤ ϵ̃:

|v⊤Σxiv/ ∥v∥
2
Lc − ṽ⊤Σxi ṽ/ ∥ṽ∥

2
Lc |

= |v⊤Σxiv/ ∥v∥
2
Lc − ṽ⊤Σxi ṽ/ ∥v∥

2
Lc |+ |ṽ⊤Σxi ṽ/ ∥v∥

2
Lc − ṽ⊤Σxi ṽ/ ∥ṽ∥

2
Lc |. (31)

but for the first term, using ∥Σxi∥ ≤ c2:

|v⊤Σxiv − ṽ⊤Σxi ṽ| ≤ |(v − ṽ)
⊤
Σxiv|+ |(v − ṽ)

⊤
Σxi ṽ| ≤ 2c2 ∥v − ṽ∥ ≤ 2c2ϵ̃

and ∥v∥Lc ≥ r. Hence, from ϵ̃ < 1

|v⊤Σxi
v/ ∥v∥2Lc − ṽ⊤Σxi

ṽ/ ∥v∥2Lc | ≤ 2c2
ϵ̃

r2
. (32)

For the second term, using the fact that r ≤ ∥ṽ∥Lc , ∥v∥Lc ≤ R and ∥ṽ − v∥Lc ≤ R ∥ṽ − v∥:

|ṽ⊤Σxi ṽ/ ∥v∥
2
Lc − ṽ⊤Σxi ṽ/ ∥ṽ∥

2
Lc | ≤ c2

∥ṽ∥2Lc − ∥v∥2Lc

∥ṽ∥2Lc ∥v∥2Lc

≤ c2
∥ṽ − v∥Lc (∥v∥Lc + ∥ṽ∥Lc)

∥ṽ∥2Lc ∥v∥2Lc

= c2
∥ṽ − v∥Lc

∥ṽ∥Lc ∥v∥2Lc

+ c2
∥ṽ − v∥Lc

∥ṽ∥2Lc ∥v∥Lc

≤ 2ϵ̃c2R

r3
. (33)

Combining Equations equation 32 and equation 33 (from R/r ≥ 1) and plugging into equation 31

|v⊤Σxiv/ ∥v∥
2
Lc − ṽ⊤Σxi ṽ/ ∥ṽ∥

2
Lc | ≤

4ϵ̃c2R

r3
,

which combined with equation 30 and triangle inequality

v⊤Σxi
v/ (∥v∥Lc)

2 ≥ α (1 + δm/2)−
4ϵ̃c2R

r3
.
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Using ϵ̃ ≤ αr3δm
c2R

, we get

v⊤Σxi
v/ (∥v∥Lc)

2 ≥ α(1 + δm/4).

Recall that v was arbitrary in Sd. Therefore, in the case when all inequalities in equation 28 are
satisfied, we showed that I indeed satisfies condition (4) in equation 9. Finally if any of the in-
equalities equation 29 are violated, i.e. if ṽ⊤Σxi ṽ/ (LINOL (δlin) [ṽ])

2 ≥ α(1 + δm), then similar
to equation 29 we get

ṽ⊤Σxi ṽ/ ((1 + δlin/2) ∥ṽ∥Lc)
2 ≤ α(1 + δm) ≤ ṽ⊤Σxi ṽ/ (LINOL (δlin) [ṽ])

2 ≤ α(1 + δm),

which implies (from δlin ≤ δm/4)

ṽ⊤Σxi
ṽ/ (∥ṽ∥Lc)

2 ≤ α (1 + δlin/2)
2
(1 + δm) ≤ α(1 + 2δm).

Therefore, we find that the unit direction ṽṽ⊤ which satisfies

⟨ṽṽ⊤,Σxi
⟩ ≤ α ∥ṽ∥2Lc + 2αδm ∥ṽ∥2Lc

≤ α ∥ṽ∥2Lc + 2αδmR
2,

while for a valid I ∈ PI , we should have ⟨vv⊤,Σxi
⟩ ≥ α ∥v∥2Lc for all unit directions v. Hence,

we constructed a separation oracle with 2αδmR
2, which uses |S̃d| queries to the linear optimization

oracle, and its overal computational cost is O
(
|S̃d|

(
LINOL (δlin) + d2

)
+ |X̃ |2d2

)
. Finally to

have a δ-separation oracle, we need to guarantee 2αδmR2 ≤ δ, δlin ≤ δm
4 ∧ rδm

2 , ϵ̃ ≤ αr3δm
c2R

, hence
we pick

δm ≜
δ

2αR2
,

δlin ≜
δm (1 ∧ r)

4
=
δ (1 ∧ r)
8αR2

,

ϵ̃ ≜
r3δ

2c2R3
.

Hence, the overall computational cost is

O (1/ϵ̃)
d (LINOL

(
δ (1 ∧ r) /(8αR2)

)
+ d2

)
+O

(
|X̃ |2d2

)
= O

(
2c2R

3

δr3

)d (
LINOL

(
δ (1 ∧ r) /(8αR2)

)
+ d2

)
+O

(
|X̃ |2d2

)
.

F PROOFS FOR SECTIONS 5 AND 7

F.1 PROOF OF LEMMA 1

For the lower bound, we use the inequality ∇2f(x1) ≽ ∇2f(x0)− L ∥x1 − x0∥ I:

f(x) = f(x0) + ⟨∇f(x0), x− x0⟩+
∫ 1

0

∫ t

0

(x− x0)
⊤∇2f(x0 + s(x− x0))(x− x0)dsdt

≥ f(x0) + ⟨∇f(x0), x− x0⟩+
∫ 1

0

∫ t

0

(x− x0)
⊤ (∇2f(x0)− sL∥x− x0∥I

)
(x− x0)dsdt

= f(x0) + ⟨∇f(x0), x− x0⟩+
1

2
(x− x0)

⊤∇2f(x0)(x− x0)−
L

6
∥x− x0∥3

= fx0
(x) +

L

6
∥x− x0∥3 .
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For upper bound, we use the inequality ∇2f(x1) ≼ ∇2f(x0) + L ∥x1 − x0∥ I:

f(x) ≤ f(x0) + ⟨∇f(x0), x− x0⟩+
∫ 1

0

∫ t

0

(x− x0)
⊤(∇2f(x0) + sL∥x− x0∥I)(x− x0)dsdt

= f(x0) + ⟨∇f(x0), x− x0⟩+
1

2
(x− x0)

⊤∇2f(x0)(x− x0) +
L

6
∥x− x0∥3

= fx0
(x) +

L

2
∥x− x0∥3 .

F.2 PROOF OF LEMMA 2

We denote g(I)xi (x) in short by gxi
(x), and without loss of generality let xi = x0 and xj = x1. First,

note that we can translate the convex program conditions on the norm of vxi
to

∥vxi
∥ ≤ c1,

for c1 =
√
dc0. From the program constraint we have

gx1(x0) +
15L

96
∥x1 − x0∥3 ≤ rx0 . (34)

On the other hand, from ∥x0 − x∥ ≤ ϵ and the norm bounds on gradient and Hessian

|gx1
(x0)− gx1

(x)| ≤ |v⊤x1
(x0 − x)|+ |(x0 − x)

⊤
Σx0

(x0 + x− 2x1)|+
L

3
|∥x1 − x0∥3 − ∥x1 − x∥3|

(35)
≤ c1 ∥x0 − x∥+ c2 ∥x0 − x∥ (2 ∥x0 − x1∥+ ∥x0 − x∥) (36)

+
L

3
∥x0 − x∥

(
∥x1 − x0∥2 + ∥x1 − x∥2 + ∥x1 − x0∥ ∥x1 − x∥

)
, (37)

≤ c1 ∥x0 − x∥+ c2 ∥x0 − x∥ (2 ∥x0 − x1∥+ ∥x0 − x∥) (38)

+
L

3
∥x0 − x∥

(
4 ∥x1 − x0∥2 + 2 ∥x0 − x∥2

)
, (39)

where in the last line we used

∥x1 − x0∥2 + ∥x1 − x∥2 + ∥x1 − x0∥ ∥x1 − x∥ ≤ 2 ∥x1 − x0∥2 + 2 ∥x1 − x∥2 (40)

≤ 4 ∥x1 − x0∥2 + 2 ∥x0 − x∥2 . (41)

Note that picking γ ≥ 3, from the triangle inequality, ∥x− x1∥ ≥ 3
(
ϵc1
L

)1/3
, and the condition that

ϵ
√
dc0
L ≤ 1,

∥x0 − x1∥ ≥ ∥x1 − x∥ − ∥x− x0∥ ≥ 2
(ϵc1
L

)1/3
. (42)

Now based on equation 42, for the first term in equation 39, we can write

c1 ∥x0 − x∥ ≤ c1ϵ ≤
L

48
∥x1 − x0∥3 , (43)

Similarly, also because ϵ ≤ L
2000c1c32

, for the second term we have

2c2 ∥x0 − x∥ ∥x0 − x1∥ ≤ L

24
∥x0 − x1∥3 , (44)

and because ϵ ≤ 8L
c2

,

2c2 ∥x0 − x∥2 ≤ L

24
∥x0 − x1∥3 . (45)

Finally for the last term, because ϵ ≤
√

c1
4096 ,

4L

3
∥x0 − x∥ ∥x1 − x0∥2 ≤ L

48
∥x0 − x1∥3 (46)
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and
4L

3
∥x0 − x∥3 ≤ L

48
∥x0 − x1∥3 . (47)

Therefore, defining

ψx0,x(∥x0 − x1∥) ≜ c1 ∥x0 − x∥+ c2 ∥x0 − x∥ (2 ∥x0 − x1∥+ ∥x0 − x∥)

+
L

3
∥x0 − x∥

(
4 ∥x1 − x0∥2 + 2 ∥x0 − x∥2

)
,

we showed in equation 39 that for arbitrary x1,
|gx1

(x0)− gx1
(x)| ≤ ψx0,x(∥x0 − x1∥), (48)

and for x1 such that ∥x− x1∥ ≥ 3
(

ϵ
√
dc0
L

)1/3
, or ∥x1 − x0∥ ≥ 2

(
ϵc1
L

)1/3
, Combining equa-

tion 43, equation 44, equation 41, equation 46, equation 47 with equation 39:

ψx0,x(∥x0 − x1∥) ≤
3L

48
∥x0 − x1∥3 . (49)

Therefore, for ∥x− x1∥ ≥ 4
(

ϵ
√
dc0
L

)1/3
,

|gx1
(x0)− gx1

(x)| ≤ 7L

48
∥x0 − x1∥3 ,

which combined with Equation equation 34

gx1
(x) +

L

96
∥x1 − x0∥3 ≤ rx0

. (50)

On the other hand, note that

|gx0
(x)− rx0

| ≤ |v⊤x0
(x− x0)|+

1

2
(x− x0)

⊤Σx0
(x− x0) ≤ c1ϵ+

c2
2
ϵ2 ≤ 2c1ϵ,

where in the last line we used ϵ ≤ c1
c2

. But now picking the constant γ large enough we can guarantee
that

L

96
∥x0 − x1∥3 ≥ 3c1ϵ.

Combining equation 51 with equation 50, we conclude the first argument
gx1

(x) + c1ϵ ≤ gx0
(x).

On the other hand, note thatψx0,x(x1) is increasing in ∥x1 − x0∥. Therefore, combining equation 48

and equation 49, for any x1 such that ∥x1 − x∥ ≤ γ
(

ϵ
√
dc0
L

)1/3
|gx1

(x0)− gx1
(x)| ≤ ψx0,x(∥x0 − x1∥) ≤ ψx0,x(γ

(
ϵ
√
dc0
L

)1/3

) ≤ 3L

48

(γ ϵ√dc0
L

)1/3
3

(51)

= γ2ϵ
√
dc0. (52)

F.3 PROOF OF LEMMA 3

Note that the Hessian of ∥x− x0∥3 is α strong convexity of f means for v with ∥v∥L = 1 we have
v⊤∇2f(x0)v ≥ α. But from Assumption equation 1 we get ∥v∥ ≤ R. Therefore,

v⊤∇2fx0
(x)v = v⊤

(
∇2f(x0)− L∇(∥x− x0∥(x− x0))

)
v

= v⊤
(
∇2f(x0)− L∇(∥x− x0∥(x− x0))

)
v

= v⊤
(
∇2f(x0)− L∥x− x0∥I −

L

∥x− x0∥
(x− x0)(x− x0)

⊤
)
v

≥ α− 2R2L ∥x− x0∥

≥ α

2
.
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F.4 PROOF OF THEOREM 4

Here we prove Theorem 4. Before diving into the proof, we need to state and prove Lemma 14 so
that we can obtain an α/2 strong convexity property for the approximate regularizer in Theorem 4.
In particular, Lemma 14 combines Lemmas 2 and 3 and concludes that the feasibility of I for the
program implies strong convexity of g with respect to ∥.∥Lc .

Lemma 14 (Program feasibility → strong convexity). Suppose I = (r,v,Σ) is a feasible so-
lution to LP equation 9 with respect to an ϵ-cover {xi}Ni=1 in X for the Euclidean norm, i.e.
∀x ∈ X , ∃xi s.t. ∥x− xi∥ ≤ ϵ, where ϵ satisfies

ϵ ≤ α3

512R6L2c0
√
d
.

Then, for any point x ∈ X , g is second order continuously right and left differentiable with

D2,lg(x)[v, v], D2,rg(x)[v, v] ≥ α

2
∥v∥2Lc ,

whereD2,lg(x)[v, v] andD2,rg(x)[v, v] denote the left and right second order directional derivative
of f at x in direction v.

Proof. For x ∈ X let I(x) = argmaxi∈[N ] gxi
(x) be the set of indices for which gxi

(x) achieves its
maximum at x. First, note that for the one-dimensional function h(t) = g(I)(x+tv), the subgradient
of h zero is exactly

[ min
i∈I(x)

Dgxi(x)[v], max
i∈I(x)

Dgxi(x)[v]],

due to the convexity of gxi ’s. In fact, h′l(0) = mini∈I(x)Dgxi(x)[v] and h′r(0) =
maxi∈I(x)Dgxi

(x)[v]. Now let

Ir,v = argmax
i∈I(x)

Dgxi(x)[v]

I l,v = argmin
i∈I(x)

Dgxi(x)[v].

Then the second left and right directional derivatives at point x are given by

D2,lg(x)[v, v] = h′′l(0) = max
i∈Il(x)

D2gxi
(x)[v, v], (53)

D2,lg(x)[v, v] = h′′r(0) = max
i∈Ir(x)

D2gxi [v, v]. (54)

Furthermore, note that from Lemma 2, for every xi such that ∥xi − x∥ ≥ 4
(

ϵ
√
dc0
L

)1/3
, we have

g
(I)
xi (x) < g

(I)
x0 (x), therefore i /∈ I . Hence, we should have

∥∥∥x− xî(x)

∥∥∥ ≤ 4
(

ϵ
√
dc0
L

)1/3
for all

î ∈ I . But using the upper bound given on ϵ we get

∥∥∥x− xî(x)

∥∥∥ ≤ 4

(
ϵ
√
dc0
L

)1/3

≤ α

2R2L
.

Hence, From Lemma 3, we have that gxî
(x) is α

2 strongly convex at x, for all î ∈ I:

v⊤∇2gxî
(x)v ≥ α

2
∥v∥2Lc . (55)

Finally combining this with equation 54 we conclude

D2,lg(x)[v, v], D2,rg(x)[v, v] ≥ α

2
∥v∥2Lc .
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Next, we state the proof of Theorem 4.

Proof of Theorem 4. Consider the solution Ĩ =
(
r̃, ṽ, Σ̃

)
where ∀i ∈ [N ]

Σ̃xi
= ∇2f(xi),

ṽxi
= ∇f(xi),

r̃xi
= f(xi).

First note that from Lemma 1 we get fx0
(x) + 1

6∥x − x0∥3 ≤ f(x), which implies g(Ĩ)xi (xj) +
15L
96 ∥xj − xi∥3 ≤ rxj

for the above choice for Ĩ. Moreover, rx0
≤ f(x0) ≤ C2 ≤ C0, and from

c̃1 Lipschitz and c̃2 gradient Lipschitz conditions on f , we get ∀i, ∥ṽxi∥ ≤ c̃1, ∀i, Σ̃xi ≼ c̃2I , and
the ∥.∥Lc − α strong convexity of f shows that Ĩ satisfies the condition v⊤Σxiv ≥ α,∀v ∈ C,∀i.
Hence, Ĩ is feasible for the LP. In particular, note that we do not need the additional Lϵ̄3 terms in the
definition of c0, c2, C0 to show the feasibility of Ĩ for the LP; these extra terms are only required for
the third argument of Lemma 4 to show that not only Ĩ is feasible, but a ball around it is also feasible.
We will prove that shortly. Next, from Lemma 2, we see that the maximum maxi∈[N ] g

Ĩ
xi
(x) at point

x ∈ X is never achieved by far xj’s from x, farther than ∥xj − x∥ ≥ γ
(

ϵ
√
dc0
L

)1/3
, since the value

of gxj
(x) is smaller than gxi

(x) for the element of the cover xi that is ϵ close to x. On the other hand,

again from Lemma 2 for xi such that ∥xi − x∥ ≤ ϵ and any xj such that ∥xj − x∥ ≤ γ
(

ϵ
√
dc0
L

)1/3
,

we have
|g(Ĩ)xj

(xi)− g(Ĩ)xj
(x)| ≤ γ2ϵ

√
dc0,

and from LP feasibility

g(Ĩ)xj
(xi) ≤ rxi

.

Therefore,

max
i∈[N ]

|g(Ĩ)xi
(x)| ≤ max

i∈[N ]
|ri|+ γ2ϵ

√
dc0

= max
i∈[N ]

|f(xi)|+ γ2ϵ
√
dc0

≤ C2 + γ2ϵ
√
dc0.

Therefore, the optimal solution I∗ should satisfy maxi∈[N ]|g
(I∗)
xi (x)| ≤ C2+γ2ϵ

√
dc0 which proves

the first argument equation 1. Finally, combining Lemmas 14 and 15 we get the α/2 shows strong
convexity of g(I) with respect to ∥.∥Lc for argument equation 2.

Next we show the third argument; note that f satisfies a slightly stronger inequality compared to the
first condition of the LP equation 9, namely

f(xi) + ⟨∇f(xi), xj − xi⟩+
1

2
(xj − xi)

⊤∇2f(xi)(xj − xi)−
L

3
∥xj − xi∥3 (56)

+

(
L

6
− L

96

)
∥xj − xi∥3 +

L

96
∥xj − xi∥3 ≤ f(xj), (57)

or, since we constructed instance Ĩ from f ,

g(Ĩ)xi
(xj) +

15L

96
∥xj − xi∥3 +

L

96
∥xj − xi∥3 ≤ f(xj). (58)

But if
∥∥Σ−∇2f(xi)

∥∥ ≤ Lϵ̄
144 ≤ L

144 ∥xj − xi∥, then
1

2
|(xj − xi)

⊤∇2f(xi)(xj − xi)− (xj − xi)
⊤Σ(xj − xi)| ≤

1

2

∥∥∥(xj − xi) (xj − xi)
⊤
∥∥∥
F

∥∥∇2f(xi)− Σ
∥∥
F

≤ 1

2
∥xj − xi∥2

∥∥∇2f(xi)− Σ
∥∥
F

≤ L

288
∥xj − xi∥3 .

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Given ∥∇f(xi)− v∥ ≤ Lϵ̄2

288 ≤ L
288 ∥xj − xi∥2, we get

|⟨∇f(xi), xj − xi⟩ − ⟨v, xj − xi⟩| ≤ ∥∇f(xi)− v∥ ∥xj − xi∥ ≤ L

288
] ∥xi − xj∥3 .

Finally under |f(xi)− r| ≤ L
288 ϵ̄

3 ≤ L
288 ∥xj − xi∥3. Hence, if we assume

∥∥∥I − Ĩ
∥∥∥ ≤ L

288 ϵ̄
3, then

combining the above Equations we get

|g(I)xi
(xj)− g(Ĩ)xi

(xj)| = |g(I)xi
(xj)− fxi

(xj)| ≤
L

96
∥xj − xi∥3 .

But plugging this into equation 58

g(I)xi
(xj) +

15L

96
∥xj − xi∥3 ≤ f(xj), (59)

Finally note that
∥∥∥I − Ĩ

∥∥∥ ≤ L
288 ϵ̄

3 also implies ∀i ∈ [N ]:

|rxi | ≤ |rxi − r̃xi |+ |r̃xi | ≤ C2 + Lϵ̄3,

∥vxi
∥ ≤ ∥ṽxi

∥∞ + ∥vxi
− ṽxi

∥ ≤ c̃1 + Lϵ̄3,

Σxi
≼
∥∥∥Σxi

− Σ̃xi

∥∥∥ I + Σ̃xi
≼
(
c̃2 + Lϵ̄3

)
I.

Therefore, Ĩ is still feasible for the program equation 9 with our choice of parameters c0, c2, C0

here. Hence, we conclude

BLϵ̄3/288(Ĩ) ⊆ PI ⊆ B
2
√

(N+1)C0
2+Nd(c20+c22)

(Ĩ).

Finally note that for arbitrary I ∈ PI which satisfies the conditions in LP equation 9, we have

∥I∥2 ≤ r2 +
∑
i

|rxi
|2 + ∥vxi

∥2 + ∥Σxi
∥2

≤ (N + 1)C0
2 +Ndc20 +Ndc22,

which implies

PI ⊆ B
2
√

(N+1)C0
2+Nd(c20+c22)

(Ĩ).

F.5 PROOF OF THEOREM 5

Consider the random distribution in Theorem 1.2 of Bhattiprolu et al. (2021). Then from property
(3), there exists a unit direction v with ∥v∥L ≤ 1

d1−ϵ . Then we claim that ∥v∥Lc ≤ 1
d1−ϵ . This is

because ∥v∥L = sup∥w∥c
L
⟨v, w⟩ ≥ ⟨v, v

∥v∥c
L
⟩ = 1

∥v∥c
L

. Hence, ∥v∥cL ≥ d1−ϵ. Hence, for ṽ = v
∥v∥Lc

we have ∥ṽ∥Lc = 1 and ∥ṽ∥ ≤ 1
d1−ϵ .

G STRONG CONVEXITY

Here we show that a lower bound on the second derivative implies strong convexity with respect to
arbitrary norms.
Lemma 15 (Lower bound on second derivative → strong convexity). Suppose for convex function
g : X → R which is second order continuously differentiable except in a finite number of points
in which it is only left or right second order differentiable. Suppose the second left or right deriva-
tives in arbitrary direction v, which we denote by D2,lg(x)[v, v], D2,rg(x)[v, v] respectively, are at
least α ∥v∥2Lc . Then, g is strongly convex with respect to ∥.∥cL, namely for any x, y ∈ X and any
subgradient vx of f at point x:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ α ∥y − x∥2Lc .
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Proof. Without loss of generality assume ∥y − x∥Lc = 1 and define the one variable function h(t) :
[0, 1] → R: h(t) = g(x+ t(y − x)), and let 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ 1 are the non-differentiable
points of h(t) on [0, 1], which we know are finite from our assumption. But from differentiability of
h between these points, we can write (define t0 = 0, tk+1 = 1)

f(y) = g(1) =

k∑
i=1

∫ ti+1

ti

g′(t)dt, (60)

where for the integral in [ti, ti+1] by h′(ti) and h′(ti+1) we mean the right derivative h′r(ti) and
left derivative h′l(ti+1), respectively. Now we show that for all t ∈ [0, 1]

h′l(t), h′r(t) ≥ h′r(0) + αt. (61)

We show this inductively for t ∈ (ti, ti+1) for i = 0, . . . , k. Particularly, the induction argument for
step i is that for t ∈ (ti, ti+1), h′(t) ≥ αt+ h′r(0), and h′l(ti+1), h

′r(ti+1) ≥ h′r(0) + ti+1α. The
base trivial since h′r(0) ≥ h′r(0). For the step of induction from i− 1 to i, we know

g′r(ti) ≥ αti. (62)

Now for any t ∈ (ti, ti+1) we can write

h′(t) =

∫ t

ti

h′′(s)ds ≥ α(t− ti), (63)

and particularly for ti+1:

h′l(ti+1) =

∫ ti+1

ti

h′′(s)ds ≥ α(ti+1 − ti). (64)

On the other hand, from the convexity of g,

h′l(ti+1) ≤ h′r(ti+1). (65)

Combining equation 63 equation 64 equation 65 with equation 62 completes the setp of induction.

Finally combining equation 61 with equation 60 and noting the fact that for any subgradient v at
point x, ⟨v, y − x,≤⟩h′r(0),

f(y) ≥ h′r(0) +

∫ 1

0

αtdt ≥ h′r(0) +
α

2
,

which completes the proof.
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