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Before they even speak, infants become attuned to the sounds
of the language(s) they hear, processing native phonetic con-
trasts more easily than nonnative ones. For example, between
6 to 8 mo and 10 to 12 mo, infants learning American English
get better at distinguishing English and [l], as in “rock” vs.
“lock,” relative to infants learning Japanese. Influential accounts
of this early phonetic learning phenomenon initially proposed
that infants group sounds into native vowel- and consonant-like
phonetic categories—like and [l] in English—through a sta-
tistical clustering mechanism dubbed “distributional learning.”
The feasibility of this mechanism for learning phonetic cate-
gories has been challenged, however. Here, we demonstrate
that a distributional learning algorithm operating on naturalis-
tic speech can predict early phonetic learning, as observed in
Japanese and American English infants, suggesting that infants
might learn through distributional learning after all. We fur-
ther show, however, that, contrary to the original distributional
learning proposal, our model learns units too brief and too fine-
grained acoustically to correspond to phonetic categories. This
challenges the influential idea that what infants learn are pho-
netic categories. More broadly, our work introduces a mechanism-
driven approach to the study of early phonetic learning, together
with a quantitative modeling framework that can handle real-
istic input. This allows accounts of early phonetic learning to
be linked to concrete, systematic predictions regarding infants’
attunement.

phonetic learning | language acquisition | computational modeling

Adults have difficulties perceiving consonants and vowels
of foreign languages accurately (1). For example, native

Japanese listeners often confuse American English and [l] (as
in “rock” vs. “lock”) (2, 3), and native American English listeners
often confuse French [u] and [y] (as in “roue,” wheel, vs. “rue,”
street) (4). This phenomenon is pervasive (5) and persistent: Even
extensive, dedicated training can fail to eradicate these difficul-
ties (6–8). The main proposed explanations for this effect revolve
around the idea that adult speech perception involves a “native
filter”: an automatic, involuntary, and not very plastic mapping
of each incoming sound, foreign or not, onto native phonetic cat-
egories—i.e., the vowels and consonants of the native language
(9–13). American English and [l], for example, would be con-
fused by Japanese listeners because their productions can be
seen as possible realizations of the same Japanese consonant,
giving rise to similar percepts after passing through the “native
Japanese filter.”

Surprisingly, these patterns of perceptual confusion arise very
early during language acquisition. Infants learning American
English distinguish and [l] more easily than infants learning
Japanese before they even utter their first word (14). Dozens of
other instances of such early phonetic learning have been doc-
umented, whereby cross-linguistic confusion patterns matching
those of adults emerge during the first year of life (15–17). These
observations naturally led to the assumption that the same mech-
anism thought to be responsible for adults’ perception might

be at work in infants—i.e., foreign sounds are being mapped
onto native phonetic categories. This assumption—which we will
refer to as the phonetic category hypothesis—is at the core of the
most influential theoretical accounts of early phonetic learning
(9, 18–21).

The notion of phonetic category plays an important role
throughout the paper, and so requires further definition. It has
been used in the literature exclusively to refer to vowel- or
consonant-like units. What that means varies to some extent
between authors, but there are at least two constant, defining
characteristics (22). First, phonetic categories have the char-
acteristic size/duration of a vowel or consonant, i.e., the size
of a phoneme, the “smallest distinctive unit within the struc-
ture of a given language” (1, 23). This can be contrasted
with larger units like syllables or words and smaller units like
speech segments corresponding to a single period of vocal fold
vibration in a vowel. Second, phonetic categories—although
they may be less abstract than phonemes⇤ —retain a degree
of abstractness and never refer to a single acoustic exem-
plar. For example, we would expect a given vowel or con-
sonant in the middle of a word repeated multiple times by
the same speaker to be consistently realized as the same pho-
netic category, despite some acoustic variation across repetitions.
Finally, an added characteristic in the context of early phonetic
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learning is that phonetic categories are defined relative to a lan-
guage. What might count as exemplars from separate phonetic
categories for one language might belong to the same category in
another.

The phonetic category hypothesis—that infants learn to pro-
cess speech in terms of the phonetic categories of their native
language—raises a question. How can infants learn about these
phonetic categories so early? The most influential proposal in
the literature has been that infants form phonetic categories by
grouping the sounds they hear on the basis of how they are
distributed in a universal (i.e., language-independent) percep-
tual space, a statistical clustering process dubbed “distributional
learning” (24–27).

Serious concerns have been raised regarding the feasibility
of this proposal, however (28, 29). Existing phonetic category
accounts of early phonetic learning assume that speech is being
represented phonetic segment by phonetic segment—i.e., for
each vowel and consonant separately—along a set of language-
independent phonetic dimensions (9, 19, 20).† Whether it is pos-
sible for infants to form such a representation in a way that would
enable distributional learning of phonetic categories is question-
able, for at least two reasons. First, there is a lack of acoustic–
phonetic invariance (30–32): There is not a simple mapping from
speech in an arbitrary language to an underlying set of universal
phonetic dimensions that could act as reliable cues to phonetic
categories. Second, phonetic category segmentation—finding reli-
able language-independent cues to boundaries between phonetic
segments (i.e., individual vowels and consonants)—is a hard
problem (30). It is clear that finding a solution to these problems
for a given language is ultimately feasible, as literate adults read-
ily solve them for their native language. Assuming that infants
are able to solve them from birth in a language-universal fash-
ion is a much stronger hypothesis, however, with little empirical
support.

Evidence from modeling studies reinforces these concerns.
Initial modeling work investigating the feasibility of learning
phonetic categories through distributional learning sidestepped
the lack-of-invariance and phonetic category segmentation prob-
lems by focusing on drastically simplified learning conditions
(33–38), but subsequent studies considering more realistic vari-
ability have failed to learn phonetic categories accurately (29,
39–43) (SI Appendix, Discussion 1).

These results have largely been interpreted as a challenge
to the idea that distributional learning is how infants learn
phonetic categories. Additional learning mechanisms tapping
into other sources of information plausibly available to infants
have been proposed (26, 28, 29, 39–44), but existing feasibil-
ity results for such complementary mechanisms still assume
that the phonetic category segmentation problem has somehow
been solved and do not consider the full variability of natural
speech (29, 36, 39–43, 45). Attempts to extend them to more
realistic learning conditions have failed (46, 47) (SI Appendix,
Discussion 1).

Here, we propose a different interpretation for the observed
difficulty in forming phonetic categories through distributional
learning: It might indicate that what infants learn are not pho-
netic categories. We are not aware of empirical results estab-
lishing that infants learn phonetic categories, and, indeed, the
phonetic category hypothesis is not universally accepted. Some
of the earliest accounts of early phonetic learning were based
on syllable-level categories and/or on continuous representations

†In some accounts, the phonetic dimensions are assumed to be “acoustic” (9)—e.g., for-
mant frequencies—in others, they are “articulatory” (19)—e.g., the degree of vocal
tract opening at a constriction—and some accounts remain noncommittal (20).

without any explicit category representations‡ (48–51). Although
they appear to have largely fallen out of favor, we know of no
empirical findings refuting them.

We present evidence in favor of this alternative interpretation,
first by showing that a distributional learning mechanism applied
to raw, unsegmented, unlabeled continuous speech signal pre-
dicts early phonetic learning as observed in American English
and Japanese-learning infants—thereby providing a realistic
proof of feasibility for the proposed account of early phonetic
learning. We then show that the speech units learned through
this mechanism are too brief and too acoustically variable to
correspond to phonetic categories.

We rely on two key innovations. First, whereas previous stud-
ies followed an outcome-driven approach to the study of early
phonetic learning—starting from assumptions about what was
learned, before seeking plausible mechanisms to learn it—we
adopt a mechanism-driven approach—focusing first on the ques-
tion of how infants might plausibly learn from realistic input,
and seeking to characterize what was learned only a posteriori.
Second, we introduce a quantitative modeling framework suit-
able to implement this approach at scale using realistic input.
This involves explicitly simulating both the ecological learning
process taking place at home and the assessment of infants’
discrimination abilities in the laboratory.

Beyond the immediate results, the framework we introduce
provides a feasible way of linking accounts of early phonetic
learning to systematic predictions regarding the empirical phe-
nomenon they seek to explain—i.e., the observed cross-linguistic
differences in infants’ phonetic discrimination.

Approach
We start from a possible learning mechanism. We simulate the
learning process in infants by implementing this mechanism
computationally and training it on naturalistic speech record-
ings in a target language—either Japanese or American English.
This yields a candidate model for the early phonetic knowledge
of, say, a Japanese infant. Next, we assess the model’s abil-
ity to discriminate phonetic contrasts of American English and
Japanese—for example, American English vs [l]—by simulat-
ing a discrimination task using speech stimuli corresponding to
this contrast. We test whether the predicted discrimination pat-
terns agree with the available empirical record on cross-linguistic
differences between American English- and Japanese-learning
infants. Finally, we investigate whether what has been learned by
the model corresponds to the phonetic categories of the model’s
“native” language (i.e., its training language).

To identify a promising learning mechanism, we build on
recent advances in the field of machine learning and, more
specifically, in unsupervised representation learning for speech
technology, which have established that, given only raw, untran-
scribed, unsegmented speech recordings, it is possible to learn
representations that accurately discriminate the phonetic cate-
gories of a language (52–69). The learning algorithms consid-
ered have been argued to be particularly relevant for modeling
how infants learn in general, and learn language in particu-
lar (70). Among available learning algorithms, we select the
one at the core of the winning entries in the Zerospeech 2015

‡Note that the claims in all of the relevant theoretical accounts are for the formation of
explicit representations, in the sense that they are assumed to be available for manipu-
lation by downstream cognitive processes at later developmental stages (see, e.g., ref.
20). Thus, even if one might be tempted to say that phonetic categories are implicitly
present in some sense in a representation—for example, in a continuous representation
exhibiting sharp increases in discriminability across phonetic category boundaries (48)—
unless a plausible mechanism by which downstream cognitive processes could explicitly
read out phonetic categories from that representation is provided, together with evi-
dence that infants actually use this mechanism, this would not be sufficient to support
the early phonetic category acquisition hypothesis.
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Fig. 1. Gaussian mixture model training and representation extraction, illustrated for a model with three Gaussian components. In practice, the number
of Gaussian components is learned from the data and much higher. (A) Model training: The learning algorithm extracts moderate-dimensional (d = 39)
descriptors of the local shape of the signal spectrum at time points regularly sampled every 10 ms (speech frames). These descriptors are then considered
as having been generated by a mixture of Gaussian probability distributions, and parameters for this mixture that assign high probability to the observed
descriptors are learned. (B) Model test: The sequence of spectral-shape descriptors for a test stimulus (possibly in a language different from the training
language) are extracted, and the model representation for that stimulus is obtained as the sequence of posterior probability vectors resulting from mapping
each descriptor to its probability of having been generated by each of the Gaussian components in the learned mixture.

and 2017 international competitions in unsupervised speech-
representation learning (57, 58, 68). Remarkably, it is based
on a Gaussian mixture clustering mechanism—illustrated in
Fig. 1A—that can straightforwardly be interpreted as a form of
distributional learning (24, 26). A different input representa-
tion to the Gaussian mixture is used than in previously proposed
implementations of distributional learning, however (29, 33, 35,
37–39, 41). Simple descriptors of the shape of the speech sig-
nal’s short-term auditory spectrum sampled at regular points in
time (every 10 ms) (71) are used instead of traditional phonetic
measurements obtained separately for each vowel and conso-
nant, such as formant frequencies or harmonic amplitudes.§
This type of input representation only assumes basic auditory
abilities from infants, which are known to be fully operational
shortly after birth (74), and has been proposed previously as
a potential way to get around both the lack-of-invariance and
the phonetic category segmentation problems in the context of
adult word recognition (30). A second difference from previ-
ous implementations of distributional learning is in the output
representation. Test stimuli are represented as sequences of
posterior probability vectors (posteriorgrams) over K Gaussian
components in the mixture (Fig. 1B), rather than simply being
assigned to the most likely Gaussian component. These con-
tinuous representations have been shown to support accurate
discrimination of native phonetic categories in the Zerospeech
challenges.

To simulate the infants’ learning process, we expose the
selected learning algorithm to a realistic model of the lin-
guistic input to the child, in the form of raw, unsegmented,
untranscribed, multispeaker continuous speech signal in a tar-
get language (either Japanese or American English). We select
recordings of adult speech made with near-field, high-quality
microphones in two speech registers, which cover the range
of articulatory clarity that infants may encounter. On one end
of the range, we use spontaneous adult-directed speech, and
on the other, we use read speech; these two speaking regis-
ters are crossed with the language factor (English or Japanese),
resulting in four corpora, each split into a training set and
a test set (Table 1). We would have liked to use recordings
made in infants’ naturalistic environments, but no such dataset

§There was a previous attempt to model infant phonetic learning from such
spectrogram-like auditory representations of continuous speech (72, 73), but it did not
combine this modeling approach with a suitable evaluation methodology.

of sufficient audio quality was available for this study. It is
unclear whether or how using infant-directed speech would
impact results: The issue of whether infant-directed speech is
beneficial for phonetic learning has been debated, with argu-
ments in both directions (75–82). We train a separate model
for each of the four training sets, allowing us to check that our
results hold across different speech registers and recording con-
ditions. We also train separate models on 10 subsets of each
training set for several choices of subset sizes, allowing us to
assess the effects of varying the amount of input data and the
variability due to the choice of training data for a given input
size.

We next evaluate whether the trained “Japanese native”
and “American-English native” models correctly predict early
phonetic learning, as observed in Japanese-learning and Amer-
ican English-learning infants, respectively, and whether they
make novel predictions regarding the differences in speech-
discrimination abilities between these two populations. Because
we do not assume that the outcome of infants’ learning is adult-
like knowledge, we can only rely on infant data for evaluation.
The absence of specific assumptions a priori about what is going
to be learned and the sparsity of empirical data on infant dis-
crimination make this challenging. The algorithm we consider
outputs complex, high-dimensional representations (Fig. 1B)
that are not easy to link to concrete predictions regarding infant
discrimination abilities. Traditional signal-detection theory mod-
els of discrimination tasks (87) cannot handle high-dimensional
perceptual representations, while more elaborate (Bayesian)
probabilistic models (88) have too many free parameters given
the scarcity of available data from infant experiments. We rely,
instead, on the machine ABX approach that we previously devel-
oped (89, 90). It consists of a simple model of a discrimination

Table 1. Language, speech register, duration, and number of
speakers of training and test sets for our four corpora of speech
recordings

Corpus Language Reg. Duration No. of speakers

Train Test Train Test
R-Eng (83) Am. English Read 19h30 9h39 96 47
R-Jap (84) Japanese Read 19h33 9h40 96 47
Sp-Eng (85) Am. English Spont. 9h13 9h01 20 20
Sp-Jap (86) Japanese Spont. 9h11 8h57 20 20

Am., American; reg., register; spont., spontaneous.
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task, which can handle any representation format, provided the
user can provide a reasonable measure of (dis)similarity between
representations (89, 90). This is not a detailed model of infant’s
performance in a specific experiment, but, rather, a simple and
effectively parameterless way to systematically link the complex
speech representations produced by our models to predicted
discrimination patterns. For each trained model and each pho-
netic contrast of interest, we obtain an “ABX error rate,”
such that 0% and 50% error indicate perfect and chance-
level discrimination, respectively. This allows us to evaluate
the qualitative match between the model’s discrimination abil-
ities and the available empirical record in infants (see SI
Appendix, Discussion 3 for an extended discussion of our
approach to interpreting the simulated discrimination errors
and relating them to empirical observations, including why it
would not be meaningful to seek a quantitative match at this
point).

Finally, we investigate whether the learned Gaussian com-
ponents correspond to phonetic categories. We first compare
the number of Gaussians in a learned mixture to the number
of phonemes in the training language (category number test):
Although a phonetic category can be more concrete than a
phoneme, the number of phonetic categories documented in typ-
ical linguistic analyses remains on the same order of magnitude
as the number of phonemes. We then administer two diagnostic
tests based on the two defining characteristics identified above
that any representation corresponding to phonetic categories
should pass.¶ The first characteristic is size/duration: A phonetic
category is a phoneme-sized unit (i.e., the size of a vowel or a
consonant). Our duration test probes this by measuring the aver-
age duration of activation of the learned Gaussian components
(a component is taken to be “active” when its posterior proba-
bility is higher than all other components), and comparing this
to the average duration of activation of units in a baseline system
trained to recognize phonemes with explicit supervision. The sec-
ond characteristic is abstractness: Although phonetic categories
can depend on phonetic contextk and on nonlinguistic properties
of the speech signal—e.g., the speaker’s gender—at a minimum,
the central phone in the same word repeated several times by
the same speaker is expected to be consistently realized as the
same phonetic category. Our acoustic (in)variance test probes
this by counting the number of distinct representations needed
by our model to represent 10 occurrences of the central frame
of the central phone of the same word either repeated by the
same speaker (within-speaker condition) or by different speak-
ers (across-speaker condition). We use a generous correction to
handle possible misalignment (Materials and Methods). The last
two tests can be related to the phonetic category segmentation
and lack-of-invariance problems: Solving the phonetic category
segmentation problem involves finding units that would pass
the duration test, while solving the lack-of-invariance problem
involves finding units that would pass the acoustic (in)variance
test. Given the laxity in the use of the concept of phonetic cate-
gory in the literature, some might be tempted to challenge that
even these diagnostic tests can be relied on. If they cannot, how-
ever, it is not clear to us how phonetic category accounts of early
phonetic learning should be understood as scientifically refutable
claims.

¶This provides necessary but not sufficient conditions for “phonetic categoriness,” but
since we will see that the representations learned in our simulations already fail these
tests, more fine-grained assessments will not be required.

kFor example, in the American English word “top,” the phoneme /t/ is realized as an aspi-
rated consonant [th] (i.e., there is a slight delay before the vocal folds start to vibrate
after the consonant), whereas in the word “stop,” it is realized as a regular voice-
less consonant [t], which might be considered to correspond to a different phonetic
category than [th].

Results
Overall Discrimination. After having trained a separate model for
each of the four possible combinations of language and register,
we tested whether the models’ overall discrimination abilities,
like those of infants (15–17), are specific to their “native” (i.e.,
training) language. Specifically, for each corpus, we looked at
overall discrimination errors averaged over all consonant and
vowel contrasts available in a held-out test set from that corpus
(Table 1). We tested each of the two American English-trained
and each of the two Japanese-trained models on each of four test
sets, yielding a total of 4⇥4 discrimination errors. We tabulated
the average errors in terms of four conditions, depending on the
relation between the test set and the training background of the
model: native vs. nonnative contrasts and same vs. different regis-
ter. The results are reported in Fig. 2 (see also SI Appendix, Figs.
S1 and S4 for nontabulated results). Fig. 2A shows that discrim-
ination performance is higher, on average, in matched-language
conditions (in blue) than in mismatched-language conditions (in
red). In contrast, register mismatch has no discernible impact
on discrimination performance. A comparison with a supervised
phoneme-recognizer baseline (SI Appendix, Fig. S3) shows a sim-
ilar pattern of results, but with a larger absolute cross-linguistic
difference. If we interpret this supervised baseline as a proxy
to the adult state, then our model suggests that infant’s pho-
netic representations, while already language-specific, remain
“immature”.⇤⇤ Fig. 2B shows the robustness of these results,
with 81.7% of the 1,295 distinct phonetic contrasts tested prov-
ing easier to discriminate on the basis of representations from
a model trained on the matching language. Taken together,
these results suggest that, similar to infants, our models acquire
language-specific representations, and that these representations
generalize across register.

American English –[l] Discrimination. Next, we focus on the spe-
cific case of American English –[l] discrimination, for which
Japanese adults show a well-documented deficit (2, 3) and
which has been studied empirically in American English and
Japanese infants (14). While 6- to 8-mo-old infants from Amer-
ican English- and Japanese-language backgrounds performed
similarly in discriminating this contrast, 10- to 12-mo-old Amer-
ican English infants outperformed their Japanese peers. We
compare the discrimination errors obtained with each of our
four models for American English –[l] and for two controls:
the American English [w]–[j] contrast (as in “wet” vs. “yet”), for
which we do not expect a gap in performance between Amer-
ican English and Japanese natives (95), and the average error
over all of the other consonant contrasts of American English.
For each contrast and for each of the four models, we aver-
aged discrimination errors obtained on each of the two American
English held-out test sets, yielding 3⇥4 discrimination errors.
We further averaged over models with the same native lan-
guage to obtain 3⇥2 discrimination errors. The results are shown
in Fig. 3 (see also SI Appendix, Figs. S2 and S6 for untabu-
lated results and a test confirming our results with the synthetic
stimuli used in the original infant experiment, respectively). In
Fig. 3A, we see that, similar to 10- to 12-mo old infants, Ameri-
can English native models (in blue) greatly outperform Japanese
native models (in red) in discriminating American English –
[l]. Here, again, a supervised phoneme-recognizer baseline yields
a similar pattern of results, but with larger cross-linguistic dif-
ferences (Fig. 3C; see also SI Appendix, Fig. S5), again sug-
gesting that the representations learned by the unsupervised
models—like those of infants—remain somewhat “immature.”

**This is compatible with empirical evidence that phonetic learning continues into
childhood well beyond the first year (see refs. 91–93, for example).
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Fig. 2. (A) Average ABX error rates over all consonant and vowel contrasts obtained with our models as a function of the match between the training-set
and test-set language and register. Error bars correspond to plus and minus one SD of the errors across resampling of the test-stimuli speakers. The native
(blue) conditions, with training and test in the same language, show fewer discrimination errors than the nonnative (red) conditions, whereas there is little
difference in error rate within the native and within the nonnative conditions. This shows that the models learned native-language-specific representations
that generalize across register. (B) Letter-value representation (94) of the distribution of native advantages across all tested phonetic contrasts (pooled over
both languages). The native-language advantage is the increase in discrimination error for a contrast of language L1 between an “L1-native” model and
a model trained on the other language for the same training register. The “native register” advantage is the increase in error for a contrast of register R1
between an “R1-native” model and a model trained on the other register for the same training language. A native language advantage is observed across
contrasts (positive advantage for 81.7% of all contrasts), and there is a weaker native register advantage (positive advantage for 60.1% of all contrasts).

In Fig. 3B, we see results obtained by training 10 different models
on 10 different subsets of the training set of each corpus, vary-
ing the sizes of the subsets (see Materials and Methods for more
details). It reveals that 1 h of input is sufficient for the divergence
between the Japanese and English models to emerge robustly
and that this divergence increases with exposure to the native
language. While it is difficult to interpret this trajectory relative
to absolute quantities of data or discrimination scores, the fact
that the cross-linguistic difference increases with more data mir-
rors the empirical findings from infants (see also an extended
discussion of our approach to interpreting the simulated discrim-
ination errors and relating them to empirical data in SI Appendix,
Discussion 3).

Nature of the Learned Representations. Finally, we considered the
nature of the learned representations and tested whether what
has been learned can be understood in terms of phonetic cate-
gories. Results are reported in Fig. 4 (see also SI Appendix, Fig.
S7 for comparisons with a different supervised baseline). First,
looking at the category number criterion in Fig. 4A, we see that
our models learned more than 10 times as many categories as
the number of phonemes in the corresponding languages. Even
allowing for notions of phonetic categories more granular than
phonemes, we are not aware of any phonetic analysis ever report-
ing that many allophones in these languages. Second, looking
at the duration criterion in Fig. 4B, the learned Gaussian units
appear to be activated, on average, for about a quarter the dura-
tion of a phoneme. This is shorter than any linguistically identified
unit. It shows that the phonetic category segmentation problem
has not been solved. Next, looking at the acoustic (in)variance
criterion in Fig. 4 C and D—for the within- and across-speakers
conditions, respectively—we see that our models require, on aver-
age, around two distinct representations to represent 10 tokens of
the same phonetic category without speaker variability and three
distinct representations across different speakers. The supervised
phoneme-recognizer baseline establishes that our results cannot
be explained by defective test stimuli. Instead, this result shows

that the learned units are finer-grained than phonetic categories
along the spectral axis and that the lack-of-invariance problem
has not been solved. Based on these tests, we can conclude that
the learned units do not correspond to phonetic categories in any
meaningful sense of the term.

Discussion
Through explicit simulation of the learning process under real-
istic learning conditions, we showed that several aspects of
early phonetic learning, as observed in American English and
Japanese infants, can be correctly predicted through a distri-
butional learning (i.e., clustering) mechanism applied to simple
spectrogram-like auditory features sampled at regular time inter-
vals. This contrasts with previous attempts to show the feasibility
of potential mechanisms for early phonetic learning, which only
considered highly simplified learning conditions and/or failed
(26, 28, 29, 33–44, 46–48). We further showed that the learned
speech units are too brief and too acoustically variable to cor-
respond to the vowel- and consonant-like phonetic categories
posited in earlier accounts of early phonetic learning.

Distributional learning has been an influential hypothesis in
language acquisition for over a decade (24, 26, 27). Previous
modeling results questioning the feasibility of learning phonetic
categories through distributional learning have traditionally been
interpreted as challenging the learning mechanism (26, 28, 29,
39–44), but we have instead suggested that such results may be
better interpreted as challenging the idea that phonetic cate-
gories are the outcome of early phonetic learning. Supporting
this view, we showed that when the requirement to learn pho-
netic categories is abandoned, distributional learning on its own
can be sufficient to explain early phonetic learning under realistic
learning conditions—using unsegmented, untranscribed speech
signal as input. Our results are still compatible with the idea that
mechanisms tapping into other relevant sources of information
might complement distributional learning—an idea supported by
evidence that infants learn from some of these sources in the
laboratory (96–102)—but they suggest that those other sources
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Fig. 3. (A) ABX error rates for the American English –[l] contrast and two controls: American English [w]–[j] and average over all American English
consonant contrasts (C–C). Error rates are reported for two conditions: average over models trained on American English and average over models trained
on Japanese. Error bars correspond to plus and minus one SD of the errors across resampling of the test-stimuli speakers. Similar to infants, the Japanese
native models exhibit a specific deficit for American English –[l] discrimination compared to the American English models. (B) The robustness of the effect
observed in A to changes in the training stimuli and their dependence on the amount of input are assessed by training separate models on independent
subsets of the training data of each corpus of varying duration (Materials and Methods). For each selected duration (except when using the full training
set), 10 independent subsets are selected, and 10 independent models are trained. We report mean discrimination errors for American English –[l] and
[w]–[j] as a function of the amount of input data, with error bands indicating plus or minus one SD. The results show that a deficit in American English

–[l] discrimination for Japanese-native models robustly emerges with as little as 1 h of training data. (C) To give a sense of scale we compare the cross-
linguistic difference obtained with the unsupervised Gaussian mixture models (GMM) on American English –[l] (Left) to the one obtained with supervised
phoneme-recognizer baselines (hidden Markov model, HMM; Right). The larger cross-linguistic difference obtained with the supervised baselines suggests
that the representations learned by our unsupervised models, similar to those observed in infants, remain somewhat immature.

of information may not play a role as crucial as previously
thought (26). Our findings also join recent accounts of “word
segmentation” (103) and the “language familiarity effect” (104)
in questioning whether we might have been overattributing
linguistic knowledge to preverbal infants across the board.

An Account of Early Phonetic Learning without Phonetic Categories.
Our results suggest an account of phonetic learning that sub-
stantially differs from existing ones. Whereas previous propos-
als have been primarily motivated through an outcome-driven
perspective—starting from assumptions about what it is about
language that is learned—the motivation for the proposed
account comes from a mechanism-driven perspective—starting
from assumptions about how learning might proceed from the
infant’s input. This contrast is readily apparent in the choice of
the initial speech representation, upon which the early phonetic
learning process operates (the input representation). Previous
accounts assumed speech to be represented innately through
a set of universal (i.e., language-independent) phonetic feature
detectors (9, 18–21, 48–51). The influential phonetic category
accounts, furthermore, assumed these features to be available
phonetic segment by phonetic segment (i.e., for each vowel and
consonant separately) (9, 18–21). While these assumptions are
attractive from an outcome-driven perspective—they connect
transparently to phonological theories in linguistics and theo-
ries of adult speech perception that assume a decomposition of
speech into phoneme-sized segments defined in terms of abstract
phonological features—from a mechanism-driven perspective,

both assumptions are difficult to reconcile with the continuous
speech signal that infants hear. The lack of acoustic–phonetic
invariance problem challenges the idea of phonetic feature
detectors, and the phonetic category segmentation problem chal-
lenges the idea that the relevant features are segment-based
(30–32). The proposed account does not assume either problem
to be solved by infants at birth. Instead, it relies on basic auditory
abilities that are available to neonates (74), using simple auditory
descriptors of the speech spectrum obtained regularly along the
time axis. This type of spectrogram-like representation is effec-
tive in speech-technology applications (71) and can be seen as
the output of a simple model of the peripheral auditory system
(ref. 90, chap. 3), which is fully operational shortly after birth
(74). Such representations have also been proposed before as an
effective way to get around both the lack-of-invariance and the
phonetic category segmentation problems in the context of adult
word recognition (30) and can outperform representations based
on traditional phonetic measurements (like formant frequencies)
as predictors of adult speech perception (105–109).

While the input representation is different, the learning mech-
anism in the proposed account—distributional learning—is sim-
ilar to what had originally been proposed in phonetic category
accounts. Infants’ abilities, both in the laboratory (24, 27) and
in ecological conditions (25), are consistent with such a learning
mechanism. Moreover, when applied to the input representation
considered in this paper, distributional learning is adaptive in
that it yields speech representations that can support remark-
ably accurate discrimination of the phonetic categories of the
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Fig. 4. Diagnostic test results for our four unsupervised Gaussian mixture models (in beige) and phoneme-recognizer baselines trained with explicit super-
vision (in pink). (Upper) American English native models. (Lower) Japanese native models. Models are tested on read speech in their native language. (A)
Number of units learned by the models. Gaussian mixtures discover 10 to 20 times more categories than there are phonemes in the training language,
exceeding any reasonable count for phonetic categories. (B) Average duration of activation of the learned units. The average duration of activation of
each unit is computed, and the average and SD of the resulting distribution over units are shown. Learned Gaussian units get activated, on average, for
about the quarter of the duration of a phoneme. They are, thus, much too “short” to correspond to phonetic categories. (C) Average number of distinct
representations for the central frame of the central phone for 10 repetitions of a same word by the same speaker, corrected for possible misalignment.
The number of distinct representations is computed for each word type with sufficient repetitions in the test set, and the average and SD of the resulting
distribution over word types are shown. The phoneme-recognizer baseline reliably identifies the 10 tokens as exemplars from a common phonetic category,
whereas our Gaussian mixture models typically maintain on the order of two distinct representations, indicating representations too fine-grained to be
phonetic categories. (D) As in C, but with repetitions of a same word by 10 speakers, showing that the learned Gaussian units are not speaker-independent.
Spont., spontaneous.

training language, outperforming a number of alternatives that
have been proposed for unsupervised speech representation
learning (57, 58, 68).

As a consequence of our mechanism-driven approach, what
has been learned needs to be determined a posteriori based on
the outcomes of learning simulations. The speech units learned
under the proposed account accurately model infants’ discrimi-
nation, but are too brief and acoustically variable to correspond
to phonetic categories, failing, in particular, to provide a solution
to the lack-of-invariance and phonetic category segmentation
problems (30). Such brief units do not correspond to any iden-
tified linguistic unit (22) (see SI Appendix, Discussion 4 for a
discussion of possible reasons why the language-acquisition pro-
cess might involve the learning by infants of a representation
with no established linguistic interpretation and a discussion of
the biological and psychological plausibility of the learned repre-
sentation), and it will be interesting to try to further understand
their nature. However, since there is no guarantee that a simple
characterization exists, we leave this issue for future work.

Phonetic categories are often assumed as precursors in
accounts of phenomena occurring later in the course of lan-
guage acquisition. Our account does not necessarily conflict
with this view, as phonetic categories may be learned later in
development, before phonological acquisition. Alternatively, the
influential PRIMIR account of early language acquisition (“a
developmental framework for Processing Rich Information from
Multi-dimensional Interactive Representations”, ref. 20) pro-
poses that infants learn in parallel about the phonetics, word
forms, and phonology of their native language, but do not
develop abstract phonemic representations until well into their
second year of life. Although PRIMIR explicitly assumes pho-
netic learning to be phonetic category learning, other aspects of
their proposed framework do not depend on that assumption,
and our framework may be able to stand in for the phonetic
learning process they assume.

To sum up, we introduced and motivated an account of early
phonetic learning—according to which infants learn through dis-
tributional learning, but do not learn phonetic categories—and
we showed that this account is feasible under realistic learning
conditions, which cannot be said of any other account at this
time. Importantly, this does not constitute decisive evidence for
our account over alternatives. Our primary focus has been on
modeling cross-linguistic differences in the perception of one
contrast –[l]; further work is necessary to determine to what
extent our results extend to other contrasts and languages (110).
Furthermore, an absence of feasibility proof does not amount to
a proof of infeasibility. While we have preliminary evidence that
simply forcing the model to learn fewer categories is unlikely to
be sufficient (SI Appendix, Figs. S9 and S10), recently proposed
partial solutions to the phonetic category segmentation prob-
lem (e.g., refs. 111–113) and to the lack-of-invariance problem
(114) (see also SI Appendix, Discussion 2 regarding the choice
of model initialization) might yet lead to a feasible phonetic
category-based account, for example. In addition, a number of
other representation learning algorithms proposed in the con-
text of unsupervised speech technologies and building on recent
developments in the field of machine learning have yet to be
investigated (52–69). They might provide concrete implementa-
tions of previously proposed accounts of early phonetic learning
or suggest new ones altogether. This leaves us with a large
space of appealing theoretical possibilities, making it premature
to commit to a particular account. Candidate accounts should
instead be evaluated on their ability to predict empirical data
on early phonetic learning, which brings us to the second main
contribution of this article.

Toward Predictive Theories of Early Phonetic Learning. Almost since
the original empirical observation of early phonetic learning
(115), a number of theoretical accounts of the phenomenon have
coexisted (9, 19, 48, 49). This theoretical underdetermination has
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typically been thought to result from the scarcity of empirical
data from infant experiments. We argue instead that the main
limiting factor on our understanding of early phonetic learning
might have been the lack—on the theory side—of a practical
method to link proposed accounts of phonetic learning with
concrete, systematic predictions regarding the empirical discrim-
ination data they seek to explain. Establishing such a systematic
link has been challenging due to the necessity of dealing with the
actual speech signal, with all its associated complexity. The mod-
eling framework we introduce provides a practical and scalable
way to overcome these challenges and obtain the desired link for
phonetic learning theories—a major methodological advance,
given the fundamental epistemological importance of linking
explanandum and explanans in scientific theories (116).

Our mechanism-driven approach to obtaining predictions—
which can be applied to any phonetic learning model imple-
mented in our framework—consists first of explicitly simulating
the early phonetic learning process as it happens outside of
the laboratory, which results in a trained model capable of
mapping any speech input to a model representation for that
input. The measurement of infants’ perceptual abilities in lab-
oratory settings—including their discrimination of any phonetic
contrast—can then be simulated on the basis of the model’s
representations of the relevant experimental stimuli. Finally,
phonetic contrasts for which a significant cross-linguistic differ-
ence is robustly predicted can be identified through a careful
statistical analysis of the simulated discrimination judgments (SI
Appendix, Materials and Methods 4). As an illustration of how
such predictions can be generated, we report specific predic-
tions made by our distributional learning model in SI Appendix,
Table S1 (see also SI Appendix, Discussion 5).

Although explicit simulations of the phonetic learning pro-
cess have been carried out before (29, 33–43, 45, 48, 72, 73),
those have typically been evaluated based on whether they
learned phonetic categories, and have not been directly used to
make predictions regarding infants’ discrimination abilities. An
outcome-driven approach to making predictions regarding dis-
crimination has typically been adopted instead, starting from the
assumption that phonetic categories are the outcome of learn-
ing. To the best of our knowledge, this has never resulted in the
kind of systematic predictions we report here, however (see SI
Appendix, Discussion 6 for a discussion of the limits of previous
approaches and of the key innovations underlying the success of
our framework).

Our framework readily generates empirically testable pre-
dictions regarding infants’ discrimination, yet further computa-
tional modeling is called for before we return to experiments.
Indeed, existing data—collected over more than three decades of
research (5, 15–17)—might already suffice to distinguish between
different learning mechanisms. To make that determination, and
to decide which contrasts would be most useful to test next, in
case more data are needed, many more learning mechanisms
and training/test language pairs will need to be studied. Even for
a specified learning mechanism and training/test datasets, mul-
tiple implementations should ideally be compared (e.g., testing
different parameter settings for the input representations or the
clustering algorithm), as implementational choices that weren’t
initially considered to be important might, nevertheless, have an
effect on the resulting predictions and, thus, need to be included
in our theories. Conversely, features of the model that may seem
important a priori (e.g., the type of clustering algorithm used)
might turn out to have little effect on the learning outcomes in
practice.

Cognitive science has not traditionally made use of such large-
scale modeling, but recent advances in computing power, large
datasets, and machine-learning algorithms make this approach
more feasible than ever before (70). Together with ongoing efforts
in the field to collect empirical data on a large scale—such as large-

scale recordings of infants’ learning environments at home (117)
and large-scale assessment of infants’ learning outcomes (118,
119)—our modeling approach opens the path toward a much
deeper understanding of early language acquisition.

Materials and Methods
Datasets. We used speech recordings from four corpora: two corpora of
read news articles—a subset of the Wall Street Journal corpus of American
English (83) (WSJ) and the Globalphone corpus of Japanese (84) (GPJ)—
and two corpora of spontaneous speech—the Buckeye corpus of American
English (85) (BUC) and a subset of the corpus of spontaneous Japanese (86)
(CSJ). As we are primarily interested in the effect of training language on
discrimination abilities, we sought to remove possibly confounding differ-
ences between the two read corpora and between the two spontaneous
corpora. Specifically, we randomly sampled subcorpora while matching total
duration, number, and gender of speakers and amount of speech per
speaker. We made no effort to match corpora within a language, as the
differences (for example, in the total duration and number of speakers)
only serve to reinforce the generality of any result holding true for both
registers. Each of the sampled subsets was further randomly divided into a
training and a test set (Table 1), satisfying three conditions: The test set lasts
approximately 10 h; no speaker is present in both the training and test set;
and the training and test sets for the two read corpora, and separately for
the two spontaneous corpora, remain matched on overall duration, number
of speakers of each gender, and distribution of duration per speaker of each
gender. To carry out analyses taking into account the effect of input size and
of the choice of input data, we further divided each training set in 10 with
each 1/10th subset containing an equal proportion of the speech samples
from each speaker in the original training set. We then divided each of the
1/10th subsets in 10 again following the same procedure and selected the
first subset to obtain 10 1/100th subsets. Finally, we iterated the procedure
one more time to obtain 10 1/1,000th subsets. See SI Appendix, Materials
and Methods 1 for additional information.

Signal Processing, Models, and Inference. The raw speech signal was decom-
posed into a sequence of overlapping 25-ms-long frames sampled every
10 ms, and moderate-dimensional (d = 39) descriptors of the spectral shape
of each frame were then extracted, describing how energy in the sig-
nal spreads across different frequency channels. The descriptors comprised
13 mel-frequency cepstral coefficients with their first and second time
derivatives. These coefficients correspond approximately to the principal
components of spectral slices in a log-spectrogram of the signal, where the
spectrogram frequency channels were selected on a mel-frequency scale (lin-
ear for lower frequency and logarithmic for higher frequencies, matching
the frequency selectivity of the human ear).

For each corpus, the set of all spectral-shape descriptors for the corpus’
training set was modeled as a large independent and identically distributed
sample from a probabilistic generative model. The generative model is
a Gaussian mixture model with no restrictions on the form of covari-
ance matrices and with a Dirichlet process prior over its parameters with
normal-inverse-Wishart base measure. The generative model is depicted as
a graphical model in plate notation in Fig. 5, where n is the number of
input descriptors, (X1, X2, . . . , Xn) are the random variables from which the
observed descriptors are assumed to be sampled, and the other elements
are latent variables and hyperparameters. The depicted variables have the
following conditional distributions:

Fig. 5. Generative Gaussian mixture model with Dirichlet process prior with
normal-inverse-Wishart base measure, represented as a graphical model
in plate notation based on the stick-breaking construction of Dirichlet
processes.
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Xi | zi , (µ1, µ2, . . .), (⇤1, ⇤2, . . .) ⇠ N (µzi , ⇤
�1
zi

)
µk | ⇤k, µ0, � ⇠ N (µ0, (�⇤k)�1)
⇤k | ⇤0, ⌫ ⇠ W(⇤0, ⌫)
zi | ⇡ ⇠ Multi(⇡)
⇡ | ↵ ⇠ SB(↵)

,

for any 1  i  n, for any k 2 {1, 2, . . .}, with N the multivariate Gaussian
distribution, W the Wishart distribution, Multi the generalization of the
usual multinomial probability distribution to an infinite discrete support,
and SB the mixing weights generating distribution from the stick-breaking
representation of Dirichlet processes (120). Mixture parameters with high
posterior probability given the observed input features vectors and the prior
were found by using an efficient parallel Markov chain Monte Carlo sampler
(121). Following previous work (60, 65), model initialization was performed
by partitioning training points uniformly at random into 10 clusters, and
the hyperparameters were set as follows: ↵ to 1, µ0 to the average of all
input features vectors, � to 1, �0 to the inverse of the covariance of all input
feature vectors, and ⌫ to 42 (i.e., the spectral shape descriptors dimension
plus 3). We additionally trained a model on each of the 10 1/10th, 1/100th,
and 1/1,000th training subsets of each of the four corpora, following the
same procedure.

Given a trained Gaussian mixture with K components, mixing
weights (⇡1, ⇡2, . . . , ⇡K), means (µ1, µ2, . . . , µK), and covariance matrices
(⌃1, ⌃2, . . . , ⌃K), we extracted a test stimulus representation from the
sequence (x1, x2, . . . , xm) of spectral-shape descriptors for that stimulus, as
the sequence of posterior probability vectors (p1, p2, . . . , pm), where for any
frame i, 1  i  m, pi = (pi1, pi2, . . . , piK), with, for any 1  k  K:

pik =
⇡kN (xi|µk, ⌃k)

PK
j=1 ⇡jN (xi|µj , ⌃j)

.

As a baseline, we also trained a phoneme recognizer on the training
set of each corpus, with explicit supervision (i.e., phonemic transcriptions
of the training stimuli). We extracted frame-level posterior probabili-
ties at two granularity levels: actual phonemes—the phoneme-recognizer
baseline—and individual states of the contextual hidden Markov models—
the ASR phone-state baseline. See SI Appendix, Materials and Methods 2 for
additional information.

Discrimination Tests. Discriminability between model representations for
phonetic contrasts of interest was assessed by using machine ABX discrimi-
nation errors (89, 90). Discrimination was assessed in context, defined as the
preceding and following sound and the identity of the speaker. For example,
discrimination of American English [u] vs. [i] was assessed in each available
context independently, yielding—for instance—a separate discrimination-
error rate for test stimuli in [b] [t] phonetic context, as in “boot” vs. “beet,”
as spoken by a specified speaker. Other possible factors of variability, such as
word boundaries or syllable position, were not controlled. For each model,
each test corpus, and each phonemic contrast in that test corpus (as speci-
fied by the corpus’ phonemic transcriptions), we obtained a discrimination
error for each context in which the contrasted phonemes occurred at least
twice in the test corpus’ test set. To avoid combinatorial explosion in the
number of ABX triplets to be considered, a randomly selected subset of five
occurrences was used to compute discrimination errors when a phoneme
occurred more than five times in a given context. An aggregated ABX error
rate was obtained for each combination of model, test corpus, and phone-
mic contrast, by averaging the context-specific error rates over speakers and
phonetic contexts, in that order.

Model representations were extracted for the whole test sets, and the
part corresponding to a specific occurrence of a phonetic category was
then obtained by selecting representation frames centered on time points
located between the start and end times for that occurrence, as specified by
the test set’s forced aligned phonemic transcriptions. Given model represen-
tations �= (�1, �2, . . . , �n� ) and ⌅= (⇠1, ⇠2, . . . , ⇠n⇠ ) for n� tokens of phonetic
category � and n⇠ tokens of phonetic category ⇠, the nonsymmetrized
machine ABX discrimination error between � and ⇠ was then estimated as
the proportion of representation triplets a, b, x, with a and x taken from �
and b taken from ⌅, such that x is closer to b than to a, i.e.,

ê(�, ⌅) :=
1

n�(n� � 1)n⇠

n�X

a=1

n⇠X

b=1

n�X

x=1
x 6=a


1d(⇠b ,�x )<d(�a ,�x )

+
1
2
1d(⇠b ,�x )=d(�a ,�x )

�
,

where 1 is the indicator function returning one when its predicate is true
and zero otherwise, and d is a dissimilarity function taking a pair of model
representations as input and returning a real number (with higher values
indicating more dissimilar representations). The (symmetric) machine ABX
discrimination error between � and ⇠ was then obtained as:

✏̂(�, ⌅) = ✏̂(⌅, �) :=
1
2
[ê(�, ⌅) + ê(⌅, �)].

As realizations of phonetic categories vary in duration, we need a dis-
similarity function d that can handle model representations with variable
length. This was done, following established practice (12, 13, 55, 57, 68),
by measuring the average dissimilarity along a time alignment of the
two representations obtained through dynamic time warping (122), where
the dissimilarity between model representations for individual frames was
measured with the symmetrized Kullback–Leibler divergence for poste-
rior probability vectors and with the angular distance for spectral shape
descriptors.

Analysis of Learned Representations. Learned units were taken to be the
Gaussian components for the Gaussian mixture models, the phoneme mod-
els for the phoneme-recognizer baseline, and the phone-state models for
the ASR phone-state baseline. Since experimental studies of phonetic cate-
gories are typically performed with citation form stimuli, we studied how
each model represents stimuli from the matched-language read speech
corpus’ test set.

To study average durations of activation, we excluded any utterance-
initial or utterance-final silence from the analysis, as well as any utter-
ance for which utterance-medial silence was detected during the forced
alignment. The average duration of activation for a given unit was com-
puted by averaging over all episodes in the test utterances during which
that unit becomes dominant, i.e., has the highest posterior probability
among all units. Each of these episodes was defined as a continuous
sequence of speech frames, during which the unit remains dominant with-
out interruptions, with duration equal to that number of speech frames
times 10 ms.

The acoustic (in)variance of the learned units was probed by looking at
multiple repetitions of a single word and testing whether the dominant unit
at the central frame of the central phone of the word remained the same
for all repetitions. Specifically, we counted the number of distinct dominant
units occurring at the central frame of the central phone for 10 repetitions
of the same word. To compensate for possible misalignment of the cen-
tral phones’ central frames (e.g., due to slightly different time courses in
the acoustic realization of the phonetic segment and/or small errors in the
forced alignment), we allowed the dominant unit at the central frame to
be replaced by any unit that is dominant at some point within the previ-
ous or following 46 ms (thus covering a 92-ms slice of time corresponding
to the average duration of a phoneme in our read-speech test sets), pro-
vided it could bring down the overall count of distinct dominant units for
the 10 occurrences (see SI Appendix, Materials and Methods 3 for more
information). We considered two conditions: In the within-speaker condi-
tion, the test stimuli were uttered by the same speaker 10 times; in the
across-speaker condition, they were uttered by 10 different speakers one
time. See SI Appendix, Materials and Methods 3 for more information on
the stimulus-selection procedure.

Data and Code Availability. The datasets analyzed in this study are pub-
licly available from the commercial vendors and research institutions
holding their copyrights (83–86). Datasets generated during the course
of the study that do not include proprietary information are avail-
able at https://osf.io/d2fpb/. Code to reproduce the results is available at
https://github.com/Thomas-Schatz/perceptual-tuning-pnas.
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Supporting Information Text13

Supplementary Materials and Methods.14

1. Datasets. The BUC and GPJ corpora annotations present a number of inconsistencies and were curated in-house. In particular,15

readers for the GPJ corpus often need several takes before they read an utterance correctly and the failed takes are included in16

the original corpus. We only keep the final take for each sentence. For the two spontaneous speech corpora, we keep disfluencies17

typical of spontaneous speech (such as hesitations, word fragments, pronunciation errors, fillers, etc.), but remove parts that18

were not phonetically transcribed or that include other kinds of noise or silence (96.11% and 80.38% of all utterances are kept19

for the BUC and CSJ corpora, respectively).20

Phonetic transcriptions for the two read speech corpora are obtained by combining the read text with a phonetic dictionary.21

For the two spontaneous speech corpora, a manual phonetic transcription of the recordings is used. Word units, which are not22

directly apparent in the Japanese writing system, are obtained from the phonetic transcriptions by a Japanese morphological23

parser for the read Japanese corpus. For the spontaneous Japanese corpus, we use the provided ‘Long Word Units’ as words.24

We exclude phonemes occurring with frequency less than 1 in 10,000 by removing any utterance in which they occur and we25

harmonize the transcriptions in order to have the same phonemic inventory for the read and spontaneous corpora for each26

language. No phonemes are excluded for the American English corpora. For the Japanese corpora, a few geminate consonants27

are excluded (/b:/, /z:/, /h:/, /d:/, /˝:/, /g:/, /F:/ for both corpora and /µ:/ for the GPJ corpus only). The retained phonemic28

inventory for American English consists of 24 consonants (/p/, /t/, /k/, /b/, /d/, /g/, /f/, /v/, /T/, /D/, /s/, /z/, /S/, /Z/,29

/Ù/, /Ã/, /m/, /n/, /N/, /h/, /ô/, /l/ /w/, /j/) and 15 vowels (/I/, /i:/, /E/, /2/, /Ç/, /ae/, /A:/, /O:/, /U/, /u:/, /eI/, /aI/,30

/aU/, /OI/, /oU/). The retained phonemic inventory for Japanese consists of 27 consonants (/p/, /t/, /k/, /p:/, /t:/, /k:/, /b/,31

/d/, /g/, /s/, /C/, /s:/, /C:/, /z/, /˝/, /µ/, /µ:/, /tC/, /tC:/, /m/, /n/, //, /h/, /F/, /r/, /w/, /j/) and 10 vowels (/ä/, /e/,32

/i/, /o/, /W/, /ä:/, /e:/, /i:/, /o:/, /W:/). For each corpus, timestamps are obtained for the phonetic transcriptions through33

forced alignment with an automatic speech recognition (ASR) system (same architecture for the acoustic model as for the34

phoneme recognizer baseline described in Section 2 below, trained on the full corpus).35

2. Phoneme recognizer baselines. As a baseline, we also train a phoneme recognizer on the training set of each corpus, with36

explicit supervision (i.e. providing the phonemic transcriptions of the training stimuli along with the waveforms). Specifically,37

we use the Kaldi toolkit (1) for automatic speech recognition (ASR) to train a hidden Markov model Gaussian mixture model38

(HMM-GMM) acoustic model and a phoneme-level bigram language model for each training set. The same training recipe39

(adapted from the Wall Street Journal corpus recipe), with the same parameters is used to train a separate model on each of40

the four corpora. The acoustic model takes the form of a probabilistic generative model with each phoneme modeled as a set of41

contextual variants that are allowed to depend on word-position and preceding and following phonemes. Each variant is itself42

modeled as a tri-state hidden Markov model with diagonal covariance Gaussian mixture emission probabilities. The models are43

adapted to speakers both during training and test through feature-space maximum likelihood linear regression (fMLLR). See44

the Kaldi toolkit documentation for more detail (http://kaldi-asr.org/doc/).45

The trained acoustic and language models are combined (with kaldi acoustic scale parameter set to 0.1) to obtain46

representations of test stimuli (possibly in a ‘foreign’ language) under the form of a sequence of frame-level Viterbi-smoothed47

posterior probability vectors. We extract frame-level posterior probabilities at two granularity levels: actual phonemes—to48

which we refer as the phoneme recognizer baseline—and individual states of the contextual hidden Markov models—to which49

we refer as the ASR phone state baseline.50

3. Analysis of learned representations.51

Correction for possible misalignment in the acoustic (in)variance test. We compensate for possible misalignment52

of the central phones’ central frames by allowing the dominant unit at the central frame to be replaced by any unit that was53

dominant at some point within the previous or following 46ms, provided this brings down the overall count of distinct dominant54

units for the ten occurrences. Finding the optimal way to assign dominant units under this constraint corresponds to solving an55

instance of the NP-complete minimal hitting set size problem (2). We are able to solve the problem exactly in most cases, due56

to the small size of the considered instances. In the few cases where we are not able to solve the problem exactly, our solver57

provides a lower bound on the number of representations and we use a greedy search to obtain an upper bound. Although the58

e�ect on the results is very small, we report lower bounds for the Gaussian mixture models and upper bounds for the phoneme59

recognizer and ASR phone state baselines, in order to be maximally conservative.60

Stimulus selection for the acoustic (in)variance test. To avoid potentially mispronounced short function words and61

possible co-articulation e�ect across word boundaries, for the acoustic (in)variance test, we select only words of at least five62

phonemes and study their central phoneme(s).� We sample uniformly at random a subset of ten occurrences (by a single63

speaker or by at least ten distinct speakers, depending on the condition) for each such word with enough repetitions in the test64

set. We report results averaged over ten independent runs of this stimulus sampling procedure. The results are also averaged65

over the two possible ‘central phone’ positions for words of even length and—in the within-speaker condition—over all available66

speakers for a given word type. This yields one average number of distinct dominant units per tested word type. The number67

�This stimulus selection procedure was only applied for the acoustic (in)variance test and has the effect of making the test more conservative—i.e. the learned representations would look even more
variable without this restriction. Other analyses were not restricted to such words, and all model training was carried out with unfiltered continuous speech that contained words of all different lengths in
unsegmented whole sentences.
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of available word types matching the specified conditions is 13 (within speaker) and 476 (across speaker) for the American68

English test stimuli and 83 (within speaker) and 408 (across speaker) for the Japanese test stimuli. As an example, here are the69

word types selected for the within-speaker American English condition: unquote, billion, dollars, hundred, company, market,70

million, mister, nineteen, percent, seven, seventy, thousand. For the within-speaker condition, we additionally listened to each71

test stimulus to identify potential mispronounced, noisy or misaligned stimuli and we checked that excluding these stimuli from72

the analysis (0/83 word types, 4/1048 word tokens excluded for American English; 14/168 word types, 204/2217 word tokens73

excluded for Japanese) did not a�ect the overall pattern of results (Figure S8).74

4. Deriving systematic model predictions. We systematically seek phonetic contrasts of American English and of Japanese for75

which the learning mechanism under study robustly predicts a significant cross-linguistic di�erence in discrimination between76

Japanese- and American English-learning infants. By robust we mean that (a) a significant di�erence in discrimination errors77

between models trained on American English and Japanese is consistently found across possible choices for the training and78

test registers, and (b) that the magnitude of this di�erence does not decrease when the amount of training input is increased.79

The former criterion allows us to rule out e�ects that would reflect peculiarities of the training and/or test stimuli rather than80

an intrinsic property of the language pair under study. The latter criterion allows us to rule out transient e�ects that might81

reflect peculiarities of the model initialization and/or be unlikely to be observed empirically.82

We define the predicted cross-linguistic e�ect for a phonetic contrast as the expected di�erence in average ABX discrimination83

error between an ‘American English-native’ and a ‘Japanese-native’ model on that contrast, where the expectation is taken84

over the choice of American English model, Japanese model, test speaker, phonetic context, and choice of the a, b, and x85

acoustic tokens given the contrast, speaker and phonetic context. For each contrast, we perform statistical significance tests86

separately for each of the 8 possible combinations of training register for the American English model, training register for the87

Japanese model, and test register. We use the models trained on the 1/10th training sets of each corpus for these significance88

tests, which allows us to take into account variance due to the model training procedure (including the choice of input data) in89

addition to that due to the choice of test stimuli. We estimate the predicted cross-linguistic e�ect and its variance and use90

those estimates to conduct asymptotic bilateral z-tests of the hypothesis that the cross-linguistic e�ect is di�erent from 0. We91

also estimate the e�ects (but not the variances) using the full training sets, which allows us to test whether the observed e�ects92

increase (in absolute value) with the amount of input data. We report a robust predicted cross-linguistic e�ect for a contrast if93

each of the estimated e�ects for that contrast (for each of the 8 possible combination of training and test registers) is in the94

same direction and significantly di�erent from 0 in our asymptotic bilateral z-test, with Benjamini-Yekutieli (3) correction for95

multiple correlated comparisons at level – = 0.05; and if the estimated e�ect for models trained on the full training sets are in96

the same direction and larger in absolute value than the corresponding e�ects estimated for models trained on the 1/10th
97

subsets.98

In what follows, we first formally define the predicted cross-linguistic e�ect for a phonetic contrast P1, P2. We then discuss99

how to estimate the e�ect in practice from finite samples of models trained on Japanese and trained on American English,100

and finite samples of test acoustic tokens from phonetic categories P1 and P2. Finally, we explain in detail how the statistical101

significance of the estimated e�ects can be assessed.102

E�ect of interest. We are interested in the predicted cross-linguistic e�ect for a phonetic contrast P1, P2, i.e. the expected103

di�erence in average ABX discrimination error between a model trained on language L1 and a model trained on language104

L2, which we denote as ”(P1, P2, L1, L2) and define formally below.† Let us consider a model M trained on input language105

L, input register RI and input amount AI , and tested on phonetic category P from test language LT in phonetic context C106

(preceding and following phonetic category) from test speaker S with test register RT . Let us note107

pP,L,RI ,AI ,LT ,RT (R | M, S, C),108

the probability distribution over model representations R, where we treat the trained model M , test speaker S and test context
C as conditioning random variables and assume fixed values for the other parameters. Then, the predicted cross-linguistic
e�ect for phonetic contrast P1, P2 and training languages L1, L2 is defined as

”(P1, P2, L1, L2) := EM1,M2,S,C [‘(P1, P2, M1, S, C) ≠ ‘(P1, P2, M2, S, C)],

where109

• Mx for x in {1, 2} is a randomly sampled trained model for input language Lx, training register RI,x and input amount110

AI,x;111

• S is a randomly chosen test speaker and C is a context chosen uniformly at random among available test phonetic112

contexts, for test language LT , test register RT and test phonetic contrast(P1, P2);113

• ‘(P1, P2, Mx, S, C) is the symmetric ABX discrimination error, defined as

‘(P1, P2, Mx, S, C) := 1
2 [e(P1, P2, Mx, S, C) + e(P2, P1, Mx, S, C)],

†This is for a given choice of input registers RI,1 and RI,2 and input amounts AI,1 and AI,2 for each model, and of test language LT and test register RT (which we constrain to be the same for
the two tested phonetic categories in our experiments). To avoid clutter, we do not indicate these dependencies explicitly in the notation.
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with
e(P1, P2, Mx, S, C) := p[d(A, X) < d(B, X)] + 1

2p[d(A, X) = d(B, X)],

for A, X drawn independently from pP1,L(R | Mx, S, C) and B drawn from pP2,L(R | Mx, S, C).114

This is the quantity we seek to estimate, given our trained models in English and Japanese, and the particular acoustic tokens115

in our corpora from the phonetic categories we would like to test.116

Estimation of the e�ect. In order to obtain a sample of model representations SP,M,LT ,RT ,S,C for each relevant combination117

of the index variables, we extract a representation of each test acoustic token for each model M .‡ For each combination of test118

language LT , test register RT , test speaker S and test phonetic context C, we obtain a sample of up to 5 acoustic realizations119

of each phonetic category from the test corpus. For each combination of training language L, training register RI , we obtain120

one model trained on the full training set and 10 models that are each trained on 1/10th of it.121

Given these samples from the distributions of model representations of test stimuli, we define the following estimator of122

”(P1, P2, L1, L2),123

”̂(S, M1, M2) := 1
|S|

ÿ

SœS

1
|C(S)|

ÿ

CœC(S)

A
1

|M1|

ÿ

M1œM1

‘̂(SP1,M1,S,C , SP2,M1,S,C) ≠
1

|M2|

ÿ

M2œM2

‘̂(SP1,M2,S,C , SP2,M2,S,C)

B
,124

where S is the set of sampled test speakers, C(S) is the set of contexts available for the target contrast from test speaker125

S, M1 and M2 are the sampled models for training language L1 and L2 respectively and ‘̂ is the estimator for the ABX126

discrimination error defined in the Material and Methods section of the main text.127

Provided there is no systematic bias in how phonetic contexts are missing from the sample of any particular test speaker,128

”̂(S, M1, M2) can be shown to be an unbiased estimator of ”(P1, P2, L1, L2).129

Significance testing. We want to assess the contrasts for which a significant cross-linguistic di�erence in discriminability130

is observed. In order to do assess significance, we need a test statistic with a known distribution. For given P1, P2, L1, L2, we131

define132

D̂(S, M1, M2) := 1
|C(S)|

ÿ

CœC(S)

[‘̂(SP1,M1,S,C , SP2,M1,S,C) ≠ ‘̂(SP1,M2,S,C , SP2,M2,S,C).]133

It is straightforward to check that134

”̂(S, M1, M2) = 1
|S||M1||M2|

ÿ

SœS
M1œM1
M2œM2

D̂(S, M1, M2).135

”̂(S, M1, M2) can thus be interpreted as a (generalized) U-statistic with kernel D̂ of order 3 and degree (1, 1, 1) (4), applied to136

mutually independent i.i.d. samples S, M1 and M2 (where an element S of S is e�ectively a sample of up to five acoustic137

tokens for each phonetic context available from speaker S for the target phonetic contrast).138

Assuming this U-statistic is not degenerate, we can apply the central limit theorem for U-statistics (4) to obtain that139

”̂(S, M1, M2)
Var[”̂(S, M1, M2)]

140

has an asymptotic normal distribution with mean ”(P1, P2, L1, L2) and variance 1. Provided we can estimate the variance141

of the estimator Var[”̂(S, M1, M2)], this result allows us to perform asymptotic z-tests of H0 : ”(P1, P2, L1, L2) = 0 versus142

H1 : ”(P1, P2, L1, L2) ”= 0. We provide the required estimator V̂ (S, M1, M2) of Var[”̂(S, M1, M2)] in the next section.143

Estimation of the variance of ”̂. The previous section showed that given an estimate V̂ (S, M1, M2) of the variance144

Var[”̂(S, M1, M2)], we can compute statistical significance of the estimated di�erences in discrimination error between145

languages. In this section we derive such an estimator.146

We first find an expression for Var[”̂(S, M1, M2)], then derive an estimator from it. We use n1 to denote the number of test
speakers, |S|, n2 to denote the number of models trained on language L1, |M1|, and n3 to denote the number of models trained
on language L2, |M2|. We can express the variance using the standard decomposition for the variance of a U statistic (4),

Var[”̂(S, M1, M2)] = 1
n1n2n3

[(n1 ≠ 1)(n2 ≠ 1)‡2
001 + (n1 ≠ 1)(n3 ≠ 1)‡2

010 + (n2 ≠ 1)(n3 ≠ 1)‡2
100

+ (n1 ≠ 1)‡2
011 + (n2 ≠ 1)‡2

101 + (n3 ≠ 1)‡2
110

+ ‡2
111]

where ‡2
xyz denotes the covariance between D̂(s1, a1, j1) and D̂(s2, a2, j2) for two triplets (s1, a1, j1), (s2, a2, j2) formed of a

randomly sampled combination of a test speaker, an American English model, and a Japanese model, with the subscripts x, y,
‡Possibly with some missing data, as not all possible phonetic contexts occur for each speaker and each phonetic category in any given test set.
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and z indicating whether the two test speakers, American English models and Japanese models, respectively, are constrained to
be identical (subscript 0) or not (subscript 1). For example,

‡2
000 = Es1,s2,a1,a2,j1,j2 [D̂(s1, a1, j1)D̂(s2, a2, j2)] ≠ (Es,a,j [D̂(s, a, j])2 = 0;

‡2
111 = Es,a,j [D̂(s, a, j)2] ≠ (Es,a,j [D̂(s, a, j])2;

‡2
001 = Es1,s2,a1,a2,j [D̂(s1, a1, j)D̂(s2, a2, j)] ≠ (Es,a,j [D̂(s, a, j])2.

We now use the above variance decomposition to derive an estimator. Let us define the order 3, degree (2, 2, 2) kernel
Âk1k2k3 for some strictly positive integers k1, k2, k3, as follows

Âk1k2k3 (s1, s2, a1, a2, j1, j2) := 1
k1k2k3

[(k1 ≠ 1)(k2 ≠ 1)(D̂(s1, a1, j1)D̂(s2, a2, j1) ≠ D̂(s1, a1, j1)D̂(s2, a2, j2))

+(k1 ≠ 1)(k3 ≠ 1)(D̂(s1, a1, j1)D̂(s2, a1, j2) ≠ D̂(s1, a1, j1)D̂(s2, a2, j2))

+(k2 ≠ 1)(k3 ≠ 1)(D̂(s1, a1, j1)D̂(s1, a2, j2) ≠ D̂(s1, a1, j1)D̂(s2, a2, j2))

+(k1 ≠ 1)(D̂(s1, a1, j1)D̂(s2, a1, j1) ≠ D̂(s1, a1, j1)D̂(s2, a2, j2))

+(k2 ≠ 1)(D̂(s1, a1, j1)D̂(s1, a2, j1) ≠ D̂(s1, a1, j1)D̂(s2, a2, j2))

+(k3 ≠ 1)(D̂(s1, a1, j1)D̂(s1, a1, j2) ≠ D̂(s1, a1, j1)D̂(s2, a2, j2))

+(D̂(s1, a1, j1)D̂(s1, a1, j1) ≠ D̂(s1, a1, j1)D̂(s2, a2, j2))]

Let us consider some arbitrary orderings (s1, s2, ..., sn1 ), (a1, a2, ..., an2 ) and (j1, j2, ..., jn3 ) of S, M1, and M2, respectively.147

Let us also note (n k), for any integers n and k, the set of all integer k-tuples (i1, i2, ..., ik) such that 1 Æ i1 < i2 < ... < ik Æ n.148

It is straightforward to show that Ân1n2n3 is an unbiased estimator for Var[”̂(S, M1, M2)], leading to the following
symmetric unbiased estimator based on all of the available data

V̂ (S, M1, M2) := 1!
n1
2

"!
n2
2

"!
n3
2

"
ÿ

i1,i2œ(n1 2)
j1,j2œ(n2 2)
k1,k2œ(n3 2)

ÂS
n1n2n3 (si1 , si2 , aj1 , aj2 , jk1 , jk2 ),

where ÂS
n1n2n3 is the symmetrized version of Ân1n2n3

ÂS
n1n2n3 (s1, s2, a1, a2, j1, j2) := 1

(2!)3

ÿ

i1,i2œS2
j1,j2œS2
k1,k2œS2

Ân1n2n3 (si1 , si2 , aj1 , aj2 , jk1 , jk2 ),

with S2 = {(1, 2), (2, 1)} the set of all permutations of {1, 2}.149

With this estimator for the variance of ”̂(S, M1, M2), we can now conduct a z-test over the test statistic defined in the150

previous section to compute statistical significance of cross-linguistic discrimination di�erences.151

Supplementary Discussion.152

1. Input idealization in computational modeling of early phonetic learning. Modeling studies investigating the feasibility of potential153

learning mechanisms for early phonetic learning have typically relied on input idealizations that sidestep the lack of invariance154

problem and the phonetic segmentation problem, and cannot therefore alleviate the feasibility concerns related to these155

problems. In initial modeling work investigating the feasibility of learning phonetic categories through distributional learning156

(5–9), the phonetic category segmentation problem was either simply assumed to have been solved (7–9), or the input speech157

was assumed to consist of exemplars from a restricted number of pre-segmented or isolated syllable types, that were furthermore158

chosen such that automatic segmentation of the vowel nucleus based on voicing cues would be easy (5, 6). The impact of the159

lack of invariance problem was minimized by artificially limiting the variability of the input. Specifically, the input speech160

signal was: chosen from a restricted set of phonemes (5–9); occurring in a restricted set of phonetic contexts (5–7); uttered161

by a (very) restricted set of speakers (5, 9); available to the learner in a manually encoded (7–9) and/or restricted (5–9)162

phonetic feature space; drawn from synthetic parametric sound distributions fitted to corpus data rather than using corpus data163

directly (7, 8). Subsequent studies considered slightly more realistic variability and found that distributional learning was not164

su�cient anymore to learn phonetic categories accurately (10–16) and proposed additional learning mechanisms tapping into165

other sources of information plausibly available to infants to complement distributional learning. However, demonstrations of166

feasibility for the proposed mechanisms still assumed the phonetic category segmentation problem to be solved (10–12, 14–16)167

and/or did not fully address the lack of invariance problem by not considering the full variability of natural speech (10–16).168

Specifically, input speech signal was: chosen from a restricted set of phonemes (10–12, 14–16); occurring in a restricted set of169

phonetic contexts (12, 14, 16); uttered by a very restricted set of speakers (10, 11, 13, 15, 16); available to the learner in a170

manually encoded (9, 10, 12, 14–16) and/or restricted (10–12, 14–16) phonetic feature space; drawn from synthetic parametric171

sound distributions fitted to corpus data rather than using corpus data directly (11–14). Existing attempts to extend some172
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of these results to more realistic learning conditions have failed (17, 18). The few studies that attempted to model infant173

phonetic learning from naturalistic, unsegmented speech input remained inconclusive for lack of a suitable evaluation method174

(19, 20). Finally, we know of only one demonstration of feasibility for an account of early phonetic learning in which the175

outcome of learning is not phonetic categories (21). It also assumes the phonetic category segmentation problem to be solved176

and minimizes the impact of the lack of invariance problem by artificially limiting the variability of the input speech.177

Modeling assumptions are necessary in any model—for example, our approach ignores the visual component of speech and178

uses adult-directed rather than child-directed speech—but they should be critically examined to assess their suitability relative179

to the research objectives. For example, whereas the assumptions typically made in previous studies were all geared toward180

making the learning problem easier—by sidestepping the lack of invariance and phonetic segmentation problems—we focus, as181

much as possible, on modeling assumptions that make it harder. This means that in our framework, positive feasibility results182

constitute much stronger evidence. Our framework is not devoid of modeling assumptions that make the learning problem183

easier; for example, we consider speech input consisting of speech from a single speaker at a time, captured by a close-range184

microphone, and with no overlap with environmental sounds. However, we make many fewer such simplifying assumptions than185

previous models and we are careful not to sidestep the phonetic category segmentation and the lack of invariance problems in186

particular. This ensures that our simulations are suitable to address feasibility concerns related to these problems.187

2. Model initialization, learning procedure and convergence. Following Chen et al. (22), the parameters of our Gaussian mixture188

models are learned through the exact Markov chain Monte-Carlo (MCMC) sampling algorithm proposed in Chang & Fisher189

(23). This algorithm combines, in a principled way, Gibbs sampling of the parameters of instantiated mixture components (i.e.190

the clusters with non-empty membership at any given point in the algorithm execution) with sampling of split and merge191

moves that increase or reduce the number of instantiated mixture components. It is designed to combine good statistical192

convergence properties with computational e�ciency, and in particular to allow the parallelization of the computations to193

accommodate large training datasets.194

We also follow Chen et al. (22) for model initialization. They used the default initialization procedure in the implementation195

proposed by Chang & Fisher (23), which consists of assigning each data point in the training set uniformly at random to one of196

ten initial clusters. The mean vector and covariance matrix for each of these ten initial clusters is then taken as the mean197

and covariance of the points assigned to that cluster. The weights of each of the cluster in the initial mixture is obtained by198

drawing from a Dirichlet distribution with ten categories and concentration parameter whose i-th component, for 1 Æ i Æ 10, is199

the number of points that were initially assigned to the i-th cluster.200

In theory, the initial state should not influence the learning outcomes when using this algorithm. The sampling algorithm201

we use comes with the usual guarantees (for sampling algorithms) of global convergence to the true posterior in the limit (23),202

so that in principle, the initialization procedure should not matter if we run the sampling procedure for long enough. The main203

issue in practice is that there is usually no definitive way to determine when it has been ‘long enough’. In our case, we look at204

the number of learned categories as a function of the number of sampling iterations (Figure S11). We see that this number205

is largely stabilized after about 600 iterations for all the models we train. This suggests that training the models for 1500206

sampling iterations (per parameter), as we do—again following the example of (22)—is su�cient for model convergence. We207

also see that cross-linguistic di�erences emerge quite robustly on independent runs for models trained on one to two hours of208

speech input (Figure 3(b)). Thus, we are reasonably confident that the models have converged.209

Still, we cannot completely rule out the possibility that running the algorithm for longer might ultimately lead to a di�erent210

outcome (e.g. to units corresponding to phonetic categories), and that a di�erent setting of the initial state might lead to that211

outcome faster. This leads us to consider the biological and psychological plausibility of the initialization procedure we used.212

A prominent proposal in the literature (see 24, for example)—motivated by observations of a certain ‘language-readiness’ of213

the human brain at birth and even before (25)—is that infants start with an innately specified, ‘universal’ mapping from an214

auditory space to a phonetic space, which is then progressively altered as they gain experience with their native language.215

However, there have not yet been proposals for a concrete implementation of such a mapping (although see 26, for a possible216

technical solution).217

This view is not universally shared. An alternative hypothesis has been argued to be fully compatible with the empirical218

record (e.g. 27, 28), according to which the observation of ‘universal’ phonetic discrimination abilities in newborns would219

correspond to an initial mode of perception of a purely auditory nature, in the absence of any mapping to phonetic space.220

Under this view, phonetic representations would be initiated through some form of random mapping, and subsequently refined221

through experience-dependent plasticity. One benefit of this latter view is that it assumes less in terms of what needs to be222

genetically specified than an innate universal mapping between acoustic and phonetic space.223

As discussed in the main text, MFCC input features can be interpreted as the output of a (very) simple model of the224

peripheral auditory system, and our approach to initialization can thus be understood as an implementation of this latter225

view. We are not aware of many empirical constraints on what would constitute a plausible random initialization of the226

phonetic clusters within this auditory space, and our initialization procedure represents one possible, albeit admittedly arbitrary,227

solution.228

3. Interpretation of simulated discrimination errors and relation to empirical observations. To evaluate our trained models, we expose229

them to appropriate test stimuli (e.g. exemplars of [ô] and [l]) and simulate discrimination tasks using the models’ representation230

of these stimuli. Here, we discuss our criteria to decide if the models successfully account for early phonetic learning on the basis231

of the resulting discrimination errors. For the purpose of this article, we deem our models successful if they can account for the232
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cross-linguistic di�erences in discrimination abilities observed in infants in the first year of life for the Japanese/American233

English language pair we study.234

The results to be accounted for come from a 2006 study by Kuhl and colleagues (29), since we are not aware of other studies235

directly comparing the phonetic discrimination abilities of Japanese and American English infants in the first year. Using236

a conditioned head turning paradigm, they found no significant di�erence between American English and Japanese infants’237

ability to discriminate a synthetic [ôa] stimulus from a synthetic [la] stimulus at 6-8 months. Both groups answered correctly on238

about 65% of test trials. In contrast, at 10-12 months, American English infants were found to to be significantly more accurate239

than Japanese infants in the same task. American English infants answered correctly on about 75% of trials while Japanese240

infants answered correctly on about 60% of trials. All four groups discriminated the stimuli significantly above chance. When241

comparing across ages, American English 10-12 month olds were found to be significantly better at discriminating the stimuli242

than their 6-8 month old counterparts, whereas Japanese 10-12 month olds were not found to be significantly worse than their243

6-8 month old counterparts (but see 30). We adopt the standard interpretation that these results reflect infants’ discrimination244

of the [ô]-[l] contrast, and not just of the two specific stimuli tested in the experiment. We therefore test our models both on245

those specific stimuli (Figure S6), and on other instances of [ô] and [l] (Figure 3). However, we do not assume these observations246

of early phonetic learning in infants to mean that 10-12 month old infants have formed adult-like representations; while this is247

a common view in the literature, it is premised on the phonetic category hypothesis we are contesting. In particular, we do not248

take the results from Kuhl et al. (29) to necessarily indicate that Japanese 10-12 month olds have become nearly deaf to the249

[ô]-[l] distinction, or that American English 10-12 month olds learned to discriminate it perfectly.§250

Given our current state of knowledge about infant cognition, there are some quantitative aspects of these results that251

we cannot hope to model, even in principle. First, we cannot hope to model the quantitative values of the error rates or d’252

measurements characterizing infant discrimination in these experiments, as these values depend strongly on the specifics of253

the experiments in ways that are not well understood (32). This uncertainty might potentially be accounted for through free254

parameters in the model, but fitting those parameters would not be feasible due to the limited number of datapoints available255

to constrain them.¶ Second, we do not know the precise correspondence between an infant of a particular age and a model256

presented with a particular amount and quality of data. The quality and quantity of data in infants’ environments does not257

directly translate into their intake (33), the data they use for learning. In addition, some of the di�erences in infants’ behavior258

at di�erent ages might also stem from developmental factors not directly related to perception, and these are not included in259

our model. Moreover, we do not know whether infants rely solely on learned representations for discrimination, even when those260

representations are just starting to be formed and might be unreliable, or whether they initially rely on language-universal261

input features for discrimination, and then smoothly transition to relying on the learned language-specific representations as262

the amount of training data increases. This prevents us from interpreting the change in discrimination errors as a function of263

the amount of training input given to the model on Figure 3(b) directly as a developmental trajectory for example.264

Because we cannot hope to get a quantitative match in either the absolute discrimination scores or the absolute quantity of265

training data, we focus on modeling qualitative aspects of the empirical results. This means showing that American English266

models discriminate [ô] and [l] better than Japanese models do. We find this qualitative e�ect both with the original stimuli267

from Kuhl et al. (29), and with a broader set of speech stimuli drawn from American English speech corpora. Figure S6 shows268

that with small amounts of training data, the dissimilarity between the two original stimuli is roughly similar for all models.269

As the amount of training data increases, the two stimuli become more dissimilar for the American English models, while270

their dissimilarity stays roughly the same for the Japanese models. When tested on a broader set of [ô] and [l] stimuli, all271

models get better at discriminating this contrast as the amount of training data increases, but a clear cross-linguistic di�erence272

nevertheless emerges (Figure 3(b)). As noted above, there are a number of reasons why the direction of change in absolute273

error rates might not be reliable; but in both simulations, the increasing separation between English and Japanese models with274

increasing training data qualitatively matches the empirical pattern.275

A limitation of this study is that it focuses on one language pair, limiting the relevant empirical record to mostly one study276

(29). Mugitani and colleagues (34) suggested that vowel length perception at 10 months could be similar in American English277

and Japanese listeners; our models appear broadly consistent with this hypothesis, as we find no systematic di�erence in278

Japanese vowel length discrimination between the Japanese and American English models (see Supplementary Discussion 5).279

However, we do not focus on this result, as Mugitani and colleagues (34) did not directly test American English 10 month olds,280

and recent evidence suggests that the development of vowel length perception, for Japanese listeners at least, might be more281

complicated than once thought (35). As argued in the main discussion, in the longer term our modeling framework will allow282

evaluating the proposed learning mechanism against the empirical record on further language pairs, comparing it with other283

possible learning mechanisms, and designing empirical tests of their predictions.284

We are not aiming to model adult data, nor are we able to interpret absolute error rates relative to infant data. Thus, the285

absolute levels of the discrimination errors we obtain have little bearing on our main conclusions. However, it is still interesting286

to get a sense of how those absolute error rates might be interpreted. To this end, we added a supervised phoneme recognizer287

baseline as a possible approximation of an adult-like state,� In general, the supervised baselines show larger cross-linguistic288

di�erences than our (unsupervised) models do. For the [ô]-[l] contrast, for example, the absolute di�erence in discrimination289

errors between ‘native’ and ‘non-native’ models is about four times as large for the supervised phoneme recognizers as for the290

§This view is supported by empirical evidence that American English infants’ perception of [ô]-[l] develops well beyond the first year of life (31).
¶One potential solution might be to pool infant data across many experiments to try and calibrate task models. However, it is unclear whether this strategy could be successful, because of the heterogeneity

in the way infant experiments are carried out in practice.
�This is different from its role in Figures 4, S7, S9 and S10, where it is used as a possible embodiment of the linguistic notion of phonetic category.
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unsupervised models. These larger crosslinguistic di�erences are driven by decreased performance of the supervised baselines291

on the ‘non-native’ language and increased performance on the ‘native’ language (Figures S3, S5), though improvement on292

the ‘native’ language does not appear robust to a register change (Figure S3). These results show that the proposed learning293

mechanisms for early phonetic learning is compatible with the view that one-year-olds have not yet formed mature, adult-like294

speech representations.��
295

We additionally included an unlearned ‘auditory’ input features baseline (with distances computed directly between sequence296

of MFCC input vectors) in Figures S3, S5, as a possible approximation of discrimination on the basis of a language-universal297

auditory representation. This baseline performs surprisingly well relative to both the supervised baseline and the unsupervised298

models in discriminating some phonetic contrasts. On average, the ‘native’ models do better than the baseline, and the299

‘non-native’ models do worse, as expected (Figure S3). However, this is not true for every contrast, as can be seen for [ô]-[l]300

and [w]-[j] on Figure S5. There are a number of possible ways to interpret this result.†† This might reflect a shortcoming301

common to both the unsupervised models and supervised baselines for these contrasts. It might also be that, in order to302

catch up with the input features baseline, our models require larger amount of training input (Figure 3(b)) or input that is303

more similar to what infants hear (38). Finally, another possibility is that high level language-specific representation might304

need to be combined with information-rich auditory representation (39) to enable accurate phonetic discrimination of certain305

contrasts—as appears to be the case in humans (40).306

4. Interpretation and plausibility of the learned representations. It might seem surprising for infants to be learning—as part of the307

language acquisition process—units such as those we find, with no established linguistic interpretation. Given the relative308

evolutionary recency of the language faculty in humans (41), however, early phonetic learning might be grounded in domain-309

general perceptual learning mechanisms (42, 43), the outcome of which might not conform to a purely linguistic interpretation.310

Supporting this view are observations of early perceptual attunement in other modalities than speech perception—for example311

in face (44), voice (45), pitch (46, 47), music (48) and linguistic sign (49) perception—and in other animals than humans—for312

example for conspecific vocalizations in rats (50), for music in mice (51) and for faces in macaques (52). Furthermore, there313

is evidence that the physiological mechanisms governing the onset and o�set of perceptual attunement might be similar in314

these di�erent modalities and conserved from mouse to man (53–55). Furthermore, from a more adaptive/functional point315

of view, phonetic categories embody sophisticated linguistic knowledge and inferring them from scratch might simply be316

too di�cult. The learned representations under the proposed account support remarkably accurate discrimination of native317

language word-forms (22, 56–58)—a criterion for which early phonetic representations have been proposed to be optimized318

(59–61). They could thus serve as a more robust intermediate point in a bootstrapping process (62) ultimately leading to319

language proficiency.320

Another question that arises is whether the learned representations are biologically and psychologically plausible given321

their relatively high dimensionality—between 444 and 899 learned categories, with posterior probability vectors of matching322

dimension. It is questionable whether infants—or even adults—would be able to explicitly access and manipulate such detailed323

representations of the phonetics of very short stretches of speech. We believe, however, that the learned units are plausible324

at least as lower-level perceptual representations. Such high-capacity intermediate representations are commonly postulated325

in other domains of adult and infant cognition—for example, as part of the ‘core’ object recognition and the ‘core’ spatial326

navigation systems (63), with correspoding computational models typically featuring representations in even higher dimensions327

than the ones we consider here (64–67). Computation over such high-capacity representations is likely to be costly and might328

be limited to a restricted set of operations—including the formation of integrated similarity or familiarity judgments, for329

example. Such representations are typically seen as supporting the operation of largely subconscious cognitive processes and330

allowing the formation of higher-level, lower-capacity, representations over which computations can be carried out more flexibly331

(see 68, for example).332

5. Systematic model predictions. We provide a concrete demonstration of our framework’s ability to link accounts of early phonetic333

learning to systematic predictions regarding the empirical phenomenon they seek to explain by reporting in Table S1 phonetic334

contrasts of Japanese and American English for which the distributional learning mechanism we study robustly predicts a335

significant di�erence in discrimination abilities between learners of those languages. Note that nothing in our method—which336

we present in detail in Supplementary Materials and Methods 4—is specific to the particular distributional learning mechanism337

studied in this article. It applies directly to any learning mechanism taking actual speech signal as input, as long as a reasonable338

way to measure the (dis)similarity between the learned representations of relevant test stimuli can be provided.339

Reassuringly, we find that American English [ô]-[l] is among the contrasts robustly predicted to be significantly harder to340

discriminate for Japanese-learning infants. Only two other contrasts of American English are predicted to be robustly harder to341

discriminate for Japanese-learning infants, both involving the rhotacized vowel [Ç]. We are not aware of empirical comparisons342

of Japanese- and American English-learning infants (and even adults) having been carried out so far for these contrasts. No343

contrast of Japanese is predicted to be robustly harder for American-English-learning infants.344

6. Advantages of our approach over traditional approaches to making predictions. Our approach to linking a learning mechanism to345

systematic predictions regarding infant phonetic discrimination relies on explicit simulations of the learning process. Such346

simulations have been carried out before (5–16, 19–21, 69), however this never resulted in concrete predictions regarding347

��This view is supported among other things by evidence of continued phonetic learning well after the first year (see e.g. 31, 36, 37).
††We do not attempt to decide between these possible interpretations here, as this is not directly relevant to our main conclusions.
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infants’ discrimination abilities. One reason is that previous simulation studies were conducted in the context of outcome-348

driven approaches and therefore focused on testing whether phonetic categories could be learned, rather than on predicting349

discrimination patterns observed in infants. There are also methodological limitations that would have have severely limited350

the possibility of obtaining systematic predictions in these studies. One of them is the drastically simplified input used in351

most studies. Influences of the phonetic context on cross-linguistic di�erences in discrimination abilities (70) might fail to be352

captured when the training data is restricted to just a few contexts, for example. Or meaningful predictions might be impossible353

for non-native contrasts falling into part of the phonetic space that is not represented in the input when it contains only a354

subset of the phonetic categories of the training language (e.g. if the input consists exclusively of vowels represented in terms355

of their formant frequencies). Even for the studies that did attempt to model infant phonetic learning from realistic speech356

input (19, 20), the lack of a suitable evaluation method to handle the complex speech representations typically produced by357

algorithms learning from raw speech without supervision would have prevented the derivation of systematic predictions. Indeed,358

as we already noted, traditional signal detection theory models of discrimination tasks (71) cannot handle high-dimensional359

input representations, while more elaborate Bayesian probabilistic models (72) typically have too many free parameters to be360

practical. Moreover, traditional evaluation methods for representation learning algorithms from the machine learning literature361

typically assess performance on downstream tasks such as supervised classification, or against known cluster labels, rather than362

on the discrimination abilities measured in infants. Finally, the procurement of appropriate test stimuli for all the phonetic363

contrasts for which predictions are to be obtained, and the need for a sound statistical methodology to separate signal from364

noise in the large number of resulting predictions, would have presented two additional challenges.365

In principle, an alternative to our mechanism-driven approach would be to obtain predictions by relying on pre-specified366

notions of the outcome of learning. In phonetic category accounts, for example, predictions could be made based on how the367

phonetic categories from the test language map onto the phonetic categories of the native language. This has been the standard368

approach in the field until now, but to the best of our knowledge, has never resulted in the kind of systematic predictions369

we report here. Its scalability is limited by two central di�culties related to the intrinsic complexity of the speech signal.370

First, given that detailed aspects of the speech signal can strongly a�ect discrimination abilities (70, 73), making systematic371

predictions would require extraordinarily detailed phonetic descriptions of the whole phonetic space in all of the relevant372

languages. Such descriptions are not available at the required scale at present, and conducting detailed phonetic analyses to373

obtain them would represent a colossal undertaking. Second, even on a small scale, how to carry out the required phonetic374

analyses is not clear. Arbitrary decisions would have to be made, for example, regarding which phonetic dimensions to include,375

how to characterize these dimensions acoustically, how to characterize discrete categories in the presence of gradient e�ects,376

and how to concretely relate the observed cross-linguistic phonetic di�erences to predicted discrimination abilities. Some of this377

methodological uncertainty has been sidestepped in practice by relying on empirical assimilation patterns—adults’ judgments378

regarding what sound from their native language is most similar to a non-native stimulus—to guide the derivation of predictions379

in an ad hoc fashion. This is not a scalable solution, however, given the costs associated with human experimentation. It also380

fails to explain how the observed assimilation patterns arise in the first place.381

Our modeling framework provides the first practical, scalable way to link accounts of early phonetic learning to systematic382

predictions regardings infant phonetic discrimination. Key innovations underlying the success of our framework relative to383

previous approaches include a focus on mechanisms rather than outcomes, and on mechanisms capable of learning from384

naturalistic speech in particular, resulting in models capable of making systematic predictions. The testing of these models385

at scale relies on further important innovations. One of them is the use of large forced-aligned databases of transcribed386

continuous speech recordings to procure relevant test stimuli. Another is the use of the machine ABX test to link model387

representation of test stimuli to concrete, systematic predictions regarding infants’ discrimination abilities. The machine388

ABX test is an automatized, parameterless measure of discriminability that is computationally tractable, statistically e�cient,389

and can handle representations in essentially any format, as long as a reasonable way to measure the similarity between the390

speech representations to be evaluated can be provided, making it easy to compare the predictions from di�erent models391

(74). The rationale for such an evaluation method, with a focus on simplicity of use and scalability—rather than seeking to392

provide a detailed model of infants’ behavior in a particular experimental paradigm—is the idea that di�erent discrimination393

tasks all index a common perceptual process and should result in qualitatively similar discrimination patterns—an idea that394

has received empirical support from the signal detection literature (71). Finally, another important innovation is the careful395

statistical analysis—taking into account noise sources in both model training and evaluation (see Supplementary Materials and396

Methods 4)—which allows us to tease out reliable e�ects in the large number of generated predictions.397
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Table S1. Phonetic contrasts for which a significant difference in discriminability between American English- and Japanese-learning infants

is robustly predicted by the proposed distributional learning mechanism. That is, for each possible choice of training and test register,

these contrasts show a significant difference in discrimination errors between models trained on American English and Japanese, and the

magnitude of this difference does not decrease as the training data size is increased. See Supplementary Materials and Methods 4 for

justification of these criteria and details of the method.

Language Contrast
Easier for Average difference in

learners of discrimination error

Am. English [Ç] - [I] Am. English 5.4%
Am. English [Ç] - [2] Am. English 4.8%
Am. English [ô] - [l] Am. English 3.7%
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Fig. S1. Average ABX error rates over all consonant and vowel contrasts obtained with each of our four Gaussian mixture models on each of the four test sets. Error bars
correspond to plus and minus one standard deviation of the errors across resampling of the test stimuli speakers. On all four test sets, ‘native’ models make fewer discrimination
errors than ‘non-native’ models, illustrating the robustness of the observed native advantage.
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Fig. S2. ABX error rates for the American English [ô]-[l] contrast and two controls: American English [w]-[j] and average over all American English consonant contrasts.
Error-rates are reported for each of the four trained Gaussian mixture models and each of the two American English test sets. Error bars correspond to plus and minus one
standard deviation of the errors across resampling of the test stimuli speakers. Results show that the specific deficit for American English [ô]-[l] discrimination for ‘Japanese’
models compared to ‘American English’ models is robustly observed across all training and test conditions.

12 of 24 Thomas Schatz, Naomi H. Feldman, Sharon Goldwater, Xuan-Nga Cao and Emmanuel Dupoux



Native
Nonnative
Input features baseline

Sa
me

lan
gu
ag
e

Sa
me

reg
ist
er

Sa
me

lan
gu
ag
e

Di
ffe
ren
t re
gis
ter

Di
ffe
ren
t la
ng
ua
ge

Sa
me

reg
ist
er

Di
ffe
ren
t la
ng
ua
ge

Di
ffe
ren
t re
gis
ter

Train/Test relationship

��
��
�������

A
BX

er
ro
rr
at
e
(in

%
)

GMM (unsupervised)

Sa
me

lan
gu
ag
e

Sa
me

reg
ist
er

Sa
me

lan
gu
ag
e

Di
ffe
ren
t re
gis
ter

Di
ffe
ren
t la
ng
ua
ge

Sa
me

reg
ist
er

Di
ffe
ren
t la
ng
ua
ge

Di
ffe
ren
t re
gis
ter

Train/Test relationship

HMM (supervised)

Fig. S3. Average ABX error rates over all consonant and vowel contrasts obtained with unsupervised Gaussian mixture models (GMM), with a supervised phoneme recogniser
baseline (HMM) and with an input features (MFCC) baseline, as a function of the match between the training set and test set language and register. Error bars correspond to
plus and minus one standard deviation of the errors across resampling of the test stimuli speakers. For both Gaussian mixture models and the phoneme recogniser baseline,
the ‘Native’ (blue) conditions, with training and test in the same language, show fewer discrimination errors than the ‘Non-native’ (red) conditions. Also, in both cases the
‘Native’ conditions show fewer errors than the input features baseline, while ‘non-native’ conditions show more errors. However, the native language effect (difference between
‘native’ and ‘non-native’ models) is bigger for the supervised than the unsupervised models. Also, whereas the unsupervised models generalise very well across registers, the
supervised models appear to overfit the training register.
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Fig. S4. Letter-value plots(75) of the distribution of ‘native’ advantages across all tested phonetic contrasts (pooled over both languages) for the unsupervised Gaussian mixture
models (GMM) and the supervised phoneme recogniser baseline (HMM). The native language advantage is the increase in discrimination error for a contrast of language L1
between a ‘L1-native’ model and a model trained on the other language, keeping the training register constant. The ‘native register’ advantage is the increase in error for a
contrast of register R1 between a ‘R1-native’ model and a model trained on the other register, keeping the training language constant. For both types of models and in all tested
cases, the reduction in the average discrimination error between ‘native language’ and ‘non-native language’ conditions is not driven by just a few contrasts. The ‘native register’
only seems to play a role for the supervised models. In particular supervised models trained on read speech appear to have trouble discriminating spontaneous speech stimuli,
while supervised models trained on spontaneous speech do not have problem discriminating read speech stimuli.
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Fig. S5. ABX error rates for the American English [ô]-[l] contrast and two controls: American English [w]-[j] and average over all American English consonant contrasts (C-C).
Error rates averaged over the two American English test sets and across model’s training registers are reported for the unsupervised Gaussian mixture models (GMM),
the supervised phoneme recogniser baseline (HMM) and the input features baseline. Error bars correspond to plus and minus one standard deviation of the errors across
resampling of the test stimuli speakers. The specific deficit for American English [ô]-[l] discrimination for ‘Japanese’ models compared to ‘American English’ models is observed
with both the unsupervised Gaussian mixtures and the supervised phoneme recognisers. The size of the deficit is larger for the supervised baseline, though, which we can
interpret as the unsupervised GMM models producing somewhat immature representations of speech, like those of human infants (36), while the supervised HMM models
produce more adult-like representations. Another interesting result is that the supervised American English models (‘native’ condition, in blue) do not outperform the input
features baseline in the supervised case and underperform it in the unsupervised case. This suggests that some of the detailed information relevant to discrimination that
was present in the input features was not preserved through the learning of a different representation of the speech signal in terms of discrete Gaussian components (see
Supplementary Discussion 3 for further discussion).
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Fig. S6. Dissimilarity between the trained models’ representation of a synthetized /ra/ stimulus and a synthetized /la/ stimulus as a function of the amount of input. These
stimuli are those used in the empirical study which showed the emergence of a cross-linguistic difference in discriminability of these stimuli between Japanese- and American
English-learning infants (29). For each selected duration (except when using the full training set), ten independent subsets are selected and ten independent models are
trained. Solid lines indicate the average dissimilarity, with error bands indicating plus or minus one standard deviation. The dissimilarity corresponds to the average of the
Kullback-Leibler divergence between posteriorgram representations of the stimuli along the dynamic time warping alignment path, expressed in bits (see Material and Methods).
As the amount of input data increases, there does not appear to be much of a change in the dissimilarity of the two stimuli for the Japanese models, whereas there is sharp
increase in dissimilarity for the American English models, especially between the 1-2h and 10-20h of training input. This is remarkably consistent with the empirically observed
behavior of infants tested with these stimuli: no significant change was observed in the ability of Japanese-learning infants to discriminate these stimuli between 6-8 and 10-12
months of age, whereas American English infants became better at it (29). The predicted cross-linguistic difference between American English and Japanese learners appears
to require more input to be observed reliably when testing the models with synthetic stimuli than with natural stimuli (cf. Figure 3).
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Fig. S7. As in Figure 4, with an additional ASR phone-state baseline (cf. Supplementary Materials and Methods 2). The Gaussian units in the learned (unsupervised) Gaussian
mixtures are more similar to the phone-state units than to the phoneme units in the supervised baseline, although some differences remain. Even though the phone states
are more numerous than the Gaussian components (a), they remain activated slightly longer on average (b) and they are better aligned with phonetic categories in terms of
linguistic content, both within-speakers (c) and across speakers (d).
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Fig. S8. Supporting evidence for Supplementary Materials and Methods 3. On the left hand side (‘Original analysis’ panel): acoustic (in)variance analysis for within speaker
stimuli as in Figure S7. On the right hand side (‘With flawed stimuli removed’ panel): same analysis with potentially mispronounced, noisy or misaligned stimuli (as identified
through a listening test, see Supplementary Materials and Methods 3) removed. Differences are barely visible and the overall pattern of results remains unchanged.
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Fig. S9. As in Figure 4, with results for models trained on 1/10th subsets of the full training sets added in baby blue (these models already show a reliable cross-linguistic
difference in [ô]-[l] discriminability between ‘American English’ and ‘Japanese’ models, see Figure 3(b)). For the duration and acoustic (in)variance analyses (panels b, c, d),
results are averaged over the ten such models trained for each training corpus before standard deviations are estimated. For the number of learned units analysis (panel a),
error bars show the standard deviations across the ten trained models. Models trained on 1/10th subsets learn much fewer categories (about one fourth as many). This
is closer to the typical number of phonemes or of phonetic categories one would expect in a language. Yet, these learned units remain qualitatively different from phonetic
categories as shown by the duration and acoustic (in)variance analyses (panels b, c, d). Although their average duration of activation are a few millisecond longer than for
models trained on the full training sets, this is still about one fourth of the average duration of speech segments corresponding to phonetic category units. The units learned
by the models trained on 1/10th subsets also appear slightly more acoustically invariant, with number of distinct units in the acoustic (in)variance tests about 80% that of
the models trained on the full training sets (panels c, d). This remains much more variable than the phoneme recognizer baseline, however. Furthermore, for the acoustic
(in)variance analysis we have applied a very generous correction for possible misalignment (see Supplementary Materials and Methods 3). This likely causes an overestimation
of the acoustic invariance for all the unsupervised models, as indicated by the results on Figure S10. Overall these analyses suggest that the failure of our models to learn
phonetic categories cannot be attributed solely to their learning of too many categories.
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Fig. S10. As in Figure S9 (c, d), but without applying a correction for possible misalignments of the forced-aligned phone centers (Supplementary Materials and Methods 3).
For the phoneme recognizer baseline, we see that the average number of distinct units for ten repetitions of a same word shows a small increase compared to the condition with
correction for misalignment, with up to about 33% more distinct units (which remains less than what was found for the unsupervised models, with correction). In contrast the
average number of distinct units more than doubles for our unsupervised models in all cases. This indicates that misalignment of the phone centers is not a very common
issue—as the phoneme recognizer baseline manages to find largely invariant units without any correction—suggesting that our main acoustic (in)variance analyses overestimate
the acoustic invariance of the units learned by our unsupervised models by a sizable margin.
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Fig. S11. As a convergence check, we plot the number of learned units (i.e. Gaussian components in the sampled mixture) as a function of the number of sampling iterations.
Confidence bands indicate mean +/- one standard deviation in number of learned units for models trained on independent subsets. For models trained on the full corpus no
confidence band is available. The number of learned units remains stable after about 600 iterations for all models we trained, suggesting 1500 iterations was enough for our
models to converge. For models trained on subsets of the full training set, we also see through the confidence bands that the number of learned categories does not depend a
lot on the particular subset selected. Finally, we see evidence that for models trained on small amounts of data, the size of the training set appears to predict the number of
learned units well, while for models trained on larger amounts of data, the precise nature of the training set appears to have a stronger effect. Models trained on similar amounts
of input (full training sets are about 20 hours long for models trained on read speech and about 10 hours long for model trained on spontaneous speech) learn similar number
of categories initially (for 1/1000th and 1/100th training subsets), but as the size of the training sets gets larger (starting with 1/10th training subsets), models trained
on Japanese result in larger number of learned categories than models trained on similar amount of American English. This suggests that the number of learned units for
the models trained on larger amounts—the models showing cross-linguistic differences in discrimination—does not simply reflect the amount of training input, but also the
qualitative characteristics of the training sets.
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