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ABSTRACT

With advances in artificial intelligence, image processing has also gained signif-
icant interest. Image super-resolution, in particular, is a vital technology closely
related to real-life applications, as it enhances the quality of existing images. Since
enhancing details is important in the super-resolution task, it is often necessary to
activate pixels that appear only at high frequencies, distinct from low frequencies.
In this paper, we propose a method that generates a detail image separately from
the super-resolution image. This approach introduces a loss function designed to
enhance detail, allowing the model to generate an upscaled image and a detail im-
age independently, with control over each component. Consequently, the model
can focus more effectively on high-frequency data, resulting in an improved super-
resolution image. Our loss function utilizes detail images based on the Laplacian
Pyramid, which is widely used in image reconstruction. The multi-level property
of the Laplacian Pyramid is well-suited for applying upscaling and downscaling
repeatedly. Our experiments demonstrate that a structure applying the repetition of
upscaling and downscaling integrates effectively with our detail loss control. The
results show that this structure efficiently extracts diverse information, enabling
the generation of improved super-resolution images from multiple low-resolution
features. We conduct two types of experiments. First, we construct a simple
CNN-based model incorporating the Laplacian Pyramid-based detail control and
a repeated upscaling and downscaling structure. This model achieves a state-of-
the-art PSNR value of 38.48 dB, surpassing all currently available CNN-based
models and even some attention-based models without additional special tech-
niques. Second, we apply our methods to existing attention-based models on a
small scale. In all the experiments, attention-based models using our detail loss
show improvements compared to the original models. These experiments demon-
strate that our detail control loss effectively enhances performance, regardless of
the model’s structure in the super-resolution task.

1 INTRODUCTION

In recent years, advances in hardware have enabled the handling of high-resolution (HR) images,
making image processing techniques increasingly essential tools. One such technique is the single
image super-resolution (SR), a low-level vision task that generates a high-resolution image from a
low-resolution (LR) one. Since this classical problem is ill-posed, meaning that multiple HR images
can correspond to a single LR image, the single image SR is challenging. However, it attracts
significant interest due to its applications in various fields, such as medical imaging (Greenspan,
2009; Isaac & Kulkarni, 2015; Sood et al., 2018), object detection (Na & Fox, 2018; Haris et al.,
2021b), and satellite image analysis (Shermeyer & Van Etten, 2019; Cornebise et al., 2022).

Deep learning methods, which have received explosive focus, have been actively used in image
processing and are also connected to super-resolution (Dong et al., 2016; Kim et al., 2016a; Wang
et al., 2018; Talab et al., 2019; Hui et al., 2021), significantly improving performance. Researchers
have explored various approaches, such as developing deeper convolutional neural network (CNN)
(Kim et al., 2016b; Lim et al., 2017; Ahn et al., 2018) and designing algorithms (Lai et al., 2017;
Liu et al., 2018; 2019a; Sun & Chen, 2020; Haris et al., 2021a; Anwar & Barnes, 2022; Lee & Jin,
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2022) that integrate existing image processing techniques. In particular, approaches using attention-
based structures (Liu et al., 2019b; Niu et al., 2020; Li et al., 2021; Liang et al., 2021; Zhang et al.,
2022; Chen et al., 2023) have recently been proposed. In this circumstance, many deep learning
methods focus on enhancing the ability to capture proper features from an LR image and carry them
until the end. Thus, in many cases (Liu et al., 2020; Niu et al., 2020; Haris et al., 2021a; Anwar
& Barnes, 2022; Chen et al., 2023), the generation of the super-resolution image employs a simple
upsampler, and the model is trained using one loss function based on the SR image. However, in SR
tasks where refining high-frequency detail is crucial, relying solely on one loss function for SR may
provide insufficient guidance for capturing fine details.

In this paper, we propose a detail control loss based on the Laplacian Pyramid (LP) to guide the detail
part of SR. Our method leverages the reconstruction concept of the LP, which generates an HR image
by adding an upsampled approximation image with a detail image (Burt & Adelson, 1987). It creates
a feature map for the detail image from the upsampled features and controls it separately from the SR
by introducing an additional loss function. The approach allows the model to activate meaningful
pixels for high-frequency details and focus more on generating these fine details. Additionally,
we apply a repeated upscaling and downscaling process (RUDP). RUDP repeats downsampling the
completed SR feature map and then combining it with the LR image to extract new upsampled
approximation and detail features. Our experiments demonstrate that combining RUDP with the
LP-based detail control method effectively extracts various information from the LR image.

We conduct two main experiments. These can be broadly classified as follows. First, we construct a
simple CNN-based model, Laplacian pyramid-based Upscaling and Downscaling Super-Resolution
Network (LaUD), that incorporates the above two methods. This CNN-based model outperforms all
currently available state-of-the-art (SOTA) CNN models in the PSNR metric and has also surpassed
some attention-based models. Additionally, our ablation study and qualitative analysis demonstrate
that our detail control loss and RUDP are effective methods for improving performance. We also
confirm that their effectiveness is further enhanced when both methods are used together. Second,
we apply our method to existing attention-based models on a small scale. Comparing the results
with and without our method, we observe that its application consistently enhances performance
across all models. These results show that our method is applicable both with and without attention
mechanisms and can also improve the performance of attention-based models.

In summary, our main contributions are the following:

• We propose a new method, the detail control loss based on the LP. This method allows the
model to handle the detail image for high-frequency information apart from the SR image.
Consequently, the model can focus more on the detail part and supplement information not
present in the upsampled image.

• We verify that RUDP effectively integrates with the LP-based detail control. Our exper-
iments demonstrate that RUDP allows the model to capture more diverse information by
re-extracting features from the SR features supplemented with details.

• We apply our methods to both CNN-based and attention-based models. As a result, all
the models perform effectively, demonstrating that our methods successfully supplement
high-frequency information, regardless of the model’s structure.

2 RELATED WORKS

2.1 EARLY CNN MODELS IN SUPER-RESOLUTION

Many studies (Dong et al., 2016; Kim et al., 2016a;b; Zhang et al., 2017) have aimed to deepen
models more efficiently in the early days of deep learning for image SR. VDSR (Kim et al., 2016b)
is a pioneer in this direction, designing deeper structures using the residual learning. Subsequently,
several papers have developed efficient models based on residual networks. EDSR (Lim et al., 2017)
enhances performance by constructing a multi-scale structure with residual blocks. CARN (Ahn
et al., 2018) introduces a cascade connection between residual blocks, allowing the model to produce
SR images efficiently even with fewer parameters. Similarly, in our CNN-based experiments, our
LaUD utilizes residual blocks and skip connections to deliver information from the initial to the end.
Moreover, RUDP enables LaUD to extract more diverse features for SR within a deep architecture.
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2.2 ATTENTION MECHANISM

The transformer model has demonstrated excellent feature extraction performance and has been
successfully adapted for visual tasks (Dosovitskiy et al., 2020; Liu et al., 2021; Touvron et al., 2021;
Tu et al., 2022). Consequently, many studies utilize the attention mechanism in the SR task. Authors
in Liu et al. (2020); Niu et al. (2020) enhance performance by using both channel-wise and spatial-
wise attention simultaneously. DRLN (Anwar & Barnes, 2022) proposes channel attention with a
pyramid concept to capture different sub-frequency-band information. HAT (Chen et al., 2023) and
EDT (Li et al., 2021) modify the window shape to improve the connection among windows. Some
papers, such as Liang et al. (2021); Zhang et al. (2022); Yang & Wu (2023), apply transformer
models (Liu et al., 2021; Tu et al., 2022) that have demonstrated high performance in the visual
domain. From the experiments that apply our methods to existing attention-based models, we see
that our methods can be adapted to the attention-based model with tiny modifications. Therefore,
our LP-based detail control and attention mechanism can result in a synergistic effect.

2.3 LOSS FUNCTION FOR THE SUPER-RESOLUTION TASK

SR problems involve predicting fine details that are not visible in LR images. To address this chal-
lenge, many studies have sought to enhance performance by introducing various loss functions be-
yond traditional ones, such as mean squared error between SR and HR images. In Xu et al. (2017),
the model generates multiple SR images and sums their mean squared error losses. While we also
compute a weighted sum of multiple SR images when applying RUDP, our method introduces an ad-
ditional loss specifically for details. Some papers, such as Johnson et al. (2016); Ledig et al. (2017),
introduce an additional loss based on the feature maps of a pretrained model. Since a well-trained
model captures the style of an image, including texture and patterns, its feature maps help address
deficiencies in SR. Although using additional loss beyond SR and HR is similar to our LP-based de-
tail approach, the key difference is that our method uses LP-based detail image to guide the model.
In Sims (2020); Fuoli et al. (2021), high-frequency components are supplemented by leveraging
frequency-domain information. In Seif & Androutsos (2018); Ge & Dou (2023), the authors extract
detailed parts of images for new loss functions through edge detection and gradient extraction con-
volution. In particular, the method in Seif & Androutsos (2018) is quite similar to our approach.
Although this method extracts edge images from HR images, it differs from our detail control in that
its edge images are not involved in the reconstruction process of SR images.

2.4 METHODS BASED ON MATHEMATICAL THEORY

There have been many attempts to combine mathematical theories with deep learning. Given that
wavelets can handle multi-resolution images and integrate naturally with a convolution layer, various
researches (Huang et al., 2017; Liu et al., 2018; Jeevan et al., 2024) have been conducted. They
generate low-frequency and high-frequency images of the same size from the LR input and apply the
inverse wavelet transform to produce an SR image. In contrast, we use the LP-based reconstruction.
The LP detail image, which is the same size as the HR image, contains more information. Combined
with RUDP, this leads to enhanced abundance and diversity in feature extraction. In Lai et al. (2017);
Anwar & Barnes (2022); Han et al. (2022), the authors introduce the pyramid structure of LP to their
models. The authors of LapSRN (Lai et al., 2017) introduce a pyramidal reconstruction structure in
LP. Although the strategies for generating details and the reconstruction process are similar to ours,
our approach differs from LapSRN by using detail as the loss function, which guides the model
to concentrate high-frequency data. In DRLN (Anwar & Barnes, 2022), the authors propose the
Laplacian attention that generates feature maps of different scales similar to the pyramid structure
of LP and use them as channel attention. Unlike DRLN, we directly control the detail feature map
through the loss function and consider the LP pyramid structure only in the reconstruction process.

3 METHOD

The LP-based detail control we propose can be applied to various models because it relates to train-
ing rather than model structure. Therefore, we categorize the models into CNN-based and attention-
based types and compare the effects of our method on each category. In this section, we outline the
structure of the models and the loss functions used in each experiment.
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(a) Sub-components of the model

(b) Entire model structure

Figure 1: The structure of our CNN model, LaUD. In (a), the figure illustrates the sub-components
of the model. In (b), the figure shows the overall structure of LaUD.

3.1 CNN-BASED MODEL

For the CNN-based model, we design a new architecture, LaUD, that incorporates LP-based detail
loss and RUDP. The model has sufficient depth but remains simple, without incorporating techniques
beyond our two methods. This experiment demonstrates the performance of the model in compar-
ison to existing SR models. An ablation study is conducted to further evaluate the impact of each
method. Figure 1 shows the overall structure of LaUD. Our model consists of three main blocks: a
feature extraction block, an upscale block, and a downscale block.

Feature extraction block. We construct the feature extraction block using only residual blocks and
skip connections. For an LR image ILR, the shallow feature H0 is extracted by a convolution layer,

H0 = Conv(ILR). (1)

This convolution layer also helps in uniformly adjusting the number of channels in the feature map
before it enters residual blocks during the subsequent RUDP process. Then several residual blocks
Resn with skip connection extracts deeper features,

Hn = Hn−1 +Resn(Hn−1), n = 1, 2, . . . , N. (2)

We choose N = 4 and LeakyReLU as the activation function for all processes in our simple model.
All convolution layers have a kernel size of 3× 3.

Upscale block. The final feature HN is delivered to the upscale block. The upscale block creates
both the upscaled feature HUk

and the detail feature HDk
, where k denotes the order of upscaling

within the entire RUDP. Then the two features are added to complete the SR feature HSRk
, similar

to the usual construction process of LP: For k = 1, 2, . . . ,K, where K is the maximum order,

HUk
= Conv(Deconv(HN )), (3)

HDk
= Conv(Conv(Conv(HUk

))), (4)
HSRk

= HUk
+HDk

. (5)
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Unlike the back-projection in Liu et al. (2019b;a); Haris et al. (2021a), our upscale block generates
the SR feature by employing one deconvolution layer and a few convolution layers, thus avoiding
complex structure with multiple processes. Our detail loss enables the model to effectively generate
the SR feature, even with a simple structure. In this process, there are many ways to generate HDk

,
but we choose to derive HDk

from HUk
. As a result, our upscale block returns two feature maps:

the detail feature HDk
and the SR feature HSRk

. Each of these feature maps forms a distinct loss.

Downscale block and repetition. For the downsampling process of the SR features in our RUDP
structure, we employ one convolution layer with downsampling followed by a convolution layer,

HDownk
= Conv(Conv↓(HSRk

)), k = 1, 2, . . . ,K − 1, (6)

where Conv↓ indicates convolution layer with downsampling. The generated HDownk
is concate-

nated with the input LR image ILR and LR feature HDownk−1
, and then delivered back to the next

feature extraction block. Through this process, the feature extraction block extracts more diverse
information for the next SR image by referring to the SR features generated in the previous step. We
design our LaUD to set K = 3. Consequently, LaUD produces detail feature maps {HDk

}k=1,2,3,
SR feature maps {HSRk

}k=1,2,3, and downscale feature maps {HDownk
}k=1,2.

Result images and loss function. To ensure delivery without information loss, each block within
the model hands over feature maps as they are. Consequently, it is necessary to convert the feature
maps to the RGB format at the end. We achieve this conversion with a ToRGB layer using a 1 × 1
convolution. The entire loss function consists of the loss Ls for the SR image and the Ld for the LP
detail. We choose the L1 loss function, which effectively reduces the smoothing effect and shows
an outstanding ability for image restoration (Zhao et al., 2017). For the SR images, the Ls is the
weighted sum of three losses between the HR image IHR and the SR images {ISRk

}, obtained from
{HSRk

}. For the detail images, we first generate a detail ID from IHR by the LP process. Then the
Ld is defined through the weighted sum of losses between the ID and the three detail images {IDk

},
generated by the model from {HDk

}. The weights used are the same as those used in the Ls. As a
result, the final loss is L = α · Ls + β · Ld, where α and β are the weights, and

Ls =

3∑
k=1

Wk · ||IHR − ISRk
||1, Ld =

3∑
k=1

Wk · ||ID − IDk
||1. (7)

3.2 ATTENTION-BASED MODELS

For the attention-based model, we aim to demonstrate that our methodology integrates seamlessly
without disrupting the existing attention structure. Therefore, we applied our method to several
existing attention-based models and compared the results to those of the original models. This
experiment shows that our LP-based detail control is not limited to CNNs but is also effective across
various structures. The LP-based detail loss can be implemented with minor modifications to the
output part of a model. However, some models require significant structural changes to incorporate
our RUDP, which enhances the effectiveness of detail loss. Since these changes may not provide a
valid basis for a fair comparison, only the LP-based detail loss is applied to such models.

Choice of base models. We attempted to select SOTA models to examine the results appropriately.
However, due to limitations in computing resources, we were only able to conduct experiments
on models that require less memory during training. Although we did not test our method on all
models, we demonstrated its effectiveness in attention-based models based on the trends observed
in the selected models.

We chose the base model according to the following criteria: 1. Models for which the authors pro-
vide their code to enable reproduction. 2. Models that can be trained within our resource constraints.
3. Models that demonstrate sufficiently high performance. 4. Models that each use different atten-
tion approaches. As a result, three models—ABPN (Liu et al., 2019b), HAN (Niu et al., 2020),
and DRLN (Anwar & Barnes, 2022)—were selected. To isolate the effects of our method, we re-
produced the original model and compared it with the version to which our method was applied.
The reproduction of each model was carried out using the code provided in their respective papers.
We primarily used the hyperparameters specified in the papers, and for details not mentioned, we
followed the defaults used in their code. When applying our method, all hyperparameters were kept
identical to those used in the reproduction.
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Application of our methods. To apply our LP-based detail loss, the model must generate detail
images separately from the SR image. Hence, the output part of each model requires some modifi-
cations. Here, we briefly describe our modification for each model. More details are in the appendix.

ABPN has an iterative up- and down-sample structure similar to our RUDP. We replace only this
structure with the upscale and downscale blocks from our LaUD, minimizing modifications to the
existing model methodology. Since the attention mechanism in ABPN operates on features after
downsampling, our modification enables the model to handle detail features without altering the
attention mechanism structure. HAN employs a structure in which layer and channel-spatial atten-
tion are applied after feature extraction using residual channel attention blocks. Since incorporating
RUDP into HAN would require significant modifications to the model’s structure, we apply only
LP-based detail control, excluding RUDP. Consequently, we conduct experiments by adding only a
block that generates a detail image to the final upsample process. DRLN applies attention within the
dense residual Laplacian module, which overlaps several times to form a cascading block. The entire
model is composed of several such cascading blocks. Therefore, we integrate RUDP by inserting the
upscale and downscale blocks from LaUD between some of these cascading blocks. This enables
us to apply detail loss and RUDP while keeping the structure of the original attention mechanism.

4 EXPERIMENTS

In this section, we first compare the performance of LaUD with SOTA models. Next, we provide
ablation studies and qualitative analysis on LaUD to validate the effects of LP-based detail control
and RUDP. Finally, we demonstrate the impact of our methods when combined with attention-based
models. Results on more images can be found in the appendix. Due to page limit, the detailed setup
for the training and evaluation of LaUD and attention-based models is provided in the appendix. All
our implementation code will be released and made publicly available.

Scale Methods Base Set5 Set14 BSD100 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×2

EDSR (Lim et al., 2017)

CNN

38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351
MWCNN (Liu et al., 2018) 37.91 0.9600 33.70 0.9182 32.23 0.8999 32.30 0.9296
D-DBPN (Haris et al., 2021a) 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324
HBPN (Liu et al., 2019a) 38.13 0.961 33.78 0.921 32.33 0.902 33.12 0.938
RCAN (Zhang et al., 2018)

Attention

38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384
DRLN (Anwar & Barnes, 2022) 38.27 0.9616 34.28 0.9231 32.44 0.9028 33.37 0.9390
HAN† (Niu et al., 2020) 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385
EDT-B† (Li et al., 2021) 38.63 0.9632 34.80 0.9273 32.62 0.9052 34.27 0.9456
SwinFIR† (Zhang et al., 2022) 38.65 0.9633 34.93 0.9276 32.64 0.9054 34.57 0.9473
HAT-L† (Chen et al., 2023) 38.91 0.9646 35.29 0.9293 32.74 0.9066 35.09 0.9505
LaUD(ours)† CNN 38.45 0.9625 34.65 0.9256 32.54 0.9042 33.71 0.9507

×4

EDSR (Lim et al., 2017)

CNN

32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033
MWCNN (Liu et al., 2018) 32.12 0.8941 28.41 0.7816 27.62 0.7355 26.27 0.7890
D-DBPN (Haris et al., 2021a) 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946
HBPN (Liu et al., 2019a) 32.55 0.900 28.67 0.785 27.77 0.743 27.30 0.818
RCAN (Zhang et al., 2018)

Attention

32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087
DRLN (Anwar & Barnes, 2022) 32.63 0.9002 28.94 0.7900 27.83 0.7444 26.98 0.8119
ABPN (Liu et al., 2019b) 32.69 0.900 28.94 0.789 27.82 0.743 27.06 0.811
HAN† (Niu et al., 2020) 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094
EDT-B† (Li et al., 2021) 33.06 0.9055 29.23 0.7971 27.99 0.7510 27.75 0.8317
SwinFIR† (Zhang et al., 2022) 33.20 0.9068 29.36 0.7993 28.03 0.7520 28.12 0.8393
HAT-L† (Chen et al., 2023) 33.30 0.9083 29.47 0.8015 28.09 0.7551 28.60 0.8498
LaUD(ours)† CNN 32.81 0.9020 29.05 0.7937 27.88 0.7471 27.20 0.8174

×8

EDSR (Lim et al., 2017)
CNN

26.96 0.7762 24.91 0.6420 24.81 0.5985 22.51 0.6221
D-DBPN (Haris et al., 2021a) 27.21 0.7840 25.13 0.6480 24.88 0.6010 22.73 0.6312
HBPN (Liu et al., 2019a) 27.17 0.785 24.96 0.642 24.93 0.602 23.04 0.647
RCAN (Zhang et al., 2018)

Attention

27.31 0.7878 25.23 0.6511 24.98 0.6058 23.00 0.6452
DRLN (Anwar & Barnes, 2022) 27.36 0.7882 25.34 0.6531 25.01 0.6057 23.06 0.6471
ABPN (Liu et al., 2019b) 27.25 0.786 25.08 0.638 24.99 0.604 23.04 0.641
HAN (Niu et al., 2020) 27.33 0.7884 25.24 0.6510 24.98 0.6059 22.98 0.6437
LaUD(ours)† CNN 27.51 0.7882 25.34 0.6569 25.04 0.6102 22.07 0.5898

Table 1: Quantitative comparison with state-of-the-art methods on benchmark datasets.
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4.1 PERFORMANCE ANALYSIS OF OUR MODEL LAUD

Table 1 presents a quantitative comparison between LaUD and SOTA models. Following the stan-
dard conventions in the field, we conduct experiments using four datasets: Set5 (Bevilacqua et al.,
2012), Set14 (Zeyde et al., 2012), BSD100 (Martin et al., 2001), and Urban100 (Huang et al., 2015).
We evaluate the PSNR and SSIM values for 2×, 4×, and 8× upscaling. However, since some papers
do not report 8× upscaling results, we include only the reported results for 8× upscaling. The PSNR
and SSIM values are calculated on the Y channel from the YCbCr space. In the table, “†” is used to
indicate models that execute two training sessions: pretraining and fine-tuning.

Considering the overall PSNR results, LaUD outperforms all CNN-based models, except in the 8×
upscaling on Urban100. Among CNN-based models, DBPN and HBPN use the back-projection
method, which is similar to our RUDP. While these models perform well within CNN-based archi-
tectures, LaUD achieves better results and highlights the effectiveness of LP-based detail loss. In
addition, our LaUD demonstrates performance comparable to attention-based models, despite be-
ing a CNN-based architecture. It outperforms RCAN, DRLN, ABPN, and HAN across all datasets,
except for Urban100 at the 8× scale. Surpassing models that employ attention mechanisms, which
excel at feature extraction, clearly show that our model effectively extracts and utilizes features
through the LP-based detail control and RUDP.

In detail, for the 2× upscaling, LaUD improves by 0.18 dB on Set5 and 0.37 dB on Set14 compared
to DRLN, which also aims to utilize the concept of the LP. Compared to DBPN and HBPN, which
employ iterative upsampling and downsampling through back-projection structures similar to our
RUDP, LaUD demonstrates significant performance improvements over both DBPN and HBPN,
achieving gains of at least 0.8 dB on Set14 and 0.59 dB on Urban100. This indicates that our model,
which incorporates the LP-based detail loss and RUDP, more effectively restores high-frequency
data. The influence of detail control is maintained even as the scaling increases. For instance, with
an 8× scaling factor, LaUD achieves the PSNR values of 27.51 dB on Set5, 25.34 dB on Set14,
and 25.04 dB on BSD100, outperforming all other models on these datasets. Since an LR image
contains significantly less information compared to an 8× SR image, it is challenging to generate
an appropriate feature map from the LR image solely through the SR loss. In this context, catching
the missing information from the 8× upscale features through detail loss plays an important role.

4.2 ABLATION STUDIES ON LAUD

No. RUDP Weighted Detail Set5 Set14 BSD100 Urban100
SUM Control PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 X X X 38.1887 0.9615 34.0821 0.9212 32.3554 0.9023 32.7903 0.9422
2 O X X 38.1741 0.9613 34.0184 0.9206 32.3052 0.9013 32.5221 0.9393
3 O O X 38.3154 0.9620 34.6050 0.9250 32.4888 0.9037 33.6879 0.9497
4 X X O 38.2841 0.9619 34.2761 0.9224 32.4013 0.9029 33.0743 0.9448
5 O X O 38.2511 0.9618 34.2763 0.9224 32.4133 0.9030 33.1355 0.9453
6 O O O 38.4237 0.9625 34.7677 0.9256 32.5504 0.9045 34.0834 0.9529

Table 2: Ablation for the LP detail control and RUDP (for ×2). The term “Weighted Sum” refers to
whether the loss is defined as the weighted sum of losses using each image generated during RUDP.

In this section, we conduct ablation studies to assess the impact of our LP-based detail control and
RUDP. In Section 3.1, we define the total loss for LaUD using the weighted sum of the losses for
each SR image. However, the total loss can also be determined using only the final SR image. There-
fore, we investigate the effect of the weighted sum as well. Eventually, we examine six scenarios
considering RUDP, the weighted sum of the losses, and LP detail control. We train each model for
the six scenarios only once on ImageNet. To minimize the influence of model complexity, we adjust
the architectures to have a similar number of parameters across models. The experiment focuses
solely on 2× scaling. The results are presented in Table 2.

The results in Table 2 demonstrate the impact of the LP-based detail loss and the synergistic effect
when RUDP is applied simultaneously. When comparing models No. 1 and 4, 2 and 5, and 3 and
6, the models incorporating our detail control consistently outperform the others. This indicates
that guiding the model with detail loss is an effective approach, especially in enhancing the high-
frequency components of the SR image. When RUDP is applied alone, it seems to interfere with
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the model’s training. For instance of Set5, the model No. 1, which employs no additional methods,
achieves 38.1887 dB, whereas the model No. 2, using only RUDP, achieves 38.1741 dB. However,
the model No. 3, which incorporates a weighted sum of losses using intermediate SR images,
improves performance to 38.3154 dB. By using images from the intermediate layer as loss, the
model generates accurate SR images at that stage. This approach helps guide the model to extract
more appropriate features in RUDP and progressively refine the SR image in subsequent steps.

Notably, the model that applies all methods achieves the highest performance, with a score of
38.4237 dB on Set5. This model No. 6 shows a significant improvement of approximately 0.23
dB on Set5 over the model without any methods. This substantial difference demonstrates that
detail control and RUDP with a weighted sum complement each other, resulting in a synergistic
effect. While detail control guides the model to focus on high-frequency components, deficiencies
are compensated by re-extracting features from the SR image of the previous step through RUDP.

4.3 QUALITATIVE ANALYSIS OF LAUD

(a) For LaUD.

(b) For LaUD without detail loss.

Figure 2: Parts of the SR feature map: (a) for LaUD, and (b) for LaUD without detail loss. In each
set, the left image shows the first upscaling, while the right image shows the last upscaling in RUDP.

We aim to analyze the outputs of our model. Figure 2 illustrates the SR feature maps of LaUD.
Before the final ToRGB layers, the feature maps consist of 256 channels; however, in the figure, we
zoom in on the last 16 channels to highlight the changes more clearly. The full and different images
of Set5 can be found in the appendix.

The figure shows two feature maps: the first and last SR features in RUDP. In both cases (a) and
(b), the final SR features contain more activated channels. Additionally, the contrast between the
channels in the final feature map is more clearly distinguished. This is because the model enhances
information for SR through the processes of upscaling and downscaling. When comparing the fea-
ture maps between (a) and (b), we see an obvious fact that detail loss affects the diversity of feature
maps. As shown in the feature map of (b), if there is no guidance for the model to capture high-
frequency information, RUDP amplifies only a few prominent channels, keeping the values in most
channels close to zero. Conversely, in (a), even in the first SR feature map, shapes containing texture
are revealed in many channels. Notably, in the final feature map, this texture is further enhanced.
As a result, each channel conveys distinct and clear texture information. This difference highlights
the importance of guiding high-frequency information by the detail loss in SR tasks. Furthermore,
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it demonstrates that RUDP, when combined with LP detail control, provides significant benefits by
efficiently extracting diverse information for high-frequency components.

We also provide the visual comparison in Figure 3. We compare the SR images produced by LaUD
with those generated by other SOTA models on Urban100. Urban100 consists of images where
structural information is crucial, such as buildings with numerous windows or spiral staircases con-
verging to a point. This comparison allows us to evaluate whether the model can accurately identify
and reproduce repetitive structures down to the fine details in the SR process.

Figure 3 presents the results of D-DBPN, DRLN, SwinFIR, and our LaUD across two images. We
report additional examples in the appendix. In the first image, a closer inspection of the patches
reveals differences in the wall’s detailed texture. Our LaUD achieves the highest performance, with
34.5614 dB. It produces an image closer to the HR by generating a texture that resembles dust
along the line that separates windows at the bottom of the patches. In contrast, DBPN and SwinFIR
create images with clean lines in that area but fail to capture finer details. We think that our detail
loss allows the model to focus more effectively on these intricate textures. The image “image072”
features a pattern of circular lines. The enlarged red box highlights the area where straight lines
intersect. All models render these lines without distortion. However, when inspecting the diagonal
line from the top left to the bottom right, our model more clearly distinguishes the boundary between
the black and white lines compared to other models. This is because our model enhances the contrast
in this area, similar to the level of the HR image. This result is achieved by capturing the boundary
with LP-based detail loss and enhancing pixels through RUDP. Our PSNR is the best here as well.

Figure 3: Visual comparison for ×4 SR on Urban100. The patches for comparison are marked with
red boxes in the original images. The PSNR values are calculated based on the patches.

4.4 APPLICATION TO ATTENTION-BASED MODELS

This section presents the results of applying our LP-based detail loss to attention-based models. As
outlined in Section 3.2, we selected three models: DRLN, HAN, and ABPN. Depending on the
structure of each model, we applied either the detail loss alone or together with RUDP.
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Table 3 presents our experimental results. We reproduced all the original models using the code
provided in each paper. However, the results did not match the values reported in the respective
papers. Despite this discrepancy, a valid comparison is still possible, since the original models and
those incorporating our method were trained in the same environment and under identical conditions.

Scale Model Set5 Set14 BSD100 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×2

DRLN 38.0971 0.9610 33.7461 0.9188 32.2428 0.9006 32.0521 0.9353
DRLN + Detail loss + RUDP 38.2657 0.9618 34.1755 0.9223 32.4246 0.9029 33.0870 0.9450

HAN 38.2759 0.9616 34.1278 0.9218 32.3898 0.9027 32.9821 0.9443
HAN + Detail loss 38.2941 0.9617 34.1416 0.9219 32.4123 0.9030 33.0814 0.9451

×4
ABPN 32.2792 0.8955 28.6666 0.7828 27.6110 0.7379 25.3536 0.7646

ABPN + Detail loss 32.4739 0.8980 28.7962 0.7861 27.6948 0.7416 25.7796 0.7797

Table 3: The performance of attention-based models applying our detail loss or RUDP.

We evaluated all models using various test datasets, and the results exhibited consistent tendencies.
Therefore, a detailed examination of the results only for Set5 is as follows. First, DRLN significantly
improves performance by applying both our LP-based detail loss and RUDP with a weighted sum
loss using SR and detail images. The reproduced DRLN achieves 38.0971 dB, while the model with
our methods records 38.2657 dB, showing an improvement of approximately 0.17 dB. DRLN is
well-suited for introducing RUDP with the weighted sum loss due to its multi-block structure. This
further enhances the effect of our detail loss.

We only apply the LP-based detail loss to HAN, as adding RUDP poses a risk of significantly
altering the structure. This results in a slight improvement from 38.2759 dB to 38.2941 dB. While
the improvement is small, the detail loss still has an impact on the model. Since HAN uses RCAN
as a pretrained model, the sub-pixel convolution for the SR image is also pretrained. However, the
part responsible for generating the detail image must be trained with a small learning rate without
pretraining. This likely explains why the PSNR value does not show a more significant difference.

Performance improvement is also observed in ABPN. ABPN has a structure similar to RUDP but
generates an SR image by collecting all SR features produced during the mid-process. As a result,
we are unable to introduce RUDP and instead integrate only our detail loss. With the addition of our
detail loss, PSNR improves by approximately 0.2 dB, and SSIM increases from 0.8955 to 0.8980.

In summary, across all three models and all datasets, combining the attention-based model with our
detail loss leads to performance improvements. The result demonstrates that our LP-based detail
loss is not limited to CNN structures but can be effectively integrated with attention mechanisms to
enhance a model.

5 CONCLUSIONS

In this paper, we proposed a novel detail loss based on the LP and a RUDP for the SR task. The LP-
based detail loss can be used with CNN models and transformers, as it is independent of the model’s
architecture. In addition, when combined with RUDP, the LP-based detail loss produces a synergis-
tic effect, significantly improving the performance. Qualitative analysis shows that the detail loss
helps the model capture high-frequency information, resulting in many channels in the SR feature
map conveying different texture information (cf. Figure 2). In our experiments, we constructed a
CNN-based model incorporating both the LP detail loss and RUDP. Through ablation studies, we
confirmed the effectiveness of each technique (cf. Table 2). Additionally, we evaluated our CNN
model on four datasets using PSNR and SSIM metrics (cf. Table 1). The model outperformed all
other CNN models and performs better than several attention-based models. Moreover, we inte-
grated our method into several existing attention-based models, resulting in improved performance
across all of them (cf. Table 3). This demonstrates that the LP-based detail loss is effective with
attention mechanisms and applicable regardless of model structure.
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A APPENDIX

A.1 LAPLACIAN PYRAMID

The Laplacian Pyramid (Burt & Adelson, 1987) is an image representation consisting of multi-scale
high-frequency images and one low-frequency image of the smallest scale. This representation is
similar to the Gaussian Pyramid presented in the same paper, but differs in that the LP comprises
residual images except for the last level.

Figure 4 illustrates the overall process for constructing the LP as used in our paper. First, we obtain
a downscaled image I1 by low-pass filtering and downsampling an original image I0. Then, I1 is ex-
panded to a re-upscaled image I1↑ through interpolation with the same size as I0. We get a residual
image ∆I1 by subtracting the re-upscaled image I1↑ from the original image I0. Consequently, the
original image is decomposed into the approximation image I1 and the detail image ∆I1, forming
the first level of the LP. Repeating this process to the approximation image, we create a pyramid
composed of k multi-scale high-frequency images ∆I1,∆I2, . . . ,∆Ik and one low-frequency im-
age Ik of the smallest size, after k steps. Since the construction process involves subtraction, the
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Figure 4: The construction process of the Laplacian Pyramid.

LP can completely reconstruct the HR image by adding a detail image and an upsampled approxi-
mation image of the same level. Therefore, the LP is a useful technique for image compression and
reconstruction.

We consider the high-frequency image of LP appropriate for refining the detail part of the SR image.
If a model generates an elaborate detail image of LP, the perfect reconstruction property of LP is
operated efficiently to enhance the SR. From this point of view, we develop the LP-based detail
control. It optimizes the model to generate a feature map containing high-frequency information
through supervised learning with the LP detail of the HR image.

The ground truth detail image used in our LaUD is identical to the largest detail image in the LP
process. Specifically, by selecting the ground truth HR image as I0 in Figure 4, ∆I1 is generated
through the LP process. This ∆I1 corresponds to ID in our loss function, as defined in Equation (7).
Since the LP process supports multi-scale analysis, a stepwise upscaling approach can be applied
to tackle higher-scale SR problems. For example, in a 4× upscaling problem, the process could be
divided into two stages: first performing 2× upscaling as an intermediate step, followed by another
2× upscaling in the final step. While various alternative approaches exist, we opted to perform the
entire 4× upscaling in a single step to simplify the model. As a result, whether addressing a 4× or
8× SR problem, the ID in Equation (7) remains equivalent to ∆I1.

A.2 READY FOR APPLYING OUR METHODS TO ATTENTION-BASED MODELS

As previously mentioned in the main context, small modifications are required to adapt our method
to the three selected attention-based models: DRLN, HAN, and ABPN.

Figure 5 shows the original DRLN structure and modified version for applying our methods. The
image for the original DRLN is taken from the paper Anwar & Barnes (2022). DRLN consists of
cascading blocks, each containing multiple Dense Residual Laplacian Module (DRLM). According
to the author’s code, the original DRLN structure passes through a total of three cascading blocks,
with a short skip connection after each block. After each cascading block and short skip connection,
we apply the LP-based detail loss and RUDP by incorporating our upscale and downscale blocks. As
a result, we modify the model to the structure shown in (b), without altering the attention mechanism
within the DRLM. With the introduction of three upscale blocks, we generate three SR images and
three detail images, similar to LaUD. The total loss is calculated as a weighted sum using these
images.

Figure 6 shows the original HAN structure and modified version for applying our methods. The
image for the original HAN is taken from the paper Niu et al. (2020). HAN extracts features through
residual groups and then applies layer attention and channel-spatial attention to these features. Since
channel attention is also present within the residual groups, the attention mechanism would need to
be disrupted to introduce RUDP in the feature extraction phase. Consequently, we choose not to
apply RUDP and instead train the model using only the LP-based detail loss. Upon reviewing the
code, we confirm that HAN uses RCAN as its pretrained base. This causes insufficient training
when the upscale block of LaUD is used instead of the original sub-pixel convolution. Therefore,
we continue using sub-pixel convolution for upsampling and add an additional sub-pixel convolution
layer to generate the detail image. The resulting modified version is shown in (b).
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(a) The original DRLN taken from Anwar & Barnes (2022).

(b) The modified DRLN.

Figure 5: The original DRLN structure and modified version for applying our methods.

Figure 7 shows the original ABPN structure and modified version for applying our methods. The
image for the original ABPN is taken from the paper Liu et al. (2019b). ABPN has a structure that
repeatedly performs upsampling and downsampling, with the attention mechanism applied after the
downsampling back-projection block. Therefore, we replace the original upsampling and downsam-
pling blocks with the upscale and downscale blocks from LaUD. Since our upscale block generates
both detail and SR features, we can define the detail loss naturally. However, the original ABPN
follows a complex process to produce an SR image, where concatenated SR and LR features are
convolved and then added to the bicubic-upsampled LR. Considering whether to apply this process
to the generation of a detail image, we determine that it could lead to incorrect changes, such as
requiring a downsampled version of the detail. Therefore, we opt for a simpler structure that gathers
detail features and generates a detail image through convolution, as shown in (b). Unfortunately,
due to the process of image generation, while RUDP is used, multiple images are not generated.
As a result, it is not possible to construct a weighted sum loss using multiple images. Based on the
ablation results of LaUD, applying only RUDP without the weighted sum loss tends to interfere with
the model. We think that the performance of the modified model may be limited.

A.3 EXPERIMENTAL SETUP FOR LAUD

In this section, we specify the training setting of LaUD. The repeated upscaling and downscaling
structure requires setting several hyperparameters. As mentioned earlier, we apply three upscaling
steps. The weights in Ls and Ld, {Wk}k=1,2,3, are set to 1, 3, and 10, respectively, for progressive
advancement. The weights between Ls and Ld, α and β, are each set to 1 to ensure the model
focuses sufficiently on the detail image. Our choice for {Wk}k=1,2,3 has not been completely opti-
mized through a systematic process. However, we selected the weight that demonstrated the highest
performance among the several comparative experiments we conducted.
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(a) The original HAN taken from Niu et al. (2020).

(b) The modified HAN.

Figure 6: The original HAN structure and modified version for applying our methods.

We execute two training sessions, as shown in HAT (Chen et al., 2023), SwinFIR (Zhang et al.,
2022), and EDT (Li et al., 2021): pretraining on ImageNet 2012 (Deng et al., 2009) and fine-
tuning on DIV2K (Agustsson & Timofte, 2017) + Flickr2K (Timofte et al., 2017). For both training
sessions, the number of training epochs, initial learning rate, and learning rate schedules are based
on previous studies. The model shows significant performance with just pretraining, but we improve
slightly by fine-tuning with higher-resolution images.

The hyperparameters used in the two training sessions are similar to those in previous studies, such
as Liu et al. (2019a); Anwar & Barnes (2022); Hui et al. (2021); Chen et al. (2023); Zhang et al.
(2022); Li et al. (2021) In the pretraining stage, we resize the images in ImageNet to 224× 224 and
randomly crop them to 128 × 128. The augmented images are the HR we must fit, and LR images
are produced with size 128/s×128/s through the bicubic interpolation according to the scaling rate
s. We set the initial learning rate to 2 · 10−4 and train models for 25 epochs. The learning rate is
halved at 50%, 80%, 90%, and 96% of the total epochs.

For fine-tuning, we combine DIV2K and Flickr2K as training data. Since these images are huge,
resizing significantly compromises their quality. Therefore, unlike in pretraining, we only perform
random cropping. However, the crop size of 128× 128, as used in pretraining, often makes images
contain no objects. Such images negatively affect the model’s performance after fine-tuning. To
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(a) The original ABPN taken from Liu et al. (2019b).

(b) The modified ABPN.

Figure 7: The original ABPN structure and modified version for applying our methods.

address this, we increase the crop size to 512× 512 until maximum of our resources. Fine-tuning is
conducted during 1000 epochs, with an initial learning rate of 10−5, halved at 50%, 80%, 90%, and
95% of the training progress.

A.4 EXPERIMENTAL SETUP FOR MODIFIED ATTENTION-BASED MODEL

When training the modified attention-based models using our method, most settings follow the orig-
inal paper or the default configurations from the original code. As these settings are the same when
reproducing the original model, we briefly summarize them in here and recommend referring to the
original paper for details.

DRLN was trained for 3000 epochs with a batch size of 16 on a dataset combining DIV2K and
Flickr2K. During training, images were randomly cropped to 48× 48 for LR and (48 ∗ s)× (48 ∗ s)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

for HR, where s is the scaling factor. Random horizontal flips, vertical flips, and 90-degree rotations
were applied as data augmentation. The initial learning rate was set to 10−4 and halved every 200
epochs. When our LP-based detail loss and RUDP were applied to DRLN, the weights for the
weighted sum of the losses were set exactly as in LaUD.

For HAN, training was conducted using images in the 0-255 range from the DIV2K dataset. Since
RCAN was used as a pretrained model, only 400 epochs of training were performed with a batch
size of 16. The learning rate setup, the cropped LR and HR sizes, and the data augmentation were
identical to those used in DRLN. When our method was applied, RUDP could not be used, so we
only needed to set the weights between the SR loss and detail loss, which were kept at a 1:1 ratio,
the same as in LaUD.

Finally, ABPN differs slightly from the previous two models because the smallest scaling factor is
4. The training data is DIV2K + Flickr2K, and the model is trained for 5000 epochs with a batch
size of 16. However, the HR image size is set to 160×160, and the LR size is 40×40. Only random
horizontal and vertical flips are applied as augmentation. The initial learning rate is set to 10−4, the
same as in the previous two models, but it is halved only once at 2500 epochs. Unfortunately, when
we applied our method, we were unable to incorporate the weight sum connected to RUDP. As a
result, only the weight for SR loss and detail loss were set as a 1:1 ratio. However, by replacing
the existing upsample and downsample back projection blocks with LaUD’s upscale and downscale
blocks, the number of model parameters is reduced by half. To minimize the impact of the model
size, we compensated by increasing the number of feature maps generated in the intermediate layers.
Consequently, in our experiment, the ABPN and ABPN with our methods had nearly the same
number of parameters.

A.5 ADDITIONAL ABLATION STUDIES

In this section, we present additional ablation studies for our two methods: the LP-based detail loss
and RUDP. These experiments were conducted using our LaUD model.

A.5.1 ABLATION ON UPSCALING AND DOWNSCALING REPETITIONS

Number of Set5 Set14 BSD100 Urban100
RUDP PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 38.1402 0.9613 34.0151 0.9209 32.3038 0.9015 32.5285 0.9396
2 38.2802 0.9619 34.4278 0.9238 32.4483 0.9035 33.4187 0.9476
3 38.4237 0.9625 34.7677 0.9256 32.5504 0.9045 34.0834 0.9529

Table 4: The performance variations with different numbers of RUDP. All models are designed for
the 2× super-resolution problem.

The number of upscaling and downscaling repetitions should be treated as a hyperparameter. In
LaUD, this hyperparameter was set to three upscaling repetitions, which were determined through
extensive experimentation. Table 4 presents the results of the model based on the Number of RUDP.
The Number of RUDP refers to the number of upscaling steps when applying RUDP. We evaluated
performance by increasing the number of upscaling steps to 1, 2, and 3 in LaUD. All models used
in the experiment were trained once on the ImageNet dataset with our LP-based detail loss and
weighted sum loss.

In summary, increasing the number of RUDP consistently resulted in higher PSNR and SSIM values
across all datasets. For PSNR, an improvement of at least 0.1 dB was observed in every case as the
number of RUDPs increased. Notably, in Urban100, increasing the number of RUDP from 1 to 2
led to a significant improvement of nearly 1 dB. Although the trained model was lost and could
not be recorded, performance improvements became minimal when the number of RUDP exceeded
4. In some instances, the model even demonstrated inferior performance. Furthermore, increasing
the number of RUDP significantly raised the time and memory required for training. Based on
these experimental results, we aimed to determine the number of RUDP that could achieve fine
performance within the limitations of our resources. Consequently, our LaUD described in the main
text was configured to proceed with three upscaling processes.
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A.5.2 COMPARISON OF LOSS FUNCTIONS

Loss Set5 Set14 BSD100 Urban100
SR Det PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

L1 38.3154 0.9620 34.6050 0.9250 32.4888 0.9037 33.6879 0.9497
L1 L2 38.3899 0.9627 34.5614 0.9252 32.5058 0.9041 33.8258 0.9514
L1 L1 38.4237 0.9625 34.7677 0.9256 32.5504 0.9045 34.0834 0.9529

Table 5: The performance across different loss functions. All models are designed for the 2× super-
resolution problem.

Although we did not directly compare variations of the loss function in the main text, the ablation
study (cf. Table 2) provides valuable insight into the differences between the standard L1 loss for
SR, commonly employed in SR tasks, and our proposed loss function, which combines the L1 loss
for SR with our LP-based detail loss. As shown in the comparisons between No. 1 and No. 4,
No. 2 and No. 5, as well as No. 3 and No. 6 in Table 2, the models employing the combined loss
function consistently achieved higher performance. For clarity, we report again the results of our
LaUD without the LP-based detail loss and with the LP-based detail loss in the first and third rows
of Table 5, respectively.

In addition, we conducted an additional experiment with a slight modification to our combined loss
function, as shown in the second row of Table 5. Specifically, this experiment involved a model that
retained the L1 loss for SR but replaced the L1 loss for detail with an L2 loss. As demonstrated in
Table 5, using the L1 loss for detail resulted in higher performance compared to the L2 loss, except
for one SSIM value on Set5.

A.5.3 COMPARISON OF MODEL COMPLEXITY

Model Number of Memory Training Training Time Inference
Parameters (M) Usage (MiB) Time (s) per Iteration (s) Time (ms)

EDSR 40.73 1348.00 45.0799 0.0451 6.940
D-DBPN 5.95 1350.00 27.4748 0.0275 9.934
RCAN 15.44 1714.00 174.1959 0.1742 43.491
DRLN 34.43 1952.00 63.2655 0.0633 18.058
HAN 15.92 1856.00 172.0624 0.1721 44.417

EDT-B 11.48 8070.00 383.7992 0.3838 84.582
SwinFIR 14.35 5742.00 161.3138 0.1613 66.072
HAT-L 40.70 13146.00 331.3637 0.3314 90.863
LaUD 29.33 1982.00 53.5079 0.0535 11.951

Table 6: A comparison of model size, memory usage, training time, and inference time between
LaUD and the other state-of-the-art models. For measurement units, M represents a million and
MiB denotes a mebibyte.

LaUD was a model designed without the intention of introducing particularly complex techniques,
aside from the LP-based detail loss and RUDP. However, increasing the number of RUDP naturally
raised the model’s complexity due to the repeated upscaling process. To assess this, we aimed to
compare the complexity of LaUD with existing state-of-the-art models. Table 6 presents the model
size, memory usage, training time, and inference time for LaUD and SOTA models. From the
models listed in Table 1, we selected those that required no modifications, as their configuration and
model construction code were publicly available. All experiments were conducted under consistent
conditions, and the code used for these experiments will be released on GitHub at a later date.

Memory usage, training time, and training time per iteration were measured using an input image
with a size of 2× 3× 64× 64. Generally, larger batch sizes are used during training, so a high batch
size was initially considered for measurement. However, for models such as EDT-B, SwinFIR, and
HAT-L, the memory requirements exceeded our resource limits. Consequently, the batch size was
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standardized to 2 for all models. Inference time was measured using an input image with a size of
1 × 3 × 64 × 64. Before all measurements for time, 100 warm-up iterations were performed. For
training time, the duration of 1,000 training iterations was measured.

When comparing model sizes, LaUD has 29.33 million parameters, ranking fourth after EDSR,
DRLN, and HAT-L. Excluding the top three attention-based models—EDT-B, SwinFIR, and HAT-
L—which require substantial memory, LaUD occupies a middle position. Furthermore, considering
that LaUD achieves the best performance among models outside the top three, its size can be re-
garded as relatively reasonable.

For memory usage, the top three models demand an overwhelmingly large amount of memory. In
contrast, other models, including LaUD, operate within memory constraints that are not a concern.
LaUD occupied 1982 MiB to process an input image of size 2× 3× 64× 64, which is comparable
to models such as RCAN, DRLN, and HAN.

In terms of training time, EDT-B and HAT-L had the longest durations, averaging around 350 sec-
onds. RCAN, HAN, and SwinFIR followed, taking approximately half that time. LaUD, however,
demonstrated significantly faster training at just 53.51 seconds, emphasizing the simplicity of the
model. The overall trend is similar for inference time. Notably, LaUD required only 11.951 mil-
liseconds, comparable to DBPN, which has a much smaller model size.

The results in Table 6 highlight that LaUD is a simple model. We believe its ability to outperform
all but the top three models while maintaining a relatively small size indirectly demonstrates the
effectiveness of the LP-based detail loss and RUDP.

A.6 ADDITIONAL IMAGE RESULTS

A.6.1 RESULTS FOR LAUD ON DIVERSE DATASET

Figure 8 shows two additional results of LaUD. In all cases, the PSNR value increases along the
progress of RUDP.

A.6.2 ANALYSIS OF THE ROLE OF UPSCALED FEATURE AND DETAIL FEATURE IN LAUD

As explained in the main text, when designing LaUD, we derived a detail feature HDk
from the

upscaled feature HUk
and combined them to form the SR feature HSRk

. However, HDk
exhibits

distinct characteristics compared to HUk
, since both HSRk

and HDk
are guided respectively by

L1 loss and detail loss. Through our comparison and analysis of feature maps, we observed that
HDk

frequently captures information about boundaries and textures. From this perspective, when
combined with HUk

, HDk
enhances the information in HUk

and helps adjust overly flat or overly
emphasized values.

To illustrate our analysis, we present an image from the Set5 dataset as an example. Figure 9
displays the feature maps generated during the 2× super-resolution process of LaUD. The upper-
left corresponds to HU3

, the upper-right corresponds to HD3
, and the lower-left corresponds to

HSR3
. Examining this figure, the upscaled feature map HU3

predominantly retains low-frequency
information, such as complete object structures, and consists of features with varying contrasts. On
the other hand, the detail feature map HD3 , which generally has smaller values, tends to exhibit
relatively flat distributions. Nevertheless, it often highlights distinct boundaries or textures that are
absent in the upscaled features.

Figure 9 provides an overview of the changes that occur during the creation of the SR feature by
combining upscaled and detailed features. Specifically, we now focus on a detailed comparison of
the two cases highlighted by the red and green boxes. Figure 10 presents an enlarged view of the
features within the red and green boxes from Figure 9. Each row, from left to right, corresponds to
the upscaled feature, detail feature, and SR feature, respectively.

In the case of the red box (top row), the detail feature reveals prominent boundaries and textures. As
a result, when the SR feature is formed by combining the detail feature with the upscaled feature,
the insufficient high-frequency information in the upscaled feature is effectively reinforced. For ex-
ample, compared to the upscaled features, the SR feature exhibits more distinct facial lines, stronger
emphasis around the eyes and forehead, and newly introduced textures in the temple and along the
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Image010 from Urban100.

Image016 from BSD100.

Figure 8: Two additional examples of LaUD. Each example is taken from Urban100 and BSD100,
respectively. In the first row, there are three detail images by RUDP and a low-resolution image. In
the second row, there are SR images by RUDP and a high-resolution image.

sides of the nose. Next, in the case of the green box (bottom row), the detailed feature serves a
distinct role, unlike in the red box. In the upscaled feature, the values are generally flat, producing a
hazy image. However, this flatness is somewhat corrected by incorporating the detailed feature. As
a result, the SR feature demonstrates greater value curvature and seems to capture a more dynamic
and lively appearance.

A.6.3 ADDITIONAL IMAGES FOR FEATURE MAP ANALYSIS OF LAUD

In Figure 2 of the main text, we present a part of the SR feature map, highlighting the impact of
LP-based detail loss. Figure 11 and Figure 12 below expand on this analysis by displaying not only
the part but all 256 channels using examples on Set5.

The tendency is consistent with what is described in the main text. In both cases (a) and (b), more
apparent feature map is generated as the upscaling process is repeated by RUDP. In particular, in
case (a), where LP-based detail loss is applied, more channels are activated at the first upscaling
compared to case (b). When comparing the right SR feature map (the third upscaled SR feature in
RUDP) between (a) and (b), significantly more features remain active in (a) without fading. This
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Upscaled feature Detail feature

SR feature

Figure 9: Three feature maps for an example image in Set5, generated during the 2× super-
resolution process of LaUD.

demonstrates the effect of LP-based detail loss, which helps the model extract more diverse high-
frequency information.

A.6.4 ADDITIONAL VISUAL COMPARISON FOR ×4 SR ON URBAN100

“Image016” shows a building with a vertical line pattern. In the red-boxed area, although the wall’s
texture becomes visible, all models can not render this detail. A closer inspection of the window
frame at the bottom reveals clear differences. DBPN produces a blurred result, showing the lowest
performance. In the right part of the frame, compared to DRLN and SwinFIR, our model more
effectively highlights white pixels reflecting light. Similar to the HR image, our model captures
high-frequency details, maintaining bright pixels across about half of the frame.

The image, “image045,” features a repeating vertical straight-line pattern. In the region highlighted
by the red box, our LaUD demonstrates the second-highest performance, following DRLN. Overall,
ours produces an image with fewer blurs in the middle section compared to DBPN and SwinFIR.
Additionally, in the upper-left part, our image shows a more pronounced contrast, resembling light
reflection.
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Red box

Green box

Figure 10: Enlarged views of the red (top row) and green (bottom row) boxes from Figure 9. Each
row, from left to right, corresponds to the upscaled feature, detail feature, and SR feature, respec-
tively.

The red box in the last image highlights a section with a repeating horizontal pattern of alternat-
ing bright and dark pixels. DRLN struggles to create a straight horizontal line at the bottom of the
building, resulting in a low performance of 26.3223 dB. In contrast, DBPN and SwinFIR success-
fully generate well-formed repeating straight-line patterns, improving their performance to the 27
dB range. When comparing the repetition of the yellow and black horizontal lines in LaUD and
SwinFIR, LaUD completes the pattern and enhances the contrast between the dark and bright lines,
achieving the highest performance of 28.6791 dB.
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(a) For LaUD.

(b) For LaUD without detail loss.

Figure 11: Full SR feature map of same image in Figure 2. (a) for LaUD, and (b) for LaUD without
detail loss. For each set, the left image shows the first upscaling, and the right image shows the last
upscaling.
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(a) For LaUD.

(b) For LaUD without detail loss.

Figure 12: Full SR feature map of another example on Set5. (a) for LaUD, and (b) for LaUD
without detail loss. For each set, the left image shows the first upscaling, and the right image shows
the last upscaling.
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Figure 13: Additional visual comparison for ×4 SR on Urban100. The patches for comparison are
marked with red boxes in the original images. The PSNR values below the patches are calculated
based on the patches.
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