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Abstract001

Recently, enhancing the numerical and logi-002
cal reasoning capability of Large Language003
Models (LLMs) has emerged as a research004
hotspot. Existing methods face several limita-005
tions: inference-phase techniques (e.g., Chain006
of Thoughts) rely on prompt selection and the007
pretrained knowledge; sentence-level Super-008
vised Fine-Tuning (SFT) and Direct Prefer-009
ence Optimization (DPO) struggle with step-010
wise mathematical correctness and depend on011
stronger models distillation or human annota-012
tions; while Reinforcement Learning (RL) ap-013
proaches incur high GPU memory costs and014
unstable training. To address these, we propose015
Self-training framework integrating Process016
Preference learning using Dynamic value mar-017
gin (SPPD). SPPD leverages a process-based018
Markov Decision Process (MDP) and Bell-019
man optimality equation to derive dynamic020
value margin on step-level preference op-021
timization, which employs tree-based self-022
sampling on model responses without any023
distillation from other models. Furthermore,024
we theoretically prove that SPPD is equiva-025
lent to on-policy policy gradient methods026
under reward constraints. Experiments on027
7B-scale models demonstrate superior perfor-028
mance across in-domain and out-domain mathe-029
matical benchmarks. We open-source our code030
at https://anonymous.4open.science/r/SPPD-031
DCDD.032

1 Introduction033

Recently, the O-series models (OpenAI, 2024) have034

achieved a significant leap in the mathematical rea-035

soning capabilities of LLMs. Consequently, en-036

hancing the numerical and logical reasoning capa-037

bility of LLMs has emerged as a research hotspot038

(Chen et al., 2023; Yu et al., 2023; Jimenez et al.,039

2023; Shao et al.; Liao et al., 2024b; Lai et al.,040

2024; Guo et al., 2025).041

From now on, there are lots of methods to pro-042

mote the model reasoning capability. During the043

inference phase, the most common and effective 044

approach is to employ Chain of Thoughts (CoT) 045

prompts, which can stimulate the model’s inher- 046

ent reasoning and thinking abilities (Wei et al., 047

2022). Similar methods include Tree of Thoughts 048

(ToT) (Yao et al., 2024), Best of N (BoN) (Zheng 049

et al., 2024; Yuan et al., 2024), Monte Carlo Tree 050

Search (MCTS) (Feng et al., 2023; Zhang et al., 051

2024a), and so on. However, these methods do 052

not involve training policy models but rely on 053

increasing computational volume during the in- 054

ference phase, heavily depending on prompt se- 055

lection and the pretrained knowledge embedded 056

within the model. Moreover, SFT (Zhang et al., 057

2024a; Feng et al., 2023) or DPO (Rafailov et al., 058

2024b,a) based on human annotations or feedback 059

from more advanced AI also serves as an effective 060

way to enhance the model’s reasoning capabili- 061

ties. These methods leverage human-curated se- 062

lections or stronger open-source and close-source 063

models to inject good reasoning paradigms, such 064

as long-thought processes and reflection, into the 065

model being trained. However, all these meth- 066

ods are at the sentence level, which does not align 067

well with the requirement for correctness at every 068

step in mathematical reasoning scenarios. Mean- 069

while, such methods are either constrained by time- 070

consuming manual selection processes or require 071

support from more powerful models, like STILL-2 072

(Min et al., 2024) and Skywork-o1-open (Skywork, 073

2024b). When the model to be trained is already 074

the strongest reasoning model available, how can 075

we further improve the model’s reasoning perfor- 076

mance without any distillation? While RL-based 077

methods like Proximal Policy Optimization (PPO) 078

(Schulman et al., 2017), Group Relative Policy Op- 079

timization (GRPO) (Shao et al.; Guo et al., 2025), 080

Reinforcement Fine-Tuning (RFT) (Luong et al., 081

2024), etc., can address the aforementioned issues. 082

However, these methods are online approaches in- 083

volving numerous time-consuming inference opera- 084
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tions during training, requiring loading and training085

multiple models, imposing high demands on GPU086

memory and leading to highly unstable training087

processes.088

To solve above issues, we propose Self-training089

with Process Preference learning using Dynamic090

value margin (SPPD). Unlike sentence-level SFT091

and DPO, we completely abandon the data distil-092

lation approach and propose optimizing at the step093

level by integrating dynamic value margin. Specif-094

ically, SPPD utilizes a process-based MDP and a095

process-based Bradley-Terry (BT) Model (Bradley096

and Terry, 1952). By leveraging the Bellman op-097

timality equation (Barron and Ishii, 1989) and the098

online RL objective modeled with MDP (Rafailov099

et al., 2024a), SPPD derives step-wise direct pref-100

erence optimization using dynamic value margin.101

Additionally, SPPD does not rely on any stronger102

models for data distillation. Instead, it employs103

a tree search approach, which utilizes step-level104

trajectory sampling solely on the model’s own re-105

sponse and logits score. To ensure smoother and106

more effective training of SPPD, we introduce an107

SFT and DPO strategy based on PRM rejection108

sampling, progressively enhancing the model’s rea-109

soning capabilities from coarse-grained sentence-110

level optimization to fine-grained step-level refine-111

ment. Finally, we theoretically prove that under112

specific reward constraints, our method is equiva-113

lent to on-policy policy gradient method.114

The experimental results demonstrate that SPPD115

achieves widespread and significant improvements116

across different model architectures of 7B size117

and various in-domain and out-domain mathemat-118

ical test datasets. It surpasses most existing open-119

source models of the same size and some closed-120

source models, demonstrating the effectiveness and121

robustness of SPPD. Our contribution are summa-122

rized as follows: 1) We utilize the Bellman optimal-123

ity equation and the online RL objective modeled124

with MDP to achieve SPPD and iteratively improve125

the reasoning capability. 2) We design a step-level126

tree self-sampling scheme without any distillation127

from stronger model. 3) We theoretically prove128

that our method is equivalent to on-policy policy129

gradient optimization.130

2 Related Work131

Enhance Reasoning Capability of LLMs. Re-132

cently, a substantial body of research focuses on en-133

hancing the reasoning capabilities of LLMs. These134

methodologies are primarily divided into two cate- 135

gories: the inference phase and the Post-Training 136

phase. During the inference phase, early studies 137

concentrate on stimulating the model’s inherent rea- 138

soning abilities by modifying prompts (Wei et al., 139

2022; Yao et al., 2024). Subsequent research lever- 140

ages the consistency of multiple inferences by the 141

model (Yuan et al., 2024; Wang et al., 2022) or 142

integrates tree search strategies (Feng et al., 2023; 143

Zhang et al., 2024a) to guide the model towards 144

more accurate decoding processes. However, these 145

approaches do not involve training and heavily rely 146

on the model’s intrinsic reasoning capabilities. In 147

the Post-Training phase, SFT (Feng et al., 2023) 148

and DPO (Rafailov et al., 2024b,a) emerge as pri- 149

mary enhancement techniques. These methods de- 150

pend on human-curated selection of high-quality 151

reasoning trajectories or distillation of responses 152

from stronger models (Min et al., 2024) to improve 153

the reasoning performance of smaller or weaker 154

models. Nevertheless, these approaches are time- 155

consuming and unsustainable. RL paradigms, ex- 156

emplified by PPO (Schulman et al., 2017), GRPO 157

(Guo et al., 2025; Shao et al.), and ReFT (Luong 158

et al., 2024), effectively address the aforementioned 159

issues but introduce significant GPU memory con- 160

sumption and training instability challenges. 161

Step-Level Direct Preference Optimization. In 162

order to optimize and improve the model’s reason- 163

ing capability from the step level, CPO (Zhang 164

et al., 2024b) aligns each step of the CoT reasoning 165

paths with those of ToT using the inherent pref- 166

erence information in the tree-search process, but 167

it control LLMs to generate the thought data by 168

prompt, which may influent the model generation 169

quality. Step-DPO (Lai et al., 2024) treats indi- 170

vidual reasoning steps as units for preference opti- 171

mization. However, it utilizes the GPT4 to evaluate 172

the correctness of step, which could bring intro- 173

duced bias and is expensive. TPO (Liao et al., 174

2024b) claims that the policy can potentially learn 175

more effectively from a ranked preference list of 176

responses given the prompt and utilizes adaptive 177

step reward to adjust the reward values of each step 178

in the trajectory. However, it introduce a stronger 179

form of “catastrophic forgetting” and imbalanced 180

distribution of the preference tree reward values. 181

3 Preliminaries 182

In this section, we first define the step-level MDP in 183

natural language process. Subsequently, based on 184
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the step-level MDP, we modify the original RLHF185

objective and provide the optimal (fixed-point) so-186

lution to maximum casual entropy problem.187

Step-Level MDP in LLMs. We describe the188

step-level MDP in natural language process. The189

step-level MDP is defined as the following quin-190

tuple: M = (A,S, f, r, ρ0), where A represents191

the set of action spaces, consisting of a reasoning192

step at; S represents the set of states, which in nat-193

ural language denotes the sequence of the problem194

and the current reasoning step st = s0|a1|a2|...|at,195

where | denotes the string concatenation opera-196

tion and s0 is the problem. It is noteworthy that197

the selection of at depends on the current state.198

f : S ×A → S represents the state transition func-199

tion, indicating the transition from the current state200

to the next state after performing a certain action.201

Specifically, f(s, a) = s|a. r : S × A → R is202

the reward function, representing the immediate203

reward obtained after performing a certain action204

in the current state. ρ0 represents the distribution205

of the problems.206

RLHF objective with the Step-Level MDP. In207

the original RLHF objective (Ouyang et al., 2022),208

the rewards obtained from trajectories are mod-209

eled as a bandit problem (Zhao et al., 2024). How-210

ever, such sparse rewards are not suitable for policy211

learning in models, especially in mathematical rea-212

soning tasks (Riedmiller et al., 2018; Wilcox et al.,213

2022). Based on the step-level MDP, we modify the214

RLHF objective as follows (Rafailov et al., 2024a):215

max
πθ

Eat∼πθ(·|st)[

T∑
t=0

(r(st,at) + β log πref(at | st)︸ ︷︷ ︸
KL penalty

)216

+ βH(πθ) | s0 ∼ ρ(s0)], (1)217

where πθ represents the large language policy218

model with learnable parameters, πref represents219

reference model and β is used to control the pol-220

icy model not to deviate too far from the reference221

model, H(πθ) is the entropy of πθ. This optimiza-222

tion problem is known as the Maximum Causal223

Entropy. Ziebart (2010) have proven that Equa-224

tion (1) has a fixed-point solution π∗, defined as225

follows:226

π∗(at | st) = πref(at|st)e(Q
∗(st,at)−V ∗(st))/β,

(2)
227

where V ∗(st) represents the partition function of228

the π∗ distribution, used to normalize the proba-229

bility distribution, and Q∗(st, at) denotes the ex-230

pected sum of future immediate rewards starting231
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Figure 1: The framework of SPPD: unlike CoT and
MCTS, Tree-Based Self-Sampling generates step trajec-
tories with common prefixes and significantly preserves
the output distribution of the policy. The former pro-
vides step preference signals for SPPD, while the latter
theoretically ensures consistency with on-policy gradi-
ent methods, thereby enabling self-enhancement of the
model’s reasoning capabilities.

from the state-action pair (st, at) under the policy 232

π∗. 233

4 Method 234

In this section, we first propose a process prefer- 235

ence learning scheme using dynamic value margins 236

based on the step MDP and BT-model, and then 237

refine this preference learning scheme using the 238

reward equivalence. Additionally, we introduce a 239

tree-based self-sampling method designed to gen- 240

erate step trajectories with common prefix. Finally, 241

we introduce sentence-level SFT and DPO using 242

PRM, aiming to make the model training smoother 243

and more effective. 244

4.1 Process Preference Learning with 245

Dynamic Value Margin 246

First, we derive the process preference learning 247

with dynamic value margin starting from the op- 248

timal Bellman equation and revisit the traditional 249

step DPO (Lai et al., 2024) from a different per- 250

spective. 251

Lemma 4.1 (Optimal Step Reward Function). Un- 252

der the step MDP definition in Section 3 and fix 253

solution for the maximum casual entropy problem 254

(Equation (2)), the optimal step reward function 255

can be calculate as follow: 256

r(st, at) = β log
π∗(at|st)
πref(at|st)︸ ︷︷ ︸

Implicit Reward

+V ∗(st+1)− V ∗(st)︸ ︷︷ ︸
Value Gain

.

(3)

257
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Prove for Lemma (4.1) is shown in Appendix258

D.1. Equation (3) demonstrates that the immediate259

reward in the MDP consists of the model’s im-260

plicit reward and the value gain of the optimal261

value function. Assuming we have the following262

step-level preference pairs (st, awt+1, a
l
t+1), based263

on the step-level BT-model, we have the optimal264

preference distribution:265

p∗(awt+1 ≻ alt+1) = σ
(
r(st, a

w
t+1)− r(st, a

l
t+1)

)
.266

Here, σ(x) = 1/(1 + e−x) is the sigmoid function.267

Finally, we give the step DPO loss using dynamic268

value margin.269

Theorem 4.2 (Step DPO Loss Using Dynamic270

Value Margin.). If we aim to minimize the Kullback-271

Leibler(KL) divergence between the step-level pref-272

erence distribution pdata in Dstep and the model’s273

current preference distribution pθ under the sam-274

pling of πref , we can obtain the following loss275

function:276

Lstep-dpo = −Eawt+1,a
l
t+1∼πref(·|st)[277

log σ(βhθ(a
w
t+1, a

l
t+1)278

− (V ∗(swt+1)− V ∗(slt+1)))], (4)279

where hθ(a
w
t+1, a

l
t+1) = log

πθ(a
w
t |st)

πref(a
w
t |st) −280

log
πθ(a

l
t|st)

πref(a
l
t|st)

.281

The prove is shown in Appendix D.2. In tradi-282

tional step DPO (Lai et al., 2024), the value func-283

tion prediction at each step is defined as 0. How-284

ever, we argue that the value gain in the immediate285

reward (Equation (3)), or equivalently, the term286

V ∗(swt+1) − V ∗(slt+1) in Equation (4), considers287

the difference in the optimal value function pre-288

dictions for the preferred states. This manifests289

in the step DPO loss as a dynamic value margin290

that varies depending on the preferred states swt+1291

and slt+1, rather than treating all states uniformly.292

In practice, we use a PRM score to approximate293

the optimal value function. In Section 5, we will294

provide more profound theoretical insights and con-295

clusions.296

Reward Equivalence. To make the optimization297

process more controllable, we revise Equation (3)298

by introducing the concept of reward equivalence.299

Lemma 4.3. Reward Equivalence (Rafailov et al.,300

2024a)] Two reward functions r and r′ are equiva-301

lent if and only if there exists a potential function302

Φ : S → R that satisfies the following equation:303

r(st, at) = r′(st, at) + Φ(f(st, at))− Φ(st).304

In Equation (3), the potential function is our 305

optimal value function, i.e., Φ(s) = V ∗(s). At the 306

same time, it is easy to see that when we scale this 307

potential function, Φ′(s) = γΦ(s), Φ′ still satisfies 308

the definition of potential function. Therefore, we 309

can modify Equation (3) to obtain an equivalent 310

reward expression: 311

rγ(st, at) = r(st, at) + γΦ(f(st, at))− γΦ(st). 312

Repeating the derivation in Section 4.1 , we modify 313

the final loss as follows: 314

Lγ
step-dpo = −Eawt+1,a

l
t+1∼πref(·|st)[ 315

log σ(βhθ(a
w
t+1, a

l
t+1) 316

− γ(V ∗(swt+1)− V ∗(slt+1)))]. (5) 317

Remark. Although the concept of reward equiva- 318

lence in Rafailov et al. (2024a) implies that the op- 319

timal preference model belongs to the same equiva- 320

lence class, including the original step-DPO when 321

γ = 0, the introduction of γ makes the optimization 322

process more controllable due to its influence on 323

optimization. This has been verified in Section 6.3. 324

4.2 Tree-Based Self-Sampling on LLMs 325

Traditional reasoning algorithms (token-level de- 326

coding) is almost impossible to guarantee the gen- 327

eration of reasoning trajectories with identical pre- 328

fixes. To address this issue, this paper adopts a 329

tree-structured reasoning approach, as illustrated in 330

Figure 1. Specifically, the process is divided into 331

four steps: “Selection, Expansion, Collection and 332

Scoring”. During the selection process, at the cur- 333

rent state st, we record the average log probability 334

score for each child node at, defined as: 335

s(at|st) =
1

|at|

|at|∑
i=0

log πinfer(at,i|st|at,<i), 336

where |at| represents the token length of the cur- 337

rent step, at,<i denotes the first i − 1 tokens of 338

at, and πinfer represents the probability distribution 339

output of the inference model (policy in RL). In 340

practice, we set πinfer = πref. Furthermore, we nor- 341

malize the score distribution of all child nodes and 342

perform sampling to select child nodes. Each se- 343

lection starts from the root node and proceeds until 344

reaching a leaf node that contains the final answer. 345

If a node is not a terminal node and has no child 346

nodes, we expand the node to obtain C possible 347

reasoning steps. After performing the above steps 348
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K times, we traverse the expanded prefix tree and349

collect all answers that contain complete reasoning350

paths. Finally, we invoke the PRM to score each351

step of the reasoning trajectory, resulting in the352

final step-level dataset:353

Dstep = {(s(i)0 , s
(i,j)
t , v

(i,j)
t )354

| i ∈ [N ], j ∈ [K], t ∈ |τ (i,j)|},355

where N is the number of the problems, v(i,j)t rep-356

resents the PRM score of the state s
(i,j)
t in the j-th357

prefix sequence of the problem s
(i)
0 .358

4.3 PRM-Enhanced SFT & DPO359

To make the model’s learning process smoother,360

we introduce the concept of curriculum learning,361

initially allowing the model to learn strategies at362

the sentence-level. This step leverages the signal363

responses from the PRM on sampled trajectories364

to perform rejection sampling, and employs both365

supervised learning and preference learning to con-366

tinuously improve the model’s reasoning capabili-367

ties. Specifically, we define the following positive368

and negative sample trajectories:369

τ
(i)
+ = max

j∈[K]
min
v
(i,j)
t

D+
step,370

τ
(i)
− = min

j∈[K]
min
v
(i,j)
t

D−
step.371

Here, D+
step and D−

step represent complete trajecto-372

ries with correct and incorrect final answers, respec-373

tively. During the SFT phase, we minimize the next374

token prediction loss on τ
(i)
+ . In the DPO phase, we375

select positive samples from {τ (i)+ }Ni=1 and negative376

samples from {τ (i)− }Ni=1, thereby constructing pref-377

erence samples for sentence-level DPO. We empha-378

size that SFT and DPO optimize the model’s rea-379

soning capabilities at a coarse-grained level, aiming380

to warm up the model’s reasoning abilities and lay381

the foundation for subsequent step-level preference382

learning.383

5 Theoretical Analysis384

In this Section, we prove that the equivalence be-385

tween offline step DPO and online policy gradient386

under the specific reward definition.387

Definition 5.1 (Preference decoding model πp
θ in-388

duced by πθ). Assume that when s = st, the possi-389

ble action space At = {awt+1, a
l
t+1} . We define πp

θ390

as the following parameterized distribution: 391

πp
θ(a

w
t+1|st) = σ(rwθ,t − rlθ,t), 392

where, 393

rwθ,t = β log
πθ(a

w
t+1|st)

πref(awt+1|st)
− V ∗(swt+1) + V ∗(st), 394

rlθ,t = β log
πθ(a

l
t+1|st)

πref(alt+1|st)
− V ∗(slt+1) + V ∗(st). 395

Remark. The preference decoding model πp
θ can 396

be viewed as performing sampling on a binary pre- 397

fix tree based on preference probabilities. This 398

model relies on the probability outputs of the stan- 399

dard language model πθ. 400

Lemma 5.1 (Online Policy Gradient on πp
θ (Lin 401

and Zhou, 2019) ). For any MDP, the expected 402

long-term reward on πp
θ is given by J(θ) = 403∑

τ π
p
θ(τ)r(τ), where r(τ) represents the long- 404

term reward of trajectory τ . The policy gradient of 405

this expected long-term reward on πp
θ is: 406

∇θJ(θ) = Eτ∼πp
θ

[
r(τ)

T−1∑
t=0

∇θ log π
p
θ(a

w
t+1|st)

]
.

(6)

407

Theorem 5.2 (Equivalence Between Offline Step 408

DPO and Online Policy Gradient). If we define the 409

reward in Equation (6) as r(τ) =
∏T

i=1
πref(at|st)
πp
θ (at|st)

, 410

and define the Offline every-step preference loss 411

as: 412

Levery-step = 413

Eτ∼πp
ref

[
−

T−1∑
t=0

log πp
θ(a

w
t+1|st)

]
,

(7)

414

then the following equivalence holds: 415

∇θJ(θ) = −∇θLevery-step. 416

417

The prove is shown in Appendix D.3. 418

Remark. It is easy to see that Levery-step (Equation 419

(7)) can be considered as the equivalent expression 420

of Lstep-dpo (Equation (4)) when the sampling tree 421

branches at C = 2 and preference sampling is per- 422

formed for every action at each step. Theorem 5.2 423

demonstrates that, under the specific definition of 424

the reward, optimizing the gradient of the offline 425
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preference loss is equivalent to the policy gradient426

of the preference decoding model in the online set-427

ting. Additionally, for the definition of the reward428

r(τ), when the reward is large, it indicates that the429

trajectory probability output πp
θ(τ) of the prefer-430

ence decoding model is relatively small. To reduce431

the overall loss, the optimization process will focus432

more on the loss of this particular trajectory at this433

step.434

6 Experiments435

6.1 Setup436

Datasets. For the training prompt data, we sam-437

ple a total of 10k prompts from the training438

datasets of GSM8k (Cobbe et al., 2021) and MATH439

(Hendrycks et al., 2021), with GSM8K and MATH440

accounting for 40% and 60% respectively. We441

use Qwen2.5-7B-Base (Yang et al., 2024) and442

Llama3.1-8B-Instruct (Meta@AI, 2024) as the443

base models, and employ Skywork-o1-Open-PRM-444

Qwen-2.5-7B (Skywork, 2024a) as PRM to gen-445

erate Dstep using the step data generation method446

mentioned in Section 4.2. For more information447

regarding the data format and PRM, please refer to448

the Appendix A & B.449

Evaluation. The maximum generation length for450

inference is set at 2048. The test set includes in-451

domain subsets such as GSM8k and MATH500, as452

well as out-domain subsets like Gaokao2023 (Liao453

et al., 2024a), OCW Course (OCW) (Lewkowycz454

et al., 2022), and the OlympiadBench (He et al.,455

2024) test subset OE-TO-MATH-COMP. The test-456

ing methods comprise: 1) Greedy-CoT: Test re-457

sults based on greedy decoding and CoT prompt458

pass@1. 2) MAJ@N: Repeat inference N times459

based on the CoT prompt, and select the most460

frequently occurring answer as the final answer.461

3) ORM_VOTE@N: Repeat inference N times462

based on the CoT prompt, use Skywork-o1-Open-463

PRM-Qwen-2.5-7B as the ORM for scoring, aggre-464

gate scores for identical answers, and choose the465

answer with the highest score. 4) ORM_MAX@N:466

Omit the step of aggregating scores for identical467

answers in ORM_VOTE@N and directly select468

the answer with the highest score. More evaluation469

methods refer to Appendix C.470

Implementation. During the data generation471

phase, we perform tree sampling for each question472

with a count of K = 64, and each node branches473

into C = 2. When selecting step-level preference474

pairs, to mitigate the impact of PRM scoring noise,475

we only use action preference pairs with a scoring 476

difference exceeding 0.5 for training (PRM scores 477

range between 0 and 1). In the SFT phase, we use 478

the Adam optimizer with a learning rate of 5e-6, 479

while in the DPO and step-DPO phases, we em- 480

ploy the SGD optimizer with a learning rate of 481

1e-5, both utilizing the cosine method for learn- 482

ing rate decay. The β for both DPO and step 483

DPO is set to 0.1. The γ for step DPO is cho- 484

sen from {0.1,0.5,1.0,2.0,5.0}. All experiments are 485

conducted on 8 Nvidia 80GB H800 GPUs. 486

6.2 Main Result 487

Compared to the base model: Our approach 488

achieves significant improvements without utiliz- 489

ing any stronger model’s responses for distillation 490

shown in Table 1. Specifically, using SFT-PRM, 491

we observe enhancements of 4.4% and 5.8% on the 492

in-domain evaluation datasets MATH and GSM8k, 493

respectively. With DPO-PRM, the improvements 494

are 3.8% and 1.2%, respectively, on these same 495

datasets. Building on this foundation, we further 496

enhances the model’s reasoning capabilities using 497

SPPD, achieving additional improvements of 2.8% 498

and 0.5% on the two evaluation datasets. The gains 499

from SPPD stem from leveraging PRM signals, 500

transitioning from coarse-grained optimization at 501

the sentence level to fine-grained dynamic opti- 502

mization at the step level. Additionally, during the 503

inference phase, increasing computational load and 504

employing the ORM_VOTE aggregation strategy 505

further demonstrates the model’s peak reasoning ca- 506

pabilities, achieving accuracies of 79% and 94.7% 507

on MATH and GSM8k, respectively, outperform- 508

ing current models of similar size. 509

Continued gains in the second stage: In the first 510

stage, the training data generated by the base model 511

has been fully utilized. Following the principles 512

of offline RL, we update the policy model’s sam- 513

pling trajectories, using the best model trained in 514

the first stage as our new policy model to repeat our 515

training process. This resulted in the SPPD-Stage2 516

model. Compared to SPPD, SPPD-Stage2 achieves 517

further improvements of 1.2% and 0.5% on MATH 518

and GSM8k, respectively. These results highlight 519

the effectiveness of updating the policy model and 520

demonstrate the robustness of the SPPD. 521

6.3 Ablation Study 522

Different Base Model. We evaluate the effective- 523

ness of the SPPD method on different base models, 524

specifically Llama3.1-8B-Instruct and Qwen2.5- 525
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Model Size Open General MATH500 GSM8k

Claude-3-Opus* - % " 60.1 95.0
GPT4-1106 (Achiam et al., 2023)* - % " 64.3 91.4

GPT4o-0513* - % " 76.6 95.8
o1 (OpenAI, 2024)* - % " 94.8 -

Qwen2-7B-Instruct-Step-DPO (Lai et al., 2024) 7B " % 55.0 85.4
DeepSeek-MATH-7B-Instruct (Shao et al.) 7B " % 44.4 80.9

OpenMath2-Llama3.1-8B (Toshniwal et al., 2024) 8B " % 65.4 90.1
Llama3.1-8B-Instruct (Meta@AI, 2024) 8B " " 47.0 82.6
Qwen2.5-7B-Instruct (Yang et al., 2024) 7B " " 72.8 89.3

Qwen2.5-7B-Base 7B " " 60.0 82.3
+SFT-PRM 7B " % 64.4 88.1

+SFT-PRM & DPO-PRM 7B " % 68.2 89.3

+SPPD 7B " %
71.0

+2.8%
89.8

+0.5%
+SPPD+MAJ@64 7B " % 76.4 93.2

+SPPD+ORM_MAX@64 7B " % 74.0 94.9
+SPPD+ORM_VOTE@64 7B " % 79.0 94.7

+SPPD-Stage2 7B " %
72.2

+4.0%
90.3

+1.0%
+SPPD-Stage2+MAJ@64 7B " % 78.6 93.6

+SPPD-Stage2+ORM_MAX@64 7B " % 78.0 95.0

+SPPD-Stage2+ORM_VOTE@64 7B " %
80.4

+12.2%
94.6

+5.3%

Table 1: Main Results. * denotes we use officially reported results.

7B-Instruct. Given that Instruct models undergo526

sufficient optimization at the sentence level, we do527

not perform PRM-SFT and PRM-DPO training on528

these models. Instead, we directly utilize the trajec-529

tories from the Instruct models for dynamic value530

margin step DPO training. The results appear in531

Table 2. The findings indicate that on the Llama3.1-532

8B-Instruct model, the SPPD method achieves im-533

provements of 4.6% and 3.6% on the MATH and534

GSM8k evaluation datasets, respectively. On the535

Qwen2.5-7B-Instruct model, the SPPD method im-536

proves performance by 2.2% and 0.8%, respec-537

tively. These experimental results demonstrate that538

the SPPD method performs well across different539

base models, showcasing its robustness with re-540

spect to the choice of base model.541

Generalization on Out-Domain Distributions.542

To evaluate the generalization capabilities of543

SPPD on out-domain distributions, we select three544

out-domain evaluation datasets: GaoKao2023,545

OCW and OlympaidBench (using only the546

OlympaidBench-OE-TO-MATH-COMP portion).547

The results are presented in Table 3. The exper- 548

iments show that using Qwen2.5-7B-Base as the 549

base model, after applying SPPD, there are steady 550

improvements across all three out-of-domain evalu- 551

ation datasets. Specifically, improvements over the 552

base model stand at 8.8%, 13.7%, and 5.6%, respec- 553

tively. Over PRM-DPO, the improvements reach 554

1.8%, 4.8%, and 2.4%, respectively. Furthermore, 555

the reasoning capabilities see further enhancement 556

through the ORM_VOTE aggregation strategy. 557

Effectiveness of Dynamic Value Margin. In Sec- 558

tion 4.1, we model the dynamic value margin vari- 559

ation using MDP approach, deriving a step DPO 560

method with dynamically changing margins from a 561

mathematical perspective. To validate the effective- 562

ness of this dynamic value margin approach, we 563

use Qwen2.5-7B-Base and Llama3.1-8B-Instruct 564

as base models, followed by PRM-SFT and PRM- 565

DPO training. We then compare SPPD with both 566

no-margin step DPO (γ = 0) and fixed-margin step 567

DPO. The results are summarized in Table 4. The 568

findings reveal that fixed-margin step DPO outper- 569
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Model MATH500 GSM8K

Llama3.1-8B-Instruct 46.6 81.2

+SPPD
51.2

+4.6%
84.8

+3.6%
+SPPD+MAJ@64 58.2 88.5

+SPPD+ORM_MAX@64 67.0 92.0

+SPPD+ORM_VOTE@64
66.4

+19.8%
90.7

+9.5%
Qwen2.5-7B-Instruct 72.8 89.3

+SPPD
75.0

+2.2%
91.1

+0.8%
+SPPD+MAJ@64 80.6 93.4

+SPPD+ORM_MAX@64 77.0 95.2

+SPPD+ORM_VOTE@64
82.2

+9.4%
94.6

+5.3%

Table 2: Result on Llama3.1-8B-Instruct and Qwen2.5-
7B-Instruct.

forms no-margin step DPO, indicating that adjust-570

ing the margin benefits the learning process of step571

DPO. Meanwhile, Compared to fixed-margin step572

DPO, SPPD demonstrates superior performance.573

On the Qwen model, improvements on MATH and574

GSM8k are 0.9% and 0.31%, respectively, while575

on the Llama model, the improvements are 2.0%576

and 1.3%, respectively. This improvement stems577

from our consideration of the value model score578

differences between preference pairs during mod-579

eling, which dynamically adjusts the margin for580

preference learning based on signals from the value581

model. SPPD makes the step-level preference train-582

ing more reliable and reduces the risk of overfitting.583

Impact of γ. To investigate the impact of the

MATH

GSM8k

Llama3.1-8B-Instruct Qwen2.5-7B-InstructQwen2.5-7B-Base

Figure 2: Impact of γ in dynamic value margin.

584
hyperparameter γ on the SPPD method as de-585

scribed in Formula 5, we selecte three base mod-586

els: Qwen2.5-7B-Base, Llama3.1-8B-Instruct, and587

Qwen2.5-7B-Instruct. We adjust γ within the set588

{0.1, 0.5, 1.0, 2.0, 5.0} and evaluated the perfor-589

mance of these models on the MATH and GSM8k 590

datasets. The results are presented in Figure 2. Our 591

experimental findings indicate that selecting an ap- 592

propriate γ is beneficial for the training of SPPD. 593

It is observed that both excessively large and small 594

values of γ are detrimental to the training of dy- 595

namic value margins in SPPD, thereby affecting the 596

generalization to some extent. However, overall, 597

the performance remains relatively stable, particu- 598

larly on the GSM8k dataset. This suggests that a 599

balanced choice of γ is crucial for optimizing the 600

effectiveness of the SPPD approach across different 601

models. 602

Model GaoKao2023 OCW OlympaidBench*

Qwen2.5-7B-Base 48.0 6.3 20.5
+SFT-PRM 52.2 19.1 22.8

+SFT-PRM & DPO-PRM 55.0 16.1 23.7

+SPPD
56.8

+1.8%
20.0

+4.8%
26.1

+2.4%
+SPPD+MAJ@64 62.6 29.4 43.3

+SPPD+ORM_MAX@64 63.4 28.3 41.4

+SPPD+ORM_VOTE@64
64.4

+9.4%
30.9

+14.8%
45.4

+21.7%

Table 3: Result on out-domain test datasets. Olympaid-
Bench* denotes we only use OlympaidBench-OE-TO-
Math-COMP test dataset.

Model Method Margin MATH500 GSM8K

Qwen2.5-7B
SPPD Dynamic 71.00 89.80

Step-dpo-
fix-margin

0 69.60 89.40
γ∗ 70.10 89.49

Llama3.1-8B
SPPD Dynamic 51.2 84.8

Step-dpo-
fix-margin

0 48.8 83.2
γ∗ 49.2 83.5

Table 4: SPPD vs fixed margin step DPO on Qwen2.5-
7B-Base and Llama3.1-8B-Instruct. γ∗ represents
γ(V ∗(swt+1)− V ∗(slt+1)) = γ∗ in Formula 5.

7 Conclusion 603

In this work, we propose SPPD, a self-training 604

with process preference learning using dynamic 605

value margin. SPPD utilizes the Bellman optimality 606

equation and the online RL objective modeled with 607

MDP and designs a step-level tree self-sampling 608

scheme without any distillation. Moreover, we 609

propose a SFT and DPO scheme using PRM for 610

rejection sampling, making the training of SPPD 611

smothor and more effective. Finally, we theoreti- 612

cally demonstrate that under specific reward con- 613

straints, our method is equivalent to on-policy pol- 614

icy gradient optimization. 615
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Limitations616

Several limitations remain in our current work.617

Firstly, our work relies on the effectiveness of PRM,618

and studies have shown that PRM’s performance619

varies across different policy models and task sce-620

narios; some PRMs may fail under specific tasks621

(Zheng et al., 2024). This work neglects the updates622

of PRM. As policy is continuously iterated, PRM623

faces the risk of becoming ineffective. Addition-624

ally, both PPO and GRPO are modeled based on625

bandit, and how to integrate MDP modeling with626

on-policy methods remains an important subject627

for future research.628
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A Data Example 803

We demonstrate the preference trajectories sam- 804

pled from the tree using SPPD as shown below. 805

As previously mentioned, the chosen step and the 806

rejected step are selected based on their PRM score 807

difference exceeding 0.5. 808

Training data format.

[Question]
Evaluate: 642 − 362.
[Common Prefix]
Step 1: Recognize that the given expression
is of the form a2 − b2, which can be
factorized using the difference of squares
method.
Step 2: Apply the difference of squares
formula, which is a2− b2 = (a+ b)(a− b).
Step 3: Identify a and b in the given
expression. Here, a = 64 and b = 36.
Step 4: Evaluate the sum and difference of
a and b.
a + b = 64 + 36

809
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a - b = 64 - 36
Step 5: Multiply the result from step 4 back
together.
[Chosen Step]
(64 + 36)(64− 36)
Step 6: Perform the addition and subtrac-
tion operations.
The sum of 64 and 36 is 100. The difference
of 64 and 36 is 28.
[Chosen PRM Score]
0.934
[Rejected Step]
Step 6: (64 + 36) ∗ (64 − 36) =
(100) ∗ (28) = 1400
[Rejected PRM Score]
0.258

810

B PRM score distribution811

We use the Skywork-o1-Open-PRM-Qwen-2.5-812

7B (Skywork, 2024a)model to score 545,990 rea-813

soning trajectories obtained from Qwen2.5-7B-814

Base (Yang et al., 2024) through Tree-Based Self-815

Sampling. The score for the t-th step of the i-th816

trajectory is denoted as v(i)t .817

First, we calculate three metrics (ORM score,818

Mean PRM score, and Minium PRM score) on tra-819

jectories that produce correct answers and those820

that result in incorrect answers. If a metric exceeds821

0.5, the PRM considers the sample to be a correct822

trajectory; otherwise, it is deemed an incorrect tra-823

jectory. We then compute the PRM accuracy rates824

under these three metrics, see Table 5. The experi-825

mental results demonstrate that Skywork-o1-Open-826

PRM-Qwen-2.5-7B exhibits strong discriminative827

ability for both correct and incorrect trajectories828

under sampled trajectories. Specifically, the ORM829

metric shows superior performance in identifying830

correct trajectories, achieving over 90% accuracy.831

In contrast, the minimum PRM score excels in832

distinguishing incorrect trajectories, reaching an833

accuracy of 92.5%. However, using the mean PRM834

score, the discriminative ability for correct trajec-835

tories is notably higher than for incorrect trajec-836

tories. This is because Skywork-o1-Open-PRM-837

Qwen-2.5-7B can effectively identify erroneous838

steps, resulting in high scores (close to 1) before839

these steps occur, which renders the mean PRM840

score ineffective for judging incorrect trajectories.841

Conversely, the minimum PRM score identifies the842

lower bound of trajectory scoring, making it the 843

most suitable metric for evaluating incorrect trajec- 844

tories. 845

Metric # ORM Mean PRM Minium PRM

Correct 281,983 0.908 0.920 0.705
Incorrect 264,007 0.870 0.696 0.925

Table 5: Skywork-o1-Open-PRM-Qwen-2.5-7B accu-
racy.

Meanwhile, we divide each trajectory into five 846

equal segments, calculate the average score for 847

each segment, and plot the score distribution in box 848

plots categorized by correct and wrong trajectories, 849

as shown in the Figure 3. The figure indicates 850

that for correct trajectories, PRM assigns relatively 851

high scores to all steps with smaller variance; for 852

wrong trajectories, the segment scores given by 853

PRM tend to decrease on average as they get closer 854

to the answer, with the variance also decreasing, 855

suggesting that PRM’s confidence in the wrong 856

trajectory leading to an incorrect answer increases. 857

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5
Segment

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Segment Mean Score Boxplot

Correct Segment
Wrong Segment

Figure 3: Skywork-o1-Open-PRM-Qwen-2.5-7B distri-
bution.

858

C Evaluation 859

C.1 Evaluation Prompts 860

For a fair evaluation, the same prompt and format 861

is applied to our trained models as well as other 862

open-source models: 863

Prompt used for evaluation.

[SYSTEM]
Please reason step by step and put your
answer in \\boxed{}.

864
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[Question]
{question}.

865

D Prove866

D.1 Prove for Lemma (4.1)867

Lemma D.1 (Optimal Step Reward Function). Un-868

der the step MDP definition3 and fix solution for869

the maximum casual entropy problem (Equation870

(2)), the optimal step reward function can be calcu-871

late as follow:872

r(st, at) = β log
π∗(at|st)
πref(at|st)︸ ︷︷ ︸

Implicit Reward

+V ∗(st+1)− V ∗(st)︸ ︷︷ ︸
Value Gain

.

(8)

873

Proof. According to the Bellman optimality equa-874

tion (Barron and Ishii, 1989) in step MDP, we have:875

Q∗(st, at) = r(st, at) + V ∗(f(st, at)). (9)876

Here, if st+1 = f(st, at) is a terminal state, then877

V ∗(f(st, at)) = 0. Meanwhile, if we log-linearize878

the Equation (2), we have:879

Q∗(st, at) = β log
π∗(at|st)
πref(at|st)

+ V ∗(st). (10)880

Therefore, combine the Equation (9) & (10), we881

have:882

r(st, at) = β log
π∗(at|st)
πref(at|st)︸ ︷︷ ︸

Implicit Reward

+V ∗(st+1)− V ∗(st)︸ ︷︷ ︸
Value Gain

.883

884

D.2 Prove for Theorem D.2885

Theorem D.2 (Step DPO Loss Using Dynamic886

Value Margin.). If we aim to minimize the Kullback-887

Leibler(KL) divergence between the step-level pref-888

erence distribution pdata in Dstep and the model’s889

current preference distribution pθ under the sam-890

pling of πref , we can obtain the following loss891

function:892

Lstep-dpo = −Eawt+1,a
l
t+1∼πref(·|st)[893

log σ(βhθ(a
w
t+1, a

l
t+1)894

− (V ∗(swt+1)− V ∗(slt+1)))],895

where hθ(a
w
t+1, a

l
t+1) = log

πθ(a
w
t |st)

πref(a
w
t |st) −896

log
πθ(a

l
t|st)

πref(a
l
t|st)

.897

Proof. According to the Equation (3), we have: 898

pθ(a
w
t+1 ≻ alt+1|st) 899

= σ(βhθ(a
w
t+1, a

l
t+1)− (V ∗(swt+1)− V ∗(slt+1))) 900

So the KL divergence between pθ and pdata under 901

the sampling of πref is: 902

Eawt+1,a
l
t+1∼πref (·|st)[DKL(pdata||pθ)] 903

= Eawt+1,a
l
t+1∼πref (·|st)[ 904

pdata(a
w
t+1 ≻ alt+1|st) log

pdata(a
w
t+1 ≻ alt+1|st)

pθ(a
w
t+1 ≻ alt+1|st)

905

+ pdata(a
l
t+1 ≻ awt+1|st) log

pdata(a
l
t+1 ≻ awt+1|st)

pθ(a
l
t+1 ≻ awt+1|st)

] 906

= −Eawt+1,a
l
t+1∼πref(·|st)[log pθ(a

w
t+1 ≻ alt+1|st)], 907

which is the same as Equation (4). 908

909

D.3 Prove for Theorem 5.2 910

Theorem D.3 (Equivalence Between Offline Step 911

DPO and Online Policy Gradient). If we define the 912

reward in Equation (6) as r(τ) =
∏T

i=1
πref(at|st)
πp
θ (at|st)

, 913

and define the Offline every-step preference loss 914

as: 915

Levery-step = 916

Eτ∼πp
ref

[
−

T−1∑
t=0

log πp
θ(a

w
t+1|st)

]
, 917

then the following equivalence holds: 918

∇θJ(θ) = −∇θLevery-step. 919

Proof.

∇θLevery−step 920

= Eτ∼πp
ref

[−
T−1∑
t=0

∇θ log π
p
θ(a

w
t+1|st))] 921

= Eτ∼πp
θ
[−

πp
ref (τ)

πp
θ(τ)

T−1∑
t=0

∇θ log π
p
θ(a

w
t+1|st))] 922

= Eτ∼πp
θ
[ 923

−
T−1∏
i=0

πp
ref (at+1|st)
πp
θ(at+1|st)

T−1∑
t=0

∇θ log π
p
θ(a

w
t+1|st))] 924

= Eτ∼πp
θ
[−r(τ)

T−1∑
t=0

∇θ log π
p
θ(a

w
t+1|st))] 925

= −∇θJ(θ). 926

927
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