
Generative Dense Retrieval: Memory Can Be a Burden

Anonymous ACL submission

Abstract

Generative Retrieval (GR), autoregressively de-001
coding relevant document identifiers given a002
query, has been shown to perform well under003
the setting of small-scale corpora. By mem-004
orizing the document corpus with model pa-005
rameters, GR implicitly achieves deep inter-006
action between query and document. How-007
ever, such a memorizing mechanism faces three008
drawbacks: (1) Poor memory accuracy for fine-009
grained features of documents; (2) Memory010
confusion gets worse as the corpus size in-011
creases; (3) Huge memory update costs for new012
documents. To alleviate these problems, we013
propose the Generative Dense Retrieval (GDR)014
paradigm. Specifically, GDR first uses the lim-015
ited memory volume to achieve inter-cluster016
matching from query to relevant document017
clusters. Memorizing-free matching mecha-018
nism from Dense Retrieval (DR) is then in-019
troduced to conduct fine-grained intra-cluster020
matching from clusters to relevant documents.021
The coarse-to-fine process maximizes the ad-022
vantages of GR’s deep interaction and DR’s023
scalability. Besides, we design a cluster iden-024
tifier constructing strategy to facilitate corpus025
memory and a cluster-adaptive negative sam-026
pling strategy to enhance the intra-cluster map-027
ping ability. Empirical results show that GDR028
obtains an average of 3.0 R@100 improvement029
on NQ dataset under multiple settings and has030
better scalability.031

1 Introduction032

Text retrieval (Karpukhin et al., 2020; Zhao et al.,033

2022) is an essential stage for search engines034

(Brickley et al., 2019), question-answering sys-035

tems (Liu et al., 2020) and dialog systems (Chen036

et al., 2017). Traditional retrieval methods include037

sparse retrieval (SR) and dense retrieval (DR). SR038

(Robertson and Zaragoza, 2009; Robertson and039

Walker, 1997) relies on the assumption that queries040

and relevant documents have a high degree of word041

overlap. However, such methods suffer from the042

zero-recall phenomenon when there is a lexical 043

mismatch between queries and documents. DR 044

(Ren et al., 2021; Zhang et al., 2022a) alleviates 045

this problem by training dual-encoders for seman- 046

tic matching instead of lexical matching, which 047

brings a high hit rate. Nevertheless, most queries 048

are semantically related to multiple documents that 049

may not be close to each other in semantic space. 050

Thus it is challenging to use a single query repre- 051

sentation to recall all the relevant documents with 052

matching mechanism (Zhang et al., 2022b). 053

Recently, generative retrieval (GR) (Zhou et al., 054

2022; Bevilacqua et al., 2022), which utilizes a lan- 055

guage model to memorize document features and 056

autoregressively decodes the identifiers of relevant 057

documents given a query, is considered a promis- 058

ing paradigm. The model is served as a memory 059

bank for candidate documents, and the memorizing 060

process implicitly implements the deep interaction 061

between queries and documents by attention mech- 062

anism, which has been proven to be effective in 063

the small-scale corpus settings (Wang et al., 2022; 064

Sun et al., 2023). Also, beam search, a diversity- 065

promoting decoding strategy, is beneficial for the 066

model to find relevant documents from multiple 067

directions and thus can recall more relevant docu- 068

ments than DR (Tay et al., 2022). 069

However, after empirically comparing the per- 070

formance of typical GR model NCI (Wang et al., 071

2022) and DR model AR2 (Zhang et al., 2022a), 072

we found that the memorizing mechanism brings 073

three problems: (1) Poor memory accuracy for 074

fine-grained features of documents. We calculated 075

the error rate of each position when decoding doc- 076

ument identifiers (see Table 1). Compared with 077

AR2, NCI performs well on the former part of the 078

decoding process while poorly on the latter part. 079

We argue that NCI aims to map queries to relevant 080

document identifiers instead of real document con- 081

tent, which results in its lack of accurate memory 082

for fine-grained document features. (2) Memory 083
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Model Error Rate of the ith Position
1st 2nd 3rd 4th 5th 6th

NCI 1.09 1.75 1.86 5.77 14.91 12.66
AR2 1.19 1.77 2.11 5.44 8.03 3.05

Table 1: Error rate (%) on the ith position when de-
coding document identifiers. See Appendix A.1 for the
detailed calculation method.

confusion gets worse as the corpus size increases.084

As shown in Table 2, we scaled both training and085

candidate corpus sizes from 334K to 1M and found086

that NCI decreased by 11.0 on R@100 while AR2087

only decreased by 2.8. NCI trained on 1M training088

corpus is further tested on 334K candidate corpus.089

The results indicate that the burden of memorizing090

more documents causes 5.7 R@100 drop. (3) Huge091

memory update costs for new documents. When092

new documents come, the document cluster tree093

needs to be updated, and the model needs to be094

re-trained to re-memorize all the documents. Other-095

wise, the outdated mapping relationship, i.e., query096

to document identifiers and document identifiers to097

documents, will significantly degrade the retrieval098

performance (see Table 6).099

Based on the above analysis, a natural idea is100

to employ memorizing-free matching mechanism101

from DR to alleviate the burden faced by the mem-102

orizing mechanism. However, it is challenging to103

realize complementary advantages of both mecha-104

nisms while ensuring retrieval efficiency. To this105

end, we propose a coarse-to-fine retrieval paradigm106

Generative Dense Retrieval (GDR). Concretely,107

memorizing mechanism and matching mechanism108

are successively applied to achieve coarse-grained109

inter-cluster (query → document clusters) and fine-110

grained intra-cluster (document clusters → doc-111

uments) matching. A shared query encoder is112

used to generate query representations that apply113

both mechanisms, thereby improving retrieval effi-114

ciency. We also explore the strategy of constructing115

a memory-friendly document cluster tree, including116

distinguishable document clusters and controllable117

cluster amounts, so as to further alleviate mem-118

ory burden. Moreover, a cluster-adaptive negative119

sampling strategy is proposed to enhance the intra-120

cluster matching ability of GDR.121

Overall, the coarse-to-fine process maintains the122

advantages of the memorizing mechanism while123

alleviating its drawbacks by introducing matching124

mechanism. Unlike GR, the limited memory vol-125

ume of GDR is only responsible for memorizing126

Settings NCI AR2
R@1/100 R@1/100

334K-334K 14.7 - / 65.5 - 21.2 - / 69.0 -
1M-1M 11.1↓3.6 / 54.5↓11.0 20.3↓0.9 / 66.2↓2.8
1M-334K 12.3↓2.4 / 59.8↓5.7 21.2 - / 69.0 -

Table 2: Performance of NCI and AR2 on NQ validation
set with different settings. For setting x− y, x denotes
the training corpus size and y denotes the candidate
corpus size during the inference phase. AR2 is only
trained on the training set, thus is independent of x.

the coarse-grained features of corpora. The fine- 127

grained features of documents are extracted into 128

dense representations, which promotes accurate 129

intra-cluster mapping. When new documents come, 130

GDR achieves scalability by adding documents to 131

relevant clusters and extracting their dense repre- 132

sentations by a document encoder, without recon- 133

structing document identifiers and retraining the 134

model. 135

Our contributions are summarized as follows: 136

• We revisit generative retrieval (GR) with a de- 137

tailed empirical study, and discuss three key 138

drawbacks that limit GR performance. 139

• We propose generative dense retrieval (GDR), a 140

coarse-to-fine retrieval paradigm, that exploits 141

the limited memory volume more appropriately, 142

enhances fine-grained feature memory, and im- 143

proves model scalability. 144

• Comprehensive experiments demonstrate that 145

GDR obtains higher recall scores than advanced 146

SR, DR and GR methods. And the scalability 147

of GDR is also significantly improved. 148

2 Methodology 149

Our task is to retrieve a candidate document set Dc 150

from a large corpus Dl (|Dl| >> |Dc|) for a given 151

query q, with the objective of including as many 152

documents d from Dq as possible, where Dq is the 153

set of documents relevant to q. In this section, we 154

introduce the proposed Generative Dense Retrieval 155

(GDR) paradigm (see Figure 1). To realize com- 156

plementary advantages of memorizing mechanism 157

and matching mechanism, we need to consider the 158

following issues: 159

2.1 Order of Applying Two Mechanisms 160

Based on Table 1 and Table 2, we found that the 161

coarse-grained semantic mapping between query 162

and documents attained lower error rates when ap- 163

plying memorizing mechanism (NCI), while fea- 164

ture extraction and matching mechanism (AR2) 165
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was better suited for handling fine-grained features166

of numerous documents. Thus, we consider uti-167

lizing the advantage of memorizing mechanism in168

deep interaction between query and corpus memory169

bank to recall relevant document clusters. After-170

wards, we leverage the superiorities of memorizing-171

free matching mechanism in fine-grained represen-172

tation extracting and better scalability characteris-173

tics to further retrieve the most relevant documents174

from the recalled clusters.175

Inter-cluster Matching The classic Encoder-176

Decoder architecture is used to achieve the inter-177

cluster mapping finter : q → CID1:k, where CID178

denotes document cluster identifiers. Given a query179

q1:|q|, GDR first leverages Query Encoder EQ to180

encode it into query embeddings e
1:|q|
q ∈ Rd and181

takes the embedding of <CLS> token as query rep-182

resentation rq. Based on this, the probability of183

generating CIDi can be written as follows:184

p(CIDi|eq, rq, θ) =
|CIDi|∏
j=1

p(CIDi
j |eq, rq,CIDi

<j , θ) (1)185

where θ is the parameters of Cluster Decoder186

DC . We denote this probability as inter-cluster187

mapping score Sinter(q,CID
i), which character-188

izes the matching between q and Dl under coarse-189

grained features. For a training pair (q, d+), we use190

CrossEntropy loss to train GDR to achieve inter-191

cluster matching correctly:192

LInter = −log p(CID(d+)|EQ(q), θDC ) . (2)193

Following NCI, we use the encoder of T5-base194

(Brown et al., 2020) to initialize EQ and randomly195

initialized PAWA decoder (see Wang et al. (2022)196

for details) as DC .197

Intra-cluster Matching To further achieve the198

intra-cluster mapping fintra : CID1:k → d1:k,199

GDR applies the matching mechnism of calculating200

representation similarity for retrieval. Specifically,201

GDR leverages the Document Encoder ED trained202

in section 2.2 to extract the fine-grained features203

of candidate documents d1:|Dl| into semantic repre-204

sentations r1:|Dl|
d ∈ Rd in prior. Then we pick out205

the di belonging to the recalled clusters CID1:k in206

the previous stage and calculate the intra-cluster207

mapping score between them and q as follows:208

Sintra(q, d
i) = Sigmoid(sim(rq, r

i
d)). (3)209

where sim(·) denotes the inner product function.210

The Sigmoid function is used to map Sintra into211

[0,1] to align with Sinter. NLL loss is used to train 212

GDR for intra-cluster mapping ability: 213

LIntra = −log esim(q,d+)

esim(q,d+) +
∑n

i esim(q,d−i )
(4) 214

where d+ and d− refer to documents relevant and 215

irrelevant to q respectively. On this basis, the over- 216

all mapping score of di is defined as: 217

Soverall(q, d
i) = Sinter(q,CID(di)) + β ∗ Sintra(q, d

i)
(5) 218

where β is a hyperparameter which we set as 1 by 219

default. In the end, we take the Top-k documents 220

according to Soverall as the final retrieval set Dc. 221

2.2 Construction of Memory-friendly CIDs 222

Considering the limited memory volume of the 223

model, we are supposed to construct memory- 224

friendly CIDs to ease the mapping fintra. Ideally, 225

we would like the CIDs corresponding to docu- 226

ments relevant to the same query to have similar 227

prefixes. Such property can provide a mapping re- 228

lationship between the query and CIDs with lower 229

entropy, so as to alleviate the memorizing burden. 230

What’s more, the total number of document clus- 231

ters should be determined by the memory volume 232

(model size) rather than the size of Dl to avoid ex- 233

ceeding the memorizing volume. Based on these 234

considerations, our strategy for generating CIDs is 235

shown in Algorithm 1. 236

Algorithm 1 Generating document cluster identi-
fiers (CIDs).
Require: Corpus d1:|Dl|, Document Encoder ED ,

Inter-cluster number k, Intra-cluster number c
Ensure: Document cluster identifiers CID1:|Dl|

1: Encode d1:|Dl| with ED to obtain document representa-
tions X1:|Dl|

2: function GENERATECIDS(X1:N )
3: C1:k ← Kmeans(X1:N )
4: L← ∅
5: for i← 1, k do
6: Lcurrent ← [i] ∗ |Ci|
7: if |Ci| ≥ c then
8: Lrest ← GENERATECIDS(Ci)
9: else

10: Lrest ← [0] ∗ |Ci|
11: end if
12: Lcluster ←Concat(Lcurrent, Lrest)
13: L← L.Append(Lcluster)
14: end for
15: ReorderToOriginal(L,X1:N , C1:k)
16: Return L
17: end function
18: CID1:|Dl| ← GENERATECIDS(X1:|Dl|)

To meet the first property, we finetuned ERNIE- 237

2.0-base (Sun et al., 2020) model following Zhang 238
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et al. (2022a) on the training set 1 and then used the239

finetuned document encoder as ED in Algorithm240

1. Compared to previous studies (Tay et al., 2022;241

Wang et al., 2022) using BERT (Devlin et al., 2019)242

as ED, our strategy can fully leverage the knowl-243

edge in the training set. To analyse the qualities of244

CIDs generated with different ED, we calculated245

the average prefix overlap Opre of CIDs between246

the relevant documents for each query in the vali-247

dation set Sval as follows:248

Opre =
1

|Sval|
∑

q∈Sval

1

|Dq|2

|Dq|∑
i=1

|Dq|∑
j=1

opre(CID
i
q,CID

j
q)

opre(s1, s2) = |LCP (s1, s2)|/|s1|
(6)249

where CIDi
q is the cluster identifier of the ith rele-250

vant document of q and LCP (s1, s2) is the longest251

common prefix of string s1 and s2. The results252

show that the Opre corresponding to the CIDs gen-253

erated by our strategy (0.636) is significantly higher254

than the previous study (0.516), indicating that our255

CIDs is more distinguishable and can better meet256

the first property . To meet the second property,257

we consider adaptively changing c in Algorithm 1258

to ensure the total number of clusters |CID| not to259

change with Dl as follows:260

c = |Dl| / Exp(|CID|) (7)261

where Exp(|CID|) is the expected value of |CID|262

which we set as 5000 in our experiment for sim-263

plicity. Under different sizes of Dl, the |CID| we264

obtained through this strategy is basically in the265

same order of magnitude (Appendix A.2), which266

meets the second properties.267

2.3 Cluster-adaptive Negative Sampling268

An important issue in calculating LIntra is how269

to select d− with effective training signals. Vari-270

ous negative sampling methods (e.g., static bm25-271

based sampling (Karpukhin et al., 2020), dynamic272

index-based sampling (Xiong et al., 2021)) have273

been proposed to pick up hard negatives. However,274

GDR needs to retrieve relevant documents within275

the candidate clusters instead of the entire corpus,276

which requires negative samples to offer more intra-277

cluster discriminative signals. To this end, we pro-278

pose cluster-adaptive negative sampling strategy.279

For a training pair (q, d+), we treat d ∈ CID(d+)280

as intra-cluster negatives Na and in-batch negatives281

1All experiments in this work were conducted on the Natu-
ral Questions dataset (Kwiatkowski et al., 2019)

(Henderson et al., 2017) as inter-cluster negatives 282

Nr, and rewrite Eq. (4) as follows: 283

LIntra = −log esim(q,d+)

γ ∗
∑

d∈Na
esim(q,d) +

∑
d∈Nr

esim(q,d)

(8) 284

where γ is a hyperparameter we set as 2 to enhance 285

intra-cluster discriminative training signals. 286

2.4 Training and Inference 287

Training Phase Given a corpus Dl and a train- 288

ing set Strain = {(qi, di)|i ∈ (1, ..., n)}, we 289

use DocT5Query 2 to generate 5 pseudo queries 290

through and randomly select 5 groups of 40 consec- 291

utive terms from the document as additional queries 292

for each document. Compared with Wang et al. 293

(2022) that augment each document with totally 294

26 queries, fewer augmented queries are required 295

as GDR only needs to memorize coarse-grained 296

semantics, thus saves training expenses. The aug- 297

mented training set Saug together with Strain are 298

used to train GDR using the total loss: 299

LGDR = LInter + LIntra (9) 300

To accelerate the training process, we use ED to 301

calculate the representations of Dl in advance and 302

freeze the parameters of ED during training phase. 303

Inference Phase During inference, we first gen- 304

erate k relevant CIDs through beam search, and 305

then retrieve the top-m documents with highest 306

Sintra in each relevant cluster (m is the minimum 307

value between the number of documents in the clus- 308

ter and k). Finally, we reorder all these documents 309

according to Soverall to obtain the most relevant 310

top-k documents. Following Tay et al. (2022), we 311

pre-build a prefix tree to ensure only the valid CIDs 312

can be generated. We conduct Approximate Near- 313

est Neighbor Search (Li et al., 2020) in each cluster 314

to accelerate the intra-cluster matching process. 315

3 Experiments 316

We empirically demonstrate the performance of 317

GDR and effectiveness of various proposed strate- 318

gies on text retrieval task in this section.3 In the 319

following, we will discuss the detailed experimen- 320

tal setups in 3.1, present empirical results in 3.2, 321

verify the effectiveness of proposed modules in 3.3, 322

and conduct specific analysis in 3.4, respectively. 323

2https://github.com/castorini/docTTTTTquery
3we will release our code as soon as the paper is accepted
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Figure 1: Illustration of Dense Retrieval, Generative Retrieval and Generative Dense Retrieval.

3.1 Experimental settings324

Datasets We choose classic text retrieval dataset325

Natural Questions 4 (NQ) (Kwiatkowski et al.,326

2019) for experiment, which consists of 58K327

(query, relevant passages) training pairs and 6K328

validation pairs along with 21M candidate passage329

corpus. Each query corresponds to an average of330

7.5 relevant passages, which puts higher demands331

on the recall performance of the model. We gather332

all the relevant passages of queries included in NQ333

training and validation set, resulting in a 334K can-334

didate passage corpus setting (NQ334K). We fur-335

ther build NQ1M, NQ2M, and NQ4M settings to336

evaluate the performance of GDR on larger cor-337

pus by adding the remaining passages from the full338

21M corpus to NQ334K. For GDR, CIDs are gen-339

erated separately for each dataset so as to prevent340

leakage of semantic information from larger can-341

didate document corpus into smaller ones. GDR342

of different settings are trained on the training set343

together with corresponding augmented set, and344

evaluated on the validation set 5.345

Evaluation metrics We use widely accepted met-346

rics for text retrieval, including R@k (also denoted347

as Recall@k) and Acc@k, where k ∈ {20, 100}.348

4We use the cleaned version of NQ downloaded from
https://huggingface.co/Tevatron

5The lack of relevant documents makes the test set incon-
venient to partition different settings

Specifically, R@k calculates the proportion of rele- 349

vant documents included in top-k retrieved candi- 350

dates (#retrq,k) among all the candidate relevant 351

documents (#relq) (Eq. (10)), while Acc@k mea- 352

sures how often the correct document is hit by top-k 353

retrieved candidates (Eq. (11)). 354

R@k =
1

|Sval|
∑

q∈Sval

#retrq,k
#relq

(10) 355

356

Acc@k =
1

|Sval|
∑

q∈Sval

I (# retrq,k > 0) (11) 357

Baselines We choose the following methods for 358

detailed comparisons. BM25 (Anserini implemen- 359

tation (Yang et al., 2017)) is served as a strong SR 360

baseline. As for DR, we select a strong baseline 361

DPR 6 (Karpukhin et al., 2020) and state-of-the-art 362

(SOTA) method AR2 7 (Zhang et al., 2022a). As 363

for GR, we select the SOTA method NCI 8 (Wang 364

et al., 2022). To ensure the reliability of the ex- 365

perimental results, we reproduce all the baseline 366

methods based on their official implementations. 367

Experimental details We implement GDR with 368

python 3.8.12, PyTorch 1.10.0 and HuggingFace 369

transformers 3.4.0. The learning rates are set as 370

2× 10−4 for the Query Encoder and 1× 10−4 for 371

6https://github.com/facebookresearch/DPR
7https://github.com/microsoft/AR2
8https://github.com/solidsea98/

Neural-Corpus-Indexer-NCI
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Paradigm Method
NQ334K NQ1M NQ2M NQ4M

Acc@20/100 R@20/100 Acc@20/100 R@20/100 Acc@20/100 R@20/100 Acc@20/100 R@20/100
SR BM25 86.1 / 92.4 56.0 / 75.4 84.0 / 91.0 51.3 / 73.0 82.4 / 89.9 47.5 / 71.0 79.6 / 88.4 42.3 / 68.2

DR
DPR 93.9 / 97.3 49.8 / 60.2 91.5 / 96.3 46.7 / 56.6 90.4 / 95.5 45.2 / 54.9 88.4 / 94.6 42.9 / 52.8
AR2 96.3 / 98.6 57.4 / 69.0 94.9 / 98.0 54.7 / 66.2 94.3 / 97.7 53.2 / 64.7 93.4 / 97.2 51.2 / 62.6

GR
NCI-bert 80.0 / 88.7 49.4 / 65.5 72.0 / 82.6 38.7 / 54.5 63.9 / 76.4 30.2 / 44.6 55.4 / 70.0 25.2 / 37.8
NCI-ours 88.0 / 94.1 60.0 / 75.6 80.3 / 89.6 50.6 / 66.2 78.2 / 88.6 46.4 / 63.5 77.3 / 87.8 45.2 / 61.0

GDR
GDR-bert 87.5 / 91.2 59.3 / 71.2 84.8 / 88.8 54.8 / 66.0 83.3 / 88.0 51.9 / 64.8 82.1 / 87.7 49.7 / 63.8
GDR-ours 91.1 / 95.3 64.6 / 79.6 88.2 / 93.6 60.1 / 75.2 87.4 / 92.8 57.7 / 73.2 87.0 / 92.2 55.2 / 71.5

Table 3: Experimental results on NQ document retrieval. The settings "-bert" and "-ours" denote using BERT and
our finetuned ED in section 2.2 to generate document embeddings for the generation of identifiers respectively. Bold
numbers represent best performance. We run four random seeds and report the averaged result for each method.

the Cluster Decoder with a batch size 256 per GPU.372

For inference, we apply the constraint beam search373

algorithm, and set the length penalty and the beam374

size as 0.8 and 100, respectively. All experiments375

are based on a cluster of NVIDIA A100 GPUs with376

40GB memory. Each job takes 8 GPUs, resulting377

in a total batch size of 2048 (256 × 8). We train378

the GDR models for 60 epochs and pick the final379

checkpoint for evaluation.380

3.2 Main Results381

Horizontal Comparison As shown in the Table382

3, the performance of each method on R@k met-383

rics is as follows: GDR (GDR-ours) > SR (BM25)384

> DR (AR2) > GR (NCI), while the ranking on385

Acc@k metrics is as follows: DR (AR2) > GDR386

(GDR-ours) > SR (BM25) > GR (NCI). Based on387

the characteristics of sparse lexical matching, SR388

can recall the majority of relevant documents (2nd389

R@k) when the query is accurate while may not390

even hit one target when there is a lexical mis-391

match (3rd Acc@k). On the contrary, DR can hit392

at least one relevant document in most situations393

by semantic representation matching (1st Acc@k).394

However, the semantic differences in relevant doc-395

uments make it difficult to recall them all simulta-396

neously (3rd R@k). GR (NCI) ranks last due to397

the difficulty in memorizing large-scale corpus we398

have discussed.399

By conducting a coarse-to-fine retrieval process,400

GDR maximizes the advantages of memorizing401

mechanism in deep interaction and matching mech-402

anism in fine-grained features discrimination, thus403

ranks 1st on R@k with an average of 3.0 improve-404

ment and 2nd on Acc@k.405

Scaling to Larger Corpus Memorizing mecha-406

nism has been proven to bring advanced retrieval407

performance under small corpus settings (Wang408

20
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GR (NCI)

GDR

3.18 2.74
3.944.06
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Figure 2: R@100 descent rate of different types of meth-
ods when scaling to larger corpus.

et al., 2022). However, when the corpus size that 409

needs to be memorized exceeds the memory vol- 410

ume, it can instead become a burden. As shown 411

in Figure 2, when the candidate corpus scaling to 412

larger size, the descent rate of R@100 for both SR 413

and DR keeps below 4.06%, while it astonishingly 414

retains exceeding 15.25% for GR on all three scal- 415

ing directions. As a comparison, GDR ensures the 416

maximum utilization of memorizing mechanism by 417

focusing memory content on fixed volume coarse- 418

grained features of corpus to achieve inter-cluster 419

matching. This strategy results in GDR achieving 420

an average of 3.50% descent rate of R@100, which 421

is almost the same as SR (3.29%) and DR (3.19%). 422

3.3 Ablation studies on Model training 423

To further understand how different paradigm op- 424

tions affect model performance, we conduct abla- 425

tion experiments and discuss our findings below. 426

Cluster Identifiers We first analyse the influence 427

of identifiers constructed with documents represen- 428

tations generated by different models. Specifically, 429

the results are shown in Table 3, where "-bert" 430

and "-ours" denotes using BERT and our finetuned 431

model as ED in Algorithm 1 respectively. Basi- 432
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Strategy Acc@20 Acc@100 R@20 R@100

Random 87.1 91.4 60.8 76.0
BM25 90.2 94.6 63.1 78.5
Cluster-adaptive 91.1 95.3 64.6 79.6

Table 4: Comparison of the performance of GDR trained
with different negative sample strategies on NQ334K
dataset.

β Acc@20 Acc@100 R@20 R@100
0 70.5 83.9 39.2 59.4
0.5 89.1 93.7 61.9 77.2
1 91.1 95.3 64.6 79.6
2 90.9 95.0 64.4 79.5
1e5 90.4 94.8 63.1 77.9

Table 5: Results of GDR with different β on NQ334K
dataset.

cally, both NCI and GDR trained with "-ours" per-433

form significantly better than those trained with434

"-bert" across all the settings. The results empiri-435

cally demonstrate that fully leveraging the knowl-436

edge in the training set to generate identifiers that437

characterizing a mapping from query to relevant438

documents with lower entropy can significantly439

release the memorizing burden thus leading to bet-440

ter retrieval performances. Considering that NCI441

has a heavier memory burden compared to GDR,442

this strategy has benefited NCI more (10.1 > 8.4443

R@100 improvements on NQ334K).444

Negative Sampling Strategy To verify the ef-445

fectiveness of the proposed cluster-adaptive nega-446

tive sample strategy, We evaluate the performance447

of GDR trained with different negative sampling448

strategies and summarize the results in Table 4. We449

notice that GDR trained with the cluster-adaptive450

strategy outperforms that with widely used BM25451

strategy by 1.1 on R@100. This indicates that452

our proposed cluster-adaptive negative sampling453

strategy can indeed provide more intra-cluster dis-454

criminative training signals to strengthen the fine-455

grained matching ability.456

3.4 Analysis457

Combination of Mapping Scores We study458

the influence of different combination weights of459

Sinter and Sintra in Eq. (5) and choose the value460

of β from {0,0.5,1,2,1e5}. As the beta gradually461

increases (Table 5), the retrieval performance of462

GDR will experience a process of first increasing463

and then decreasing. Therefore, we take the best464

Dl Sval NCI GDR
Acc@100 R@100 Acc@100 R@100

Set A Set A 90.7 - 71.2 - 94.9 - 77.7 -
All Set A 80.7↓10.0 52.9↓18.3 93.4↓1.0 75.8↓1.9
All Set B 56.5↓34.2 27.7↓43.5 86.6↓8.3 66.2↓11.5

Table 6: Comparison of scalability performance be-
tween NCI and GDR. Specifically, We divide the origi-
nal NQ334K dataset into two parts: Set A (constructing
identifiers and training on it) and Set B (served as new
added dataset).

performing (β=1) as the default setting. When 465

GDR only relies on Sinter for retrieval (β = 0), the 466

ranking of documents within the same cluster will 467

be the same, which will result in a significant per- 468

formance degradation compared with the default 469

setting. On the contrary, when GDR only relies on 470

Sintra for retrieval (we set β = 1e5 to approximate 471

this situation), the lack of matching information 472

of coarse-grained semantic features will result in 473

a decrease of 1.7 R@100. The above experimental 474

results fully demonstrate the significance of Sinter 475

and Sintra and the necessity of combining them. 476

Scalability of Model A common scenario in re- 477

trieval tasks is adding new documents to candi- 478

date corpus. To simulate this scenario, we split 479

the NQ334K dataset into Set A and Set B, both of 480

which contain half of the original training and vali- 481

dation set together with corresponding relevant doc- 482

uments. For both NCI and GDR, we first train and 483

evaluate the model on Set A. After adding Set B to 484

Set A, we further evaluate the model on validation 485

subset of Set A and Set B respectively. As shown 486

in Table 6, though NCI has already memorized the 487

documents corresponding to Set A validation set, 488

the situations where one document identifier corre- 489

sponds to multiple documents caused by the new 490

added documents led to a 18.3 R@100 drop. On the 491

contrary, GDR only degraded 1.9 on R@100 thanks 492

to the introduction of Sintra. When evaluating on 493

Set B, NCI further significantly degraded 25.2 on 494

R@100 as the model did not have a memory of doc- 495

uments corresponding to Set B validation set. As a 496

comparison, GDR can quickly extract dense repre- 497

sentations through ED and assign cluster identifiers 498

by searching for the nearest cluster representation 499

in the semantic space for the added documents, so 500

as to obtain inter-cluster and intra-cluster features. 501

Although GDR also does not have a memory of 502

added documents, its R@100 performance (66.2) 503

still significantly surpassed NCI (27.7) on Set B. 504
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Method
Latency Throughput Index Refresh

(ms) (queries/s) (mins)
BM25 56 22.8 2
AR2 35 589.0 5
NCI 232 6.3 -
GDR 195 7.2 7

Table 7: Efficiency analysis on NQ334K dataset with
recall quantity as 100. NCI can not refresh indexes
without retraining.

Efficiency Analysis We use an NVIDIA A100-505

40G GPU to analyze the efficiency of AR2, NCI,506

and GDR. We use the Anserini implementation of507

BM25 and evaluate it on an Intel Xeon CPU. As508

shown in Table 7, BM25 and AR2 achieve fast re-509

trieval by indexing the corpus in advance. Typical510

GR method NCI has lower efficiency due to the511

autoregressive generation of document identifiers512

with beam search. As a compromise, GDR uses513

autoregressive generation in inter-cluster matching514

and pre-indexes for retrieval in intra-cluster match-515

ing, thus achieves an efficiency that falls between516

DR and GR. We leave the research on improving517

the efficiency of GR and GDR for future work.518

4 Related Work519

Given queries, text retrieval task aims to find rele-520

vant documents from a large corpus. In this section,521

we introduce typical paradigms DR and GR that522

are most related to our work.523

4.1 Dense Retrieval524

DR (Karpukhin et al., 2020; Xiong et al., 2021;525

Ren et al., 2021; Zhang et al., 2022b,a; Zhao et al.,526

2022) is the most widely studied retrieval paradigm527

in recent years. A dual-encoder architecture (query-528

encoder and document-encoder) is commonly used529

to extract the dense semantic representations of530

queries and documents. The similarities between531

them are computed through simple operations (e.g.,532

inner product) in Euclidean space and ranked to re-533

call the relevant documents. By extracting features534

and constructing indexes for matching, DR does535

not have to memorize the corpus and attains good536

scalability. However, the upper bound of DR is537

constrained due to the limited interaction between538

queries and candidate documents (Li et al., 2022).539

GDR inherits the matching mechanism from DR540

in the fine-grained mapping stage, and introduces541

deep interaction through memorizing mechanism542

in the coarse-grained mapping stage, thus achiev- 543

ing better recall performance. 544

4.2 Generative Retrieval 545

Recently, a new retrieval paradigm named GR, 546

which adopts autoregressive model to generate rel- 547

evant document identifiers, has drawn increasing 548

attention. Cao et al. (2021) proposes to retrieve 549

documents by generating titles. Tay et al. (2022) 550

utilizes BERT (Devlin et al., 2019) combined with 551

the K-means algorithm to generate identifiers with 552

hierarchical information. Bevilacqua et al. (2022) 553

leverages n-grams to serve as identifiers. Wang 554

et al. (2022) enhances the model’s memory of can- 555

didate documents through query generation. Mehta 556

et al. (2022) proposes retraining model with gen- 557

erated queries of old documents when new docu- 558

ments are added to reduce forgetting. Sun et al. 559

(2023) suggests training the model to learn to as- 560

sign document identifiers. However, all of these 561

methods require models to memorize the whole 562

corpus and inevitably face the problems we have 563

discussed above, for which we propose GDR. 564

5 Conclusions 565

In this paper, we empirically demonstrate that the 566

memorizing mechanism of Generative Retrieval 567

(GR) brings deep interaction characteristics but 568

also causes serious problems. To this end, we 569

propose the Generative Dense Retrieval (GDR) 570

paradigm, which subdivides the text retrieval task 571

into inter-cluster and intra-cluster matching and 572

achieves them by autoregressively generating clus- 573

ter identifiers and calculating dense representation 574

similarities respectively. GDR focuses the limited 575

memory volume on the deep interaction between 576

query and document cluster and conducts multi- 577

directions decoding, thus maintaining the supe- 578

riority of memorizing mechanism. Memorizing- 579

free matching mechanism is further introduced to 580

achieve intra-cluster mapping by fully leveraging 581

fine-grained features of documents. Such a coarse- 582

to-fine process can also bring better scalability, i.e., 583

stable corpus expansion and low-cost document 584

updates. We further propose a cluster identifier 585

constructing strategy to release the memory burden 586

and a cluster-adaptive negative sampling strategy 587

to provide discriminative signals. Comprehensive 588

experiments on the NQ dataset demonstrate the 589

state-of-the-art R@k performance and better scala- 590

bility of GDR. 591
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Limitations592

Despite the achievement of state-of-the-art R@k593

performance and better scalability, the current im-594

plementation of GDR still suffers from the follow-595

ing limitations. Firstly, the inference speed of GDR596

needs to be further improved to be employed in597

real-time retrieval services. Secondly, GDR’s per-598

formance on Acc@k falls short compared to the599

state-of-the-art method (AR2 (Zhang et al., 2022a)).600

We suppose that this is because part of the Query601

Encoder’s capacity is utilized to handle the inter-602

cluster matching task, thus affects the accuracy of603

GDR in intra-cluster mapping. Thirdly, due to the604

high training cost (70 hours on 8 NVIDIA A100605

GPUs for NQ4M), the generalization of GDR on606

larger scale corpus has not been tested.607

Ethics Statement608

All of the datasets used in this study were publicly609

available, and no annotators were employed for610

data collection. We confirm that the datasets we611

used did not contain any harmful content and was612

consistent with their intended use (research). We613

have cited the datasets and relevant works used in614

this study.615
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A Appendix 783

A.1 Calculation method of error rate 784

Considering that the AR2 (Zhang et al., 2022a) it- 785

self does not make predictions on identifiers, we 786

select identifier corresponding to the predicted doc- 787

ument as AR2’s identifier prediction. We calculate 788

the error rate of model’s prediction on the ith po- 789

sition as follows: For each predicting document 790

identifiers, we calculate the probability that, given 791

its prefix up to the i-1th position belonging to a pre- 792

fix of a relevant document identifier, the addition 793

of the model’s prediction for the ith position no 794

longer belongs to any prefix of a relevant document 795

identifier. 796

Dataset Cluster Counts
NQ334K 34337
NQ1M 33003
NQ2M 29000
NQ4M 28362

Table 8: Total number of CIDs included in datasets with
different scale of candidate document corpus.
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A.2 Magnitude of CIDs797

We collect the total count of CIDs for datasets with798

different scales of candidate documents obtained799

through our proposed strategy introduced in section800

2.2. As shown in Table 8, the results demonstrate801

that the proposed strategy can effectively control802

the total number of clusters, thus guarantee the803

memorizing volume of GDR. The reason why the804

magnitude of cluster counts in Table 8 (approxi-805

mately 30000) is larger than the Exp(|CID|) we806

set as 5000 is that, The constructed cluster tree is807

unbalanced, resulting in more clusters than the ex-808

pected value. Our preliminary studies show that,809

setting Exp(|CID|) in Algorithm 1 as 5000 can810

lead to a favorable budget between efficiency and811

performance.812
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