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ABSTRACT

Humans excel at isolating relevant information from noisy data to predict the be-
havior of dynamic systems, effectively disregarding non-informative, temporally-
correlated noise. In contrast, existing reinforcement learning algorithms face
challenges in generating noise-free predictions within high-dimensional, noise-
saturated environments, especially when trained on world models featuring real-
istic background noise extracted from natural video streams. We propose a novel
information-theoretic approach that learn world models based on minimising the
past information and retaining maximal information about the future, aiming at si-
multaneously learning control policies and at producing denoised predictions. Uti-
lizing Soft Actor-Critic agents augmented with an information-theoretic auxiliary
loss, we validate our method’s effectiveness on complex variants of the standard
DeepMind Control Suite tasks, where natural videos filled with intricate and task-
irrelevant information serve as a background. Experimental results demonstrate
that our model outperforms eight state-of-the-art approaches in various settings
where natural videos serve as dynamic background noise. Our analysis also re-
veals that all these methods encounter challenges in more complex environments.

1 INTRODUCTION

A major open problem in Reinforcement learning (RL) is to learn the dynamics and control policies
from the high-dimensional observations such as images (Ha & Schmidhuber, 2018; Lillicrap
et al., 2016; Hafner et al., 2020a; 2021a; Hansen et al., 2022). Conventionally, it is assumed
that the observations in the environment, often derived through hand-engineered features, consist
exclusively of task-relevant information. This allows RL algorithms to operate in a controlled
setting with optimal efficiency, primarily due to the absence of exogenous noise (unrelated or
uncontrollable external variables such as weather variations or random background movements),
that could potentially hinder the learning process.

Figure 1: Top Row: Ground truth data from a
random sequence. Bottom Row: Reconstruction
from DPI.

In the real world, the landscape is vastly dif-
ferent, brimming with a plethora of informa-
tion, much of which is irrelevant to a specific
task. The challenge lies in accurately identi-
fying task-relevant information and avoid the
modeling of temporally correlated dynamics of
the background noise. Prior RL methodolo-
gies (Yarats et al., 2021; Hafner et al., 2020a;
Ha & Schmidhuber, 2018) that derive rep-
resentations directly from observations, often
integrate task-irrelevant information into their
representations. They struggle to disentangle
the noise from relevant information, unnec-
essarily modeling noise dynamics, leading to
sub-optimal performance under noise (see Fig-
ure 4).

The process of computing representations relies on the past inputs, while the imagination and ex-
ploration are directed towards future (Hafner et al., 2020b). Our objective is to develop a cohesive
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perspective on how an agent formulates its current representation after observing past input and be-
fore observing future. Could it be feasible to model this process as an information flow, transitioning
from past to future, mediated by the current state?

We introduce Denoised Predictive Imagination (DPI), a model-based reinforcement learning ap-
proach that leverages information theory to learn robust and meaningful representations. DPI mod-
els Predictive Information (Bialek & Tishby, 1999), the mutual information between the past and the
future, and employs the Information Bottleneck principle (Tishby et al., 2000) to derive a compact
representation of the current state from historical observations, while preserving maximal predictive
information about future outcomes. Essentially, DPI focuses on learning a concise abstraction of the
system dynamics and leverages it to learn control policies and generate noise-free future predictions.
This is achieved through deriving an objective integrating two central ideas: minimization of mutual
information about past and the maximization of predictive ability for future. This dual objective
consists of two contrastive losses and is formulated as a Lagrangian optimization problem. DPI
outperforms eight existing state-of-the-art models on six modified DeepMind control (DMC) tasks.
While in this paper we focus on the algorithmic derivation and the performance of DPI, the infor-
mation theoretic nature of it enables future investigations of generalization, stability and robustness
aspects.

2 RELATED WORK

In this section, we delve into related work on reinforcement learning from visual input, focusing
specifically on model-based approaches and representation learning concepts. For a more compre-
hensive discussion, refer to the Supplementary Material.

Model-based Reinforcement Learning. These models simultaneously learn policy and transition
dynamics, which can be used for planning, and are often sample efficient due to their ability to
handle rich observations (Kaiser et al., 2020; Chua et al., 2018; Hafner et al., 2019; Ebert et al.,
2018; Lowrey et al., 2019; Gelada et al., 2019; Lee et al., 2020a). World Models Ha & Schmidhuber
(2018) uses recurrent latent model to imagine future frames. Stochastic Optimal control with La-
tent Representations (SOLAR, Zhang et al. (2019)) model dynamics with linear-quadratic regulator.
In particular, Dreamer (Hafner et al., 2020a) optimises policies via backpropogating through latent
dynamics and uses recurrent state-space model for planning in latent space. These reconstruction-
based methods perform effectively in standard environments. However, when exposed to environ-
ments with noise distractors, they struggle to bifurcate between information they should reconstruct
and what they should disregard.

Learning Representations and RL. Recent works (Chen et al., 2020; Henaff, 2020; Tian et al.,
2020) have demonstrated progress in learning representations from unlabeled data. These concepts
have been integrated into reinforcement learning by works like (Laskin et al., 2020; Oord et al., 2018;
Shu et al., 2020; Ma et al., 2021; Oord et al., 2018; Ma et al., 2021; Hjelm et al., 2019). However,
the identification and utilization of task-relevant information was not addressed. In contrast, our
approach, similar to PI-SAC (Lee et al., 2020b), quantifies and compresses predictive data, exclud-
ing irrelevant past information. Yet, unlike strategies such as Dynamic Bottleneck (DB, Bai et al.
(2021)) and Sequential Information Bottleneck (SIBE, You et al. (2022)), our approach not only
seeks compact representations under noisy conditions, but also emphasizes on achieving noiseless
future predictions and treating temporal noise along representations.

Learning Control from pixels with distractors. Recent developments in model-based RL (Zhang
et al., 2021; Ma et al., 2021; Nguyen et al., 2021; Fu et al., 2021; Bai et al., 2021; You et al., 2022;
Efroni et al., 2022; Wang et al., 2022; Islam et al., 2022; Tomar et al., 2023) have put forward a
variety of innovative ideas aimed at extracting relevant information from observations. Contrastive
Variational Reinforcement Learning (CVRL, Ma et al. (2021)) leverages a contrastive loss to learn
representations and dynamics, thereby planning in the latent space by maximizing the MI between
observations and latent representations. Deep Bisimulation for Control (DBC, Zhang et al. (2021))
learns control policies by learning representations of the states that preserve the bisimulation metric.
Temporal Predictive Coding (TPC, Nguyen et al. (2021)) shares conceptual similarities with our
approach, striving to eliminate temporal noise while focusing only on the relevant aspects. More
recent methods such as Task Informed Abstractions (TIA, Fu et al. (2021)) maintain two separate
latent models, one for tasks and another for distractors, bifurcating noise and signal. TIA falters in
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achieving better rewards when the grayscale background is replaced with RGB (see the experimental
section). Our work bypasses the need for explicitly defining these types of model rules and instead
builds on a general information-theoretic model wherein these types of features implicitly emerge.

3 NOTATION AND PRELIMINARIES

Reinforcement Learning. An agent operates in a Markov Decision Process (MDP), which is char-
acterised by a tupleM = (O,A,P,R, γ), consisting of the observation space O with observations
o (we interchangeably use “states” and “observations”), action space A with actions a, transition
dynamics P , Reward space R and discount factor γ ∈ [0, 1]. The encoder ϕ(z|o) produces a latent
representation z from observations, and then the policy π(a|z) decodes this latent representation
into actions. The goal of RL is to learn a policy π∗(a|z) that maximizes the expected cumulative
discounted rewards Jπ = argmaxπEp

[∑
t γ

t−1rt
]
.

Predictive Information. Predictive Information (PI) is a quantity that measures how much our
observations from the past can inform us about the future Bialek & Tishby (1999) . Mathematically,
it can be defined as the mutual information (MI) between the past (xpast) and the future (xfuture),
denoted as I(xpast; xfuture). Assuming temporal invariance (any fixed time length is expected to
have the same entropy), PI becomes a subextensive quantity, as expressed by limT→∞ I(T )/T = 0,
where I(T ) is the predictive information over a time window of length 2T (with T steps of the
past predicting T steps into the future), see Equation 3.1 in Bialek et al. (2001). As the time frame
increases, the past contains a diminishing predictive value for the future. In order to capture only
the necessary information from xpast for predicting xfuture, a compressed representation of xpast
is required.

Information Bottleneck.For learning this compressed representation, we utilize the Information
Bottleneck (IB) principle Tishby et al. (2000). IB aims at learning a representation z that aims to
optimally compress the information provided by the input x ∈ X , i.e. minimize I(x; z), while
still maintaining enough knowledge to predict the outcome y ∈ Y , i.e. maximize I(z; y). This
objective is unified with the inclusion of a Lagrangian multiplier and formalized as max I(z; y) −
βI(x; z). The parameter β controls the information flow from the input x to the latent representation,
balancing the trade-off between information preservation and compression.

4 DENOISED PREDICTIVE IMAGINATION

Denoised Predictive Imagination (DPI) is an information theory-based approach, that encapsulates
the notions of predictive information and the information bottleneck. This core idea enables the
learning of a compressed representation from high-dimensional observations, distilling task-relevant
details from past observations, and leveraging this refined knowledge for future predictions while
effectively filtering out noise. We hypothesise that the current state should encapsulate the requisite
and meaningful information essential to perform the task. If the information is insufficient, the
latent representations may fail to capture all the task-relevant information, leading to sub-optimal
learning outcomes. On the other hand, if we incorporate an overabundance of information, our
representations could become encumbered with noise-related artifacts that results in a dilution of
task-relevant data and in a performance decrease.

We denote the latent representations for the past observations by ot− , current observation by ot,
and the future observations by ot+ . We use zt− , zt and zt+ respectively for the latent space. For
consistency and clarity, we establish that the episode initiates at time t = 1 and terminates at the
horizon t = T . The objective is to encode observations (ot− , ot) into latent representations (zt− , zt),
transform them to next state representations zt+ , and decode into future observations ot+ (Figure 2).
Consequently, this process creates a two-fold bottleneck: one while transforming observations into
latent representations and vice-versa (ot←→zt), and another when acquiring the latent representation
itself from other latent representations (zt−1−→ zt−→ zt+1). In this context, our transition function
can be conceptualized as a model operating simultaneously as an encoder and a decoder, encoding
zt from zt− and decoding zt to yield zt+ , with bottleneck being zt.

Intuitively, we obtain task-relevant information from raw observations into our latent representa-
tions by minimising mutual information I(ot− , ot; zt− , zt) while maximising the mutual informa-
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tion I(ot, ot+ ; zt, zt+), which preserves the predictive information for the reverse scenario. When
expressed in Lagrangian formulation, we obtain,

min I(ot−,t; zt−,t)− β1I(ot,t+ ; zt,t+). (1)

In order to learn temporal abstractions and compressed representations from a sequence of past states
and acquire relevant predictions, we employ the principle of Information Bottleneck. We apply a
Lagrangian on the latent space with the aim of minimising I(zt− ; zt) and maximising I(zt; zt+),

min I(zt− ; zt)− β2I(zt; zt+). (2)

Merging objectives from equation (1) and (2), we obtain a unified Lagrangian optimizing problem,

min
[
I(ot−,t; zt−,t)︸ ︷︷ ︸

Historical
observation model

+ I(zt− ; zt)︸ ︷︷ ︸
Historical latent
space dynamics

]
−

[
β1I(ot,t+ ; zt,t+)︸ ︷︷ ︸

Predictive
observation model

+β2I(zt; zt+)︸ ︷︷ ︸
Predictive latent
space dynamics

]
, (3)

where β1 and β2 are the Lagrangian multipliers. This implies that the problem can be optimised
by minimizing the upper bound associated with the past, as represented by the first two terms, and
simultaneously maximizing the lower bound related to the future, embodied in the final two terms.
The objective of our DPI considers action dependencies implicitly through the latent space repre-
sentations, p(zt|zt− , at−), thereby reflecting the innate characteristics of system transitions. This
compatibility with RL principles facilitates a seamless integration of our approach into existing RL
algorithms, where DPI can serve as an auxiliary function, significantly enhancing the learning of
representations. Due to space limitations, all subsequent derivations and details are in the Supple-
mentary Material (Section 1).

4.1 STATE SPACE MODEL

Figure 2: State-space model. The variable zt acts
as a bottleneck for the model, serving as a critical
link between the historical (white circles) and pre-
dictive elements (grey circles). Solid edges des-
ignate the inputs required for inference, while the
dotted edges represent the generative components.

We use the state-space model described in Fig-
ure 2 with,

Encoder Representation: zt ∼ pφ(zt | ot)
Transition dynamics: zt+1 ∼ qθ(zt+1 | zt, at, ht)
Observation model: ot ∼ rψ(ot | zt)
History model: ht ∼ p(ht | ht−1, at−1). (4)

The conditional p(ht | ht−1, at−1) denotes the
history model, that encapsulates the past vari-
ables into a single history variable i.e.,

ht = {zt−1, at−1, ..., z1, a1},
= {zt−1, at−1, ht−1}. (5)

This is a crucial modelling component that is dis-
cussed and used in the next subsections.

4.2 MINIMISING THE UPPER BOUND OF THE PAST MUTUAL INFORMATION

This subsection discusses the minimization of the first two terms in the Lagrangian of DPI in Equa-
tion 3.

Upper bound of historical latent space dynamics. We aim at minimising the tractable upper bound
on the mutual information I(zt− ; zt). The mutual information can be represented as,

I(z1; ...; zt) = Ep(z1,...,zt)

[
log

p(z1, ..., zt)∏t
k=1 p(zk)

]
,

We incorporate actions into the model by introducing a conditional probability distribution
p(zt− , zt|at−),

I(z1:t) = Ep(z1:t,a1:t−1)

[
log

p(z1:t)p(z1:t|a1:t−1)

p(z1:t|a1:t−1)
∏t
k=1 p(zk)

]
≤ Ep(z1:t,a1:t−1)

[
log

p(z1:t|a1:t−1)∏t
k=1 p(zk)

]
(6)
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Utilising the chain rule in conditional probability and for every t, substituting {zt−1, at−1, ht−1} as
ht like Equation (5), we can write Equation (6) as

I(z1:t) ≤
t−1∑
k=1

Ep(zk,ak)

[
log

p(zk+1|zk, ak, hk)
p(zk+1)

]
=

t−1∑
k=1

I
(
zk+1; zk, ak, hk

)
. (7)

In essence, this implies that we can optimize the mutual information between the past latent repre-
sentations and the present state’s representation by minimising the upper bound of the MI for each
individual, independent transition in a Markovian manner.

For the purpose of minimizing this upper bound, we employ Contrastive Log-ratio Upper Bound of
Mutual Information (CLUB, Cheng et al. (2020)), where the core idea is to estimate the MI through
the difference of conditional probabilities for positive and negative sample pairs. Since the condi-
tional distribution p(zk+1|zk, ak, hk) is intractable, the upper bound of I(zk+1; zk, ak, hk) cannot
be directly minimized. As a consequence, we introduce a variational distribution q(zk+1|zk, ak, hk),
serving essentially as the transition function of the model, parameterised by θ, to approximate the
upper bound of mutual information,

I(zk+1|zk, ak, hk) =
1

N

N∑
i=1

[
log q̂θ −

1

N

N∑
j=1

log q̂θ

]
= ICLUB , (8)

where q̂ denotes qθ(zik+1|zik, aik, hik), i.e. the i-th sample at k-th timestep. We obtain the negative
sample pair (z′k+1, (zk, ak, hk)) via random shuffling.

Upper bound of the historical observation model. As in the previous section, it can be shown
that an upper bound for I(o1:t, z1:t) can be derived by introducing the conditional distribution
p(zt− , zt|at−),

I(o1:t; z1:t) ≤ Ep(z1:t,o1:t)

[
log

p(z1:t|o1:t)
p(z1:t|a1:t−1)

]
.

Taking this further, we employ the same tractable variational distribution drawn from our transition
function,

I(o1:t; z1:t) ≤
t−1∑
k=1

Ep(zk,ok,ak)

[
log

p(zk+1|ok+1)

qθ(zk+1|zk, ak, hk)

]
= ILTC . (9)

This term is an upper-bound for I(o1:t, z1:t), quantifying the ratio between the latent representation
derived from the encoder and the transitioning state obtained from a past representation when a
specific action is applied. Intuitively, this constrains the latent dynamical model (transition function)
to diverge minimally from the latent representations obtained from the observation encoder. Hence,
we refer to this term as the Latent Consistency Loss LLTC.

4.3 MAXIMISING THE LOWER BOUND OF THE PREDICTIVE MUTUAL INFORMATION

This subsection discusses the maximization of the last two terms in the Lagrangian of DPI in Equa-
tion 3.

Lower bound of the predictive latent space dynamics. In order to obtain the lower bound on this
MI term, we factorise the transition model by applying the chain rule,

I(zt:T ) = Ep(zt:T )

[
log

p(zt:T )∏T
k=t p(zk)

]
= Ep(zt:T )

[
log

T−1∏
k=t

p(zk|zk+1:T )

p(zk)

]
,

≥
T−1∑
k=t

Ep(zk,ak)

[
log

p(zk|zk+1, ak)

p(zk)

]
,

=

T−1∑
k=t

I
(
zk+1, ak; zk

)
. (10)
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The mutual information objective I(zk+1, ak; zk) can be decomposed using the chain rule for mu-
tual information, yielding I(zk; zk+1) + I(zk; ak|zk+1). The first component, solely depends on
state-transitions. It is closely related to the predictive coding objective (Oord et al., 2018; Anand
et al., 2019). Omitting actions could impair the model’s capability to determine the optimal ac-
tions (Rakelly et al., 2021). The second term can be represented in terms of conditional entropy as
H(ak|zk)−H(ak|zk, zk+1). The term H(ak|zk, zk+1) effectively characterizes the entropy of the
inverse dynamics, conceptually aligns closely with an extensive spectrum of prior studies that have
focused on exploration and unsupervised learning of representations (Zhang et al., 2018; Pathak
et al., 2017; Chandak et al., 2019; Bharadhwaj et al., 2022). From an intuitive perspective, inverse
models operate as an agreement mechanism between the actual and the ground truth action repre-
sentations. This mechanism enables the representation to capture only those aspects of the state that
are essential for predicting the action, thereby discarding potentially irrelevant information. The MI
term in Equation 10 can be viewed as a combined objective that optimises state transitions with the
regularization of action representations.

For optimising this lower bound, we will utilise contrastive learning (Oord et al., 2018), which yields
a variational lower bound of the mutual information in Equation 10. Strategies employed by He et al.
(2020); Laskin et al. (2020) relies on data augmentation to generate positive and negative samples.
Contrary to them, we take inspiration from Bai et al. (2021) that incorporate policy transitions to
obtain these samples. Positive samples are directly acquired by sampling transitions (zt, at, zt+1),
while the construction of negative samples involves randomly sampling z∗t and concatenating it with
(at, zt+1). As a result, we produce samples (z∗t , at, zt+1) that deviate from the transition dynamics.
Thus we obtain MI objective as,

I(zk+1, ak; zk) ≥ Ep,N

[
log

eσ(zk,ak,zk+1)∑
z∗k∈N−∪zk e

σ(z∗k,ak,zk+1)

]
≜ INCE , (11)

where N is the set of negative samples and σ is the score function. Score functions quantifies the
similarity between paired examples, providing high score to the positive examples and low score
to the negative examples. We opt for bilinear products as our score function (Oord et al., 2018;
Laskin et al., 2020; Henaff, 2020), defined as c(at, zt+1)

TWzt, where c( · , · ) is the concatenation
function parameterised by a neural network andW is the learnable parameter of the score function.
The concatenation network combines the action and subsequent latent representation into a single
vector, as shown in Figure 3b.

Lower bound of the predictive observation model. Directly maximizing I(zt,t+ ; ot,t+) is infea-
sible due to its marginal’s intractability. Similar to Alemi et al. (2017), we propose to optimise a
lower bound on our MI,

I(zt:T ; ot:T ) = Ep(zt:T ,ot:T )

[
log

p(ot:T |zt:T )
p(ot:T )

]
= Ep(zt:T ,ot:T )

[
log

T∏
k=t

p(ok|zk)
p(ok)

]
,

≥
T∑
k=t

Ep(zk,ok)

[
log

rψ(ok|zk)
p(ok)

]
,

where where p(ok|zk) is an intractable conditional distribution and rψ(ok|zk) is a tractable varia-
tional decoder, represented by a neural network with parameters ψ. We rule out the entropy term as
it is independent of our optimization procedure,

I(zt:T ; ot:T ) =

T∑
k=t

Ep(zk,ok)
[
log rψ(ok|zk)

]
= IRec . (12)

IRec can be interpreted as the log-likelihood of the observations given the state encodings.

4.4 COMBINED OBJECTIVE

Our optimization strategy can be unified into a single objective function as,
min

θ,ψ,ϕ,W
LDPI = [α1ILTC + α2ICLUB ]− [β1IRec + β2INCE ]. (13)

The two losses, ILTC and IRec, are responsible for the representations from the encoder and decoder
respectively, while the other two terms, ICLUB and INCE , formulated as a contrastive loss, control
the representations of the transition functions. They are jointly optimized.
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4.5 PRACTICAL IMPLEMENTATION WITH SOFT-ACTOR CRITIC

We jointly train DPI with SAC, an off-policy model-free reinforcement learning method, by incorpo-
rating Equation (13) as an auxiliary objective while training the algorithm (Supplementary Material
Section 3.1). The transition model, accounting for latent dynamics, is designed to capture the inher-
ent stochasticity of the transitions. It is parameterised with a neural network that returns a Gaussian
distribution defined by its mean and variance. The Observation model implemented as a Deconvo-
lutional Neural Network. The History model is implemented as a Gated Recurrent Unit (GRU, Cho
et al. (2014)). We utilize a stochastic encoder to obtain representations from the images (Eysenbach
et al., 2021; Theis & Agustsson, 2021), parameterised by φ. For encoding subsequent observations,
we leverage an exponential moving average of the online network parameters, denoted as φm (He
et al., 2020). We utilise the same principle for latent targets Hansen et al. (2022) for transition func-
tion, as it should ensure more stable learning process, accommodating any potential fluctuations
in the learning (Figure 3a). The complete algorithm with SAC is described in the Supplementary
material.

(a) Latent transition consistency loss Model (b) NCE loss Model

Figure 3: Representation of models used for calculating auxiliary losses (a) LTC loss LLTC and
NCE loss (LNCE). Encoder and target encoder parameters are defined as φ0 and φm respectively.
a) Once the current representation is obtained, it is passed through the transition function qθ to
obtain the next latent representation, from which the LLTC is finally calculated (Algorithm 2 in
Supplementary material). b) Next latent representation and current action is passed via concatena-
tion function c to obtain unified representation, then compared with current state representation via
contrastive learning.

5 EXPERIMENTS

In this section, we conduct a thorough empirical assessment of the proposed DPI method on the
DeepMind control suite (DMC, Tassa et al. (2018)) in various settings and compare it with existing
state-of-the-art approaches. We evaluate three distinct types of environments: (i) Standard environ-
ment with a static background, (ii) Natural environment with video-based, real-world backgrounds,
and (iii) Random environment with varying backgrounds in each frame. To underline the signifi-
cance of each element in the model, we conclude this section with an ablation study.

5.1 ENVIRONMENT SETTINGS

For all three environments, we conducted experiments on six DMC tasks: Cheetah Run, Walker
Walk, Cartpole Swingup, Reacher Easy, Pendulum Swingup and Cup Catch. These robot control
tasks pose different challenges, such as sparse rewards, contacts and complex dynamics. For the
standard settings, no perterbutations are applied to the observations. The observations are RGB
images of the size 84 × 84 × 3. By incorporating the ground plane, a substantial portion of the
background image is obscured, thereby simplifying the task at hand. Thus, the ground plane is elim-
inated to maximize the utilization of the background image. These natural videos are incorporated
from Kinetics 400 dataset Kay et al. (2017) at random. We used videos from random categories
compared to the simplified challenge in DBC Zhang et al. (2021) who only considered the driving
category. Contrary to the predominant use of grayscale images in benchmarking, we employing
RGB videos in the background. We independently sampled 100 videos separately for training and

7



Under review as a conference paper at ICLR 2024

testing. More information about the background noise is provided in the Supplementary Material
(Section 5.1).

Figure 4: Natural Background Setting. Test performance of our method (DPI) and eight baselines
on six robot control tasks, with added videos as background noise. Shown is the mean of three runs
where shaded areas denote 95% confidence intervals.

5.2 BASELINES AND IMPLEMENTATION DETAILS

In this evaluation, we compare our approach to a selection of eight most-closely related approaches
i.e. Dreamer (Hafner et al., 2020a), Dreamer-V2 (Hafner et al., 2021b), Task-informed Abstrac-
tions (TIA, Fu et al. (2021)), Denoised MDPs (Wang et al., 2022), Deep Bisimulation for Control
(DBC, Zhang et al. (2021)), Self-Predicting Representations (SPR, Schwarzer et al. (2021)), Vari-
ational Sparse Gating (VSG, Jain et al. (2022)) and Temporal Predictive Coding (TPC, Nguyen
et al. (2021)). These selected methods are distinguished by their superior performance and accom-
panied by publicly accessible source code. The task return is examined every 1000 steps. For all
baseline methods, we employed the optimal set of hyperparameters as indicated in the respective
papers. Each task is executed with three different seeds for each model. Detailed explanations of
these methods and of the implementations can be found in the Supplementary Material (Section 3).

5.3 RESULTS IN STANDARD SETTINGS

The performance of all the evaluated methods in the standard DMC environment is illustrated in the
Supplementary Material (Section 5.2). DPI exhibits a degree of effectiveness in certain scenarios
involving static backgrounds, although it does not consistently outperform all other methods.

5.4 RESULTS IN NATURAL BACKGROUND SETTINGS

Figure 4 illustrates the outcomes when employing natural backgrounds, wherein the background
videos were not presented to the agent during its training phase. The main reasons for the degraded
performance of most baseline methods was changing the background image to RGB. Dreamer strug-
gles to accurately capture the agent’s entire state, and inadvertently incorporates the irrelevant back-
ground noise into its representation (Supplementary Material Section 5). TIA, on the other hand,
can only effectively distinguish the agent from the distractor when the background is rendered in
grayscale. DBC’s performance is on par with these methods, however, it does not achieve the per-
formance that was reported by Zhang et al. (2021). This discrepancy is largely due to the inclusion
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of RGB image in the background and authors’ approach to use the same video for both training and
testing, which hampers its capability to manage diverse distraction and restricts its generalization
capability to unseen distractions. Similarly, TPC (Nguyen et al., 2021) and Denoised MDPs (Wang
et al., 2022) underperformed due to its incapability to generalise to diverse unseen distractions. Our
implementation utilises the authors’ open-sourced code, with the sole adjustment being the introduc-
tion of additional videos. Contrary to these methods, DPI achieves better rewards in the top three
environments in Figure 4. This success can be attributed to the state-space model that integrates the
actions into the latent representations. Such integration results in a reconstructed scene where the
background is blurred, and the agent is enhanced, signifying DPI’s capacity to encode task-relevant
components, enhancing its performance even in complex and noisy environments (Reconstruction
Results in Supp. Material Section 6).
Failure under Sparse rewards. As illustrated in Figure 4, our approach excels in Dense reward
scenarios (e.g., Cheetah run, Walker walk, Cartpole swingup). However, it struggles with sparse
reward environments (Cup Catch and Pendulum Swingup) after 106 environment steps. The com-
plexity of the task, when paired with the visual noise in the environment, presents a considerable
challenge and surpasses the limits of current methodologies. In conclusion, the tasks that are inher-
ently hard for model-based methods would remain hard for DPI. Significant improvements can be
made for exploration in sparse reward contexts.

5.5 RESULTS IN RANDOM BACKGROUND SETTINGS

Figure 5: Random Background Setting. Com-
parison of DPI with baselines in random back-
ground setting on three runs.

In this experiment, every time instance features
a unique background image, inducing maxi-
mum stochasticity in the environment. This ex-
periment illustrates the preservation of tempo-
rally predictive information by DPI. As demon-
strated in Figure 1, DPI effectively isolates
task-relevant features, managing to reconstruct
only the agent against a randomized back-
ground. Denoised MDPs (Wang et al., 2022),
our closest competitor here, exhibits high vari-
ance and instability, making its results less re-
liable and subject to fluctuation, undermining
its utility in stochastic environments. Figure 5
further highlights DPI’s superior control per-
formance in comparison to all other baselines
(More in Supplementary Material Section 6).

6 DISCUSSION AND CONCLUSION

Our work demonstrates that our information-theoretic formulation suggests a pathway to segregate
and represent task-relevant information in a noisy world, without explicitly modelling any rules of
the MDPs. We also show that objectives related to maximising information on various variables, that
are explicitly mentioned in other research (Bai et al., 2021; You et al., 2022; Lee et al., 2020b), im-
plicitly emerge out from our theoretical formulation. In our analysis, all the methodologies exhibit
strong performance in noise-free scenarios. When subjected to natural noise scenarios, character-
ized by real-world videos, DPI consistently either surpassed or equaled the best of eight baselines
in performance. However, there’s a noticeable path for improvement as every method encountered
challenges in tasks dominated by sparse rewards (bottom row of Figure 4). Most notably, in random
noise conditions, DPI does not face significant drop in performance and outperforms all other base-
line methodologies.
Our method can be combined with any existing RL model that performs exponentially well in noise-
free environment. We believe that there is a great room for improving the performance of our model,
e.g., by improving the model architecture for the encoding representations using Resnet like in Bai
et al. (2021), by utilising experience replay sampling strategies like PER (Schaul et al., 2016), or by
incorporating sophisticated exploration strategies for sparse environments (Laskin et al., 2020; You
et al., 2022).
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