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ABSTRACT

Despite the fact that adversarial training has become the de facto method for
improving robustness of deep neural networks, it is well-known that vanilla adver-
sarial training suffers from daunting robust overfitting, resulting in unsatisfactory
robust generalization. A number of approaches have been proposed to address
these drawbacks such as extra regularization, adversarial weights perturbation, and
training with more data over the last few years. However, the robust generalization
improvement is yet far from satisfactory. In this paper, we approach this challenge
with a brand new perspective – refining historical optimization trajectories. We
propose a new method named Weighted Optimization Trajectories (WOT) that
leverages the optimization trajectories of adversarial training in time. We have
conducted extensive experiments to demonstrate the effectiveness of WOT under
various state-of-the-art adversarial attacks. Our results show that WOT integrates
seamlessly with the existing adversarial training methods and consistently over-
comes the robust overfitting issue, resulting in better adversarial robustness. For
example, WOT boosts the robust accuracy of AT-PGD under AA-L∞ attack by
1.53% ∼ 6.11% and meanwhile increases the clean accuracy by 0.55%∼5.47%
across SVHN, CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets. Codes are
included in the supplementary.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved enormous breakthroughs in various fields, e.g., image
classification (Hinton et al., 2012; He et al., 2016), speech recognition (Hinton et al., 2012), object
detection (Girshick et al., 2014) and etc. However, it has been shown that they are vulnerable to
adversarial examples, i.e., carefully crafted imperceptible perturbations on inputs can easily change
the prediction of the model (Szegedy et al., 2013; Goodfellow et al., 2014). The vulnerability of
DNNs hinders their applications in risk-sensitive tasks such as face recognition, autonomous driving
and medical diagnostics. While various methods have been proposed to obtain robustness against
adversarial perturbations, adversarial training (Madry et al., 2017b) is the most leading approach to
achieve adversarial robustness.

However, the vanilla adversarial training usually suffers from daunting robust overfitting, resulting in
poor robust generalization1 (Rice et al., 2020). To tackle this issue, a number of methods from different
perspectives have been proposed including but not limited to training with more data (Schmidt et al.,
2018; Rebuffi et al., 2021; Sehwag et al., 2021; Carmon et al., 2019; Alayrac et al., 2019), adversarial
weights perturbation (Wu et al., 2020b; Yu et al., 2021), and knowledge distillation and stochastic
weights averaging (SWA) (Chen et al., 2020). Recently, Stutz et al. (2021) empirically show that the
improved adversarial robustness can be attributed to the flatter loss landscape at the minima.

Although the generalization properties of SGD-based optimizer under standard training setting have
been well studied (Zhang et al., 2017; Elisseeff et al., 2005; Zhou et al., 2018; Hardt et al., 2016), the
corresponding robust generalization property under adversarial setting has not been fully explored.
Among previous studies, Chen et al. (2020) heuristically adopts stochastic weight averaging (SWA)
and average model weights along the optimization trajectory, which potentially mitigates robust

1Robust generalization refers to the gap between the adversarial accuracy of training set and test set, following
previous work (Chen et al., 2020; Wu et al., 2020b; Stutz et al., 2021).
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Figure 1: Visualization of loss contours and optimization trajectories for AT-PGD, AT-PGD+WOT-W,
and AT-PGD+WOT-B, respectively. The experiments are conducted on CIFAR-10 with PreRN-18.

overfitting. However, it has been shown that naive weight averaging is not general enough to funda-
mentally address this problem, still prone to robust overfitting (Rebuffi et al., 2021). Instead of simply
averaging weights, we propose a new approach - Weighted Optimization Trajectories (briefly
WOT) for the first time showing that we can largely improve the flatness of solutions of existing
adversarial training variants by periodically refining a set of historical optimization trajectories.
Compared with the existing approaches, our method has three unique design contributions: ❶ our
refinement is obtained by maximizing the robust accuracy on the unseen hold-out set, which is natu-
rally advantageous to address the overfitting issue; ❷ our refinement is performed on a set of previous
optimization trajectories rather than solely on previous weights; ❸ we further propose a block-wise
trajectory refinement, which significantly enlarges the optimization space of refinement, leading to
better robust performance. We conduct rigorous experiments to demonstrate the effectiveness of
these design novelties in Section 4.1 as well as the ablation study in Section 4.3. Simple as it looks
in Figure 1, the optimization trajectories after refining converge to a flatter loss valley compared to
the vanilla AT-PGD, indicating the improved robust generalization (Wu et al., 2020b;a; Stutz et al.,
2021).

Extensive experiments on different architectures and datasets show that WOT seamlessly mingles
with the existing adversarial training methods with consistent robust accuracy improvement. For
example, WOT-B directly boosts the robust accuracy over AT-PGD (early stops) under AA-L∞
attack by 6.11%, 1.53%, 1.57%, and 4.38% on SVHN, CIFAR-10, CIFAR-100, and Tiny ImageNet,
respectively; meanwhile improves the corresponding clean accuracy by 0.55% ∼ 5.47%. Moreover,
we show that WOT can completely prevent robust overfitting across different attack approaches,
including the strongest one off-the-shelf - AA-L∞ attack.

2 RELATED WORK

Adversarial Attacks. Adversarial examples were first illustrated in Szegedy et al. (2013). Follow-
ing Szegedy et al. (2013), many adversarial attacks have been proposed and can be categorized into
white-box and black-box attacks. White-box attacks have full access to the model when crafting
adversarial examples. Popular white-box attacks are FGSM attack (Goodfellow et al., 2014), PGD
attack (Madry et al., 2017a), Deepfool (Moosavi-Dezfooli et al., 2016) and C&W (Carlini & Wagner,
2017). Black-box attacks generate adversarial examples without any knowledge about the model.
They are query-based attacks, e.g., SPSA attack (Uesato et al., 2018), Square attack (Andriushchenko
et al., 2020), and transferability-based attacks, e.g., DIM (Xie et al., 2019), TIM (Dong et al., 2019)
and DA attack (Huang et al., 2022). Recently, Croce & Hein (2020b) proposed Autoattack (AA)
for reliable adversarial robustness evaluation which is an ensembled adversarial attacks containing
white-box and black-box attacks. AA attack has been recognized as the most reliable method for
evaluating model’s adversarial robustness (Croce & Hein, 2020b) and will be used as the main
evaluation method in this paper.

Adversarial Robustness. Many methods have been proposed to improve the model’s robustness such
as gradient regularization (Ross & Doshi-Velez, 2018), curvature regularization (Moosavi-Dezfooli
et al., 2018), randomized smoothing (Cohen et al., 2019), local linearization (Qin et al., 2019),
adversarial training methods (Goodfellow et al., 2014; Madry et al., 2017a; Zhang et al., 2019; Wu
et al., 2020b; Wang et al., 2020; Zhang et al., 2020a; Huang et al., 2021; Balaji et al., 2019; Zhang
et al., 2020b; Pang et al., 2022), and etc. Among all these methods, adversarial training has been
the de facto method for achieving adversarial robustness. We briefly introduce four commonly used
adversarial training methods that we use as baselines in this study.

Given a C-class dataset S = {(xi, yi)|xi ∈ Rd, yi ∈ R}ni=1, the cross-entropy loss L(·) and the
DNN function fw : Rd −→ RC .
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AT-PGD (Madry et al., 2017a) is formalized as min-max optimization problem.

min
w

ρAT (w), ρAT (w) =
1

n

n∑
i

{ max
∥∆x∥≤ϵ

L(fw(xi +∆x), yi)},

where the inner maximization finds the adversarial examples and ϵ is the allowed perturbation
magnitude. We use by default AT to denote AT-PGD in the following sections.

Trades (Zhang et al., 2019) separates training loss into cross-entropy loss (CE) and Kullback-Leibler
(KL) divergence loss to control clean accuracy and adversarial robustness respectively.

ρTRADES(w) =
1

n

n∑
i

{CE(fw(xi, yi) + β · max
∥∆x∥≤ϵ

KL(fw(xi)||fw(xi +∆x)}

MART (Wang et al., 2020) designs the training loss as the binary cross-entropy loss (BCE) and an
explicit regularization for misclassified examples. Given that [fw(xi)]yi

denotes the yi-th element of
fw(xi), the objective function is expressed as follows:

ρMART (w) =
1

n

n∑
i

{BCE(fw(xi +∆x, yi) + λ ·KL(fw(xi)||fw(xi +∆x)) · (1− [fw(xi)]yi
)}

Adversarial Weights Perturbation (AWP) (Wu et al., 2020b) explicitly flattens the loss landscape
by injecting the worst weight perturbations. Given that V is the feasible perturbation region for
weights, the objective function is formalized as follows:

ρAWP (w) = min
w

max
v∈V

1

n

n∑
1

max
∥∆x∥≤ϵ

CE(fw+v(xi +∆x), yi)

In essence, AWP is equivalent to the combination of sharpness-aware optimizer (Foret et al., 2020)
and adversarial training.

Robust Overfitting and its Mitigation. Rice et al. (2020) first identified the robust overfitting issue
in AT that robust accuracy in test set degrades severely after the first learning rate decay and found
that early stop is an effective strategy for mitigating the robust overfitting issue. Following Rice et al.
(2020), several studies have been proposed to explain and mitigate the robust overfitting issue (Wu
et al., 2020b; Singla et al., 2021; Chen et al., 2020; Dong et al., 2021; Chen et al., 2022; Stutz et al.,
2021). Chen et al. (2020) showed that stochastic weight averaging (SWA) and knowledge distillation
can mitigate the robust overfitting issue decently and Singla et al. (2021) found that low curvature
activation function helps to mitigate the robust overfitting problem. Dong et al. (2021) took a step
further to explain that robust overfitting issue may be caused by the memorization of hard samples in
the final phase of training. Wu et al. (2020b); Yu et al. (2021); Stutz et al. (2021) demonstrated that a
flat loss landscape improves robust generalization and reduces the robust overfitting problem, which
is in line with the sharpness studies in standard training setting (Foret et al., 2020; Jiang et al., 2019;
Dziugaite & Roy, 2017). Among these studies, SWA can be seen as a special case of our method and
it equates our method under specific conditions (see more details in Appendix D).

3 METHODOLOGY

In this section, we will introduce weighted optimization trajectories (WOT), a carefully designed
method that refines the optimization trajectory of adversarial training towards a flatter region in the
training loss landscape, to avoid robust overfitting. Specifically, WOT collects a set of historical
optimization trajectories and further learns a weighted combination of them explicitly on the unseen
set. The sketch map of WOT is shown in Figure 2. Concretely, WOT contains two steps: (1) collect
optimization trajectories of adversarial training. (2) re-weight collected optimization trajectories and
optimize weights according to the robust loss on an unseen set. Two unanswered problems of this
process are how to collect optimization trajectories and how to construct the objective function of
optimizing weights. We give detailed solutions as follows.
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3.1 WOT: OPTIMIZATION TRAJECTORIES
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Figure 2: Sketch map of WOT.

We denote optimization trajectories as the consecu-
tively series status of weights in weight space af-
ter n steps optimization. Formally, given a deep
neural network f with the parameter w ∈ W .
n steps of optimization trajectories of adversar-
ial training are denoted as {w1, w2...wi, ..., wn}
where wi is the weight after i-th optimization
step. This process can also be simplified as fol-
lows: {w1,∆w1...∆wi, ...,∆wn−1} where ∆wi =
wi+1 − wi. In practice, it is time-consuming and
space-consuming to collect the weights of each batch
optimization step and it is also not necessary to col-
lect the weights at a high frequency (see details in
Figure 5). Therefore, we propose to collect weights
for every m batch optimization step and the collected trajectories with n optimization steps are
re-denoted as follows:

∆W = {w1,∆w1, ...,∆wi, ...,∆wk}, (1)

where k = n
m . For brevity, we call m the Gaps that controls the length between two consecutively

collections and k the number of Gaps that controls the number of weights that are collected.

3.2 WOT: OBJECTIVE FUNCTION

We design the objective function based on historical optimization trajectories of model training.
From the description of optimization trajectories introduced above, the weights w′ with n batch
optimization steps from w can be written as w′ = w +∆w1 + ...+∆wi + ..+∆wk. Since WOT
refines the optimization trajectories by re-weighting them, the new model weights w̃′ after refining
optimization trajectories can be expressed as follows:

w̃′ = w + ∆̃w, ∆̃w = α1∆w1 + ...+ αi∆wi + ...+ αk∆wk, (2)

where α1, ..., αi, ..., αk are optimizable variables. Considering that we expect to find the model with
better robust generalization via optimizing α, a straightforward idea is to optimize αi with respect
to improving its robust performance on a small unseen set. The philosophy for this idea is that if a
model can generalize robustness better to an unseen set, it would probably generalize robustness well
to the target unseen set.

Formally, the objective function of optimizing αi is defined as follows:

min
0≤αi≤1

max
∥∆xuns∥≤ϵ

L(f
w+∆̃w

(xuns +∆xuns), yuns), (3)

where (xuns, yuns) is from an unseen set and ∆xuns is the corresponding adversarial perturbations.
We constrain αi to [0,1] (see Appendix G for the results of other constraints for αi).

Update αi. αi can be optimized by any SGD-based optimizers according to the objective function
(Eq. 3) described above. In this study, we update αi by SGD optimizer with momentum buffer.

mt = mt−1 · γ +∇αiL(f
wi−1+∆̃w

(xuns +∆xuns), yuns) (4)

αi = αi − lr ·mt, (5)

where mt is the momentum buffer of αi at the t-th step and lr is the learning rate.

3.3 WOT: IN-TIME REFINING OPTIMIZATION TRAJECTORIES

WOT reconstructs a set of historical optimization trajectories in time during the course of training on
unseen set to avoid overfitting. A naive strategy is treating each optimization trajectory wi as a whole
and learning an individual weight for each trajectory shown as Eq. 2. This simple method naturally
has limited learning space for refinement especially when we only have few historical trajectories.
To improve the learning space of WOT, we further propose blockwise WOT which breaks down
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Table 1: Robust accuracy of WOT under multiple adversarial attacks with various adversarial training
variants. The experiments are conducted on CIFAR-10 with the PreRN-18 architecture. The best
results are marked in bold.

MODELS FGSM PGD-20 PGD-100 CW∞ AA-L∞

AT+EARLY STOP 57.30 52.90 51.90 50.90 47.43
AT+SWA 58.89 53.02 51.86 52.32 48.61
AT+WOT-W (OURS) 58.50 53.19 51.90 51.74 48.36
AT+WOT-B (OURS) 59.67 54.85 53.77 52.56 48.96

TRADES 58.16 53.14 52.17 51.24 48.90
TRADES+SWA 58.07 53.17 52.22 50.91 49.07
TRADES+WOT-W (OURS) 58.95 54.07 53.29 51.74 49.95
TRADES+WOT-B (OURS) 58.50 53.73 52.95 52.12 50.19

MART 59.93 54.07 52.30 50.16 47.01
MART+SWA 58.19 54.21 53.56 49.39 46.86
MART+WOT-W (OURS) 58.13 53.79 52.66 50.24 47.43
MART+WOT-B (OURS) 59.95 55.13 54.09 50.56 47.49

AT+AWP 59.11 55.45 54.88 52.50 49.65
AT+AWP+SWA 58.23 55.54 54.91 51.88 49.39
AT+AWP+WOT-W (OURS) 59.05 55.95 54.96 52.70 49.84
AT+AWP+WOT-B (OURS) 59.26 55.69 55.09 52.82 50.00

each trajectory into multiple blocks based on the original block designing of the model itself. For
convenience, we dot these two methods WOT-W and WOT-B, respectively.

WOT-W takes one trajectory as whole and assigns a single α for each trajectory. Hence the number
of α that need to be learned exactly equals to the number of Gaps:k.

WOT-B in contrast learns a vector of α whose length is determined by the number of model’s block.
Therefore, Eq. 2 can be reformulated as:

∆̃w =


∆̃w1

...

∆̃wj

...

∆̃wt

 , ∆̃wj = α1
j∆w1

j + α2
j∆w2

j + ...+ αk
j∆wk

j (6)

where j denotes the j-th block. Optimizing α for blockwise WOT is exactly the same as the
description in Eq. 4 and Eq. 5.

The main difference between WOT-W and WOT-B is that WOT-W learns one α for each cached ∆w
(the difference of parameters in two checkpoints) whereas WOT-B further breakdowns each cached
∆w into several blocks (each block contains several layers depending on the specific architectures
as explained in detail in Appendix B) and learns an individual α value for each block. Therefore,
the learning space of WOT-B is larger than WOT-W, leading to better performance in general. The
pseudocode of WOT can be found in Appendix C.

4 EXPERIMENTS

We perform extensive experiments to show the effectiveness of our method in improving adversarial
robustness as well as addressing the robust overfitting issue.

Datasets. Four datasets are considered in our experiments: CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2010), Tiny-ImageNet (Deng et al., 2009) and SVHN (Netzer et al., 2011). For experiments
of WOT, we randomly split 1000 samples from the original CIFAR-10 training set, 10000 samples
from Tiny-ImageNet, and 2000 samples from the original CIFAR-100 and SVHN training set as the
unseen hold-out sets.

Baselines. Five baselines are included: AT (Rice et al., 2020), Trades (Zhang et al., 2019),
AWP+AT (Wu et al., 2020b), MART (Wang et al., 2020) and SWA (Chen et al., 2020). Three
architectures including VGG-16 (Simonyan & Zisserman, 2014), PreActResNet-18 (PreRN-18) (He
et al., 2016), WideResNet-34-10 (WRN-34-10) (Zagoruyko & Komodakis, 2016).
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Experimental Setting. For WOT, we adopt an SGD optimizer with a momentum of 0.9, weight
decay of 5e-4 and a total epoch of 200 with a batch size of 128 following Rice et al. (2020). By
default, we start to refine optimization trajectories after 100 epochs. For WOT-B, we set each block
in PreRN-18 and WRN-34-10 architectures as the independent weight space. We set the layers with
the same width as a group and set each group as an independent block for VGG-16 (see details in
Appendix B). We by default set the gaps m to 400, the number of gaps k to 4 and initialize α as zero.
For all baselines, we use the training setups and hyperparameters exactly the same as their papers
(see details in Appendix A).

Evaluation Setting. We use AA attack (Croce & Hein, 2020b) as our main adversarial robustness
evaluation method. AA attack is a parameter-free ensembled adversarial attack which contains
three white-box attacks: APGD-CE (Croce & Hein, 2020b), APGD-T (Croce & Hein, 2020b),
FAB-T (Croce & Hein, 2020a) and one black-box attack: Square attack (Andriushchenko et al.,
2020). To the best of our knowledge, AA attack is currently the most reliable adversarial attack
for evaluating adversarial robustness. We also adopt three other commonly used white-box adver-
sarial attacks: FGSM (Goodfellow et al., 2014), PGD-20/100 (Madry et al., 2017b) and C&W∞
attack (Carlini & Wagner, 2017). Besides, we also report the performance of query-based SPSA
black-box attack (Uesato et al., 2018) (100 iterations with a learning rate of 0.01 and 256 samples for
each gradient estimation). By default, we report the mean of three random runs for all experiments
of our method and omit the standard deviation since it is very small (≤ 0.3%). We by default set
ϵ = 8/255 for L∞ version adversarial attack and ϵ = 64/255 for L2 version adversarial attack.

Table 2: Test robustness under multiple adversarial attacks based on VGG-16/WRN-34-10 architec-
tures. The experiments are conducted on CIFAR-10 with AT and Trades. The bold denotes the best
performance.

ARCHITECTURE METHOD CW∞ PGD-20 PGD-100 AA-L∞

VGG16 AT+EARLY STOP 46.87 49.95 46.87 43.63
VGG16 AT+SWA 47.01 49.58 49.13 43.89
VGG16 AT+WOT-W(OURS) 47.42 49.96 49.36 44.01
VGG16 AT+WOT-B(OURS) 47.52 50.28 49.58 44.10
VGG16 TRADES 45.47 48.24 47.54 43.64
VGG16 TRADES+SWA 45.92 48.64 47.86 44.12
VGG16 TRADES+WOT-W(OURS) 46.75 49.19 48.28 44.82
VGG16 TRADES+WOT-B(OURS) 46.21 48.81 47.85 44.17

WRN-34-10 AT+EARLY STOP 53.82 55.06 53.96 51.77
WRN-34-10 AT+SWA 88.45 55.34 53.61 52.25
WRN-34-10 AT+WOT-W(OURS) 56.05 58.21 57.11 52.88
WRN-34-10 AT+WOT-B(OURS) 57.13 60.15 59.38 53.89
WRN-34-10 TRADES 54.20 56.33 56.07 53.08
WRN-34-10 TRADES+SWA 54.55 54.95 53.08 51.43
WRN-34-10 TRADES+WOT-W(OURS) 56.10 57.56 56.20 53.68
WRN-34-10 TRADES+WOT-B(OURS) 56.62 57.92 56.80 54.33

4.1 SUPERIOR PERFORMANCE IN IMPROVING ADVERSARIAL ROBUSTNESS

Table 3: Test robustness under AA-L2 and AA-L∞ attacks across various datasets. The experiments
are based on PreRN-18 and AT. The bold denotes the best performance.

ATTACK METHOD
SVHN CIFAR-10 CIFAR-100 TINY-IMAGENET

CLEAN ROBUST CLEAN ROBUST CLEAN ROBUST CLEAN ROBUST

L∞ AT+EARLY STOP 89.05 45.72 81.72 47.43 53.84 23.69 42.76 14.39
L∞ AT+SWA 90.36 40.24 85.23 48.61 58.51 23.90 49.19 17.94
L∞ AT+WOT-W(OURS) 93.25 50.42 84.47 48.36 55.07 24.41 49.31 17.10
L∞ AT+WOT-B(OURS) 92.95 51.83 83.84 48.96 54.39 25.26 48.83 18.77

L2 AT+EARLY STOP 89.05 72.13 81.72 71.30 53.84 42.75 42.76 36.61
L2 AT+SWA 90.36 67.76 85.23 73.28 58.51 43.10 49.19 42.40
L2 AT+WOT-W(OURS) 93.25 72.75 84.47 73.20 55.07 43.88 49.31 42.43
L2 AT+WOT-B(OURS) 92.95 72.80 83.84 73.39 54.39 43.32 48.83 42.54

We evaluate the effectiveness of WOT in improving adversarial robustness across AT and three of its
variants, four popular used datasets, i.e., SVHN, CIFAR-10, CIFAR-100 and Tiny-ImageNet, and
three architectures, i.e., VGG16, PreRN-18, and WRN-34-10.
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WOT consistently improves the adversarial robustness of all adversarial training variants.
In Table 1, we applied WOT-B and WOT-W to AT+early stop, Trades, MART, AWP variants and
compare them with their counterpart baselines. Besides, we add the combination of SWA and
these adversarial training variants as one of the baselines. The results show: 1 WOT consistently
improves adversarial robustness among the four adversarial training variants under both weak attacks,
e.g. FGSM, PGD-20, and strong attacks, e.g., C&W∞, AA-L∞ attacks. 2 WOT-B as the WOT
variant confirms our hypothesis and consistently performs better than WOT-W. WOT-B improves the
robust accuracy over their counterpart baselines by 0.35% ∼ 1.53% under AA-L∞ attack. 3 WOT
boosts robust accuracy with a larger margin on AT and Trades than MART and AWP under AA-L∞
attack. One reason might be that MART and AWP themselves enjoy good ability in mitigating robust
overfitting (Stutz et al., 2021; Wu et al., 2020b), leading to the less space for WOT to further boost
the performance.

WOT can generalize to different architectures and datasets. Table 2 and Table 3 show that WOT
consistently outperforms the counterpart baseline under AA-L∞ attack, which indicates that the
effectiveness of WOT generalizes well to different architectures and datasets. In Table 2, WOT
boosts robust accuracy by 0.47% ∼ 2.12% on VGG16 and WRN-34-10 architectures. In Table 3,
WOT improves robust accuracy with 1.53% ∼ 6.11% among SVHN, CIFAR-10, CIFAR-100 and
Tiny-ImageNet under AA-L∞ attack. Besides, the success of WOT can also be extended to AA-L2

attack with the improvement by 0.67% ∼ 5.93%.

Excluding Obfuscated Gradients. Athalye et al. (2018) claims that obfuscated gradients can also
lead to the “counterfeit” of improved robust accuracy under gradients-based white-box attacks. To
exclude this possibility, we report the performance of different checkpoints under transfer attack
and SPSA black-box attack over epochs. In Figure 3, the left figure shows robust accuracy of the
unseen robust model on the adversarial examples generated by the PreRN-18 model trained by AT,
AT+WOT-B, AT+WOT-W respectively with PGD-10 attack on CIFAR-10. A higher robust accuracy
on the unseen robust model corresponds to a weaker attack. It can be seen that both AT+WOT-B
and AT+WOT-W generate more transferable adversarial examples than AT. Similarly, the middle
figure shows the robust accuracy of the PreRN-18 model trained by AT, AT+WOT-B, AT+WOT-W
on the adversarial examples generated by the unseen robust model. It can be seen that AT+WOT-B,
AT+WOT-W can better defend the adversarial examples from the unseen model. What’s more, in the
right figure, we observe again that both AT+WOT-B and AT+WOT-W outperform AT under SPSA
black-box attack over different checkpoints during training. All these empirical results sufficiently
suggest that the improved robust accuracy of WOT is not caused by obfuscated gradients.
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Figure 3: Robust accuracy under black-box attack over epochs. (Left) Robust accuracy on the unseen
robust model transfer attacked from checkpoints of AT, AT+WOT-W/B. (Middle) Robust accuracy on
checkpoints of AT, AT+WOT-W/B transfer attacked from the unseen model. (Right) Robust accuracy
on checkpoints of AT, AT+WOT-W/B under SPSA black-box attack. The experiments are conducted
on PreRN-18 and CIFAR-10. The unseen robust model is WRN-34-10 trained by AT.

4.2 ABILITY TO PREVENT ROBUST OVERFITTING

We report the robust accuracy under AA-L∞ attack for the best checkpoint and the last checkpoint
based on PreRN-18 and WRN-34-10 architectures on CIFAR-10 (Table 4). Besides, we show the
robust accuracy curve under PGD-10 attack on different checkpoints over epochs (Figure 4).

In Figure 4, the third and fourth figures show that after the first learning rate decay (at 100 epoch),
there is a large robust accuracy drop for AT between the best checkpoint and the last checkpoint on
both PreRN-18 and WRN-34-10 architectures. In comparison, there is completely no robust accuracy
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drop for AT+WOT-W/B between the best checkpoint and the last checkpoint on both PreRN-18 and
WRN-34-10 architectures. In Table 4, we further show the evidence that there is no robust accuracy
drop for AT+WOT-B/W under stronger attack, i.e., AA-L∞ attack. From the first and second figures
of Figure 4, we observe that the mean of α decreases to a very small value after 150,100 epochs for
PreRN-18, WRN-34-10 respectively. The small mean of α indicates that WOT stops the model’s
weights updating with unexpected magnitudes, which prevents the occurrence of robust overfitting.
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Figure 4: Mean value of α and results of test robust/clean accuracy over epochs. The experiments are
conducted on CIFAR-10 with PreRN-18 based on AT.

Table 4: Test robustness under AA-L∞ attack to show the robust overfitting issue in AT and the
effectiveness of WOT in overcoming it. The difference between the best and final checkpoints
indicates performance degradation during training and the best checkpoint is chosen by PGD-10
attack on the validation set. The experiments are conducted on CIFAR-10 with PreRN-18/WRN-34-10
architectures.

ARCHITECTURES METHOD
ROBUST ACCURACY(RA) STANDARD ACCURACY(SA)
BEST FINAL DIFF. BEST FINAL DIFF.

PRERN-18 AT 48.02 42.48 -5.54 81.33 84.40 +3.07
PRERN-18 AT+SWA 48.93 48.61 -0.32 84.19 85.23 +1.04
PRERN-18 AT+WOT-W(OURS) 48.04 48.36 +0.32 84.05 84.47 -0.42
PRERN-18 AT+WOT-B(OURS) 48.90 48.96 +0.06 83.84 83.83 -0.01

WRN-34-10 AT 51.77 46.78 -4.99 85.74 86.34 +0.6
WRN-34-10 AT+SWA 53.38 52.25 -1.13 87.14 88.45 +1.31
WRN-34-10 AT+WOT-W(OURS) 52.84 52.88 +0.04 84.83 84.88 +0.05
WRN-34-10 AT+WOT-B(OURS) 52.23 53.89 +1.66 83.46 85.50 +2.04
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Figure 5: The impact of gaps m and the number of gaps k on robust accuracy under AA-L∞ attack.
The experiments are conducted on CIFAR-10 with PreRN-18 based on AT. k is fixed to 4 for the left
figure and m is fixed to 400 for the right figure.

4.3 ABLATIONS AND VISUALIZATIONS

In this section, we first conduct ablation studies to show the effectiveness of the designed optimization
trajectories and the unseen hold-out set in WOT. Then we investigate the impact of gaps:m and the
number of gaps:k, the effect of WOT on the loss landscapes w.r.t weight space and the visualization
of α for blocks. The results are shown in Table 9, Figure 5, and Figure 6. All experiments in the two
figures are conducted on CIFAR-10 with PreRN-18 based on AT except for Figure 6 where Trades is
also included. The robust accuracy is evaluated under AA-L∞ attack for all the three figures.

Ablation studies To demonstrate the effectiveness of the designed optimization trajectories and
the unseen hold-out set in boosting adversarial robustness, we designed the following baselines: 1)
Keep the same unseen hold-out set and training strategy with WOT, but optimize model weights
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instead of α on the unseen hold-out set (Abbreviated as “B1” ); 2) Keep the same unseen hold-out
set and optimize the hyperparameter of SWA by the hold-out set (Abbreviated as “B2” ); 3) Replace
the unseen hold-out set with a seen set, i.e. keep the same number of samples from training set
(Abbreviated as “B3” ). Results in Table 5 show that 1 AT+WOT-W/B outperforms AT+B1 and
AT+B2, indicating the designed optimization trajectories play key roles in WOT. 2 AT+WOT-W/B
outperforms AT+B3 with large margin, indicating the unseen hold-out set is crucial for WOT.

Table 5: Robust Accuracy of ablation experiments on CIFAR-10 with PreRN-18.

METHODS PGD-20 PGD-100 CW∞ AA-L∞

AT+B1 49.68 47.44 49.04 45.26
AT+B2 52.74 51.28 51.31 48.22

AT+WOT-B+B3 (M=400,K=4) 47.14 44.23 43.87 41.02
AT+WOT-W (M=400,K=4) 53.19 51.90 51.74 48.36
AT+WOT-B (M=400,K=4) 54.85 53.77 52.56 48.96

Impact of m and k. Figure 5 shows the impact of gaps m and number of gaps k on robust accuracy
under AA-L∞ attack. In the left figure, we observe that robust accuracy increases with an increase of
m. Besides, we find that WOT-W is more sensitive to m than WOT-B. The right figure shows that
both WOT-W and WOT-B are not sensitive to the number of gaps k.

Averaged α for Blocks. To shed insights on why WOT-B outperforms WOT-W, we plot the learned
α for each block. Experiments are conducted on CIFAR-10 with PreRN-18 based on WOT-B (K=4,
m=400). Results in Figure 6c and Figure 6d show that the magnitude of learned α are different among
blocks. Specifically, WOT-B assigns large value of α for middle blocks, i.e., Block-2,3,4,5 and small
value of α for bottom and top blocks, i.e., Block-1,6. This indicates that assigning different weights
for different blocks may play an crucial role in boost adversarial robustness.

Visualizing loss landscape. We expect WOT to search flatter minima for adversarial training to boost
its robust generalization. We demonstrate that it indeed happens via visualizing the loss landscape with
respect to weight space (Figure 6a and Figure 6b). Figure 6a and Figure 6b show that WOT+baseline
obtains flatter minima than baseline, which indicates an improved robust generalization (Stutz et al.,
2021; Wu et al., 2020b). The visualization of the loss landscape with respect to input space can be
found in Appendix J.
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Figure 6: Loss landscape w.r.t weight space (Figure 6a and Figure 6b). z axis denotes the loss value.
We plot the loss landscape following the setting in Wu et al. (2020b). The averaged α by averaging
along training process (Figure 6c). The k-averaged α during training process. (Figure 6d). The
experiments are conducted on CIFAR-10 with PreRN-18.

5 CONCLUSION

In this paper, we propose a new method named weighted optimization trajectories (WOT) for
improving adversarial robustness and avoiding robust overfitting. We re-weight the optimization
trajectories in time by maximizing the robust performance on an unseen hold-out set during the
training process. The comprehensive experiments demonstrate: (1) WOT can effectively improve
adversarial robustness across various adversarial training variants, model architectures and benchmark
datasets. (2) WOT enjoys superior performance in mitigating robust overfitting. Moreover, visualizing
analysis validates that WOT flattens the loss landscape with respect to input and weight space, showing
an improved robust generalization.
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A IMPLEMENTATIONS DETAILS

The implementation of WOT is based on PyTorch library and all experiments in this study are run in
single A100 GPU. Following Chen et al. (2020), SWA starts after the first learning decay. All models
used in this study are trained with ϵ = 8/255.

All baselines are achieved by running the code provided by their authors (Table 6).

Table 6: Download Links for baseline codes.

METHODS DOWNLOAD LINKS

AT+EARLY STOP HTTPS://GITHUB.COM/LOCUSLAB/ROBUST_OVERFITTING.GIT
TRADES HTTPS://GITHUB.COM/YAODONGYU/TRADES.GIT
MART HTTPS://GITHUB.COM/YISENWANG/MART.GIT
AWP HTTPS://GITHUB.COM/CSDONGXIAN/AWP.GIT
AT+SWA HTTPS://GITHUB.COM/VITA-GROUP/ALLEVIATE-ROBUST-OVERFITTING.GIT
FAT HTTPS://GITHUB.COM/ZJFHEART/FRIENDLY-ADVERSARIAL-TRAINING.GIT

B BLOCK DETAILS FOR WOT-B

We naturally divide ResNet kinds of architectures according to their original block design. For
VGG-16, we group the layers with the same number of channels as a block. We share the details in
Table 7.

Table 7: The corresponding relationship between layers and blocks for PreActResNet-18, WRN-34-10
and VGG-16.

PREACTRESNET-18 WRN-34-10 VGG-16

LAYERS BLOCK INDEX LAYERS BLOCK INDEX LAYERS BLOCK INDEX
1 1 1 1 1-2 1

2-5 2 2-12 2 3-4 2
6-9 3 13-23 3 5-7 3

10-13 4 24-34 4 8-13 4
14-17 5 FINAL LINEAR LAYER 5 13-16 5

FINAL LINEAR LAYER 6 - - - -

C PSEUDOCODE

The Psedocode can be found in Algorithm 1.
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Algorithm 1 WOT for AT-PGD
1: Input: A model fw(x) with parameters w, training set (x, y) ∈ S, unseen set (xuns, yuns) ∈ Suns, total

training steps T, WOT starting epoch:p, Gaps: m, Number of Gaps:k, and adversarial training loss L(·).
2: Output: fw(x) with trained parameters.
3: initialize model weights w, ∆W = ∅.
4: for t = 1 to T do
5: # Normal adversarial training for fw.
6: w(t) = w(t−1) − lr · ∇wL(fw(t−1)

(x+∆x), y)
7: # WOT starts after p epochs (steps).
8: if t > p then
9: if (t− p)%m=0 then

10: #Collect optimization trajectories.
11: ∆w = w(t) − w(t−m)

12: ∆W = ∆W ∪ {∆w}
13: end if
14: if (t− p)%(m ∗ k)=0 then
15: #Optimize α based on Eq. 4 and Eq. 5
16: Initialize α with zero.
17: for i = 1 to n do
18: mi = mi−1 · γ +∇αL(fw̃′(xuns +∆xuns), yuns)

19: α = α− lr ·mi

20: end for
21: w(t) = w(t−mk) + ∆̃w
22: ∆W = ∅
23: end if
24: end if
25: end for
26: Return fw(x)

D SWA: A SPECIAL CASE OF WOT

Given a deep model fw with parameters w. The parameters of f are denoted as w0, w1, w2,...,wn at
T0, T1, T2,..,Tn steps respectively. The gradients of the training loss w.r.t w are denoted as g0, g1,
g2,...,gn at T0, T1, T2,..,Tn steps. The learning rate and momentum decay factor are denoted as λ and
α respectively. The momentum buffer at T0-th step is given M0.

Momentum can be expressed as follows:

Mt = Mt−1 · α+ gt−1 (7)

Then, parameters updating can be formulated as follows:

w1 = w0 − λ ·M1 (8)
w2 = w0 − λ · (M1 +M2) (9)
wt = w0 − λ · (M1 + ...+Mt) (10)

SWA: Averaging model weights. We expand it by gradients:

wswa =

∑t=n−1
t=0 wt

n
(11)

wswa =
n · w0 − λ · {(n− 1) ·M1 + (n− 2) ·M2 + ...+Mn−1}

n
(12)

= w0 − λ · (n− 1

n
·M1 +

n− 2

n
·M2 + ...

1

n
Mn−1) (13)
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wswa − w0 = −λ · (n− 1

n
·M1 +

n− 2

n
·M2 + ...

1

n
Mn−1)

= −λ · (M0(
n− 1

n
· α+

n− 2

n
· α2 +

n− 3

n
· α3 + ...+

1

n
· αn−1)

+ g0 · (
n− 1

n
+

n− 2

n
· α+

n− 3

n
· α2 + ...+

1

n
αn−2)

+ g1 · (
n− 2

n
+

n− 3

n
· α+

n− 4

n
· α2 + ...+

1

n
αn−3) + ...

+
1

n
gn−2) (14)

From the analysis above, SWA heuristically re-weights the gradients in essence. It is a special case of
WOT and it equals to WOT only if the gaps m is set to 1, the number of gaps k is set to the length
from the checkpoint that SWA starts to the checkpoint that SWA ends and the learned weights exactly
equal to the coefficient of the gradient described in Eq. 14.

E MORE EXPERIMENTS

The experiments are conducted on CIFAR-10 based on FAT, FAT+WOT-W and FAT+WOT-B with
PreActResNet-18 architecture. The results in Table 8 consistently verify that WOT can effectively
improve adversarial robustness across multiple attacks without sacrifice of clean accuracy. Besides,
we also report the robust performance of AT+EMA and compare it with AT+WOT-B/W. The results
in Table 9 show that AT+WOT-B/W outperforms AT+EMA as well.

Table 8: Test robustness under multiple adversarial attacks based on FAT. The experiments are
conducted on CIFAR-10 with PreActResNet-18 architecture. The bold denotes the best performance.

MODELS CLEAN FGSM PGD-20 PGD-100 CW∞ AA-L∞

FAT 86.90 54.186 44.69 42.35 44.84 40.71
FAT+WOT-W(OURS) 87.25 55.97 47.81 45.71 46.87 43.14
FAT+WOT-B(OURS) 87.59 57.22 48.27 46.03 47.62 43.40

Table 9: The robust accuracy of EMA VS WOT on CIFAR-10 with PreActResNet-18 architecture

PGD-20 PGD-100 CW∞ AA-L∞

AT+EMA 52.88 52.24 50.75 47.94
AT+WOT-B (M=400,K=4) 54.85 53.77 52.56 48.96
AT+WOT-W (M=400,K=4) 53.19 51.90 51.74 48.36

F MEMORY COST AND TIME COST

WOT takes more GPU memory space since it needs to record the optimization trajectories. We report
the memory cost of WOT (Gaps:m=400, Number of Gaps:K=4) based on VGG-16 and PreActResNet-
18 respectively in Table 10. It shows that even though we need extra memory to cache ∆w, the
memory overhead in practice is quite small since the majority of memory usage is concentrated on
the intermediate feature maps and gradient maps, accounting for 81% of memory usage on AlexNet
and 96% on VGG-16 for an example (Rhu et al., 2016).

Besides, WOT consumes more computation time since it needs to optimize the α by maximizing the
robust performance on an unseen set. However, the extra computation time cost is negligible since
the unseen set is very small. For example, AT+WOT takes 135 minutes to train PreActResNet-18
model for 100 epochs while AT takes 129 minutes to train the model for 100 epochs.
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Table 10: Momory cost of WOT-B (Gaps:400, Number of Gaps:K=4)

WOT-B VANILLA AT

VGG 3771M 3409M
PREACRESNET-18 4635M 4213M

G THE RATIONALITY FOR CONSTRAINING α TO [0, 1]

We constrain α to [0, 1] such that the refined optimization trajectories will not go too far away from
the optimization trajectories. In contrast, if we do not constrain α, refining optimization trajectories
could lead to worse performance or even cause collapse.

We conduct experiments on CIFAR-10 and CIFAR-100 with PreActResNet-18 model to show that
constraining α to [0, 1] is a reasonable choice. The experimental settings are as follows:

• WOT-B without constraining α. (Abbreviated as WOT-B (No constraints))

• WOT-B with sum(α) =1.

• WOT-B with max(α)=0.5, 0.8, and α ∈ [0,max(α)].

The results are reported in Table 11 where we can see that without our constraint, there is a worse
performance. We empirically find that neither constraining sum(α) =1 nor constraining max(α) with
smaller value (< 1) can match the performance of our default setting.

Table 11: Robust Accuracy under PGD-10 attack for WOT, WOT without constraints for α, WOT
with the constraint by setting sum(α) =1 or max(α)=0.5, 0.8. Number of Gaps:k=4. NaN denotes the
refining process leads to a NaN loss.

METHODS CIFAR-10 CIFAR-100

WOT-B (GAPS:M=400) 55.83 30.22
WOT-B (GAPS:M=800) 56.22 30.47

WOT-B (SUM(α)=1, GAPS:M=400) 53.12 28.43
WOT-B (MAX(α)=0.8, GAPS:M=400) 55.18 29.83
WOT-B (MAX(α)=0.5, GAPS:M=400) 55.34 29.66

WOT-B (NO CONSTRAINTS, GAPS:M=400) 55.68 NAN

H THE EFFECT OF THE SIZE OF THE HOLD-OUT SET

We conduct experiments to show the effect of the size of the hold-out set (validation set) based on
CIFAR-10 with PreActResNet-18 and WOT-B (Gaps:400, Number of Gaps:k=4). The results are
reported below in Table 12 and show that the robust accuracy decreases with the size increasing from
1000 to 8000. We conjecture that a large size of hold-out set reduces the size of training set, which
would deteriorate the optimizing trajectories, leading to a worse performance.

Table 12: Robust and clean accuracy under PGD-10 on CIFAR-10 with various sizes of the unseen
hold-out set.

SIZE CLEAN ACCURACY ROBUST ACCURACY

1000 83.97 55.83
2000 84.30 55.56
4000 83.90 55.10
8000 84.17 54.58
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I THE INFLUENCE OF THE CHOICE OF THE VALIDATION SET

We report the standard deviation of robust accuracy among the three repeated runs based on different
validation sets on CIFAR-10 and CIFAR-100 respectively with WOT-B. The robust accuracy is
calculated under CW∞ attack. The different validation sets are randomly sampled from CIFAR-
10/100 with different seed.

The results (In Table 13) show that the standard deviations are less than 0.3%, in line with the
statement in our paper.

Table 13: The standard deviations on the robust accuracy with three runs using different samples in
the validation set.

VALIDATION SET ROBUST ACCURACY(CIFAR-10) ROBUST ACCURACY (CIFAR-100)

SET 1 52.01 27.04
SET 2 52.36 27.14
SET 3 52.11 27.3
MEAN 52.16 27.16
STD 0.18 0.13

J VISUALIZATIONS

Figure 7 shows that WOT+AT enjoys a loss landscape with low curvature compared with AT, which
is in line with the robust generalization claim in Moosavi-Dezfooli et al. (2018).
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Figure 7: Comparison of loss landscapes of PreRN-18 models trained by AT (the first row) and our
methods (the second and third row). Loss plots in each column are generated from the same original
image randomly chosen from the CIFAR-10 test set. z axis denotes the loss value. Following the
setting in Engstrom et al. (2018), we plot the loss landscape function: z = loss(x · r1 + y · r2) where
r1 = sign(∇xf(x)) and r2 ∼ Rademacher(0.5).
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