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ABSTRACT

Optimizer is an essential component for the success of deep learning, which guides
the neural network to update the parameters according to the loss on the training
set. SGD and Adam are two classical and effective optimizers on which researchers
have proposed many variants, such as SGDM and RAdam. In this paper, we
innovatively combine the backward-looking and forward-looking aspects of the
optimizer algorithm and propose a novel ADMETA (A Double exponential Moving
averagE To Adaptive and non-adaptive momentum) optimizer framework. For
backward-looking part, we propose a DEMA variant scheme, which is motivated
by a metric in the stock market, to replace the common exponential moving average
scheme. While in the forward-looking part, we present a dynamic lookahead
strategy which asymptotically approaching a set value, maintaining its speed at
early stage and high convergence performance at final stage. Based on this idea,
we provide two optimizer implementations, ADMETAR and ADMETAS, the former
based on RAdam and the latter based on SGDM. Through extensive experiments on
diverse tasks, we find that the proposed ADMETA optimizer outperforms our base
optimizers and shows advantages over recently proposed competitive optimizers.
We also provide theoretical proof of these two algorithms, which verifies the
convergence of our proposed ADMETA.

1 INTRODUCTION

The field of training neural network is dominated by gradient decent optimizers for a long time,
which use first order method. Typical ones include SGD (Robbins & Monro, 1951) and SGD with
momentum (SGDM) (Sutskever et al., 2013), which are simple yet efficient algorithms and enjoy
even better resulting convergence than many recently proposed optimizers. However, it suffers the
disadvantage of low speed in initial stage and poor performance in sparse training datasets. This
shortcoming can not be ignored since with the development of deep learning, the amount of data
becomes much larger, and the model becomes much more complex. Time to train a network is also
considered an important metric when evaluating an optimizer. To address this issue, optimizers with
adaptive learning rate have been proposed which use nonuniform stepsizes to scale the gradient
while training, and the usual implementation is scaling the gradient by square roots of some kind of
combination of the squared values of historical gradients. By far the most used are Adam (Kingma &
Ba, 2014) and AdamW (Loshchilov & Hutter, 2017) due to their simplicity and high training speed
in early stage. Despite their popularity, Adam and many variants like of it (such as RAdam (Liu et al.,
2019)) is likely to achieve worse generalization ability than non-adaptive optimizers, observing that
their performance quickly plateaus on validation sets.

To achieve a better tradeoff, researchers have made many improvements based on SGD and Adam
family optimizers. One attempt is switching from adaptive learning rate methods to SGD, based on
the idea of complementing each other’s advantages. However, a sudden change from one optimizer
to another in a set epoch or step is not applicable because different algorithms make characteristic
choices at saddle points and tend to converge to final points whose loss functions nearby have different
geometry (Im et al., 2016). Therefore, many optimizers based on this idea seek for a smooth switch.
The representative ones are AdaBound (Luo et al., 2019) and SWATS (Keskar & Socher, 2017). The
second attempt is proposing new method to further accelerate SGDM, including introducing power
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exponent (pbSGD (Zhou et al., 2020)), aggregated momentum (AggMo (Lucas et al., 2018)) and
warm restarts (SGDR (Loshchilov & Hutter, 2016)). The third attempt is modifying the process of
optimizers with adaptive learning rate to achieve better local optimum, which is the most popular
field in recent researches (Zhuang et al., 2020; Li et al., 2020). Due to space constraints, please see
more related work in Appendix A.

We focus in this paper on the use of historical and future information about the optimization process of
the model, both of which we argue are important for models to reach their optimal points. To this end,
we introduce a bidirectional view, backward-looking and forward-looking. In the backward-looking
view, EMA is an exponentially decreasing weighted moving average, which is used as a trend-type
indicator in terms of the optimization process. And since the training uses a mini-batch strategy,
each batch is likely to have deviations from the whole, so it may mislead the model to the local
optimal point. Inspired by stock market indicators, DEMA (Mulloy, 1994) is an exponential average
calculated on the traditional EMA and current input, which can effectively maintain the trend while
reducing the impact caused by short-term bias. We thus replace the traditional exponential moving
average (EMA) with double exponential moving average (DEMA). It is worth noting that our usage
is not equivalent to the original DEMA, but rather a variant of it. In the forward-looking part, since
we observe that a constant weight adopted by the original Lookahead optimizer (Zhang et al., 2019)
to control the scale of fast weights and slow weights in each synchronization period makes the early
stage training slow and lossy, we propose a new dynamic strategy which adopts an asymptotic weight
for improvement. By applying these two ideas, we propose ADMETA optimizer with ADMETAR and
ADMETAS implementations based on RAdam and SGDM respectively.

Extensive experiments have been conducted on computer vision (CV), natural language processing
(NLP) and audio processing tasks, which demonstrate that our method achieves better convergence
results compared to other recently proposed optimizers. Further analysis show that ADMETAS
achieves higher generalization ability than SGDM and ADMETAR achieves better convergence results
and maintain high speed in initial stage compared to other adaptive learning rate methods. We further
find that DEMA and dynamic looking strategy can improve performance compared to EMA and
constant strategy, respectively. In addition, we provide convergence proof of our proposed ADMETA
in convex and non-convex optimizations.

2 ADMETA

2.1 BACKGROUND

The role of the optimizer in model training is to minimize the loss on the training set and thus drive
the learning of model parameters. Formally, consider a loss function f : Rd → R that is bounded
below greater than zero, where R represents the field of real numbers, d denotes the dimension of the
parameter and thus Rd denotes d-dimensional Euclidean space. The optimization problem can be
formulated as: minθ∈Fd f(θ), where θ indicates a parameter whose domain is F and F ⊂ Rd. If we
define the optimum parameter of the above loss function as θ∗, then the optimization objective can be
written as:

θ∗ = argmin
θ∈Fd

f(θ). (1)

Optimizers iteratively update parameters to make them close to the optimum as training step t
increases, that is to make: limt→∞ ∥θt − θ∗∥ = 0.

Stochastic gradient algorithm SGD (Robbins & Monro, 1951) optimizes f by iteratively updating
parameter θt at step t in the opposite direction of the stochastic gradient g(θt−1; ξt) where ξt is the
input variables of the t-th mini-batch in training datasets. For the sake of clarity, we abbreviate
g(θt−1; ξt) as gt for the rest of the paper unless specified. SGD optimization aims to calculate the
updated model parameters based on the previous model parameters, the current gradient and the
learning rate. Define learning rate as αt, the update process is summarized as follows:

θt = θt−1 − αtgt. (2)

Original SGD tend to vibrate along the process due to the mini-batch strategy and not using of past
gradients. What’s more, this disadvantage also results in its long-time plateaus in valleys and saddle
points, thus slowing the speed. To smooth the oscillation and speed up convergence rate, momentum,
also known as Polyak’s Heavy Ball (Polyak, 1964), is introduced to modify SGD. Momentum at step
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t is often denoted as mt and obtained by iterative calculation with a dampening coefficient β. Thus,
the update process of SGD with momentum (SGDM) (Sutskever et al., 2013) becomes as follows:

mt = βmt−1 + (1− β)gt, (3)
θt = θt−1 − αtmt, (4)

Although momentum works well, the uniform stepsize on every parameter is also another factor to
limit the speed, especially in large datasets and sparse datasets. To further accelerate the update,
adaptive learning rate optimizer is introduced which adopts an individual stepsize for each parameter
based on their unique update process.

Since a smoothing mechanism is employed in the calculation
of stepsize, two dampening coefficients, β1 and β2, are intro-
duced for balancing the current and historical information.
Adam (Kingma & Ba, 2014), a typical adaptive learning rate
optimizer, is implemented as follows:

mt = β1mt−1 + (1− β1)gt, (5)

vt = β2vt−1 + (1− β2)g
2
t , (6)

θt = θt−1 − αtmt/
√
vt, (7)

where mt indicates the first momentum, corresponding to the momentum in SGDM; vt indicates the
second momentum.

To emphasize the functionality of vt, we call it
adaptive item for the rest of the paper. Adam
may sometimes converge to bad local optimum,
partly due to its large variance in the early stage.
To fix this issue, RAdam (Liu et al., 2019) in-
troduces a further rectified item rt and split the
update process into two sub-processes sequen-
tially connected:

ρ∞ = 2/(1− β2)− 1, (8)

ρt = ρ∞ − 2tβt
2/(1− βt

2), (9)

rt ←

√
(ρt − 4)(ρt − 2)ρ∞
(ρ∞ − 4)(ρ∞ − 2)ρt

, (10)

θt =

{
θt−1 − αtmt, ρt ≤ 4
θt−1 − αtrtmt/

√
vt, ρt > 4

. (11)

2.2 BACKWARD-LOOKING

In fact, the calculation of momentum mt in Eq. (3) and Eq. (5) is an exponential moving average
(EMA) on gradient gt. EMA, also known as exponential weighted moving average, can be used to
estimate the local mean value of variables, so that the update of variables is related to historical values
over a period of time. Formally, EMA is expressed as:

St = βSt−1 + (1− β)pt, (12)

where the variable S is denoted as St at time t and pt is the new assigned values. Particularly, St = pt
without using EMA. In Eq. (3), SGDM employs EMA to take a moving average of the past gradients.
While in Eq. (5), Adam and RAdam further apply EMA on the square of past gradients to construct
the adaptive item. In the EMA, the moving average of the variable S at time t is roughly equal to the
average of the values p over the past 1/(1− β) steps. This makes the moving average vary more at
the beginning, so a bias correction is proposed and used in Adam (Eq. (7)) and in RAdam (Eq. (11))
when ρ > 4.

EMA can be regarded as obtaining the average values of the variables over time. Compared with the
direct assignment of values to variables, the change curve of the values obtained by moving average
is smoother and less jittery, and the moving average does not fluctuate greatly when inputting outliers,
which is very important for the optimization using sampled mini-batch. Although efficient, EMA
is not necessarily the best strategy for using historical information when it comes to the backward-
looking part. Although it can effectively suppress the vibration caused by mini-batch training by
performing the moving average on gt, it also brings a lag time that affects the convergence speed and
increases with the length of the moving average. What’s more, it can result in overshoot problem (An
et al., 2018), one possible reason is that EMA might make the wrong use of historical gradients in the
final stage and thus have a “burden” to converge to optimum.

Double Exponential Moving Average (DEMA), first proposed by Mulloy (1994), is a faster moving
average strategy and was invented to reduce the lag time of EMA. Thus, motivated by the advantage
of DEMA, we developed a DEMA variant for the model optimization. It is worth noting DEMA is
not simply taking a moving average of historical gradients twice, instead, it takes the moving average
of the linear combination of the current gradient the moving average of past gradients. The form of
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our DEMA variant can be written as:

DEMA = EMAout(µEMAin + κgt), (13)

where µ and κ are coefficients that control the scale of current gradient and only depends on β.

From the formula EMA = Σn
i=1β

n−igi, past gradients follow a fixed proportionality, that is, the
ratio of gradient weight at one time to gradient weight at the previous time is β.

Due to the use of minibatch training strategy, the input is randomly sampled. The effect of each
minibatch towards optimization is varied. Therefore, applying a fixed proportional to past gradients
is not a reasonable approach since it does not take into account the changeable situation. The
disadvantage of overshoot that EMA usually has may also be caused by the above reasons (An et al.,
2018).

Thus, we deal with the relationship between the historical
gradients and the current gradient more flexibly by further
controlling the proportion of past gradients. Our design of
coefficients in DEMA is also for this purpose. Based on Eq.
(13), our actual implementation on algorithm is:

It = λIt−1 + gt, (14)
ht = κgt + µIt + ν, (15)
mt = βmt−1 + (1− β)ht, (16)

where It is the output of EMAin with a 0 initial value and mt is the output of EMAout also initiated
with 0. λ and β are dampening coefficients of inner EMA and outer EMA respectively, ν is a bias
item, which is set to a small amount that decreases exponentially to 0 and chosen as λtg1. The bias
item does not affect the convergence proof, so for the sake of brevity, it is omitted for the rest of this
paper and the details can be seen in the code. Please refer to Appendix B for more comparison and
discussion between EMA and DEMA.

2.3 FORWARD-LOOKING

Focusing on gradient history, that is, backward-looking, optimizer is conducive to alleviating the
vibration problem in the optimization process and preventing it from being misled by local noise
information. However, since the optimization problem of the deep neural network is very complex,
the optimizer can make the optimization process more robust by pre-exploration, so as to obtain
better optimization results, which is called forward-looking.

Based on Reptile algorithm and advances in understand-
ing the loss surface, Zhang et al. (2019) proposed Looka-
head optimizer, which introduces two update processes
and averages fast and slow weights periodically. The
algorithm can be expressed as the cycle of the following
process:

Pre-exploration : θt = OPTIM(θt−1)

Synchronization : (every k steps)
ϕt = ϕt−k + η(θt−1 − ϕt−k)

θt = ϕt

where OPTIM(·) denotes a chosen optimizer, k denotes the synchronization period, or in other words,
the period of forward-looking, ϕt denotes the slow weights , θt denotes the fast weight updated with
a chosen optimizer, and η is a constant coefficient controlling the proportion of slow weights and fast
weights in each synchronization. Generally, the chosen optimizer can be arbitrary.

We can get an intuitive explanation of Lookahead optimizer from the pseudo code above: Guided
by fast weight θt, the slow weight ϕt updates by taking linear interpolation between itself and the
fast weight. Every time the fast weight updates k steps, the slow weight updates 1 step. The update
direction of slow weight can be regarded as θt − ϕt from the equation. Therefore, η can also be
interpreted as the stepsize of slow weight in each synchronization. In order not to be confused with
the stepsize of fast weight, we rename the stepsize of slow weight as stepsizes. The recommended
value of η in (Zhang et al., 2019) is 0.5 and 0.8.

In the original Lookahead optimizer implementation, the fast and slow optimization processes
were synchronized according to a given period, and parameters are fused at a fixed ratio during
synchronization. However, optimization is a continuous process. In different optimization stages,
fast optimization steps have different guiding effects on parameters. We argue that using fixed
stepsizes in each synchronization is not an optimal strategy, and may even lead to negative effects.
For this consideration, we turns the constant η into a ηt that changes over step monotonously and
asymptotically. Generally, ηt is a function that starts from 1 and converges to a set value and depends
only on the step t. In this setting, the proportion of slow weights increases and this part gradually
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turns into the original Lookahead method. In other words, the slow weights in our method adopts a
faster stepsizes at the beginning, and it asymptotically slows down as processing. Specifically, we
define two asymptotic functions for ηt:

ηt = 0.5 ∗
(
1 +

1

0.01
√
t+ 1

)
, ηt = 0.8 ∗

(
1 +

1

0.1
√
t+ 3.8

)
, (17)

thus we call this as dynamic asymptotic lookahead. The two functions are designed to turn ηt from 1
to 0.5 and 0.8 respectively. Notably, these asymptotic functions may not be the best. We just find that
it works well and maybe future work can done to investigate a more suitable one. For the sake of
clarity, we will use the latter one in the rest of the paper and the results of experiments trained from
scratch are based on this function unless specified.

To illustrate the advantages of our dynamic lookhead strategy over no lookhead and the original
constant lookahead, we give an optimization example in Figure 1. In region 1 , which is around
early stage, the direction of the update is relatively stable and a large stepsizes is needed. θ1 → θ4
denotes the update of fast weights. A constant lookahead method will slow the update process in each
synchronization period, as can be seen in θ1 → θ2. In our method, fast weights share more proportion
in each synchronization period in early stage, thus updating more fast, as can be seen in θ1 → θ3.

①

②

θ1

x

f(x)

θ2θ3θ4

θ5

θ6
θ7 θ*

θ8

SGD
SGD with Lookahead
SGD with dynamic Lookahead (Ours)

| θ1 - θ*| is large, a large η scan 
maintain the convergence speed

| θ5 - θ*| is small, a relative 
small η can achieve better 
convergence

Figure 1: Comparison between no lookahead,
constant lookahead and dynamic lookahead.

In region 2 , which is around final stage, the
direction of the update is relatively ocillated,
and a small stepsizes is needed. fast weights
tend to overshoot the optimum, as can be
seen in θ5 → θ8 . Lookahead optimizer can
achieve better convergence result than gen-
eral algorithm as it averages the weights to
make them more close to the optimum point,
as can be seen in θ5 → θ6. In our method,
the proportion of fast weights have already
reduced asymptotically to a set value, thus
can achieve similar efficacy as Lookahead op-
timizer as can be seen in θ5 → θ7.
From these analysis, we demonstrate that our
dynamic lookhead strategy method improves
the robustness of training.

2.4 IMPLEMENTATIONS OF ADMETAR AND ADMETAS

Since optimizers of the Adam family and SGD family have their own advantages and disadvantages,
and the bidirectional looking optimizer framework and improvement we propose do not have too
many restrictions on the basic optimizer, we have implemented improved versions ADMETAR and
ADMETAS based on RAdam and SGDM optimizer. The final algorithm form is shown in Algorithm
1 and 2. Detailed proof of convergence and convergence rate for our ADMETAR and ADMETAS is
putted in Appendix C and D.

3 EXPERIMENTS

In this section, we demonstrate the effectiveness of our optimizer by turning to an empirically explo-
ration of different datasets and different models to compare some popular optimizers. Specifically, we
conduct experiments on typical CV, NLP, and audio processing tasks. Influenced by the Transformer
structure, models are becoming deeper and larger, and therefore training is becoming more difficult.
The current paradigm of pre-training-fine-tuning is mainly used for large models. Therefore, we
compare optimizers not only in the training-from-scratch setup, but also in the fine-tuning setup.

In this section, we compare our proposed optimizer with several typical optimizers, including classic
SGD (Robbins & Monro, 1951) and Adam (Kingma & Ba, 2014), our base, SGDM (Sutskever et al.,
2013)1 and RAdam (Liu et al., 2019), the current state-of-the-art AdaBelief (Zhuang et al., 2020),

1Notably, we employed nesternov momentum (Nesterov, 1983) in the SGDM for a stronger comparison
baseline
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and the optimizer combined of many modules, Ranger (Wright, 2019). Please refer to Appendix E
for more experimental details.

Algorithm 1: ADMETAR Optimizer. All
operations are element-wise.
Initialize θ1 ∈ F , ϕ0 ← 0, m0 ← 0 ,
v0 ← 0, I0 ← 0, t← 0

for t=1,2,... do
t← t+ 1
gt ← ∇tft(θt)
It ← λIt−1 + gt
ht ← κgt + µIt
mt ← β1mt−1 + (1− β1)ht

ρt ← ρ∞ − 2t
βt
2

1−βt
2

if the variance is tractable, i.e.,
ρt > 4, then

vt ← β2vt−1 + (1− β2)h
2
t

rt ←
√

(ρt−4)(ρt−2)ρ∞
(ρ∞−4)(ρ∞−2)ρt

m̂t ← mt

1−βt
1

, v̂t ← vt
1−βt

2

θt+1 ← ΠF,
√
v̂t
(θt − αt

rtm̂t√
v̂t+ϵ

)

else
θt+1 ← ΠF,

√
v̂t
(θt − αtm̂t)

if t+1 % k == 0:
ϕt ← ηtθt + (1− ηt)ϕt−k

θt ← ϕt

end for
return x

Notations:
• αt: learning rate at step t
• λ, β, β1, β2: the momentum coefficients
• ϵ: a small value used to avoid a zero de-

nominator
• k: synchronization period
•
∏

F,M (y) = argminx∈F ||M1/2(x−y)||
• µ = 25− 10

(
λ+ 1

λ

)
, κ = 10

λ − 9

Algorithm 2: ADMETAS Optimizer. All oper-
ations are element-wise.
Initialize θ1 ∈ F , ϕ0 ← 0, m0 ← 0 , I0 ← 0,
t← 0

for t=1,2,... do
t← t+ 1
gt ← ∇ft(θt)
It ← λIt−1 + gt
ht ← κgt + µIt
mt ← βmt−1 + (1− β)ht

θt+1 ← θt − αtmt

if t+1 % k == 0:
ϕt ← ηtθt + (1− ηt)ϕt−k

θt ← ϕt

end for
return x

3.1 IMAGE CLASSIFICATION

Consistent with general optimizer researches (Zhuang et al., 2020), we conduct experiments on
two image classification tasks, CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) in CV field,
and the results are presented in Table 1. For model baselines, we choose the popular and leading
performance ResNet-110 (He et al., 2016) and PyramidNet (Han et al., 2017), respectively. From
the experimental results, whether in CIFAR-10 or CIFAR-100 dataset, and based on the ResNet-110
or PyramidNet model, SGDM achieves better results than SGD, indicating that backward-looking
improves the optimization effect. EMA with rectified item in RAdam performs better than EMA in
Adam, suggesting that a better backward-looking process can lead to performance gains. Comparing
SGDM and RAdam, we find that SGDM has a performance advantage, showing that though Adam
uses an adaptive learning rate to improve the speed of convergence, it is lossy for performance.

Among optimizers with adaptive learning rate, AdaBelief achieves better results than Adam and
RAdam in CIFAR-10 with PyramidNet and CIFAR-100 with ResNet-110 and PyramidNet. Ranger,
which combines forward and backward looking, achieves better performance than the backward-
looking-only RAdam in CIFAR-10 and CIFAR-100 with PyramidNet. Our ADMETAR achieves
consistent improvement over the optimizer baseline RAdam, which also confirms the gain of bidirec-
tional looking for optimization. And ADMETAR has better results than Ranger, indicating that our
bidirectional looking is better than Ranger’s simple combination of multiple optimization features.
Our ADMETAS also performs better than SGDM, further demonstrating the adaptability of our
approach, which not only performs well in Adam family, but also works in SGD family.

Following the previous practice (Liu et al., 2019), we visualize the optimization process of the
ResNet-110 model with Adam, RAdam, SGDM, and our ADMETAS, ADMETAR optimizers on the
CIFAR-10 and CIFAR-100 datasets in Figure 2. As can be seen from the training loss figure, the
above optimizers can successfully train the model to converge to a stable state, but ADMETAS obtains
the lowest training loss on CIFAR-10, while AdaBelief obtains the training loss on CIFAR-100.
In terms of performance on the test set, ADMETAS has obtained the best generalization ability,
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Table 1: Results on CIFAR-10 and CIFAR-100 test sets.

Model CIFAR-10 CIFAR-100

ResNet-110 PyramidNet ResNet-110 PyramidNet

SGD 90.27±0.15 91.52±0.03 65.70±0.25 76.51±0.06
SGDM 93.68±0.20 95.08±0.13 72.07±0.28 79.49±0.11
Adam 91.89±0.23 94.55±0.24 68.45±0.43 76.72±0.32
RAdam 93.09±0.05 94.58±0.14 70.39±0.08 76.02±0.53
Ranger 92.85±0.34 94.76±0.03 68.96±0.68 76.35±0.08
AdaBelief 92.81±0.26 94.70±0.03 70.88±0.07 76.57±0.04

ADMETAR 93.63±0.22 94.81±0.19 71.00±0.05 76.82±0.07
ADMETAS 94.12±0.17 95.30±0.08 73.74±0.26 79.61±0.34
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Figure 2: Training loss and test accuracy comparison on CIFAR-10 and CIFAR-100 datasets.

which shows that the lower the loss of the training set may not necessarily lead to the better the
generalization ability of the model. In addition, from the accuracy of the test set, the convergence
speed of the SGD family including SGDM and ADMETAS is generally slower than that of the Adam
family (Adam, RAdam, Ranger, AdaBelief and ADMETAR), but the final convergence result of the
SGD family is better than the Adam family. However, our ADMETAR achieve more comparable
performance to the SGD family, while maintaining the advantage of the fast convergence of the Adam
family. ADMETAR has the highest results on the test set in the early stage of optimization (< 80
epoch), which demonstrates that bidirectional looking improves both accuracy and speed, making
ADMETAR a efficient and effective optimizer implementation.

Compared to ResNet-110, PyramidNet has a more complicated structure and can achieve better
results in these tasks. In cases where the model is strong enough, the selection of optimizer will not
be the main factor for the final performance. As shown in Table 1, compared to Adam, RAdam and
AdaBelief achieve just a bit of improvement on CIFAR-10 task and even achieve worse results on
CIFAR-100 task, which also verifies our above claims.

3.2 NATURAL LANGUAGE UNDERSTANDING

As a general AI component, the general capability requirement for various tasks and various models
is a basic requirements for optimizers. We evaluate the adaptability of our ADMETA optimizer on the
finetune training scenario with current popular pre-trained language models. Since the SGD family
converges slowly on the finetune stage of the Transformer architecture, we only compare the various
optimizers of the Adam family here. Specifically, we conduct experiments based on the pre-trained
language model BERT (Devlin et al., 2018) on three natural language understanding tasks, GLUE
benchmark (Wang et al., 2018), machine reading comprehension (SQuAD v1.1 and v2.0 (Rajpurkar
et al., 2016)) and named entity recognition (NER-CoNLL03 (Sang & De Meulder, 2003)). We report
results for two model sizes, BERTbase and BERTlarge to explore whether model size has an effect on
the optimizer.

In Table 2, we report the results of on the development set of 8 datasets of the GLUE benchmark,
where Acc, MCC, SCC are abbreviations of accuracy, Matthews Correlation and Spearman Correlation
Coefficient, respectively. First, under the BERT-base model, compared with the basic optimizer
RAdam, ADMETAR achieves consistent improvement. The most significant improvement is obtained
on RTE and CoLA, which indicates that our ADMETA optimizer exhibits greater stability for low-
resource optimization. On the other seven datasets, some of them are slightly improved. This is
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Table 2: Development results on GLUE benchmark.

Model Optim MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Averagem/mm (Acc) (F1) (Acc) (Acc) (MCC) (SCC) (F1) (Acc)

BERTbase

AdamW 83.85/84.08 87.72 90.74 93.23 60.32 89.11 90.85 67.51 82.92
Ranger 83.80/84.24 87.83 90.76 92.32 58.87 89.19 90.05 68.59 82.68
AdaBelief 83.91/84.42 86.76 90.92 92.55 58.05 88.94 90.38 67.87 82.42
RAdam 83.91/84.24 87.66 90.88 92.20 59.31 89.07 90.91 70.04 83.00
ADMETAR 83.90/84.53 87.91 91.14 93.35 62.07 89.62 91.47 71.48 83.87

BERTlarge

AdamW 86.05/86.55 88.58 92.40 93.00 59.58 89.21 91.67 71.12 83.95
Ranger 86.53/86.58 88.58 92.39 93.46 63.81 89.73 92.04 72.56 84.89
AdaBelief 85.59/86.25 86.99 92.42 93.00 61.11 90.17 91.28 72.92 84.19
RAdam 86.40/86.72 88.36 92.35 93.69 62.61 89.64 91.29 71.48 84.48
ADMETAR 86.21/86.54 88.54 92.63 93.69 64.12 89.92 92.10 73.65 85.11

Table 3: Results on SQuAD v1.1 and v2.0 development sets and NER-CoNLL03 test sets.

Model Optim SQuAD v1.1 SQuAD v2.0 NER-CoNLL03

EM F1 EM F1 P R F1

BERTbase

AdamW 80.87 88.39 72.63 75.99 94.65 95.24 94.94
Ranger 81.30 88.58 73.32 76.73 94.47 95.17 94.82
AdaBelief 80.63 88.10 72.97 76.25 93.79 94.60 94.19
RAdam 80.68 88.19 73.21 76.49 94.61 95.42 95.01
ADMETAR 81.55 88.69 73.81 77.19 94.96 95.41 95.13

BERTlarge

AdamW 83.31 90.39 76.67 80.02 94.77 95.73 95.24
Ranger 84.21 90.97 77.22 80.35 95.24 95.89 95.56
AdaBelief 83.53 90.42 77.48 80.57 94.28 95.17 94.72
RAdam 84.17 90.90 77.39 80.72 94.80 95.64 95.22
ADMETAR 84.25 90.92 77.08 80.36 95.38 95.93 95.65

because most of the parameters of the model in the pre-training-fine-tuning paradigm have converged
to a certain extent in the pre-training stage, so the further advantage of the optimizer in finetune is not
apparent. And when the model is switched to a larger BERT-large, most tasks receive performance
gains, except for CoLA and RTE using AdamW optimizer. Due to the further increase in model
parameters, the low-resource dataset is not enough to fine-tune the large model, it will even reduce
the model performance. But RAdam with rectified item, Ranger with bidirectional looking, and
our ADMETAR handle the low-resource challenge well, continue to improve performance, and take
advantage of large models. Our ADMETAR achieves the best results on these two low-resource
datasets, demonstrating the effectiveness of our bidirectional looking approach.

In Table 3, we further report the results of machine reading comprehension and named entity
recognition. ADMETAR achieved improvements at both model sizes in SQuAD v1.1 dataset, while
similar improvements were achieved in SQuAD v2.0 with more complex models, illustrating that
our optimizer is model-independent. Named entity recognition has reached a very accurate level
with the help of pre-trained language models, and our ADMETAR optimizer also brings performance
improvements over such a strong baseline, showing that optimization is also a bottleneck that restricts
further performance improvement in addition to model structure and data.

3.3 AUDIO CLASSIFICATION

Like images and natural language, speech is one of the mainstream fields of deep learning re-
search. In speech processing, there are also a large number of pre-trained large models, such as
Wav2vec (Schneider et al., 2019). To highlight the input-independent nature of the optimizer, we also
conduct experiments on two typical tasks of audio classification, keyword spotting (SUPERB) (Yang
et al., 2021) and language identification (Common Language) (Sinisetty et al., 2021). We employ
Wav2vec 2.0base as the baseline model and report the results of each optimizer in Table 4. In addition,
we also list the training time of each optimizer to evaluate the impact of the bidirectional looking
mechanism on the optimizer time overhead2.

ADMETAR shows better classification accuracy than AdamW, RAdam, Ranger and AdaBelief, which
is consistent with the experimental conclusions in image and natural language tasks. Consistent

2Notably, the reported training time is only for rough comparison due to the influence of environments.
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Table 4: Results on speech keyword spotting and language identification tasks.

Optim SUPERB Common Language

Acc Training Acc Training

AdamW 98.26 10m44s 79.45 8h27m33s
AdaBelief 98.41 11m20s 80.29 8h28m25s
Ranger 98.35 11m50s 81.18 8h29m55s
RAdam 98.37 11m30s 80.35 8h28m38s
ADMETAR 98.50 11m54s 81.57 8h30m15s

Table 5: Ablation study on ADMETA optimizer.

Optim CIFAR-10 ∆ Optim CIFAR-10 ∆

Adam 91.89 \ SGD 90.22 \
RAdam 93.09 \ SGDM 93.68 \

ADMETAR 93.63 ADMETAS 94.12
-DEMA 93.24 -0.39 -DEMA 89.13 -4.99
-LB 92.29 -0.95 -LB 89.88 -4.24
-LF 93.14 -0.10 -LF 93.51 -0.61
-LB-LF 92.36 -0.88 -LB-LF 89.80 -4.32

ADMETAR w/ constant LF 93.03 -0.60 ADMETAS w/ constant LF 93.75 -0.37

results across image, natural language, and speech modalities verify the task-independence of our
optimizer. Comparing the training time of ADMETAR with AdamW, RAdam, Ranger, and AdaBelief,
our ADMETAR have different degrees of increase due to the additional computation and storage in the
optimization process. Ranger and our ADMETAR increased the time most, but it can still be regarded
as slight compared to the overall training time. Therefore, it can be concluded that the bidirectional
looking mechanism adopted by ADMETA optimizer will bring additional computational overhead
and increase the training time, but compared with the overall training cost, it is very small. ADMETA
achieves better performance without increasing model parameters and training data, and does not
have any impact on the inference time of the model, which achieves a better tradeoff.

4 ABLATION STUDY

We perform ablation study on various designs of ADMETA in bidirectional looking in this section.
-DEMA means removing the DEMA mechanism in backward-looking and using the original EMA.
-LB means complete removal of backward-looking, -LF means complete removal of forward-looking.
-LB-LF means to remove bidirectional looking at the same time. w/ constant LF means use the original
Lookahead mechanism in the forward-looking. The results are evaluated using the ResNet-110 model
on the test set of CIFAR-10. According to the results shown in Table 5, it can be found that the
improvement of SGDM compared with SGD initially shows the advantage of backward-looking.
And compared with Adam, RAdam reveals that the EMA with the rectified item in backward-looking
is more suitable for the training of the model than the original EMA. Our ADMETA (including
ADMETAR and ADMETAS) achieved the best results. After removing DEMA and replacing dynamic
lookahead with constant lookahead, respectively, the performance drops, indicating that both DEMA
and dynamic asymptotic lookahead play an important role in stable optimization. After further
removing the backward-looking, the forward-looking, and the bidirectional looking, the results drop
further, validating our argument that bidirectional looking is beneficial for optimization.

5 CONCLUSION

In this paper, we introduce a bidirectional looking optimizer framework, exploring the use of historical
and future information for optimization. For backward-looking, we introduce a DEMA scheme to
replace the traditional EMA strategy, while for forward-looking, we propose a dynamic asymptotic
lookahead strategy to replace the constant lookahead scheme. In this way, we propose ADMETA
optimizer, and provide two implement versions, ADMETAR and ADMETAS, which are based on
adaptive and non-adaptive momentum optimizers, RAdam and SGDM respectively. We verify the
benefits of ADMETA with intuitive examinations and various experiments, showing the effectiveness
of our proposed optimizer. Please refer to Appendix F for future work discussion.
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APPENDIX

A RELATED WORK

As an important part of machine learning and deep learning, optimizer has received much attention in
recent years. The optimizer plays a prominent role in the convergence speed and the convergence
effect of the model. To seek good properties like fast convergence, good generalization and robustness,
many algorithms have been put forward recently, and they can be divided into four families according
to their characteristics and motivation.

SGD Family In this family, the optimizers adopt the method of update like

θt = θt−1 − αtmt,

where θt denotes the parameter to be optimized at iteration step t and mt refers to some combination of
past gradients (such as EMA), which can be represented as f1(g1, g2, ..., gt). Original SGD (Robbins
& Monro, 1951) directly minus the product of global learning rate and the gradient at each step.
Despite of its simplicity, it is still widely used in many datasets. However, SGD is blamed for its low
convergence rate and high fluctuation, thus many methods have been proposed to accelerate the speed
and smooth the update process. One efficient optimizer to tackle this issue is SGDM (Sutskever et al.,
2013), which uses a exponential moving average (EMA, also known as momentum) to replace the
gradient with an exponential weight decay of past gradients. SGDM-Nesterov (Nesterov, 1983) is a
variant of SGDM which modifies the momentum by computing gradient based on the approximation
of the next position and thus changing the descent direction. Experiments have shown that Nesterov
momentum tends to achieve a higher speed and performance.

Adam Family The Adam family optimizers usually update parameters by

θt = θt−1 − αtmt/
√
vt,

where vt is the adaptive item and can be represented as f2(g21 , g
2
2 , ..., g

2
t ). Compared to SGD family,

instead of using a uniform learning rate, this kind of optimizer computes an individual learning
rate for each parameter due to the effect of the denominator

√
vt in the equation. vt is usually an

dimension-reduction approximation to the matrix which contains the information of second order
curvature, such as Fisher matrix (Pascanu & Bengio, 2013).

Adadelta Zeiler (2012), Adagrad (Duchi et al., 2011) and RMSprop (Tieleman & Hinton, 2012)
are early optimizers in this family. A stand out generation is Adam (Kingma & Ba, 2014) which
combines the RMSprop with Adagrad. It has been widely used in a wide range of datasets and works
well even with sparse gradients. However, there are problems with Adam with respect to convergence
and generalization, thus many methods have been proposed to make improvements

Based on the large variance in the early stage that may leads to a bad optimum, heuristic
warmup (Vaswani et al., 2017; Popel & Bojar, 2018) and RAdam (Liu et al., 2019) are proposed, of
which the former starts with a small initial learning rate and the latter introduces a rectified item. To
fix the convergence error, Reddi et al. (2019) proposed AMSGrad which requires the non-decreasing
property of the second momentum. In fact, this method can be interpolated into other Adam family
algorithms to guarantee the convergence in convex situations. Considering curvature of the loss
function, AdaBelief (Zhuang et al., 2020) and AdaMomentum (Wang et al., 2021) are proposed.
More recently, there are still numerous studies devoted to improving Adam, such as AdaX (Li et al.,
2020) and AdaFamily (Fassold, 2022). However, we notice that most researches put a solid emphasis
on modifying the second momentum term, i.e., the adaptive item and ignores the possibility to make
a relative overall change to the algorithms.

Stochastic Second-Order Family In the stochastic second-order optimizers, parameters are up-
dated using second-order information related to Hessian matrix. The update process is typically
written as

θt = θt−1 − αtH
−1mt,

where H is the Hessian matrix or approximation matrix to it. Ideally, they can achieve better results
than the first order optimizers (like Adam family and SGD family), but their practicality is limited
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Starting Point

Optimum

Solution

SGD with EMA (SGDM:vanilla momentum) 
Momentum β = 0.90

SGD with DEMA (Ours)
Momentum λ = 0.90
Momentum β = 0.60 Learning rate α = 0.0015

Figure 3: EMA vs. DEMA in SGD optimizer. Please refer to our online demo https://sites.
google.com/view/optimizer-admeta for more comparison.

due to the large computational cost of the second order information, like the fisher / hessian matrix.
Some methods have been proposed using low-rank decomposition and approximating to hessian
diagonal to reduce the cost, like Apollo (Ma, 2020), AdHessian (Yao et al., 2021) and Shampoo (Anil
et al., 2020).

Other Optimizers There are some algorithms that are not convenient to be categorized into the
above families and we list some examples here. Motivated by PID controller, SGD-PID (An et al.,
2018) takes an analogy between gradient and the input error in a automatic control system. Analysis
show that it can reduce the overshoot problem in SGD and SGD variants. Furthermore, Weng et al.
(2022) applied PID into Adam and proposed AdaPID optimizer.

Lookahead (Zhang et al., 2019) optimizer updates two sets of weight wherein ”fast weights” function
as a guider to search for the direction and ”slow weights” follows the guide to achieve better
optimization. Ranger (Wright, 2019) optimizer further combines RAdam and Lookahead to get a
compound algorithm and shows a better convergence performance.

Discussion To show the advantage of bidirectional looking, we propose ADMETA optimizer.
Specifically, it is based on the idea of considering backward-looking and forward-looking, wherein
DEMA plays a important role in the former aspect and dynamic asymptotic forward-looking strategy
serves for the latter aspect.

In practical use, we provide two versions, ADMETAS and ADMETAR, using the framework of
ADMETA and based on SGDM and RAdam respectively. Specifically, ADMETAS replace the
traditionally used EMA in backward-looking part of SGDM with DEMA and add the forward-looking
part which is derived from Lookahead optimizer. ADMETAR is based on RAdam in the same way.
The second order family is also introduced above because the framework of ADMETA can also be
applied in this family, and it is remained as the future work.

B EMA VS. DEMA

To corroborate our analysis of EMA and DEMA, we compared the optimization process of EMA and
DEMA on the SGD optimizer according to the practice of (Goh, 2017). Using the same learning rate
α and starting from the same starting point, the convergence process is shown in Figure 3. The decent
surface in the figure is the convex quadratic, which is a useful model despite its simplicity, for it
comprises an important structure, the “valleys”, which is often studied as an example in momentum-
based optimizers. As demonstrated in Figure 3, on the one hand, DEMA achieves faster speed than
EMA, which can be easily seen by comparing the distance to the optimal point at the same time; on
the other hand, DEMA achieves better convergence results than EMA as can be seen in the distance
between the point of convergence and optimum.
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C PROOF OF CONVERGENCE

In this section, following (Chen et al., 2018), (Alacaoglu et al., 2020) and (Reddi et al., 2019), we
provide detailed proofs of convergence for ADMETAR and ADMETAS optimizers in convex and
non-convex situations.

C.1 CONVERGENCE ANALYSIS IN CONVEX AND NON-CONVEX OPTIMIZATION

Optimization problem For deterministic problems, the problem to be optimized is minθ∈Ff(θ),
where f denotes the loss function. For online optimization, the problem is minθ∈F

∑T
t=1 ft(θ),

where ft is the loss function of the model with the given parameters at the t-th step.

The criteria for judging convergence in convex and non-convex cases are different. For con-
vex optimization, following (Reddi et al., 2019), the goal is to ensure R(T ) = o(T ), i.e.,
limT→∞ R(T )/T = 0. For non-convex optimization, following (Chen et al., 2018), the goal

is to ensure mint∈[T ] E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 = o(T ).

Theorem C.1. (Convergence of ADMETAR for convex optimization)
Let {θt} be the sequence obtained from ADMETAR, 0 ≤ λ, β1, β2 < 1, γ =

β2
1

β2
< 1, αt = α√

t

and vt ≤ vt+1,∀t ∈ [T ]. Suppose x ∈ F , where F ⊂ Rd and has bounded diameter
D∞, i.e. ||θt − θ||∞ ≤ D∞,∀t ∈ [T ]. Assume f(θ) is a convex function and ||gt||∞
is bounded. Denote the optimal point as θ. For θt generated, ADMETAR achieves the regret:

R(T ) =
T∑

t=1

[ft(θt)− ft(θ)] = O(
√
T )

Theorem C.2. (Convergence of ADMETAR for non-convex optimization)
Under the assumptions:

• ∇f exits and is Lipschitz-continuous,i.e, ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y; f is also lower
bounded.

• At step t, the algorithm can access a bounded noisy gradient gt, and the true gradient∇f is also
bounded.

• The noisy gradient is unbiased, and has independent noise, i.e. gt = ∇f(θt) + δt,E[δt] = 0 and
δi⊥δj ,∀i ̸= j.

Assume minj∈[d](v1)j ≥ c > 0 and αt = α/
√
t, then for any T we have:

mint∈[T ] E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 ≤ 1√

T
(Q1 +Q2logT )

where Q1 and Q2 are constants independent of T.
Theorem C.3. (Convergence of ADMETAS for convex optimization)
Let {θt} be the sequence obtained by ADMETAS, 0 ≤ λ, β < 1, αt = α√

t
,

∀t ∈ [T ]. Suppose x ∈ F , where F ⊂ Rd and has bounded diameter D∞, i.e.
||θt − θ||∞ ≤ D∞,∀t ∈ [T ]. Assume f(θ) is a convex function and ||gt||∞ is
bounded. Denote the optimal point as θ. For θt generated, ADMETAS achieves the regret:

R(T ) =
T∑

t=1

[ft(θt)− ft(θ)] = O(
√
T )

Theorem C.4. (Convergence of ADMETAS for non-convex optimization)
Under the assumptions:

• ∇f exits and is Lipschitz-continuous,i.e, ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y; f is also lower
bounded.

• At step t, the algorithm can access a bounded noisy gradient gt, and the true gradient∇f is also
bounded.
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• The noisy gradient is unbiased, and has independent noise, i.e. gt = ∇f(θt) + δt,E[δt] = 0 and
δi⊥δj ,∀i ̸= j.

Assume αt = α/
√
t, then for any T we have:

mint∈[T ] E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 ≤ 1√

T
(Q

′

1 +Q
′

2logT )

where Q
′

1 and Q
′

2 are constants independent of T.

Before formally proving the theorems, here list some remarks and preparations.
Remark 1. For brevity, we omit the rectified item of ADMETAR in the proof. However, it does not
influence the proof since it can be integrated into the learning rate.

Remark 2. Following (Luo et al., 2019), the bias correction 1/1− βt
1 of the first momentum mt is

omitted in the convergence of ADMETAR. Since 1/1 − βt
1 is bounded above 1 and below 10, the

order of the terms used is not affected, thus hardly affecting the proof.

Remark 3. The forward-looking part is not considered in the proof. On the one hand, explanations
and proofs of constant Lookahead have been given in (Zhang et al., 2019) and (Wang et al., 2020),
which can be imitated by our dynamic method. On the other hand, forward-looking part is exactly the
interpolation of fast weights and slow weights at each synchronization period, and the fast weights
are updated by the given optimizer. Therefore, the convergence proof is equivalent to only proving
convergence of fast weights.
Lemma C.5. if ∥gt∥∞ is bounded,i.e. ∥gt∥∞ ≤ G∞, ∀t ∈ [T ], where G∞ is a constant independent
of T, then It, ht and mt are also bounded.

Proof. First of all, we prove ∥It∥∞ ≤ (1 + λ)G∞ by induction:
when t = 1

∥I1∥∞ = ∥g1∥∞ ≤ G∞

Suppose t = k satisfies, then for t = k + 1

∥Ik+1∥∞ = ∥λIk + gk+1∥∞ ≤ λ∥Ik∥∞ + ∥gk+1∥∞
≤ (λ+ 1)max{∥Ik∥∞, ∥gk+1∥∞} ≤ (1 + λ)G∞

Next, for ∥hk∥∞
∥ht∥∞ = ∥κgt + µIt∥∞ ≤ κ∥gt∥∞ + µ∥It∥∞ ≤ [κ+ (1− λ)µ)]G∞

Since mt is the moving average of hi where i=1,...,t, we can get that it is also bounded following the
proof of It.

In this way, we can redefine G∞ by enlarging it and the bounded stochastic gradient assumption in
the theorem is equivalent to assuming ∥gt∥∞, ∥It∥∞, ∥ht∥∞, ∥mt∥∞ ≤ G∞.

Remark 4. As for non-convex optimization, in the same way, the bounded noisy gradient assumption
is equivalent to ∥gt∥, ∥It∥, ∥ht∥, ∥mt∥ ≤ H where H is a constant independent of T. This remark
will be used in several places in the following proof.
Lemma C.6 (Generalized Hölder inequality, (Beckenbach & Bellman, 2012)). For x, y, z ∈ Rn

+ and
positive p, q, r such that 1

p + 1
q + 1

r = 1, we have

n∑
j=1

θjyjzj ≤ ∥x∥p∥y∥q∥z∥r.

This is a common mathematical inequality, so the proof is omitted here.
Lemma C.7 (nonexpansiveness property of argmin

x∈F
∥.∥, (McMahan & Streeter, 2010)). For any

Q ∈ Sd+,i.e. Q is a Positive definite matrice and convex feasible set F ⊂ Rd, suppose u1 =

argmin
x∈F

∥Q1/2(x − z1)∥ and u2 = argmin
x∈F

∥Q1/2(x − z2)∥ then we have ∥Q1/2(u1 − u2)∥ ≤

∥Q1/2(z1 − z2)∥.
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Proof. First, we claim that ⟨u1 − z1, Q(u2 − u1)⟩ ≥ 0 and ⟨u2 − z2, Q(u1 − u2)⟩ ≥ 0 (We only
prove the former as the proofs are exactly the same). Otherwise, consider a small δ, we have
u1 + δ(u2 − u1) ∈ F

1

2
⟨u1 + δ(u2 − u1)− z1, Q(u1 + δ(u2 − u1)− z1)⟩

=
1

2
⟨u1 − z1, Q(u1 − z1)⟩+

1

2
δ2⟨u2 − u1, Q(u2 − u1)⟩+ δ⟨u1 − z1, Q(u2 − u1)⟩

If there exists ⟨u1 − z1, Q(u2 − u1)⟩ < 0, δ can be chosen so small that it satisfies 1
2δ

2⟨u2 −
u1, Q(u2 − u1)⟩+ δ⟨u1 − z1, Q(u2 − u1)⟩ < 0, which contradicts the definition of u1.

Using the above claim, we further have

⟨u1 − z1, Q(u2 − u1)⟩ − ⟨u2 − z2, Q(u2 − u1)⟩ ≥ 0

⇒⟨z2 − z1, Q(u2 − u1)⟩ ≥ ⟨u2 − u1, Q(u2 − u1)⟩ (18)

Also, observing the following

⟨(u2 − u1)− (z2 − z1), Q((u2 − u1)− (z2 − z1))⟩ ≥ 0

⇒⟨u2 − u1, Q(z2 − z1)⟩ ≤
1

2
[⟨u2 − u1, Q(u2 − u1)⟩+ ⟨z2 − z1, Q(z2 − z1)⟩] (19)

Combining (18) and (19), we have the required result.

C.2 CONVERGENCE ANALYSIS OF ADMETAR FOR CONVEX OPTIMIZATION

Lemma C.8. consider

mt = β1mt−1 + (1− β1)ht, ∀t ≥ 1.

it follows that

⟨ht, θt − θ⟩ =⟨mt−1, θt−1 − θ⟩

− β1

1− β1
⟨mt−1, θt − θt−1⟩

+
1

1− β1
(⟨mt, θt − θ⟩ − ⟨mt−1, θt−1 − θ⟩) .

Proof. By definition of mt, ht =
1

1−β1
mt − β1

1−β1
mt−1. Thus, we have

⟨ht, θt − θ⟩ = 1

1− β1
⟨mt, θt − θ⟩ − β1

1− β1
⟨mt−1, θt − θ⟩

=
1

1− β1
⟨mt, θt − θ⟩ − β1

1− β1
⟨mt−1, θt−1 − θ⟩ − β1

1− β1
⟨mt−1, θt − θt−1⟩

=
1

1− β1

(
⟨mt, θt − θ⟩ − ⟨mt−1, θt−1 − θ⟩

)
+ ⟨mt−1, θt−1 − θ⟩

− β1

1− β1
⟨mt−1, θt − θt−1⟩.

Lemma C.9 (Bound for
∑T

t=1 αt∥v̂−1/4
t mt∥2). Under Assumption in Theorem 1, we have

T∑
t=1

αt∥v̂−1/4
t mt∥2 ≤

(1− β1)α
√
1 + log T√

(1− β2)(1− γ)

d∑
i=1

∥h1:T,i∥2

Proof. First, we bound ∥v̂−1/4
t mt∥2. From the definition of mt and vt, it follows that

mt = (1− β1)

t∑
j=1

βt−j
1 hj , vt = (1− β2)

t∑
j=1

βt−j
2 h2

j

17
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Then we have

∥v̂−1/4
t mt∥2 ≤ ∥v−1/4

t mt∥2 =

d∑
i=1

m2
t,i

v
1/2
t,i

=

d∑
i=1

(∑t
j=1(1− β1)β

t−j

1 hj,i

)2
√∑t

j=1(1− β2)β
t−j
2 h2

j,i

=
(1− β1)

2

√
1− β2

d∑
i=1

(∑t
j=1 β

t−j
1 hj,i

)2
√∑t

j=1 β
t−j
2 h2

j,i

≤ (1− β1)
2

√
1− β2

(

d∑
i=1

[(∑t
j=1(β

t−j
4

2 |hj,i|
1
2 )4
) 1

4
(∑t

j=1(β
1/2
1 β

−1/4
2 )4(t−j)

) 1
4
(∑t

j=1(β
t−j
1 |hj,i|)

1
2 ·2
) 1

2

]2
√∑t

j=1 β
t−j
2 h2

j,i

)

=
(1− β1)

2

√
1− β2

d∑
i=1

 t∑
j=1

γt−j

 1
2 t∑

j=1

βt−j
1 |hj,i|

≤ (1− β1)
2√

(1− β2)(1− γ)

d∑
i=1

t∑
j=1

βt−j
1 |hj,i|, (20)

where the first inequality follows from the fact that v̂1/2t,i ≥ v
1/2
t,i , the second one follows from the

generalized Hölder inequality for

θj = β
t−j
4

2 |hj,i|
1
2 , yj = (β1β

−1/2
2 )

t−j
2 , zj = (βt−j

1 |hj,i|)
1
2 and p = q = 4, r = 2,

and the third one follows from the sum of geometric series and the assumption γ =
β2
1

β2
< 1. In this

way, we can bound
∑T

t=1 αt∥v̂−1/4
t mt∥2.

T∑
t=1

αt∥v̂−1/4
t mt∥2 ≤

(1− β1)
2√

(1− β2)(1− γ)

d∑
i=1

T∑
t=1

αt

t∑
j=1

βt−j
1 |hj,i|

=
(1− β1)

2√
(1− β2)(1− γ)

d∑
i=1

T∑
j=1

T∑
t=j

αtβ
t−j
1 |hj,i|

≤ (1− β1)√
(1− β2)(1− γ)

d∑
i=1

T∑
j=1

αj |hj,i|

≤ 1− β1√
(1− β2)(1− γ)

d∑
i=1

√√√√ T∑
j=1

α2
j

√√√√ T∑
j=1

h2
j,i

≤ (1− β1)α
√
1 + log T√

(1− β2)(1− γ)

d∑
i=1

√√√√ T∑
t=1

h2
t,i

=
(1− β1)α

√
1 + log T√

(1− β2)(1− γ)

d∑
i=1

∥h1:T,i∥

where the first inequality follows from (20).The first equality is by changing order of summation.
The second inequality follows from the fact that

∑T
t=j αtβ

t−j
1 ≤ αj

1−β1
. The third inequality is by

Cauthy-Schwartz. The last inequality is by using
∑T

j=1
1
j ≤ 1 + log T

Theorem C.10. (Convergence of ADMETAR for convex optimization) Let {θt} be the se-
quence obtained from ADMETAR, 0 ≤ λ, β1, β2 < 1, γ =

β2
1

β2
< 1, αt = α√

t
and

18
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vt ≤ vt+1,∀t ∈ [T ]. Suppose x ∈ F , where F ⊂ Rd and has bounded diameter
D∞, i.e. ||θt − θ||∞ ≤ D∞,∀t ∈ [T ]. Assume f(θ) is a convex function and ||gt||∞
is bounded. Denote the optimal point as θ. For θt generated, ADMETAR achieves the regret:

R(T ) =

T∑
t=1

[ft(θt)− ft(θ)] = O(
√
T )

Proof. • Bound for
∑T

t=1⟨mt, θt − θ⟩.
As x ∈ F , we get

θt+1 = ΠF,
√
v̂t
(θt − αtv̂

−1/2
t mt) = min

x∈F
∥v̂1/4t (x− (θt − αtv̂

−1/2
t mt))∥.

Furthermore, ΠF,
√
v̂t
(x) = x for all x ∈ F . Using Lemma C.7 with u1 = θt+1 and u2 = θ, we have

the following:

∥v̂1/4t (θt+1 − θ)∥2 ≤ ∥v̂1/4t (θt − αtv̂
−1/2
t mt − θ)∥2

= ∥v̂1/4t (θt − θ)∥2 + α2
t ∥v̂

−1/4
t mt∥2 − 2αt⟨mt, θt − θ⟩ (21)

we rearrange and divide both sides of (21) by 2αt to get

⟨mt, θt − θ⟩ ≤ 1

2αt
∥v̂1/4t (θt − θ)∥2 − 1

2αt
∥v̂1/4t (θt+1 − θ)∥2 + αt

2
∥v̂−1/4

t mt∥2

=
1

2αt−1
∥v̂1/4t−1(θt − θ)∥2 − 1

2αt
∥v̂1/4t (θt+1 − θ)∥2

+
1

2

d∑
i=1

(
v̂
1/2
t,i

αt
−

v̂
1/2
t−1,i

αt−1

)
(θt,i − θi)

2 +
αt

2
∥v̂−1/4

t mt∥2

≤ 1

2αt−1
∥v̂1/4t−1(θt − θ)∥2 − 1

2αt
∥v̂1/4t (θt+1 − θ)∥2

+
D2

∞
2

d∑
i=1

(
v̂
1/2
t,i

αt
−

v̂
1/2
t−1,i

αt−1

)
+

αt

2
∥v̂−1/4

t mt∥2 (22)

where the last inequality is due to the fact that v̂t,i ≥ v̂t−1,i, 1
αt
≥ 1

αt−1
, and the definition of D∞.

Summing (22) over t = 1, . . . T and using that v̂0 = 0 yields
T∑

t=1

⟨mt, θt − θ⟩ ≤ D2
∞

2αT

d∑
i=1

v̂
1/2
T,i +

1

2

T∑
t=1

αt∥v̂−1/4
t mt∥2.

• Bound for
∑T

t=1⟨mt−1, θt−1 − θt⟩.
T∑

t=1

⟨mt−1, θt−1 − θt⟩ =
T∑

t=2

⟨mt−1, θt−1 − θt⟩ =
T−1∑
t=1

⟨mt, θt − θt+1⟩

≤
T−1∑
t=1

∥v̂−1/4
t mt∥∥v̂1/4t (θt+1 − θ)∥

=

T−1∑
t=1

∥v̂−1/4
t mt∥

∥∥∥v̂1/4t [ΠF,v̂
1/2
t

(
θt − αtv̂

−1/2
t mt

)
−ΠF,v̂

1/2
t

(θt)]
∥∥∥

≤
T−1∑
t=1

αt∥v̂−1/4
t mt∥∥v̂−1/4

t mt∥

=

T−1∑
t=1

αt∥v̂−1/4
t mt∥2

19



Under review as a conference paper at ICLR 2023

where the first inequality follows from Hölder inequality and the second inequality is due to lemma
C.7

• Bound for ⟨mT , θT − θ⟩.

⟨mT , θT − θ⟩ ≤ ∥v̂−1/4
t mT ∥∥v̂1/4t (θT − θ)∥

≤ αT ∥v̂−1/4
t mT ∥2 +

1

4αT
∥v̂1/4t (θT − θ)∥2

≤ αT ∥v̂−1/4
t mT ∥2 +

D2
∞

4αT

d∑
i=1

v̂
1/2
T,i

where the first inequality follows from Hölder inequality and the second inequality follows from
Young’s inequality. The last inequality is due to the definition of D∞.

After all these preparations, we obtain:

T∑
t=1

⟨ht, θt − θ⟩ = β1

1− β1

(
⟨mT , θT − θ⟩+

T∑
t=1

⟨mt−1, θt−1 − θt⟩

)
+

T∑
t=1

⟨mt, θt − θ⟩

≤ β1

1− β1

(
D2

∞
4αT

d∑
i=1

v̂
1/2
T,i +

T∑
t=1

αt∥v̂−1/4
t mt∥2

)
+

D2
∞

2αT

d∑
i=1

v̂
1/2
T,i

+
1

2

T∑
t=1

αt∥v̂−1/4
t mt∥2

=
(2− β1)D

2
∞

4αT (1− β1)

d∑
i=1

v̂
1/2
T,i +

2 + β1

2(1− β1)

T∑
t=1

αt∥v̂−1/4
t mt∥2

≤ (2− β1)D
2
∞
√
T

4α(1− β1)

d∑
i=1

v̂
1/2
T,i +

(2 + β1)α
√
1 + log T

2
√

(1− β2)(1− γ)

d∑
i=1

∥h1:T,i∥2

This proves that
∑T

t=1⟨ht, θt − θ⟩ = O(
√
T ). Suppose the optimizer runs for a long time, the

bias of EMA is small (Zhuang et al., 2020), thus E(It) approaches E(gt) as step increases. Since
ht = κgt + µIt, ht is the same order as gt when the time is long enough, thus we have

T∑
t=1

⟨gt, θt − θ⟩ = O(
√
T ) (23)

In addition, due to the convexity of f(.), we have

R(T ) =

T∑
t=1

ft(θt)− ft(x) ≤
T∑

t=1

⟨gt, θt − θ⟩

Combined with (23), we complete the proof.

C.3 CONVERGENCE ANALYSIS OF ADMETAR FOR NON-CONVEX OPTIMIZATION

Lemma C.11. Set θ0 ≜ x1 in Algorithm, and define zt as

zt = θt +
β1

1− β1
(θt − θt−1), ∀t ≥ 1. (24)

Then the following holds true

zt+1 − zt = −
β1

1− β1

(
αt√
v̂t
− αt−1√

v̂t−1

)
mt−1 − αtht/

√
v̂t
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Proof. By the update of ADMETAR, we have

θt+1 − θt = −αtmt/
√
v̂t = −αt(β1mt−1 + (1− β1)ht)/

√
v̂t

= β1
αt

αt−1

√
v̂t−1√
v̂t

(θt − θt−1)− αt(1− β1)ht/
√

v̂t

= β1(θt − θt−1) + β1

(
αt

αt−1

√
v̂t−1√
v̂t
− 1

)
(θt − θt−1)− αt(1− β1)ht/

√
v̂t

= β1(θt − θt−1)− β1

(
αt√
v̂t
− αt−1√

v̂t−1

)
mt−1 − αt(1− β1)ht/

√
v̂t (25)

Since we also have

θt+1 − θt = (1− β1)θt+1 + β1(θt+1 − θt)− (1− β1)θt

Combined with (25), we have

(1− β1)θt+1 + β1(θt+1 − θt)

=(1− β1)θt + β1(θt − θt−1)− β1

(
αt√
v̂t
− αt−1√

v̂t−1

)
mt−1 − αt(1− β1)ht/

√
v̂t.

Divide both sides by 1− β1, we have

θt+1 +
β1

1− β1
(θt+1 − θt)

=θt +
β1

1− β1
(θt − θt−1)−

β1

1− β1

(
αt√
v̂t
− αt−1√

v̂t−1

)
mt−1 − αtht/

√
v̂t.

Lemma C.12. Suppose that the conditions in Theorem C.2 hold, then

E [f(zt+1)− f(z1)] ≤
4∑

i=1

Ti, (26)

where

T1 = −E

[
t∑

i=1

⟨∇f(zi),
β1

1− β1

(
αi√
v̂i
− αi−1√

v̂i−1

)
mi−1⟩

]

T2 = −E

[
t∑

i=1

αi⟨∇f(zi), hi/
√
v̂i⟩

]

T3 = E

 t∑
i=1

L

∥∥∥∥∥ β1

1− β1

(
αt√
v̂i
− αi−1√

v̂i−1

)
mi−1

∥∥∥∥∥
2


T4 = E

[
t∑

i=1

L
∥∥∥αihi/

√
v̂i

∥∥∥2]

Proof. By the Lipschitz smoothness of∇f ,

f(zt+1) ≤ f(zt) + ⟨∇f(zt), zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2 ,

Based on (C.18),we have
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E[f(zt+1)− f(z1)] =E

[
t∑

i=1

f(zi+1)− f(zi)

]

≤E

[
t∑

i=1

⟨∇f(zi), zi+1 − zi⟩+
L

2
∥zi+1 − zi∥2

]

=− E

[
t∑

i=1

⟨∇f(zi),
β1

1− β1

(
αi√
v̂i
− αi−1√

v̂i−1

)
mi−1⟩

]

− E

[
t∑

i=1

αi⟨∇f(zi), hi/
√

v̂i⟩

]

+ E

[ t∑
i=1

L

2
∥zi+1 − zi∥2

]
= T1 + T2 + E

[ t∑
i=1

L

2
∥zi+1 − zi∥2

]
,

Then, using inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 and combined with lemma C.11,

E

[
t∑

i=1

L

2
∥zi+1 − zi∥2

]
≤ T3 + T4

Lemma C.13. In this part, we bound T1, T2, T3

Proof. • Bound for T1

T1 =− E

[
t∑

i=2

⟨∇f(zi),
β1

1− β1

(
αi√
v̂i
− αi−1√

v̂i−1

)
mi−1⟩

]

≤E

 t∑
i=1

∥∇f(zi)∥ ∥mi−1∥
(

1

1− β1
− 1

) d∑
j=1

∣∣∣∣
(

αi√
v̂i
− αi−1√

v̂i−1

)
j

∣∣∣∣


≤H2 β1

1− β1
E

 t∑
i=1

d∑
j=1

∣∣∣∣
(

αi√
v̂i
− αi−1√

v̂i−1

)
j

∣∣∣∣


• Bound for T3

T3 ≤LE

 t∑
i=2

(
β1

1− β1

)2 d∑
j=1

( αt√
v̂i
− αi−1√

v̂i−1

)2

j

(mi−1)
2
j


≤
(

β1

1− β1

)2

LH2E

 t∑
i=2

d∑
j=1

(
αt√
v̂i
− αi−1√

v̂i−1

)2

j


• Bound for T2

T2 =− E

[
t∑

i=1

αi⟨∇f(zi), hi/
√
v̂i⟩

]

=− E

[
t∑

i=1

αi⟨∇f(θi), hi/
√
v̂i⟩

]
− E

[
t∑

i=1

αi⟨∇f(zi)−∇f(θi), hi/
√

v̂i⟩

]
. (27)
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The second term of (27) can be bounded as

− E

[
t∑

i=1

αi⟨∇f(zi)−∇f(θi), hi/
√
v̂i⟩

]

≤E

[
t∑

i=2

1

2
∥∇f(zi)−∇f(θi)∥2 +

1

2
∥αihi/

√
v̂i∥2

]

≤L2

2
E

[
t∑

i=2

∥∥∥∥ β1

1− β1
αi−1mi−1/

√
v̂i−1

∥∥∥∥2
]
+

1

2
E

[
t∑

i=2

∥αihi/
√

v̂i∥2
]

=
L2

2

(
β1

1− β1

)2

E

[
t∑

i=2

∥∥∥αi−1mi−1/
√

v̂i−1

∥∥∥2]+ 1

2
E

[
t∑

i=2

∥αihi/
√

v̂i∥2
]

where the second inequality is due to ∥∇f(zi)−∇f(θi)∥ ≤ L∥zi − θi∥.
Then consider the first term of (27)

E

[
t∑

i=1

αi⟨∇f(θi), hi/
√

v̂i⟩

]

=κE

[
t∑

i=1

αi⟨∇f(θi), gi/
√

v̂i⟩

]
+ µE

[
t∑

i=1

αi⟨∇f(θi), Ii/
√

v̂i⟩

]

Consider the term with κ

E

[
t∑

i=1

αi⟨∇f(θi), gi/
√
v̂i⟩

]

=E

[
t∑

i=1

αi⟨∇f(θi), (∇f(θi) + δi)/
√

v̂i⟩

]

=E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)/
√
v̂i⟩

]
+ E

[
t∑

i=1

αi⟨∇f(θi), δi/
√

v̂i⟩

]
. (28)

For the second term in RHS of (28), we have

E

[
t∑

i=1

αi⟨∇f(θi), δi/
√

v̂i⟩

]

=E

[
t∑

i=2

⟨∇f(θi), δi(αi/
√

v̂i − αi−1/
√
v̂i−1)⟩

]
+ E

[
t∑

i=2

αi−1⟨∇f(θi), δi(1/
√
v̂i−1)⟩

]
+ E

[
α1⟨∇f(x1), δ1/

√
v̂1⟩
]

≥E

[
t∑

i=2

⟨∇f(θi), δi(αi/
√

v̂i − αi−1/
√
v̂i−1)⟩

]
− 2H2E

 d∑
j=1

(α1/
√

v̂1)j

 (29)
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where the last equation is because given θi, v̂i−1, E
[
δi(1/

√
v̂i−1)|θi, v̂i−1

]
= 0 and ∥δi∥ ≤ 2H

Further, we have

E

[
t∑

i=2

⟨∇f(θi), δt(αi/
√

v̂i − αi−1/
√
v̂i−1)⟩

]

=E

 t∑
i=2

d∑
j=1

(∇f(θi))j(δt)j(αi/(
√
v̂i)j − αi−1/(

√
v̂i−1)j)


≥− E

 t∑
i=2

d∑
j=1

|(∇f(θi))j | |(δt)j |
∣∣∣(αi/(

√
v̂i)j − αi−1/(

√
v̂i−1)j)

∣∣∣


≥− 2H2E

 t∑
i=2

d∑
j=1

∣∣∣(αi/(
√
v̂i)j − αi−1/(

√
v̂i−1)j)

∣∣∣
 (30)

Substitute (29) and (30) into (28), we then get

− E

[
t∑

i=1

αi⟨∇f(θi), gi/
√

v̂i⟩

]

≤2H2E

 t∑
i=2

d∑
j=1

∣∣∣(αi/(
√

v̂i)j − αi−1/(
√

v̂i−1)j)
∣∣∣
+ 2H2E

 d∑
j=1

(α1/
√

v̂1)j


− E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)/
√

v̂i⟩

]
(31)

Then, consider the term with µ. Suppose the optimizer runs for a long time, the bias of EMA is
small (Zhuang et al., 2020), thus E(It) approaches E(gt) as step increases. In other words, we can
bound it the same way as the term with κ.
After all these bounds, we finally get

T2 ≤
L2

2
E

[
t∑

i=2

∥∥∥∥ β1

1− β1
αi−1mi−1/

√
v̂i−1

∥∥∥∥2
]
+

1

2
E

[
t∑

i=2

∥αihi/
√

v̂i∥2
]

+ 2(κ+ µ)H2E

 t∑
i=2

d∑
j=1

∣∣∣(αi/(
√
v̂i)j − αi−1/(

√
v̂i−1)j)

∣∣∣


+ 2(κ+ µ)H2E

 d∑
j=1

(α1/
√
v̂1)j

− (κ+ µ)E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)/
√
v̂i⟩

]

Lemma C.14. Suppose the conditions in theorem C.2 holds, then we have

E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)/
√

v̂i⟩

]

≤E

[
C1

t∑
i=1

∥∥∥∥αtht√
v̂t

∥∥∥∥2 + C2

t∑
i=2

∥∥∥∥∥αi−1mi−1√
v̂i−1

∥∥∥∥∥
2

+ C3

t∑
i=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
1

+ C4

t−1∑
i=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
2 ]

+ C5

where C1, C2, C3, C4 and C5 are independent of the step.
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Proof. Combine lemma C.12 and lemma C.13, we get

E [f(zt+1)− f(z1)]

≤H2 β1

1− β1
E

 t∑
i=1

d∑
j=1

∣∣∣∣
(

αi√
v̂i
− αi−1√

v̂i−1

)
j

∣∣∣∣


+

(
β1

1− β1

)2

LH2E

 t∑
i=2

d∑
j=1

(
αt√
v̂i
− αi−1√

v̂i−1

)2

j


+ E

[
t∑

i=1

L
∥∥∥αihi/

√
v̂i

∥∥∥2]

+
L2

2
E

[
t∑

i=2

∥∥∥∥ β1

1− β1
αi−1mi−1/

√
v̂i−1

∥∥∥∥2
]
+

1

2
E

[
t∑

i=2

∥αihi/
√

v̂i∥2
]

+ 2(κ+ µ)H2E

 t∑
i=2

d∑
j=1

∣∣∣∣∣∣
(

αi√
v̂i
− αi−1√

v̂i−1

)
j

∣∣∣∣∣∣


+ 2(κ+ µ)H2E

 d∑
j=1

(α1/
√
v̂1)j

− (κ+ µ)E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)/
√

v̂i⟩

]

By merging similar terms in above inequality and noticing that κ+ µ > 0, we get

E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)/
√

v̂i⟩

]

≤
(
2H2 +

β1H
2

(1− β1)(κ+ µ)

)
E

 t∑
i=1

d∑
j=1

∣∣∣∣
(

αi√
v̂i
− αi−1√

v̂i−1

)
j

∣∣∣∣


+

(
β1

1− β1

)2
LH2

κ+ µ
E

 t∑
i=2

d∑
j=1

(
αt√
v̂i
− αi−1√

v̂i−1

)2

j


+

(
2L+ 1

2(κ+ µ)

)
E

[
t∑

i=2

∥αihi√
v̂i
∥2
]
+

L2

2(κ+ µ)

(
β1

1− β1

)2

E

 t∑
i=2

∥∥∥∥∥αi−1mi−1√
v̂i−1

∥∥∥∥∥
2


+ 2H2E

 d∑
j=1

(α1/
√
v̂1)j

+
1

κ+ µ
E [f(z1)− f(zt+1)]

=E

[
C1

t∑
i=1

∥∥∥∥αtht√
v̂t

∥∥∥∥2 + C2

t∑
i=2

∥∥∥∥∥αi−1mi−1√
v̂i−1

∥∥∥∥∥
2

+ C3

t∑
i=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
1

+ C4

t−1∑
i=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
2 ]

+ C5 (32)

Theorem C.15. (Convergence of ADMETAR for non-convex optimization)
Under the assumptions:

• ∇f exits and is Lipschitz-continuous,i.e, ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y; f is also lower
bounded.

• At step t, the algorithm can access a bounded noisy gradient gt, and the true gradient∇f is also
bounded.
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• The noisy gradient is unbiased, and has independent noise, i.e. gt = ∇f(θt) + δt,E[δt] = 0 and
δi⊥δj ,∀i ̸= j.

Assume minj∈[d](v1)j ≥ c > 0 and αt = α/
√
t, then for any T we have:

mint∈[T ] E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 ≤ 1√

T
(Q1 +Q2logT )

where Q1 and Q2 are constants independent of T.

Proof. We bound non-constant terms in RHS of (32), which is given by

E

[
C1

T∑
t=1

∥∥∥∥αtht√
v̂t

∥∥∥∥2 + C2

t∑
i=2

∥∥∥∥∥αi−1mi−1√
v̂i−1

∥∥∥∥∥
2

+ C3

T∑
t=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
1

+C4

T−1∑
t=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
2 ]

+ C5

• Bound the term with C1.
Note that minj∈[d] (

√
v̂1)j ≥ minj∈[d]|(h1)j | ≥ c > 0, thus we have

E

[
T∑

t=1

∥∥∥∥αtht√
v̂t

∥∥∥∥2
]

≤E

[
T∑

t=1

∥∥∥∥αtht

c

∥∥∥∥2
]
= E

[
T∑

t=1

∥∥∥∥αht

c
√
t

∥∥∥∥2
]
= E

[
T∑

t=1

(
α

c
√
t

)2

∥ht∥2
]

≤H2α2

c2

T∑
t=1

1

t
≤ H2α2

c2
(1 + log T )

where the first inequality is due to (v̂t)j ≥ (v̂t−1)j , and the last inequality is due to
∑T

t=1
1
t ≤

1 + log T .
• Bound the term with C2.
Apply the same proof as above, we get

t∑
i=2

∥∥∥∥∥αi−1mi−1√
v̂i−1

∥∥∥∥∥
2

≤ H2α2

c2
(1 + log T )

• Bound the term with C3.

E

[
T∑

t=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
1

]
= E

 d∑
j=1

T∑
t=2

(
αt−1

(
√
v̂t−1)j

− αt

(
√
v̂t)j

)
=E

 d∑
j=1

(
α1

(
√
v̂1)j

− αT

(
√
v̂T )j

) ≤ E

 d∑
j=1

α1

(
√
v̂1)j

 ≤ dα

c
(33)

where the first equality is due to(v̂t)j ≥ (v̂t−1)j and αt ≤ αt−1, and the second equality is due to
telescope sum.
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• Bound the term with C4.

E

T−1∑
t=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
2


=E

T−1∑
t=2

d∑
j=1

(
αt√
v̂t
− αt−1√

v̂t−1

)2

i


≤E

T−1∑
t=2

d∑
j=1

α

c

∣∣∣∣∣ αt√
v̂t
− αt−1√

v̂t−1

∣∣∣∣∣
i


≤dα2

c2

where the first inequality is due to |(αt/
√
v̂t − αt−1/

√
v̂t−1)j | ≤ 1/c.

Then we have for ADMETAR,

E

[
C1

T∑
t=1

∥∥∥∥αtht√
v̂t

∥∥∥∥2 + C2

t∑
i=2

∥∥∥∥∥αi−1mi−1√
v̂i−1

∥∥∥∥∥
2

+ C3

T∑
t=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
1

(34)

+C4

T−1∑
t=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
2 ]

+ C5 (35)

≤C1
H2α2

c2
(1 + log T ) + C2

H2α2

c2
(1 + log T ) + C3

dα

c
+ C4

dα2

c2
+ C5 (36)

Furthermore, due to ∥gt∥ ≤ H , we have (v̂t)j ≤ H2, then we get

α/(
√

v̂t)j ≥
1

H
√
t

Thus we have

E

[
T∑

t=1

αi⟨∇f(θt),∇f(θt)/
√

v̂t⟩

]
≥ E

[
T∑

t=1

1

H
√
t
∥∇f(θt)∥2

]
≥
√
T

H
min
t∈[T ]

E
[
∥∇f(θt)∥2

]
(37)

Combine (36) and (37), we have

min
t∈[T ]

E
[
∥∇f(θt)∥2

]
≤ H√

T

(
(C1 + C2)

H2α2

c2
(1 + log T ) + C3

dα

c
+ C4

dα2

c2
+ C5

)
=

1√
T

(Q1 +Q2 log T )

This completes the proof.

C.4 CONVERGENCE ANALYSIS OF ADMETAS FOR CONVEX OPTIMIZATION

Lemma C.16 (Bound for
∑T

t=1 αt∥mt∥2). Under Assumption in Theorem 3, we have

T∑
t=1

αt∥mt∥2 ≤ 2αdG2
∞
√
T
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Proof. First, we bound ∥mt∥.

∥mt∥2 ≤ d∥mt∥2∞ ≤ dG2
∞ (38)

Now we can bound
∑T

t=1 αt∥mt∥2

T∑
t=1

αt∥mt∥2 ≤ dG2
∞

T∑
t=1

αt = αdG2
∞

T∑
t=1

1√
t
≤ 2αdG2

∞
√
T

Theorem C.17. (Convergence of ADMETAS for convex optimization)
Let {θt} be the sequence obtained by ADMETAS, 0 ≤ λ, β < 1, αt = α√

t
,

∀t ∈ [T ]. Suppose x ∈ F , where F ⊂ Rd and has bounded diameter D∞, i.e.
||θt − θ||∞ ≤ D∞,∀t ∈ [T ].. Assume f(θ) is a convex function and ||gt||∞ is
bounded. Denote the optimal point as θ. For θt generated, ADMETAS achieves the regret:

R(T ) =
T∑

t=1

[ft(θt)− ft(θ)] = O(
√
T )

Proof. • Bound for
∑T

t=1⟨mt, θt − θ⟩.
From the update process, we get

∥θt+1 − θ∥2 = ∥θt − θ − αtmt∥2 = ∥θt − θ∥2 − 2αt⟨mt, θt − θ⟩+ α2
t ∥mt∥2

thus we have
T∑

t=1

⟨mt, θt − θ⟩ =
T∑

t=1

1

2αt

(
∥θt − θ∥2 − ∥θt+1 − θ∥2

)
+

T∑
i=1

αt

2
∥mt∥2

consider the left-hand side
T∑

t=1

1

2αt

(
∥θt − θ∥2 − ∥θt+1 − θ∥2

)
=

1

2α1
∥θ1 − θ∥2 +

T∑
t=2

(
1

2αt
− 1

2αt−1

)
∥θt − θ∥2 − 1

2αT
∥θT+1 − θ∥2

≤dD2
∞

2α1
+ dD2

∞

T∑
t=2

(
1

2αt
− 1

2αt−1

)
+ 0 =

dD2
∞

2αT

Finally,we get

T∑
t=1

⟨mt, θt − θ⟩ ≤ dD2
∞

2αT
+

T∑
i=1

αt

2
∥mt∥2

• Bound for
∑T

t=1⟨mt−1, θt−1 − θt⟩.
T∑

t=1

⟨mt−1, θt−1 − θt⟩ =
T−1∑
t=1

⟨mt, θt − θt+1⟩

=

T−1∑
t=1

⟨mt, αtmt⟩

=

T−1∑
t=1

αt∥mt∥2
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• Bound for ⟨mT , θT − θ⟩.

⟨mT , θT − θ⟩ ≤ αT ∥mT ∥2 +
1

4αT
∥θT − θ∥2

≤ αT ∥mT ∥2 +
dD2

∞
4αT

where the first inequality follows from Young’s inequality.

Combine all these preparations, we obtain
T∑

t=1

⟨ht, θt − θ⟩ = 1

1− β

(
⟨mT , θT − θ⟩ − ⟨m0, θ0 − θ⟩

)
+ ⟨m0, θ0 − θ⟩

+

T−1∑
t=1

⟨mt, θt − θ⟩+ β

1− β

T∑
t=1

⟨mt−1, θt−1 − θt⟩

=
β

1− β
⟨mT , θT − θ⟩+ β

1− β

T∑
t=1

⟨mt−1, θt−1 − θt⟩+
T∑

t=1

⟨mt, θt − θ⟩

≤ β

1− β

(
dD∞

4αT
+

T∑
t=1

αt∥mt∥2
)

+
dD2

∞
2αT

+

T∑
i=1

αt

2
∥mt∥2

≤
(

β

1− β
+ 2

)
dD∞

4αT
+

(
2αβ

1− β
+ α

)
dG2

∞
√
T

This proves that
∑T

t=1⟨ht, θt − θ⟩ = O(
√
T ). Suppose the optimizer runs for a long time, the

bias of EMA is small (Zhuang et al., 2020), thus E(It) approaches E(gt) as step increases. Since
ht = κgt + µIt, ht is the same order as gt when the time is long enough, thus we have

T∑
t=1

⟨gt, θt − θ⟩ = O(
√
T ) (39)

In addition, due to the convexity of f(.), we have

R(T ) =

T∑
t=1

ft(θt)− ft(x) ≤
T∑

t=1

⟨gt, θt − θ⟩

Combined with (39), we complete the proof.

C.5 CONVERGENCE ANALYSIS OF ADMETAS FOR NON-CONVEX OPTIMIZATION

Lemma C.18. Set θ0 ≜ θ1 in Algorithm, and define zt as

zt = θt +
β

1− β
(θt − θt−1), ∀t ≥ 1. (40)

Then the following holds

zt+1 − zt =−
β

1− β
(αt − αt−1)mt−1 − αtht

Proof. By the update rule of ADMETAS, we have

θt+1 − θt = −αtmt = −αt[βmt−1 + (1− β)ht]

= β
αt

αt−1
(θt − θt−1)− αt(1− β)ht

= β(θt − θt−1) + β

(
αt

αt−1
− 1

)
(θt − θt−1)− αt(1− β)ht

= β(θt − θt−1)− β(αt − αt−1)mt−1 − αt(1− β)ht (41)
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Since we also have

θt+1 − θt = (1− β)θt+1 + β(θt+1 − θt)− (1− β)θt

Combined with (41), we have

(1− β)θt+1 + β(θt+1 − θt) =(1− β)θt + β(θt − θt−1)

− β(αt − αt−1)mt−1 − αt(1− β)ht

Divide both sides by 1− β

θt+1 +
β

1− β
(θt+1 − θt) =θt +

β

1− β
(θt − θt−1)

− β

1− β
(αt − αt−1)mt−1 − αtht

Lemma C.19. Suppose that the conditions in Theorem C.4 hold, then

E [f(zt+1)− f(z1)] ≤
4∑

i=1

Ti,

where

T1 = −E

[
t∑

i=1

⟨∇f(zi),
β1

1− β1
(αi − αi−1)mi−1⟩

]

T2 = −E

[
t∑

i=1

αi⟨∇f(zi), hi⟩

]

T3 = E

[
t∑

i=1

L

∥∥∥∥ β

1− β
(αi − αi−1)mi−1

∥∥∥∥2
]

T4 = E

[
t∑

i=1

L ∥αihi∥2
]

Proof. By the Lipschitz smoothness of∇f ,

f(zt+1) ≤ f(zt) + ⟨∇f(zt), zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2 ,

Based on (C.18),we have

E[f(zt+1)− f(z1)] =E

[
t∑

i=1

f(zi+1)− f(zi)

]

≤E

[
t∑

i=1

⟨∇f(zi), zi+1 − zi⟩+
L

2
∥zi+1 − zi∥2

]

=− E

[
t∑

i=1

⟨∇f(zi),
β

1− β
(αi − αi−1)mi−1⟩

]

− E

[
t∑

i=1

αi⟨∇f(zi), hi⟩

]
+ E

[
t∑

i=1

L

2
∥zi+1 − zi∥2

]
Then, using inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 and combined with lemma C.18,

E

[
t∑

i=1

L

2
∥zi+1 − zi∥2

]
≤ T3 + T4
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Lemma C.20. In this part, we bound T1, T2, T3, T4

Proof. •Bound for T1

T1 ≤ E

[
t∑

i=1

∥∇f(zi)∥∥mi−1∥
β

1− β
|αi − αi−1|

]

≤ H2 β

1− β
E

[
t∑

i=1

|αi − αi−1|

]

≤ H2 β

1− β
α

where the second and last inequality is due to the monotone decreasing property of αi

•Bound for T3

T3 ≤
(

β

1− β

)2

LH2E

[
t∑

i=1

(αi − αi−1)
2

]

≤ 2α

(
β

1− β

)2

LH2E

[
t∑

i=1

|αi − αi−1|

]

≤ 2α2

(
β

1− β

)2

LH2

where the monotone decreasing property of αi is also used
•Bound for T4

T4 ≤ H2Lα2E

[
t∑

i=1

1

t

]
≤ H2Lα2(1 + logT )

where the second inequality is due to
∑t

i=1
1
t ≤ 1 + logT

•Bound for T2

T2 =− E

[
t∑

i=1

αi⟨∇f(θi), hi⟩

]

− E

[
t∑

i=1

⟨∇f(zi)−∇f(θi), hi⟩

]
(42)

The second term of (42) can be bounded as

− E

[
t∑

i=1

⟨∇f(zi)−∇f(θi), hi⟩

]

≤E

[
t∑

i=1

1

2
∥∇f(zi)−∇f(θi)∥2 +

1

2
∥αihi∥2

]

≤L2

2
E

[
t∑

i=1

∥ β

1− β
αi−1mi−1∥2

]
+

1

2
E

[
t∑

i=1

∥αihi∥2
]

≤α2H2L2

2

(
β

1− β

)2 t∑
i=1

1

t
+

α2H2

2

t∑
i=1

1

t

≤α2H2

2

[
L2

(
β

1− β

)2

+ 1

]
(1 + logT )
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where the second inequality is due to ∥∇f(zi)−∇f(θi)∥ ≤ L∥zi − θi∥.
Then, consider the first term of (42)

E

[
t∑

i=1

αi⟨∇f(θi), hi⟩

]

=E

[
t∑

i=1

αi⟨∇f(θi), κgi + µIi⟩

]

≈κE

[
t∑

i=1

αi⟨∇f(θi),∇f(θi) + δi⟩

]
+ µE

[
t∑

i=1

αi⟨∇f(θi),∇f(θi) + δi⟩

]

=(κ+ µ)E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)⟩

]

The second and third equality holds for the follow reasons: on the one hand, gt = ∇f(θt) + δt in
which E[δt] = 0, so according to (Chen et al., 2018), given θi, E[δi|θi] = 0; On the other hand,
suppose the optimizer runs for a long time, the bias of EMA is small (Zhuang et al., 2020), thus E(It)
approaches E(gt) as step increases. Finally, we can finally bound T2

T2 ≤
α2H2

2

[
L2

(
β

1− β

)2

+ 1

]
(1 + logT ) + (κ+ µ)E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)⟩

]

Theorem C.21. (Convergence of ADMETAS in non-convex stochastic optimization)
Under the assumptions:

• ∇f exits and is Lipschitz-continuous,i.e, ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y; f is also lower
bounded.

• At step t, the algorithm can access a bounded noisy gradient gt, and the true gradient∇f is also
bounded.

• The noisy gradient is unbiased, and has independent noise, i.e. gt = ∇f(θt) + δt,E[δt] = 0 and
δi⊥δj ,∀i ̸= j.

And αt = α/
√
t, then for any T we have:

mint∈[T ] E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 ≤ 1√

T
(Q

′

1 +Q
′

2logT )

where Q
′

1 and Q
′

2 are constants independent of T.

Proof. We combine lemma C.18, lemma C.19 and lemma C.20 to bound the overall expected descent
of the objective. First, we have

E [f(zt+1)− f(z1)] ≤T1 + T2 + T3 + T4 (43)

≤H2 β

1− β
α+

α2H2

2

[
L2

(
β

1− β

)2

+ 1

]
(1 + logT ) (44)

− (κ+ µ)E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)⟩

]
(45)

+ 2α2

(
β

1− β

)2

LH2 +H2Lα2(1 + logT ) (46)
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Notice that

E

[
T∑

t=1

αi⟨∇f(θt),∇f(θt)⟩

]
≥ E

[
T∑

t=1

1√
t
∥∇f(θt)∥2

]
≥
√
T min

t∈[T ]
E
[
∥∇f(θt)∥2

]
(47)

Rearrange (43), combined with (47) and notice that κ+ µ > 0, we have

min
t∈[T ]

E
[
∥∇f(θt)∥2

]
≤ 1√

T
E

[
T∑

t=1

αi⟨∇f(θt),∇f(θt)⟩

]

≤ 1√
T

[
1

κ+ µ

(
α2H2L2

2

(
β

1− β

)2

+
α2H2

2
+H2Lα2

)
(1 + logT )

+
1

κ+ µ

(
H2 β

1− β
α+ 2α2

(
β

1− β

)2

LH2 + E[f(z1)− f(z∗)]

)]

=
1√
T
(Q

′

1 +Q
′

2logT )

where z∗ is the optimal of f , i.e. z∗ = argmin
z

f(z)

This completes the proof.

C.6 CONVERGENCE ANALYSIS OF FORWARD-LOOKING

In this section, based on Wang et al. (2020), we further analysis forward-looking part to complete the
convergence proof of ADMETA optimizer.

According to (Zhang et al., 2019), Lookahead is an algorithm that can be combined with any standard
optimization method. The same is true for dynamic lookahead method in forward-looking part.
What’s more, optimizers with forward-looking is essentially processing with two loops as discussed
in the main text. The fast weight is updated by optimizers, while the slow weight is updated by
interpolating with fast weight every given period. In other words, the slow weight is updated passively.
Therefore, though the slow weight is relevant to optimizers, it is almost irrelevant to the selection of
optimizers. For this reason, we only prove the convergence of forward-looking of ADMETAS, which
can be easily extended to the ADMETAR.

Remarks:(some preliminaries)
Based on the design of the asymptotic dynamic weight ηt of the forward-looking part, it can be
concluded that when it runs for a long time, ηt is highly close to the set point, at which we can
safely assume that ηt is a constant and thus we denote it as η. In this way, the analysis of a dynamic
lookahead is the same as the case of static lookahead.

According to algorithm of ADMETA, the slow weight ϕt updates every k steps. We can assume that
the slow weight is trained in sync with fast weight. For this purpose, all we should do is to stipulate
ϕτk+l = ϕτk, where k denotes the synchronization period, τ ∈ N∗ and 0 ≤ l < k.

Define yt = ηθt + (1− η)θt, then according to the update of θt and ϕt, we have

yt+1 = yt − ηαtmt

and on each period of synchronization, we have

yτk − θτk = (1− η)(ϕτk − θτk) = 0

yτk − ϕτk = η(θτk − ϕτk) = 0

Theorem C.22. (convergence of forward-looking part)
Suppose f(.) is L-smooth, i.e, ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y. The bias of noisy gradient is
bounded, i.e., |δt| ≤ σ, where δt = ∇f(θt)− gt. Then we have that:

1

T

T∑
t=0

E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 ≤ O( 1√

T
)

33



Under review as a conference paper at ICLR 2023

Proof. Following the L-smooth property, we have

f(yt+1)− f(yt) ≤ −ηαt⟨∇f(yt),mt⟩+
η2α2

tL

2
∥mt∥2 (48)

Taking the expectation of both sides,

E[⟨∇f(yt),mt⟩] = E[⟨∇f(yt), κgt + µIt⟩] = κE[⟨∇f(yt), gt⟩] + µE[⟨∇f(yt), It⟩] (49)

Consider the term with κ,

E[⟨∇f(yt), gt⟩] = ⟨∇f(yt),∇f(θt)⟩

=
1

2
[∥∇f(yt)∥2 + ∥∇f(θt)∥2 − ∥∇f(yt)−∇f(θt)∥2]

≥1

2
[∥∇f(yt)∥2 + ∥∇f(θt)∥2 − L2∥yt − θt∥2]

=
1

2
[∥∇f(yt)∥2 + ∥∇f(θt)∥2 − (1− η)2L2∥ϕt − θt∥2] (50)

Suppose the optimizer runs for a long time, the bias of EMA is small enough, thus E(It) approaches
E(gt). For this reason, we can estimate the term with µ in (49) the same way as (50).

Based on the bounded bias gradient assumption and inequality that (a+ b)2 ≤ 2a2 + 2b2, we have:

E[∥mt∥2] ≤ 2µ2E[∥It∥2]∥+ 2κ2E[∥gt∥2]∥ ≤ 4(µ2 + κ2)E∥∇f(θt)∥2 + 4(µ2 + κ2)σ2 (51)

Combined with (48), (49), (50) and (51), rearrange the inequality and take the expectation

E[f(yt+1)] ≤E[f(yt)]−
ηαt(µ+ κ)

2
E[∥∇f(yt)∥2]−

ηαt(µ+ κ)

2
E[∥∇f(θt)∥2]

+
ηαt(1− η)2L2(µ+ κ)

2
E[∥ϕt − θt∥2] + 2(µ2 + κ2)η2α2

tLE[∥∇f(θt)∥2]

+ 2(µ2 + κ2)η2α2
tLσ

2

Since the learning rate is decreasing to zero, we can safely assume that after several iterations,
1− ηαtL > 0. Then, summing over one outer loop

E[f(y(τ+1)k)]− E[f(yτk)]

≤−
ηα(τ+1)k(µ+ κ)

2

k−1∑
l=0

E[∥∇f(yτk+l)∥2] + 2(µ2 + κ2)kη2α2
τkLσ

2

−
ηα(τ+1)k(µ+ κ− 4(µ2 + κ2)ηα(τ+1)kL)

2

k−1∑
l=0

E[∥∇f(θτk+l)∥2]

+
ηατk(1− η)2L2(µ+ κ)

2

k−1∑
l=0

E[∥ϕτk+l − θτk+l∥2] (52)
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Consider the last term of (52), we have

E[∥ϕτk+l − θτk+l∥2] = E[∥θτk − θτk+l∥2] ≤ α2
τkE

∥ l−1∑
j=0

mτk+j∥2


=2κ2α2
τkE

∥ l−1∑
j=0

gτk+j∥2
+ 2µ2α2

τkE

∥ l−1∑
j=0

Iτk+j∥2


≤4κ2α2
τkE


∥∥∥∥∥∥
l−1∑
j=0

(gτk+j −∇f(θτk+j))

∥∥∥∥∥∥
2
+ 4κ2α2

τkE


∥∥∥∥∥∥
l−1∑
j=0

∇f(θτk+j)

∥∥∥∥∥∥
2


+ 4µ2α2
τkE


∥∥∥∥∥∥
l−1∑
j=0

(Iτk+j −∇f(θτk+j))

∥∥∥∥∥∥
2
+ 4µ2α2

τkE


∥∥∥∥∥∥
l−1∑
j=0

∇f(θτk+j)

∥∥∥∥∥∥
2


≤4(κ2 + µ2)σ2lα2
τk + 4(µ2 + κ2)α2

τkE


∥∥∥∥∥∥
l−1∑
j=0

∇f(θτk+j)

∥∥∥∥∥∥
2


≤4(κ2 + µ2)σ2lα2
τk + 4(µ2 + κ2)lα2

τk

l−1∑
j=0

E[∥∇f(θτk+j)∥2]

where the first equality using the property that θτk = ϕτk = ϕτk+l.

Summing from l = 0 to l = k − 1, we get,

k−1∑
l=0

E[∥ϕτk+l − θτk+l∥2]

≤2(κ2 + µ2)σ2α2
τkk(k − 1) + 4(µ2 + κ2)α2

τk

k−1∑
l=0

l

l−1∑
j=0

E[∥∇f(θτk+j)∥2]

=2(κ2 + µ2)σ2α2
τkk(k − 1) + 4(µ2 + κ2)α2

τk

k−2∑
j=0

E[∥∇f(θτk+j)∥2]
k−1∑

l=j+1

l

=2(κ2 + µ2)σ2α2
τkk(k − 1) + 2(µ2 + κ2)α2

τk

k−2∑
j=0

E[∥∇f(θτk+j)∥2](j + k)(k − j − 1)

(j + k)(k − j − 1) achieves its maximal value when j = 0. Therefore, we have

k−1∑
l=0

E[∥ϕτk+l − θτk+l∥2]

≤2(κ2 + µ2)σ2α2
τkk(k − 1) + 2(µ2 + κ2)α2

τkk(k − 1)

k−2∑
j=0

E[∥∇f(θτk+j)∥2]

Here, we can finally bound the the last term of (52)

E[f(y(τ+1)k)]− E[f(yτk)]

≤−
ηα(τ+1)k(µ+ κ)

2

k−1∑
l=0

E[∥∇f(yτk+l)∥2] +G+M

k−1∑
l=0

E[∥∇f(θτk+l)∥2]

≤−
ηα(τ+1)k(µ+ κ)

2

k−1∑
l=0

E[∥∇f(yτk+l)∥2] +G (53)
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where
G = 2(µ2 + κ2)kη2α2

τkLσ
2 + (κ2 + µ2)(κ+ µ)η(1− η)2L2σ2k(k − 1)α3

τk

and

M =−
ηα(τ+1)k(µ+ κ− 4(µ2 + κ2)ηα(τ+1)kL)

2

+ (κ2 + µ2)(κ+ µ)η(1− η)2L2σ2k(k − 1)α3
τk

When α is small enough, M is below zero, for which the second inequality of (53) holds.

Summing from τ = 0 to τ = Υ− 1, we get
E[f(yΥk)]− E[f(y0)]

≤− η(µ+ κ)

2

Υ−1∑
τ=0

α(τ+1)k

k−1∑
l=0

E[∥∇f(yτk+l)∥2] + 2(µ2 + κ2)kη2Lσ2
Υ−1∑
τ=0

α2
τk

+ (κ2 + µ2)(κ+ µ)η(1− η)2L2σ2k(k − 1)

Υ−1∑
τ=0

α3
τk

Following Wang et al. (2020), we first assume the learning rate α as a fixed constant, then rearrange
the inequality above, we get

1

Υk

Υ−1∑
τ=0

k−1∑
l=0

E[∥∇f(yτk+l)∥2] ≤
2[f(y0)− finf ]

ηαΥk(µ+ κ)
+

4(µ2 + κ2)ηαLσ2

µ+ κ

+ 2(κ2 + µ2)(1− η)2α2L2σ2(k − 1)

Define T as Υk and set the learning rate α to 1/
√
T

1

T

T−1∑
t=0

E[∥∇f(yt)∥2] ≤
2[f(y0)− finf ]

η
√
T (µ+ κ)

+
4(µ2 + κ2)ηLσ2

(µ+ κ)
√
T

+
2(κ2 + µ2)(1− η)2L2σ2(k − 1)

T

=O( 1√
T
)

D ANALYSIS OF CONVERGENCE RATE

For convex situation, we adopt the regret function to estimate the convergence rate. And for non-
convex situation, we adopt the minimum of the expectation of the squared gradient to estimate
the convergence, which are corresponding to the proof of convergence since the process of the
convergence proof is actually the process of finding the convergence rate.

From Table 6, we notice that the convergence rates for all optimizers for convex case are of magnitude
of O(1/

√
T ) and for non-convex are of O(logT/

√
T ) , which means in essence, algorithms based

on gradient decent follows a similar rate constraint. However, the convergence speed of different
optimizers may attribute to many other factors, such as on the implementation. Therefore additional
statistical experiments are needed for analysis, as we did in Table 4.

E EXPERIMENTAL DETAILS

E.1 HYPERPARAMETER TUNING

For ADMETA optimizer, we first determined a rough value range for learning rate and lambda with
the toy model according to the visualization as in Figure B. While for other baseline optimizers, we
refer to the recommended/default hyperparameter settings in the original paper. In this way, we get
the rouge range of the hyperparameter in optimizers. Then, we search the hyperparameters in the
adjacent interval, which is listed in the following three subsections.
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Table 6: The comparison of convergence rate of several optimizers.

Case Optim Source Convergence rate (a rough estimation)

Convex

SGD Zinkevich (2003)
D2

∞
2αT

+
G2

∞
2

∑T
t=1 αt

AMSGrad Reddi et al. (2019)
D2

∞
√

T

α(1−β1)

∑d
i=1 v̂1

T,i/2 + D∞
2(1−β1)

∑T
t=1

∑d
i=1

βv̂1
t,i/2

αt

+ α
√

1+logT

(1−β1)2(1−γ)
√

1−β2

∑d
i=1 ∥g1:T,i∥
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Table 7: Optimizer hyperparameter settings on the CIFAR task.

Model task SGD SGDM Adam RAdam Ranger AdaBelief ADMETAR ADMETAS
LR LR LR LR LR LR LR λ LR β

ResNet-110 CIFAR-10 0.1 0.1 0.001 0.01 0.01 0.001 0.05 0.1 0.05 0.2
CIFAR-100 0.1 0.1 0.001 0.01 0.01 0.01 0.05 0.05 0.05 0.1

PyramidNet CIFAR-10 0.1 0.1 0.001 0.01 0.01 0.001 0.01 0.1 0.05 0.4
CIFAR-100 0.5 0.5 0.001 0.01 0.01 0.001 0.01 0.1 0.05 0.1

E.2 IMAGE CLASSIFICATION

We conduct image classification experiments on CIFAR-10 and CIFAR-100 datasets, which are
trained on a single NVIDIA RTX-3090 GPU. Typical architectures like ResNet-110 and PyramidNet
are employed as the baseline models. In the ResNet-110 architecture, there are 54 stacked identical
3× 3 convolutional layers with 54 two-layer Residual Units (He et al., 2016).

While in the PyramidNet architecture, there are 110 layers with a widening factor of 48 (Han et al.,
2017). We set the training batch size to 128 and the validation batch size to 256. Both model is
trained with 160 epochs. Milestone schedule is adopted as the learning rate decay strategy, with
learning rate decaying at the end of 80-th and 120-th epochs by 0.1.

We report the hyperparameters tuning for our proposed ADMETA and other optimizers for reproduction
of our experiments. For all optimizers, the weight decay is fixed as 1e− 4. The searching scheme of
hyperparameter settings for each optimizer is concluded as follows:

• For SGD and SGDM, the momentum is fixed as 0.9, and the best-performing learning rate
is searched from {0.01, 0.05, 0.1} and recommended values in original paper. For our AD-
METAS, the λ is set to fixed 0.9 and we search the best-performing β from {0.1, 0.2, 0.3, 0.4}
and learning rate from {0.01, 0.05, 0.1}.

• For all adaptive learning rate optimizers, hyperparameters β1, β2 and ϵ are set to β1 = 0.9,
β2 = 0.999 and ϵ = 1e-9 respectively. For Adam, RAdam and AdaBelief optimizer, the
learning rate is searched from {0.1, 0.01, 0.001}. For Ranger, η and k are set to η = 0.5 and
k = 6 according to Wright (2019). The learning rate is searched from {0.1, 0.01, 0.001}.
And for our ADMETAR, the setting of k is the same as Ranger, and we search λ from
{0.05, 0.1, 0.2, 0.3, 0.4} and learning rate from {0.1, 0.05, 0.01}.

The resulting hyperparameters reported in the paper are shown in Table 7, where LR is the abbrevia-
tion of learning rate.
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Table 8: Optimizer hyperparameter settings on the GLUE benchmark.

Model Optim MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE

LR λ LR λ LR λ LR λ LR λ LR λ LR λ LR λ

BERTbase

AdamW 2e-5 − 3e-5 − 3e-5 − 2e-5 − 5e-5 − 5e-5 − 4e-5 − 6e-5 −
RAdam 2e-5 − 2e-5 − 6e-5 − 4e-5 − 1e-4 − 4e-4 − 1.5e-4 − 5e-4 −
Ranger 5e-5 − 5e-5 − 1e-4 − 8e-5 − 2e-4 − 5e-4 − 4e-4 − 1e-3 −
AdaBelief 5e-4 − 5e-4 − 5e-4 − 8e-4 − 4e-4 − 6e-4 − 5e-4 − 6e-4 −
ADMETAR 1.5e-4 0.08 1e-4 0.36 2e-4 0.03 1e-4 0.03 7e-4 0.02 1e-3 0.08 1.2e-3 0.3 1.8e-3 0.36

BERTlarge

AdamW 2e-5 − 2e-5 − 2e-5 − 2e-5 − 6e-5 − 5e-5 − 4e-5 − 2e-5 −
RAdam 2e-5 − 2e-5 − 5e-5 − 4e-5 − 1e-4 − 2e-4 − 8e-5 − 5e-4 −
Ranger 5e-5 − 5e-5 − 5e-5 − 6e-5 − 6e-5 − 5e-4 − 5e-4 − 5e-4 −
AdaBelief 2e-4 − 4e-4 − 5e-4 − 2e-4 − 6e-4 − 2e-4 − 4e-4 − 8e-4 −
ADMETAR 1.5e-4 0.08 8e-5 0.2 8e-5 0.03 9e-5 0.3 7e-4 0.02 1e-3 0.03 6e-4 0.08 8e-4 0.1

Table 9: Hyperparameter settings of SQuAD v1.1 and v2.0 development sets.

Model Optim SQuAD v1.1 SQuAD v2.0 NER-CoNLL03

LR λ LR λ LR λ

BERTbase

AdamW 5e-5 − 5e-5 − 6e-5 −
RAdam 1e-4 − 5e-5 − 5e-5 −
Ranger 1e-4 − 8e-5 − 1e-4 −
AdaBelief 1e-3 − 8e-4 − 5e-4 −
ADMETAR 4e-4 0.05 3e-4 0.2 2e-4 0.3

BERTlarge

AdamW 2e-5 − 5e-5 − 2e-5 −
RAdam 6e-5 − 5e-5 − 3e-5 −
Ranger 1e-4 − 8e-5 − 5e-5 −
AdaBelief 8e-4 − 8e-4 − 4e-4 −
ADMETAR 4e-4 0.05 3e-4 0.2 1.5e-4 0.2

E.3 NATURAL LANGUAGE UNDERSTANDING

In the NLU experiments, we employ a pre-trained language model BERT (Devlin et al., 2018) as our
backbone. There are two model sizes for BERT: BERTbase and BERTlarge, where the base model size
has 12 Transformer layers with 768 hidden size, 12 self-attention heads and 110M model parameters
and the large model size has 24 Transformer layers with 1024 hidden size, 16 self-attention heads
and 340M parameters.

In natural language understanding, we perform experiments on three modeling types of tasks: text
classification, machine reading comprehension and token classification. The text classification uses
the GLUE benchmark as the evaluation data set, the machine reading comprehension uses SQuAD
v1.1 and v2.0, and the token classification uses the NER-CoNLL03 named entity recognition data set.

We train the eight tasks in GLUE benchmark for 3 epochs on a single NVIDIA RTX-3090 GPU,
except for MRPC, which is trained for 5 epochs due to its relatively small data size. The maximum
sequence length is set to 128 and the training batch size is set to 32. SQuAD v1.1 and SQuAD v2.0
are trained for 2 epochs with two GPUs. The maximum sequence length is set to 384 and the training
batch size per device is set to 12. And NER-CoNLL03 is trained for for 3 epochs on a single GPU.
The training batch size per device is set to 8.

Because of the pre-training-fine-tuning paradigm, we only employ the adaptive learning rate optimizer.
We set β1, β2, ϵ and weight decay of these optimizers to 0.9, 0.999, 1e-8 and 0.0 respectively. η and
k are set to 0.5 and 6 in the Ranger optimizer and ADMETA uses the same value of k as Ranger. We
perform hyperparameter tuning on the learning rate and λ, and the resulting hyperparameters reported
in the paper are shown in Table 8 and 9.

E.4 AUDIO CLASSIFICATION

Based on Wav2vec (Schneider et al., 2019), the Wav2vec 2.0 (Baevski et al., 2020) is a framework
for self-supervised learning of speech representations which is composed of 3 modules: feature
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Table 10: Hyperparameter settings of SUPERB and Common Language.

Optim SUPERB Common Language

LR λ LR λ

AdamW 3e-5 − 3e-4 −
AdaBelief 8e-4 − 2e-3 −
Ranger 3e-4 − 5e-4 −
RAdam 8e-5 − 5e-4 −
ADMETAR 5e-4 0.05 2e-3 0.2

encoder, contextualized representations and quantization module. In the feature encoder, there are 7
blocks with temporal convolutions that have 512 channels for each block and a relative positional
embeddings of the convolutional layer modeling has kernel size of 128 and 16 groups.

Among the configurations of Wav2vec 2.0, we choose Wav2vec 2.0base model, which has 12 Trans-
former blocks, 95M parameters and 8 attention heads, with model dimension of 768 and inner
dimension (FFN) of 3072. We finetune Wav2vec 2.0base for keyword spotting and language identifica-
tion on SUPERB dataset (Yang et al., 2021) and Common Language (Sinisetty et al., 2021) dataset
respectively. The dataset size of keyword spotting is smaller than that of language identification, so
we use a single NVIDIA RTX-3090 GPU for training on the SUPERB dataset, and use four GPUs
for parallel training on the Common Language dataset. The keyword spotting model is trained for
5 epochs with training batch size 32 and language identification model for 10 epochs with training
batch size 8 per device.

Due to the same reason as in NLU experiments, i.e. the pre-training-fine-tuning paradigm, we only
employ adaptive learning rate optimizers here. For all optimizers chosen, we fix β1 = 0.9, β2 =
0.999, ϵ = 1e − 8 and set weight decay to 0.0. The learning rate is searched from {5e-5, 8e-5,
1e-4, 3e-4, 5e-4, 8e-4}, and for ADMETAR, λ is searched from {0.05, 0.1 0.2}. The resulting
hyperparameters reported in the paper are shown in Table 10.

F FUTURE WORK

In the future work, for backward-looking part, though DEMA provides a more flexible way to deal
with past gradients, it is still unable to intelligently judge the value of certain historical gradient
information, such as discarding some obviously unreasonable gradients caused by noise. A better
optimizer may have the ability to forget these wrong information and take advantage of what works,
just working like human brains. For forward-looking part, our method takes the constant coefficient
into a dynamic one. It is kind of like milestone scheme of learning rate decay strategies to some
extent. However, several experiments (Huang et al., 2017; Ma, 2020) have shown that cosine
strategy (Loshchilov & Hutter, 2016) works better. Therefore, we will follow the cosine scheme and
propose a new forward-looking strategy that may work even better.

G PERFORMANCE OF SGDM AND ADMETAS ON FINETUNE SETTING

In this section, we test the performance of SGDM and ADMETAS on fintune setting and the results
are shown in Table 11. For keyword spotting (SUPERB) (Yang et al., 2021) task, we train the
models for 5 epochs and use Wav2vecbase (Schneider et al., 2019) as the baseline model. And for
CIFAR-10 (Krizhevsky et al., 2009) task, we train the model for 40 epochs from the checkpoint
already trained with Adam using learning rate of 0.001 for 160 epochs. The baseline model of
CIFAR-10 is ResNet-110 (He et al., 2016) with deep CNN architecture. We report the results of best
hyperparameter settings for SGD and ADMETAS via grid searching.

From Table 11, we notice that in SUPERB task, compared to adaptive learning rate methods, SGDM
achieves worse results in SUPERB task, but not by much, which shows that SGDM can also be used
in finetune setting. While ADMETAS can achieve better result than any other learning rate methods
used in our experiment, demonstrating the advantage of our approach. This phenomenon contradicts
the mainstream view that SGD family is not suitable for finetune task. While for CIFAR-10 task,
SGDM and ADMETAS both improve the performance compared to the start point. However, they
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Table 11: Performance of SGDM and ADMETAS on finetune setting.

Optimizer SUPERB CIFAR-10
SGDM 98.25 91.71
ADMETAS 98.54 91.87

Table 12: Performance of SGD family optimizers in CIFAR task.

Optim CIFAR-10 CIFAR-100
ADMETAS 94.12 73.74

SGDM 93.68 72.07
SGDM (lr=0.5) 93.65 73.48

are both obviously worse than the performance of training the task from scratch using SGDM and
ADMETAS respectively, which shows that pre-training is a very strong approach that makes the model
achieve a good state.

The reason why ADMETAS performs better than SGDM in finetune setting may lie in two aspects.
On the one hand, DEMA scheme in the backward-looking part reduces the overshoot problem that
may do harm especially near convergence. On the other hand, the forward-looking part improves the
stability of the training process.

H INFLUENCE OF DIFFERENT LEARNING RATES IN SGD FAMILY OPTIMIZERS

Since the learning rate of 0.5 for SGDM is a recommended value in Han et al. (2017) but not in
(He et al., 2016), to alleviate the influence of different learning rates, we also try the performance of
SGDM with a learning rate of 0.5 in the ResNet-110 network and the results are listed in Table 12.

The results show that choosing a large learning rate for SGDM may increase the performance, as
shown that when setting the learning rate to 0.5 instead of 0.1, the recommended value in ResNet-110.
However, this is not always true since the performance on CIFAR-10 when using the learning rate of
0.5 does not get prompted.
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