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ABSTRACT

We present a noise guided trajectory based system identification method for infer-
ring the dynamical structure from observation generated by stochastic differential
equations. Our method can handle various kinds of noise, including the case when
the components of the noise are correlated. Our method can also learn both the
noise level and drift term together from trajectory. We present various numerical
tests for showcasing the superior performance of our learning algorithm.

1 INTRODUCTION

Stochastic Differential Equation (SDE) is a fundamental modeling tool in various science and en-
gineering fields Evans (2013); Särkkä” & Solin (2019). Compared with traditional deterministic
models which often fall short in capturing the stochasticity in the nature, the significance of SDE lies
in the ability to model complex systems influenced by random perturbations. Hence, SDE provides
insights into the behavior of such systems under uncertainty. By incorporating a random compo-
nent, typically through a Brownian motion, SDE provides a more realistic and flexible framework
for simulating and predicting the behavior of these complex and dynamic systems.

We consider the models following the SDE of the following form, dxt = f(xt)dt+ dwt, where the
state vector xt ∈ Rd, the drift term f : Rd → Rd, and the stochastic noise wt is a Brownian motion
with covariance matrix D(x) which also depends on the state. In the field of mathematical finance,
there are several SDE models that are widely used, for example, Black-Scholes Model Black &
Scholes (1973) in option pricing, Vasicek Model Vasicek (1977) for analyzing interest rate dynamic
and Heston Model Heston (2015) for volatility studies. Apart from the field of finance, SDE has
its application in physics Coffey et al. (2004); Ebeling et al. (2008) and biology Székely & Burrage
(2014); Dingli & Pacheco (2011) where SDE is used to study evolution of particles subjected to
random forces and modeling physical and biological systems.

The calibration of these models is crucial for their effective application in areas like derivative pric-
ing and asset allocation in finance, as well as in the analysis of particle systems in quantum mechan-
ics and the study of biological system behaviors in biology. This requires the use of diverse statistical
and mathematical techniques to ensure the models’ outputs align with empirical data, thereby en-
hancing their predictive and explanatory power. Since these SDE models have explicit function form
of both drift and diffusion terms, the calibration or estimation of parameters is mostly done by min-
imizing the least square error between observation and model prediction Mrázek & Pospı́šil (2017);
Abu-Mostafa (2001). SDE has also been studied for more general cases where the drift term does
not have an explicit form where it satisfies f = f(xt, θ) with θ being a vector a unknown parame-
ters. These models can be estimated with the maximum likelihood estimator approach presented in
Phillips (1972). The other approach is to obtain the likelihood function by Radon Nikodym deriva-
tive over the whole observation {xt}Tt=0. Inspired by theorem 7.4 in Särkkä” & Solin (2019) and
the Girsanov theorem, we derive a likelihood function that incorporates state-dependent correlated
noise. By utilizing such likelihood function, we are able to capture the essential structure of f from
data with complex noise structure.

The remainder of the paper is structured as follows, section 2 outlines the framework we use to learn
the drift term and the noise level (if not state dependent), we demonstrates the effectiveness of our
learning by testing it on various cases summarized in section 4 and additional examples presented
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in Appendix B, we conclude our paper in section 5 with a few pointers for ongoing and future
developments.

2 LEARNING FRAMEWORK

We consider the following SDE

dxt = f(xt)dt+ dwt, xt,wt ∈ Rd, (1)

where f : Rd → Rd is a drift term, and w represents the Brownian noise with a symmetric positive
definite covariance matrix D = D(x) : Rd → Rd×d.

We consider the scenario when we are given continuous observation data in the form of
{xt, dxt}t∈[0,T ] for x0 ∼ µ0. We will find the minimizer to the following loss function

EH(f̃) = Ex0∈µ0

[ 1

2T

∫ T

t=0

(
< f̃(xt),D

−1(xt)f̃(xt) > dt− 2 < f̃(xt),D
−1(xt)dxt >

)]
,

(2)
for f̃ ∈ H; the function space H is designed to be convex and compact and it is also data-driven.
This loss functional is derived from the Girsanov theorem as well as inspiration from Theorem 7.4
from Särkkä” & Solin (2019). In the case of uncorrelated noise, i.e. D(x) = σ2(x)I, where I is the
d × d identity matrix and σ : Rd → R+ is a scalar function depends on the state, representing the
noise level, 2 can be simplified to

ESim
H (f̃) = Ex0∈µ0

[ 1

2T

( ∫ T

t=0

||f̃(xt)||2

σ2(xt)
dt− 2

< f̃(xt), dxt >

σ2(xt)

)]
. (3)

Moreover, we provide three different performance measures of our estimated drift. First, if we have
access to original drift function f , then we will use the following error to compute the difference
between f̂ (our estimator) to f with the following norm

||f − f̂ ||2L2(ρ) =
1

T

∫
x∈Ω

||f(x)− f̂(x)||2ℓ2(Rd) dρ(x). (4)

Here the weighted measure ρ is defined on Ω, where it defines the region of x explored due to the
dynamics defined by equation 1; therefore ρ is given as follows

ρ(x) = Ex0∼µ0

[ 1
T

∫ T

t=0

δxt
(x)

]
, where xt evolves from x0 by equation 1. (5)

The norm given by equation 4 is useful only from the theoretical perspective, i.e. showing conver-
gence. In real life situation, f is most likely non-accessible. Hence we will look at a performance
measure that compare the difference between X(f ,x0, T ) = {xt}t∈[0,T ] (the observed trajectory
evolves from x0 ∼ µ0 with the unknown f ) and X̂(f̂ ,x0, T ) = {x̂t}t∈[0,T ] (the estimated trajec-
tory evolves from the same x0 with the learned f̂ and the same random noise as used by the original
dynamics). Then, the difference between the two trajectories is measured as follows

||X− X̂|| = Ex0∼µ0

[ 1
T

∫ T

t=0

||xt − x̂t||2ℓ2(Rd) dt
]
. (6)

However, comparing two sets of trajectories (even with the same initial condition) on the same
random noise is not realistic. We compare the distribution of the trajectories over different initial
conditions and all possible noise at some chosen time snapshots using the Wasserstein distance.

3 COMPARISON TO OTHERS

When the noise level becomes a constant, i.e. σ(x) = σ > 0, we end up a much simpler loss

ESimpler
H (f̃) = Ex0∈µ0

[ 1

2Tσ2

( ∫ T

t=0

||f̃(xt)||2 dt− 2 < f̃(xt), dxt >
)]
,
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which has been investigated in Lu et al. (2022). System identification of the drift term has been stud-
ied in many different scenarios, e.g. identification by enforcing sparsity such as SINDy Brunton et al.
(2016), neural network based methods such as NeuralODE Chen et al. (2018) and PINN Raissi et al.
(2019), regression based Cucker & Smale (2002), and high-dimensional reduction framework Lu
et al. (2019). The uniqueness of our method is that we incorporate the covariance matrix into the
learning and hence improving the estimation especially when the noise is correlated.

4 EXAMPLES

In this section, we demonstrate the application of our trajectory-based method for estimating drift
functions, showcasing a variety of examples. We explore drift functions ranging from polynomials
in one and two dimensions to combinations of polynomials and trigonometric functions, as well as a
deep learning approach in one dimension. The observations, serving as the input dataset for testing
our method, are generated by the Euler-Maruyama scheme, utilizing the drift functions as we just
mentioned. The basis space H is constructed employing either B-spline or piecewise polynomial
methods for maximum degree p-max equals 2. For higher order dimensions where d ≥ 2, each
basis function is derived through a tensor grid product, utilizing one-dimensional basis defined by
knots that segment the domain in each dimension.

The parameters for the following examples are listed in table 1. Due to space constraints, additional
examples are provided in appendix B. The estimation results are evaluated using several different
metrics. We record the noise terms, dwt, from the trajectory generation process and compare the
trajectories produced by the estimated drift functions, f̂ , under identical noise conditions. We ex-
amine trajectory-wise errors using equation 6 with relative trajectory error and plot both f and f̂
to calculate the relative L2 error using 4, where ρ is derived by 5. Additionally, we assess the
distribution-wise discrepancies between observed and estimated results, computing the Wasserstein
distance at various time steps.

Table 1: Parameters Setup for Examples

Simulation Scheme Euler-Maruyama
T 1 D (d = 1) 0.6
dt 0.001 D (d = 2)

(
0.6 0
0 0.8

)
x0 Uniform(0,10) M 10000

p-max 2 Basis Type B-Spline / PW-Polynomial

4.1 EXAMPLE: SINE/COSINE DRIFT

We initiate our numerical study with a one-dimensional (d = 1) drift function that incorporates both
polynomial and trigonometric components, given by f = 2 + 0.08x− 0.05 sin(x) + 0.02 cos2(x).

Figure 1 illustrates the comparison between the true drift function f and the estimated drift func-
tion f̂ , alongside a comparison of trajectories. Notably, Figure 1(a) on the left includes a back-
ground region depicting the histogram of xt, which represents the distribution of observations over
the domain of x. This visualization reveals that in regions where x has a higher density of ob-
servations—indicated by higher histogram values—the estimation of f̂ tends to be more accurate.
Conversely, in less dense regions of the dataset (two ends of the domain), the estimation accuracy
of f̂ diminishes. Table 2 presents a detailed quantitative analysis of the estimation results, including
the L2 norm difference between f and f̂ , as well as the trajectory error. Furthermore, the table
compares the distributional distances between xt and x̂t at selected time steps, with the Wasserstein
distance results included.

4.2 EXAMPLE: DEEP NEURAL NETWORKS

We continue our numerical investigation with a one-dimensional (d = 1) drift function which is
given by f = 0.08x. Figure 2 illustrates the comparison between the true drift function f and the
estimated drift function f̂ , alongside a comparison of trajectories. Recall the setup of figures are

3



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Figure 1: Left: Comparison of f and f̂ . Middle: 5 trajectories generated by f . Right: 5 trajectories
generated by f̂ with same noise.

Table 2: One-dimensional Drift Function Estimation Summary

Number of Basis 8 Wasserstein Distance
Maximum Degree 2 t = 0.25 0.0291

Relative L2(ρ) Error 0.007935 t = 0.50 0.0319
Relative Trajectory Error 0.0020239 ± 0.002046 t = 1.00 0.0403

similar to the ones presented in previous section. The error for learning f turns out to be bigger,

Figure 2: Left: Comparison of f and f̂ . Middle: 5 trajectories generated by f . Right: 5 trajectories
generated by f̂ with same noise.

especially towards the two end points of the interval. However, the errors happen mostly during the
two end points of the data interval, where the distribution of the data appears to be small, i.e. few
data present in the learning. We are able to recover most the trajectory.

4.3 EXAMPLE: 2D WITH NON-DIAGONAL COVARIANCE MATRIX

In this example, we incorporate a non-diagonal covariance matrix into a 2 dimensional SDE system.
As specified in table 1, all parameters remain unchanged except for D and M . We change total
trajectory observation number M to 1000 for faster calculation and

D =

(
0.6 0.2
0.2 0.8

)
This change in D implies that the Brownian motions within the system are correlated. The drift
function is defined using the notation, f = [f1(x) f2(x)]

⊤ and x = [x1 x2]
⊤, where fi : R2 →

R and xi ∈ R for i ∈ {1, 2}. For polynomial drift function f , we set f1 = 0.4x1 − 0.1x1x2 and
f2 = −0.8x2 + 0.2x2

1. The estimation result can be found in figure 3a and 3b and table 3.
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Table 3: Two-dimensional Correlated Noise Drift Function Estimation Summary

Relative L2(ρ) Error 0.042944 Wasserstein Distance
Relative Trajectory Error 0.010166±0.01998 t = 1.00 0.2422

(a)

(b)

Figure 3: Two-dimensional Correlated Noise Comparison of f and f̂ . (a) Surface of Dimension 1
(b) Surface of Dimension 2

5 CONCLUSION

We have introduced a novel methodology for learning the drift and diffusion components through
a trajectory-based loss function guided by noise. This loss function is derived from the negative-
log ratio of likelihood functions, quantifying the ratio of probabilities of observing two stochastic
processes sharing the same initial starting point. Our approach accommodates various noise struc-
tures, provided that the covariance information is available. Even in cases where the noise structure
is unknown and the covariance is a scalar, our method remains effective through the utilization of
quadratic variation. However, ongoing research aims to explore scenarios where the noise exhibits
state dependence and matrix structure. Evaluation on high-dimensional drift terms and complex
noise structures is currently underway. Our loss function solely relies on observable data (trajecto-
ries) and accounts for potential correlated noise.
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A IMPLEMENTATION

In this section, we will discuss in details how the algorithm is implemented for our learning frame-
work presented in section 2. In real applications, continuous data is rarely obtainable, we will have
to deal with discrete observation data, i.e. {xm

l }L,M
l,m=1 with xm

0 being i.i.d sample from µ0, where
xm
l = x(m)(tl) and 0 = t1 < · · · < tL = T . We use a discretized version of 2,

EL,M,H(f̃) =
1

2TM

L−1,M∑
l,m=1

(
< f̃(xm

l ),D−1(xm
l )f̃(xm

l ) > (tl+1 − tl)

− 2 < f̃(xm
l ),D−1(xm

l )(xm
l+1 − xm

l ) >
)
,

(7)

for f̃ ∈ H. Moreover, we also assume that H is a finite-dimensional function space, i.e. dim(H) =

n < ∞. Then for any f̃ ∈ H, f̃(x) =
∑n

i=1 aiψi(x), where ai ∈ Rd is a constant vector
coefficient and ψi : Ω → R is a basis of H and the domain Ω is constructed by finding out the
min /max of the components of xt ∈ Rd for t ∈ [0, T ]. We consider two scenarios for constructing
ψi, one is to use pre-determined basis such as piecewise polynomials, Clamped B-spline, Fourier
basis, or a mixture of all of the aforementioned ones; the other is to use neural networks, where the
basis functions are also trained from data. Next, we can put the basis representation of f̃ back to
equation 7, we obtain the following loss based on the coefficients

EL,M,H({aη}ni=1) =
1

2TM

L−1,M∑
l,m=1

( n∑
i=1

n∑
j=1

< aiψi(x
m
l ),D−1(xm

l )ajψj(x
m
l ) > (tl+1 − tl)

− 2

n∑
i=1

< aiψi(x
m
l ), D−1(xm

l )(xm
l+1 − xm

l ) >
)
,

(8)
In the case of covariance matrix D being a diagonal matrix, i.e.

D(x) =


σ2
1(x) 0 · · · 0
0 σ2

2(x) · · · 0
...

...
. . .

...
0 0 · · · σ2

d(x)

 ∈ Rd×d, σi > 0, i = 1, · · · , d.

Then equation 8 can be re-written as

EL,M,H({aη}ni=1) =
1

2TM

L−1,M∑
l,m=1

( n∑
i=1

n∑
j=1

d∑
k=1

(ai)k(aj)k
σ2
k(x

m
l )

ψi(x
m
l )ψj(x

m
l )(tl+1 − tl)

− 2

n∑
i=1

d∑
k=1

(ai)k(x
m
l+1 − xm

l )k

σ2
k(x

m
l )

ψi(x
m
l )

)
,

Here (x)k is the kth component of any vector x ∈ Rd. We define αk = [(a1)k · · · (an)k]
⊤ ∈

Rn, and Ak ∈ Rn×n as

Ak(i, j) =
1

2TM

L−1,M∑
l,m=1

( n∑
i=1

n∑
j=1

(ai)k(aj)k
σ2
k(x

m
l )

ψi(x
m
l )ψj(x

m
l )(tl+1 − tl),

and bk ∈ Rn as

bk(i) =

n∑
i=1

(ai)k(x
m
l+1 − xm

l )k

σ2
k(x

m
l )

ψi(x
m
l )

)
.

Then equation 8 can be re-written as

EL,M,H({aη}ni=1) =

d∑
k=1

(α⊤
k Akαk − 2α⊤

k bk).
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Since each α⊤
k Akαk − 2α⊤

k bk is decoupled from each other, we just need to solve simultaneously

Akα̂k − bk = 0, k = 1, · · · , d.

Then we can obtain f̂(x) =
∑n

i=1 âiψk(x). However when D does not have a diagonal structure,
we will have to resolve to gradient descent methods to minimize equation 8 in order to find the
coefficients {ai}ni=1 for a total number of nd parameters. However, if a data-driven basis is desired,
then we set H to be the space neural networks with the same depth, same number of neurons and
same activation functions on the hidden layers. Furthermore, we find f̂ from minimizing equation 7
using any deep learning optimizer such as Stochastic Gradient Descent or Adam from well-known
deep learning packages.

B ADDITIONAL EXAMPLES

For d = 1, we also worked on polynomial drift function f = 2 + 0.08x − 0.01x2. The estimation
results are depicted in 4 and detailed in Table 4.

Figure 4: One-dimensional Polynomial Drift Comparison Summary

Table 4: One-dimensional Polynomial Drift Function Estimation Summary

Number of Basis 10 Wasserstein Distance
Maximum Degree 2 t = 0.25 0.0153

Relative L2(ρ) Error 0.0087649 t = 0.50 0.0154
Relative Trajectory Error 0.00199719 ± 0.00682781 t = 1.00 0.0278

For d = 2, we examine two types of drift function f : polynomial and trigonometric. Denote

f =

(
f1

f2

)
and x =

(
x1

x2

)
where fi : R2 → R and xi ∈ R for i ∈ {1, 2}.

For polynomial drift function f , we set

f1 = 0.4x1 − 0.1x1x2

f2 = −0.8x2 + 0.2x2
1.

Figure 5, Figure 6a, 6b and Table 5 shows evaluation of the polynomial drift function estimation
result.

For trigonometric drift function f , we set

f1 = 2 sin(0.2x1) + 1.5 cos(0.1x2)

f2 = 3 sin(0.3x1) cos(0.1x2).

Figure 7, Figure 8a, 8b and Table 6 shows evaluation of the trigonometric drift function estimation
result.

9
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Figure 5: Two-dimensional Polynomial Trajectory Comparison

(a)

(b)

Figure 6: Two-dimensional Polynomial Comparison of f and f̂ . (a) Surface of Dimension 1 (b)
Surface of Dimension 2
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Figure 7: Two-dimensional Trigonometric Trajectory Comparison

(a)

(b)

Figure 8: Two-dimensional Trigonometric Comparison of f and f̂ . (a) Surface of Dimension 1 (b)
Surface of Dimension 2
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Table 5: Two-dimensional Polynomial Drift Function Estimation Summary

Number of Basis 16 Wasserstein Distance
Maximum Degree 2 t = 0.25 0.2338

Relative L2(ρ) Error 0.0449609 t = 0.50 0.2431
Relative Trajectory Error 0.0100373 ± 0.0230949 t = 1.00 0.2256

Table 6: Two-dimensional Trigonometric Drift Function Estimation Summary

Number of Basis 36 Wasserstein Distance
Maximum Degree 2 t = 0.25 0.1011

Relative L2(ρ) Error 0.02734505 t = 0.50 0.1119
Relative Trajectory Error 0.0041613 ± 0.0079917 t = 1.00 0.1293
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