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Abstract

We present a simple, yet powerful data-augmentation technique to enable data-1

efficient learning from parametric experts. Whereas behavioral cloning refers to2

learning from samples of an expert, we focus here on what we refer to as the policy3

cloning setting which allows for offline queries of an expert or expert policy. This4

setting arises naturally in a number of problems, especially as a component of5

other algorithms. We achieve a very high level of data efficiency in transferring6

behavior from an expert to a student policy for high Degrees of Freedom (DoF)7

control problems using our augmented policy cloning (APC) approach, which8

combines conventional image-based data augmentation to build invariance to9

image perturbations with an expert-aware offline data augmentation approach that10

induces appropriate feedback-sensitivity in a region around expert trajectories. We11

show that our method increases data-efficiency of policy cloning, enabling transfer12

of complex high-DoF behaviors from just a few trajectories, and we also show13

benefits of our approach in the context of algorithms in which policy cloning is a14

constituent part.15

1 Introduction16

In various control and reinforcement learning settings, there is a need to transfer behavior from an17

expert policy to a student policy. Broadly, when only samples from the expert policy are available, the18

standard approach is to employ a version of regression from states to actions. This class of approaches19

for producing a policy is known as behavioral cloning [Pomerleau, 1989, Michie and Sammut, 1996].20

Behavioral cloning is quite flexible and supports the setting where the expert trajectories come from a21

human teleoperating the relevant system directly, as well as various settings where the trajectories are22

sampled from other controllers, which themselves may have been trained or scripted. However, for23

any of the settings where the expert policy is actually available, rather than just samples from the24

expert, it is reasonable to suspect that sampling random rollouts from the expert policy followed by25

performing behavioral cloning is not the optimally efficient approach for transferring behavior from26

the expert to the student. Once a trajectory has been sampled via an expert rollout, there is actually27

additional information available that can be ascertained in the neighborhood of the trajectory, without28

having to perform an additional rollout, via the local feedback properties of the expert.29

In this work, we refer to this setting, where we want to transfer from an expert policy to a student30

policy, while assuming the expert policy can be queried, as policy cloning. Naturally, there is still31

often an incentive to reduce the total number of rollouts, which may require actually collecting data32

in an unsafe or costly fashion, especially for real-world control problems. As such, there is an aim to33

characterize any efficiency that can be gained in learning from small numbers of rollouts without as34

much concern for how many offline queries are required of the expert policy. If one has primarily35

encountered behavioral cloning in the context of learning from human demonstrations, policy cloning,36
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with an available expert policy may seem contrived. However, policy cloning naturally arises in many37

settings. For example, we may have multiple experts that we wish to consolidate into a single neural38

network policy or there may be memory considerations that motivate compressing a large expert39

network into a smaller model with similar behavior. Perhaps most natural are settings in which an40

expert policy is costly or slow to execute, for example due to running a compute intensive procedure41

such as model predictive control (MPC) on specialized hardware (e.g. GPU); in such settings, the42

aim is to transfer expert behavior to a parametric student policy that amortizes the cost. DAGGER is43

one well known approach for efficiently transferring behavior from an expert to a student under these44

kinds of constraints [Ross et al., 2011]. In a separate setting, the expert may be suboptimal and the45

student needs to learn from expert while also being able to exceed the expert performance, perhaps46

by continuing to learn from a task via RL. This problem has been described as kickstarting in one47

incarnation [Schmitt et al., 2018], but also can arise when learning from behavioral priors [Tirumala48

et al., 2020], [Galashov et al., 2019], as also happens, for example, in Distral [Teh et al., 2017].49

To improve data-efficiency in supervised settings generally, including in behavioral cloning settings,50

it is reasonable to consider data augmentation. Data augmentation refers to applying perturbations to51

a finite training dataset to effectively amplify its diversity, usually in the hopes of producing a model52

that is invariant to the class of perturbations performed. For example, in the well studied problem53

of object classification from single images, it is known that applying many kinds of perturbation54

should not affect the object label, so a model can be trained with many input perturbations all yielding55

the same output [Shorten and Khoshgoftaar, 2019]. This setting is fairly representative, with data56

augmentation usually intended to make the model “robust" to nuisance perturbations of the input.57

This class of image-perturbation has also been recently demonstrated to be effective in the context of58

control problems in the offline RL setting [Yarats et al., 2021, Laskin et al., 2020].59

Critically, for control problems it is not the case that the action should be invariant to the input state.60

Or rather, while it does make sense for a control policy to be invariant to certain classes of sensor61

noise, an important class of robustness is that the policy is appropriately feedback-responsive. This is62

to say that for small perturbations of the state of the control system, the optimal action is different63

in precisely the way that the expert implicitly knows. This has been recognized and exploited in64

previous research that has distilled feedback-control plans into controllers [Mordatch and Todorov,65

2014, Mordatch et al., 2015, Merel et al., 2019]. A similar intuition also underlies schemes which66

inject noise into the expert during rollouts to sample more comprehensively the space of how the67

expert recovers from perturbations [Laskey et al., 2017, Merel et al., 2019].68

In this work, we leverage this insight to develop a highly efficient policy cloning approach that69

makes use of both classes of data augmentation. For a high-DoF control problem that operates only70

from state (humanoid run task from DeepMind control suite [Tunyasuvunakool et al., 2020]), we71

demonstrate the feasibility of policy cloning that employs state-based data augmentation with expert72

querying to transfer the feedback-sensitive behavior of the expert in a region around a small number73

of rollouts. Then on a more difficult high-DoF control problem that involves both state-derived and74

egocentric image observations (humanoid running through corrdiors task from DeepMind control75

suite [Tunyasuvunakool et al., 2020]), we combine the state-based expert-aware data augmentation76

with a separate image augmentation intended to induce invariance to image perturbations. Essentially77

our expert-aware data augmentation involves applying random perturbations to the state-derived78

observations, and training the student to match the expert-queried optimal action at each perturbed79

state, thereby gaining considerable knowledge from the expert without performing excessive rollouts80

simply to cover the state space around existing trajectories. Our approach compares favorably to81

sensible baselines, including the naive approach of attempting to perform behavioral cloning with82

state perturbations, which seeks to induce invariance (as proposed in [Laskin et al., 2020]) rather than83

feedback-sensitivity to state-derived observations.84

In the presentation that follows, we will describe the problem setting (Section 2) as well as our85

approach (Section 3), describe the domains we employ and present our initial experiments (Section 4),86

show that our augmented policy cloning approach works well when used as a component of other87

algorithms like DAGGER and kickstarting (Section 5), and finally close with a discussion (Section 6).88
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2 Problem description89

2.1 Expert-driven learning90

We start by introducing a notion of expert-driven learning that will be used throughout the paper.91

At first, we present a general form of the expert-driven objective and then introduce a few concrete92

examples. We consider a standard Reinforcement Learning (RL) problem. We present the domain as93

an MDP with continuous states for simplicity, however the problem definition is similar for a POMDP94

with observations derived from the state. Formally, we describe the MDP in terms of a continuous state95

space S ∈ Rn (for some n > 0), an action space A, transition dynamics p(s′|s, a) : S ×A → p(S),96

and a reward function r : S × A → R. Let Π be a set of parametric policies, i.e. of mappings97

πθ : S → p(A) from the state space S to the probability distributions over actions A, where θ ∈ Rm98

for some m > 0. For simplicity of the notation, we omit the parameter in front of the policy, i.e.99

π = πθ and optimizing over the set of policies would be equivalent to the optimizing over a set of100

parameters. A reinforcement learning problem consists in finding such a policy π that it maximizes101

the expected discounted future reward:102

J(π) = Ep(τ)

[∑
t

γtr(at|st)

]
, (1)

where p(τ) = p(s0)
∏
t p(at|st)p(st+1|st, at) is a trajectory distribution. We assume the existence103

of an expert policy πE(a|s). This policy could be used to simplify the learning of a new policy on the104

same problem. Formally, we construct a new learning objective which aims to maximize the expected105

reward of the problem in hand as well as to clone the expert policy:106

J(π, πE) = αJ(π)− λD(π, πE), (2)

where D is some measure of distance of π from πE and α ≥ 0, λ ≥ 0 are parameters measuring107

importance of both objectives. In most of the applications, α ∈ {0, 1} and λ ≥ 0 represents a relative108

importance of cloning an expert policy with respect to the RL objective.109

2.2 Behavioral cloning (BC)110

One important instance of the objective (2) with α = 0, λ = 1 is behavioral cloning. In this case, the111

measure of distance is defined as:112

DBC(π, πE) = −E(a,s)∈BE [log π(a|s)] (3)

Here, BE = {(si, ai), i = 1, . . . , N}, N > 0 is a fixed dataset containing expert data. Minimizing113

the objective (3) is be equivalent to maximizing the likelihood of the expert data under the policy π.114

The action in eqn. (3) can be replaced by πE(s) for deterministic policies or by the mean or the mode115

for stochastic policies (e.g., by the mean µE(s) for Gaussian policies πE(·|s) = N (µE(s), σE(s))).116

2.3 DAGGER117

Performance of Behavioral Cloning (BC) can be limited due to the fixed dataset, since the resulting118

policy may fail to generalize to states outside the training distribution. A different approach, known119

in the literature as DAGGER [Ross et al., 2011] was proposed to overcome this limitation. In this120

setting, the expert is queried in states visited by the student, thus reducing distribution shift. In our121

notation, this corresponds to α = 0, λ = 1 in eqn. (2) and the measure of distance is defined as:122

DDAGGER(π, πE) = −Epβ(τ)[log π(a′t|st)], (4)

where pβ(τ), β ∈ [0, 1] is a trajectory distribution where actions are sampled according to the mixture123

policy between a student and an expert:124

p(a|s) = βπ̃(a|s) + (1− β)πE(a|s), (5)

The action a′t in eqn. (4) is resampled from the expert policy for the state st, i.e., a′t ∼ πE(·|st).125

As in Section 2.2, for stochastic experts this action can be replaced by the mean or mode of the126

distribution in eqn. (4). The policy π̃(a|s) corresponds to a frozen version of student policy π so127

that the gradient ∇πDDAGGER(π, πE) is not taken with respect to p(a|s). Note that even though, in128

eqn. (4) we collect data from the environment, the setting nevertheless corresponds to pure imitation129

learning since expected reward is not directly maximized.130
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2.4 Kickstarting131

In eqn. (2), we combine both maximization of expected task reward and minimization of distance to132

the expert. In literature, it is known as Kickstarting [Schmitt et al., 2018]. In this case, in the objective133

from eqn. (2), α = 1, and λ ≥ 0. As the measure of distance, we use the cross-entropy from expert134

to a student, similarly to [Schmitt et al., 2018]:135

J(π, πE) = J(π)− λEp(τ)
[
−EπE(a|s) log π(a|s)

]
(6)

where p(τ) is a trajectory distribution, where actions are sampled according to the student policy136

π(·|s). Usually, in the Kickstarting setting, the expert is sub-optimal and the goal is to train a policy137

that eventually outperforms the expert. Thus, it is customary to reduce λ over the course of training.138

Yet, for simplicity, in our experiments we keep this coefficient fixed.139

3 Augmented policy cloning140

The previous section has demonstrated that the objective corresponding to the cloning behavior from141

the parametric expert policy could arise in multiple scenarios. In this section we propose a new and142

simple method which can significantly improve the data efficiency of the approaches described in143

Section 2. We explain the basic idea for BC, but its generalization to other expert-driven learning144

approaches described in Section 2 is straightforward. In Section 5 we show results for these problems.145

When optimizing the objective (3), for every state s ∈ DE from the expert trajectories dataset, we146

consider a small Gaussian state perturbation:147

δs ∼ N (0, σ2
s) (7)

which produces a new virtual state:148

s′ = s+ δs (8)
Then, for this state we query the expert and obtain a new action149

a′ ∼ πE(·|s+ δs) (9)

We then augment the dataset DE with these new pairs of virtual states and actions. More explicitly150

the idea can be expressed in terms of the following objective:151

D(π, πE)APC = E(a,s)∈BE [log π(a|s) + Eδs∼N (0,σ2
s),a

′∼πE(·|s+δs) log π(a′|s+ δs)] (10)

We call this approach Augmented Policy Cloning (APC) as it queries the expert policy to augment152

the training data. This approach is different from a naive data-augmentation technique, where a new153

state would be generated, but associated with the original action (and not a new one). It therefore154

allows to build policies which are feedback-responsive with respect to the expert. We formulate APC155

algorithm for BC in Algorithm 1.156

4 Core Results: Evaluation of Augmented Policy Cloning157

4.1 Domains158

To study how our method performs on complex control domains, we consider two complex, high-DoF159

continuous control tasks involving control of a physically simulated humanoid body. Both domains160

are implemented using the MuJoCo physics engine [Todorov et al., 2012] and are available in the161

dm_control repository [Tunyasuvunakool et al., 2020]. The first task is the standard control suite162

Run task, where the Humanoid body needs to run at a target speed and observations are based on163

proprioception. The second task is the Walls task which requires the same Humanoid body to run164

along a corridor and avoid walls, using both proprioception and egocentric vision as observations.165

Both of these problems are rather challenging insofar as they require stabilization and locomotion166

control of a relatively complex humanoid body with 21 actuated DoFs, in one case using vision to167

guide the movement. Note these environments are related to the domains that have been proposed168

for use in offline RL benchmarks [Gulcehre et al., 2020]; however, the experiments we perform in169

this work require availability of the expert policy, so we do not use offline data, but instead train170

new experts and perform experiments in the very low data regime. For more details, please refer to171

Section 1.1 in Supplementary Material.172
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Algorithm 1 Augmented Policy Cloning (APC)

Parametric student policy: πθ
Initial parameters: θ0
expert policy: πE
Dataset BE = {(si, ai), i = 1, . . . , N}, N > 0 of expert state-action pairs
State perturbation noise σs
Learning rate α
Number of augmented samples: M
Number of gradient updates: K
Size of a batch: L
for k=1,. . . ,K do

Sample a batch of pairs {(ai, si)}Li=1 ∼ BE
For each state si, sample M perturbations δsj ∼ N (0, σs), j = 1, . . . ,M
Construct M virtual states s′i,j = si + δsj , i = 1, . . . , L, j = 1, . . . ,M
Resample new actions from expert a′i,j ∼ πE(·|s′i,j)
For Gaussian experts, the action ai = µE(si) and the new actions are a′i,j = µE(s′i,j)
Compute the empirical negative log-likelihood:

L = −
[
log πθk(ai|si) + 1

M

∑M
j=1 log πθk(a′i,j |s′i,j)

]
Update the parameters θk+1 = θk − α∇θL

end for

For each task, we train expert policies to convergence using the MPO algorithm Abdolmaleki et al.173

[2018]. Since the expert policy essentially saturates task performance, for each task, we keep three174

partially trained experts such that we can assess the ability of the kickstarting approach to outperform175

sub-optimal experts. We refer to the different experts as Low, achieving approximatively 25 % of the176

optimal policy reward, Medium, achieving around 50 % of the performance and High, corresponding177

to the converged policy. Each expert is represented by a Gaussian policy. For more details, please178

refer to Section 1.2 in Supplementary Material.179

4.2 Applying Augmented Policy Cloning180

First, we evaluate the performance of APC in fitting a fixed dataset of expert trajectories. In order181

to study the data efficiency of the method, we construct datasets containing different numbers of182

expert trajectories. The expert policies are represented by conditionally Gaussian distributions,183

i.e. πE(·|s) = N (µE(s), σ(s)). Thus, to assess the robustness of our method to expert noise we184

produce trajectories using the experts’ mean but adding different levels of (homoscedastic) zero-mean185

Gaussian noise σE .186

a ∼ N (µE(s), σE)

Note that in addition to policy noise σE which is introduced when sampling trajectories, initial pose187

and environment layout (for the Walls task) are also sampled randomly for each episode. We consider188

4 levels of expert policy noise: Deterministic, which uses the Gaussian mean for the action, Low,189

with σE = 0.2, Medium σE = 0.5 and High σE = 1.0.190

For the APC method, we rely on Algorithm 1. For baselines, we consider BC algorithm from eqn. (3)191

as well as a simple modification of BC, where we apply, similar to APC, state perturbations as in192

eqn. (7) and eqn. (8), but we do not produce a new action from the expert. We call this approach193

Naive Augmented Behavior Cloning (Naive ABC) which essentially corresponds to robustification194

of the student policies with respect to state perturbation and is similar in spirit to standard data-195

augmentation approaches. For vision-based tasks, we consider random crop augmentations of size196

48x48 (downsampled from the input image of 64x64), similar to Laskin et al. [2020]. When the197

image augmentations are used we add "with image" to the method name. On top of that, we consider198

a variant, where only image augmentation is used, which we call Naive ABC (image only). For199

all methods, as an action in the objective from eqn. (3), we use an expert mean µE(s). We train200

all approaches to convergence (300K learning iterations on Walls and 13M learning iterations on201

Run). Each learning iteration corresponds applying gradients to 64 trajectories, each containing202

10 time steps. After each learning iteration, we evaluate the policy on both a validation set (50203

random instances of the environment) and a test set (150 random instances of the environments).204
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Figure 1: Behavioral cloning results on Run and Walls tasks (represented by rows). The X-axis
represents the number of trajectories, whereas the Y-axis corresponds to the episodic reward averaged
among 150 independent evaluations. The highest point of the bar corresponds to the mean, whereas
the dashed lines indicate the standard deviation. The pink dashed line indicate average expert
performance. The legend describes a method which is used. On the plot on the left depicts a standard
BC experiment, where dataset contains a specified number of full trajectories from the expert. The
plot on the right illustrates the experiment, where a dataset contains 1 full trajectories and the rest are
the short ones, containing only 200 timesteps each.

We apply early-stopping based on the validation set performance to select the best model and205

report corresponding performance on the test set. For more details, please refer to Section 1.3 in206

Supplementary Material. As an additional evaluation, we test robustness of the obtained policies to a207

fixed amount of noise during execution. For a learned student policy π(·|s) = N (µ(s), σ(s)), we208

evaluate it by executing an action:209

a ∼ N (µ(s), σ),

where σ is the fixed amount of student noise. We consider similar noise magnitudes as for the210

expert. For APC and Naive ABC, we sweep over state perturbation noise levels and choose the ones211

performing the best on the validation set. For APC, we use σs = 0.1 for Run and σs = 1.0 for Walls.212

For Naive ABC, we use σs = 0.001 for Run and σs = 0.01 for Walls. The ablation experiments213

over noise levels for APC and Naive ABC are presented in Section 2 of the Supplementary Material214

(Figure 1 and Figure 2).215

The first of results, in Figure 1 (left) demonstrates the increased data efficiency of APC over BC and216

Naive ABC in terms of number of trajectories. The noise level of the expert and student are fixed to217

Low for the ease of comparison. We also see that Naive ABC performs similarly to BC. To further218

push the limits of data efficiency, we conducted a variant where a dataset contains only 1 full trajectory219

(1000 timesteps for Run and around 2k timesteps for Walls) along with multiple short trajectories220

(200 time-step only). This dramatically reduces the amount of expert data available to learn from.221

However, we hypothesise that in the environments considered, much of the diversity of the trajectories222

arises due to initial state variation. This setting might arise in domains where execution is costly,223

such as robotics applications. In such setting we might have a few longer trajectories along with a224

patchwork of shorter trajectories covering more diverse parts of the state space. The results for this225

experiment are given in figure 1 (right). Again, we see that APC is significantly more efficient than226

BC and Naive ABC. Interesting to note that APC picks up quite a high performance after observing227
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10 (1 full and 9 short) trajectories for Run task and 100 (1 full and 99 short) trajectories for the Walls228

task. In Section 3 in Supplementary material, we provide additional results for Walls task when we229

use image-based perturbations.230

In the next experiment, in order to understand how robust our method to noise, we study the impact231

of different levels of student and expert noises on performance. For each run, we use a dataset of232

100 trajectories. The results are given in figure 2, where each column corresponds to a different233

level of expert noise, and the X-axis represents different levels of student noise. At first, we observe234

that APC is consistently more robust than BC and Naive ABC for any level of expert and student235

noise. On top of that, we can notice that for any fixed level of expert noise, the performance degrades236

when a student noise increases. Finally, we see that for higher noise levels of expert, the learned237

student performs better in the high noise regime. It is consistent with the intuition - training on noisy238

trajectories leads to a more robust policy. Overall, APC leads the most robust policy.239
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Figure 2: Noise sensitivity results. We consider 4 levels of noise for student and expert: Determin-
istic, which uses the Gaussian mean for the action, Low, is the noise σ = 0.2, Medium σ = 0.5 and
High σ = 1.0. Each column corresponds to a different level of expert noise. X-axis corresponds to
a different level of student noise. Y-axis corresponds to the episodic reward averaged among 150
independent evaluations. The highest point of the bar corresponds to the mean, whereas the dashed
lines indicate the standard deviation. The legend denotes a method and a row corresponds to a task.
The pink dashed line indicate average expert performance.

5 Additional Results: Augmented Policy Cloning as a subroutine240

5.1 DAGGER with data augmentation241
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Figure 3: DAGGER results. On the X-axis we report the number of environment steps. On the Y-axis
we report averaged across 3 seeds episodic reward achieved by the student. We report confidence
intervals in the shaded areas. For Run task, the confidence intervals are very small and are not visible.
In solid line we report the performance without using expert policy during the acting. In dashed line,
we report the performance of the policy which mixes 30% with the expert. All the methods use mean
action during evaluation.
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As described in Section 2.3, DAGGER [Ross et al., 2011] is a more sophisticated approach where242

data is collected from the real environment by executing a policy from eqn. (5), which is a mixture243

between a student and an expert. In this section we study how data augmentation approaches affect244

the data efficiency of the DAGGER algorithm.245

We consider similar baselines for both tasks as in the previous section. For an expert policy that has246

been pre-trained via MPO [Abdolmaleki et al., 2018], we perform online rollouts for two values of247

the expert-student mixing coefficient, β = 0 and β = 0.3 (see eqn. 5). Since both student and expert248

are Gaussian distributions, instead of using a log π in eqn. (4), we could use a state-conditional cross249

entropy from an expert to a student,H[πE(·|s)||π(·|s)]. Empirically, we found that it worked better250

than using log π. We demonstrate a comparison in Section 4 in Supplementary Material. We run251

the experiments in a data-restricted setup such that for every collected trajectory (10 time-steps), we252

apply 10 gradient steps, using a replay-buffer to store the past experience. Additional experimental253

details are given in Section 1.4 in Supplementary Material. Results are shown in Figure 3. We see254

that APC and its vision variant outperform BC and Naive ABC similarly to the behavior cloning255

experiments. While we observe that image augmentation can help, we see that the primary advantage256

comes from the state-based augmentation for APC. For the Run task, we observe that all DAGGER257

methods achieve slightly lower performance than an expert policy. We speculate that this is due to258

insufficient coverage of the state space during training.259

5.2 Kickstarting with data augmentation260
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Figure 4: Kickstarting results. On the X-axis we show the number of environment steps. On
the Y-axis we report averaged across 3 seeds episodic reward achieved by the student. We report
confidence intervals in the shaded areas. For Run task, the confidence intervals are very small and
are not visible. Each row indicates a task, whereas a column corresponds to the expert type. Dashed
black line shows the expert performance.

A similar in spirit approach is kickstarting Schmitt et al. [2018], where we solve an RL task as well261

as cloning the expert policy. Similarly to previous section, we apply APC in kickstarting on the262

cross entropy term in eqn. (6). We use 3 types of expert policy as described in Section 4.1. We run263

experiments using a distributed setup with 64 acting policies and 1 learner, querying the batches264

of trajectories (of size 10) from a replay buffer. On top of running BC methods, we also report the265

performance of MPO Abdolmaleki et al. [2018] learning from scratch on the task of interest. All266

details are given in Section 1.5 in Supplementary Material. The results are given in figure 4.267
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We observe that APC performs better than Naive ABC on Run task and similarly on Walls task. Both268

approaches perform better than BC and learning from scratch. We hypothesise that the reason of not269

seeing a consistent advantage could be due to two factors. As we are in a high-data regime, since270

there is no limit on relative acting / learning ratio, and acting policies are not restricted to collect271

trajectories, it is unclear whether data-augmentation should help. In addition, we use reward signal272

which makes the impact of expert cloning less important. Note that the resulting agent is less data273

efficient in these experiments; this is because we do not control the relative ratio between acting274

and learning (i.e., no rate-limiting on the learner, due to instability of kickstarting experiments when275

rate-limiting was explored). Furthermore, unlike in kickstarting Schmitt et al. [2018], we do not276

use an annealing schedule of λ to make the experiments simpler, but we still observe that a fixed277

coefficient helps to kickstart an experiment and outperform an expert policy. On top of that, we see278

that image-based augmentation have less of impact in this setting.279

6 Discussion280

Many expert-driven learning approaches actually have access to an expert that can be queried;281

however, this opportunity is rarely exploited fully. In this work we demonstrated a general scheme for282

more efficient transfer of expert behavior by augmenting expert trajectory data with virtual, perturbed283

states as well as the expert actions in these virtual states. This data augmentation technique is widely284

applicable and we demonstrated that it improves data efficiency when used in place of behavioral285

cloning both in the offline setting or when behavioral cloning is used as a step within DAGGER or286

kickstarting.287

Critically, data efficiency is generally very important in realistic applications, where new data288

acquisition cost could be high. In particular, settings involving deployment of policies in the real289

world, such as robotics applications, may benefit from an ability to efficiently transfer expert policy290

behavior from one neural network to another (for compression or execution speed reasons), or to291

combine behavior from multiple experts into a single neural network. While overall, we consider the292

present work to be fairly basic research with limited ethical impact, insofar as our approach decreases293

the amount of data which needs to be collected through processes which could potentially be unsafe294

or costly, there is a potential positive social value.295

The limitations of our approach consist in the reliance on the ability to query expert policy for the296

perturbed states which reduces the amount of applications where the method could be used. Another297

limitation is the reliance on the continuous state spaces. In discrete state spaces, it is unclear whether298

a small perturbation in state would result in a valid action from an expert.299

In future work, we plan to explore how our proposed augmentation technique can be leveraged in the300

context of KL-regularized RL with behavior priors.301
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