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Abstract

Predictive modeling often faces challenges due to limited data availability and1

quality, especially in domains where collected features are weakly correlated2

with outcomes and where additional data collection is constrained by ethical3

or practical difficulties. Traditional machine learning (ML) models struggle to4

incorporate unobserved yet critical factors. We propose a framework that leverages5

large language models (LLMs) to augment observed features with latent features,6

enhancing the predictive power of ML models in downstream tasks. Our novel7

approach transforms the latent feature mining task to a text-to-text propositional8

reasoning task. We validate our framework with a case study in the criminal justice9

system, a domain characterized by limited and ethically challenging data collection.10

Our results show that inferred latent features align well with ground truth labels and11

significantly enhance the downstream classifier. Our framework is generalizable12

across various domains with minimal domain-specific customization, ensuring easy13

transfer to other areas facing similar challenges in data availability.14

1 Introduction15

In numerous application domains, predicting individual outcomes and optimizing resource planning16

are critical but often limited by gaps in data availability and quality. Despite the popular belief that17

we operate in a “large data regime,” many decisions, especially those impacting human lives, have to18

be made based on small amounts of data with limited features, such as in criminal justice, healthcare,19

and social services (Lu et al., 2021; Yuan et al., 2023). This poses both technical limitations and20

ethical concerns. Traditional ML models, while powerful, are limited by the availability of collected21

(observed) data features. This limitation is especially prominent when it comes to incorporating22

unstructured data or inferring nuanced relationships between observed features and the outcomes. In23

this paper, we explore how domain-informed language models can help identify latent (unobserved)24

features and improve prediction accuracy for downstream tasks.25

We illustrate our motivation with an example from the criminal justice setting. Predicting an26

individual’s in-program revocation probability (chance of committing a new crime during probation)27

is critical for determining their eligibility for incarceration-diversion programs and for planning28

resources like staffing ratios (Rotter and Barber-Rioja, 2015; Li et al., 2024). Typically, the data29

collected includes only a limited set of features, e.g., basic demographic and criminal history30

information. Crucial factors such as socio-economic status, community support availability, or31

psychological profiles, which significantly influence outcomes, are often missing from these datasets.32

Collecting such sensitive information can be invasive and raises ethical concerns. Additionally, the33

process of gathering these data can be logistically challenging and resource-intensive. Human case34

managers in these settings often have the advantage of drawing on their professional experience35

and human intuition to infer these critical but unrecorded details from observed data. In contrast,36

traditional ML models cannot reason beyond the explicit data provided, leading to predictions based37

on incomplete information. This limitation not only undermines the accuracy of the models but also38
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poses concerns regarding the fairness of decisions derived from such data. Moreover, ML models are39

not designed to handle unstructured data like case notes, which may contain contextual insights to40

improve prediction accuracy.41

Recent advancements in large language models (LLMs) offer a promising avenue to bridge these data42

gaps (Brown et al., 2020; Ouyang et al., 2022; Achiam et al., 2023). LLMs are capable of processing43

and generating information in a way that mimics human reasoning, allowing for the inference of latent44

features that are not directly observable but are critical for accurate predictions and decision-making.45

They can also analyze both structured and unstructured data to offer a holistic view of the underlying46

factors influencing individual outcomes.47

Our proposed framework leverages LLMs to augment observed features collected in given datasets48

with latent features, enhancing the predictive power of ML models for downstream tasks such as49

classifications. Unlike conventional data augmentation approaches to increase the sample size, we50

train LLMs to infer underlying socio-economic conditions, treatment needs, and other critical but51

often unrecorded characteristics from collected features. This augments the feature space X to52

improve predictions. Additionally, our framework enables generating more complete and realistic53

synthetic data points via learned correlations between observed and unobserved features for simulation54

and counterfactual policy analysis. We summarize our main contributions as follows.55

1. We introduce a novel approach to formulate latent feature mining as text-to-text propositional56

logical reasoning. This approach effectively infers latent features from observed features, offering57

significantly improved accuracy and interpretability compared to alternative approaches.58

2. We develop a four-step framework to implement our approach, which is generalizable with59

minimal domain-specific customization and has remarkably low human-annotated training data60

requirements. This framework expands data utility by enhancing downstream predictions without61

additional invasive or forbidden data collection.62

3. We empirically validate our framework in the criminal justice setting to address weak observed63

features and unbalanced datasets. Designed as a plug-and-play solution, we demonstrate our64

framework’s adaptability through two different prediction tasks, making it valuable for various65

applications with similar challenges.66

2 Background and Related Works67

Data Augmentation and Latent Feature Extraction. Data augmentation is a technique commonly68

used in AI (Van Dyk and Meng, 2001). Generative models, such as Generative Adversarial Networks69

(GANs) and Variational Autoencoders (VAEs), learn data patterns and generate synthetic data to70

augment training sample size (Goodfellow et al., 2014; Kingma and Welling, 2013). Unlike these71

approaches, our framework leverages LLMs to augment the features of different individuals. Trained72

on crowd-sourced data rich in human behavior and societal context, LLMs have the potential to73

enhance feature spaces for social computing and operations improvement.74

Latent features are hidden characteristics in a dataset that are not directly observed but can be75

inferred from available data. Incorporating meaningful latent features can enhance the performance76

of downstream applications (Zhai and Peng, 2016; Jiang et al., 2023). Two common approaches to77

infer latent features are human annotation and machine learning models. Human annotation, while78

reliable, is often expensive and time-consuming. It requires significant effort and resources, making79

it impractical for large-scale tasks. Machine learning methods like Expectation-Maximization (EM)80

and VAEs offer alternative techniques to infer latent features from observed data. EM algorithms81

estimate latent variable assignments and update model parameters to maximize data likelihood, but82

their results can be hard to interpret and require strong parametric assumptions. Similarly, VAEs use83

probabilistic approaches to describe data distribution with latent variables, but the learned mappings84

can also be difficult to interpret.85

Synthetic Data for Training. Fine-tuning is a promising approach for LLMs to reduce hallucinations86

and align outputs with real-world data and human preferences (Tonmoy et al., 2024; Qiao et al.,87

2022; Hu et al., 2021). Synthetic data has proven to be an effective, low-cost alternative to real data88

to improve the LLMs’ reasoning performance across various domains (Liu et al., 2024). Studies89

by (Zelikman et al., 2022), (Wang et al., 2022) demonstrate that synthetic data improves model90

generalization and robustness. Our approach also uses synthetic data to augment training during91

fine-tuning. Unlike existing work that directly mimics observed features, we are one of the first92
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to formulate the generation of synthetic latent features as a reasoning task. Our approach employs93

few-shot prompting to create synthetic data that infers these latent features, followed by fine-tuning94

to enhance model accuracy and reduce hallucinations. This technique falls under the self-instruction95

paradigm, where models iteratively learn from augmented data.96

Note that we distinguish between augmenting the feature space and augmenting training data. Our97

primary goal is to augment the feature space by inferring and adding latent features to the observed98

data to improve downstream predictions. As part of the steps in our framework to achieve this99

goal, we augment training data for LLM fine-tuning with synthetic samples to improve the model’s100

reasoning capabilities.101

Incarceration-diversion Programs and Data Description. This work conducts case studies on102

incarceration-diversion programs, which aim to support individuals who have committed minor103

offenses by providing community-based services to improve societal reintegration and reduce re-104

cidivism. Eligible individuals were diverted from traditional incarceration to such programs after105

risk assessment and screening. Case managers determined specific program requirements, such as106

substance use treatment and cognitive-behavioral therapy. There are four types of program outcomes:107

Completed (successfully completed the program), Revoked (committed new crimes while in the108

program), Not Completed (unable to finish for various reasons), and Other (unrecorded reasons).109

We obtained de-identified data from our community partner for a state-wide incarceration-diversion110

program in Illinois. The consolidated dataset includes records of adult participants admitted to the111

program. The collected data features include timestamps such as the arrival and termination dates to112

the program, program outcomes, and individual features such as the race, gender, education, county,113

marriage status, housing, risk assessment scores, prior crime history, and sources of referral (e.g.,114

from probation officer or from the court). See Appendix F for summary statistics.115

3 The Problem Setting116

In this section we formally describe our problem setting that leverages latent features to enhance117

downstream tasks. The downstream task we focus on is a multi-class classification problem, but the118

framework can easily extend to other downstream prediction tasks such as regression problems.119

In a standard multi-class classification problem setting, suppose we have a dataset D =120

(x1, y1), (x2, y2), . . . , (xn, yn), where xi is a d-dimensional vector representing the input features121

X ∈ X and yi ∈ Y = {1, 2, . . . , C} denotes the corresponding class label Y for individual122

i = 1, . . . , n. The goal is to learn a classifier f : X → Y that accurately predicts the class labels.123

Consider the following scenarios in which f struggles to capture the relationship between X and Y :124

1. The size of the training dataset is small relative to the complexity of the classification task or the125

dimensionality of the feature space;126

2. When the input features X are weakly correlated with class labels Y , the input features may not127

provide discriminating information to accurately predict the corresponding class labels.128

To address these challenges, we could use additional informative features to enhance the classifier’s129

ability to capture the relationship between X and Y . Latent features can serve such a purpose.130

Definition of Latent Features.
Latent features, denoted as Z, represent underlying attributes that are
not directly observed within the dataset but are correlated with both the
observed features X and the class labels Y . We use a function g with
Z = g(X) to denote the correlations between the latent features and the
observed features X . As shown in figure 3, latent features Z are correlated
with X and Y . One can learn the latent features from the original features
X and augment the features f(X,Z) to learn the classifier Y .

In typical ML settings, latent features primarily reduce the dimensionality of the feature space.131

Beyond this, latent features can capture discriminative information not explicitly present in the original132

features. Our approach focuses on this latter benefit, extracting informative latent representations133

to help classifiers better differentiate between classes. Essentially, Z acts as ensemble features134

derived from the original features X , capturing complex patterns that individual features might miss,135

especially when X is weakly correlated with the outcome Y .136
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While this approach seems beneficial intuitively, it is important to note that adding more features is137

not always helpful if the extracted features are not meaningful and introduce noise. In the following138

lemma, we show in a simple logistic regression setting that while adding features can reduce in-sample139

loss, it does not always reduce out-of-sample loss if the added features are not informative. We use140

the log-loss (the cross-entropy loss) of the logistics regression for binary outcome Y ∈ {0, 1}. We141

denote the optimal coefficients that minimize the in-sample log-loss function as β∗ for the original142

features and β̃∗ for the augmented features.143

Lemma 1. The in-sample log-loss always follows Lin(D̃, β̃∗) ≤ Lin(D,β∗). When the added144

features are non-informative, there exist instances such that the out-of-sample log-loss Lout(D̃, β̃∗) >145

Lout(D,β∗).146

The results in the lemma can be generalized to multi-class labels. Since augmenting the feature space147

is not necessarily beneficial unless the added features are meaningful, a major part of our case study148

is to empirically test whether the extracted features from our framework indeed improve downstream149

prediction. If the added features significantly enhance downstream prediction accuracy, this provides150

strong evidence that the inferred latent features are meaningful.151

4 Latent Feature Mining with LLMs152

To overcome the limitations of existing approaches, we propose a new approach to efficiently and153

accurately extract latent features and augment observed features to enhance the prediction accuracy.154

At a high level, our approach transform the latent feature mining as a text-to-text propositional155

reasoning task, i.e., infer the relationship Z = g(X) through logical reasoning with natural language.156

Following the framework established in previous work (Zhang et al., 2022), we denote the predicates157

related to the observed features as P1, P2, . . . , Pm. Consider a propositional theory S that contains158

rules that connect P ’s to the latent feature Z. We say Z can be deduced from S if the logic implication159

(P1 ∧ P2 ∧ . . .∧ Pm) → Z is covered in S. For potentially complicated logical connections between160

P ’s and Z, we also introduce intermediate predicates O’s and formulate a logical chain (a sequence161

of logical implications) that connects X to the latent features Z as follows:162

X → (P1 ∧ P2 ∧ . . . ∧ Pm) → (O1 ∧O2 ∧ . . . ∧Oℓ) → Z. (1)

Our approach formulates this logical chain as a multi-stage Chain of Thoughts (CoT) prompt template,163

and then guide LLMs to infer Z from X using the prompt template. Specifically, we first extract164

predicates P ’s from X . Then we infer intermediate predicates with a rule (P1∧P2∧ . . .∧Pm) → Ol165

for l = 1, . . . , ℓ−1, and forward the intermediate predicates into the next stage to infer Ol+1. Finally,166

we infer latent features with (O1∧O2∧ . . .∧Oℓ) → Z. With the formulated multi-stage CoT prompt167

template, we generate synthetic data to fine-tune LLMs to enhance the logical reasoning ability of168

LLMs in self-instruct fashion (Wang et al., 2022), and ensure that the generate text is aligned with169

each step of our desired “chain of reasoning” format.170

Age:    28 Race:  White

Gender:   Male

Employment:  Part Time

Education:  Less than 10th grade

Admitting offense:  Property Offense

Primary Drug:  Marijuana 

Housing Level:  Rent 

Living Area:  High Crime area 

Assessed Risk Level:  High Risk 

Socioeconomic Status: Low

Challenges: 

Program Requirements: 

2. Substance Abuse Issue 
1. Financial Difficulty 

Social Relationship: 1. Education
Lack of long-term support 2. Substance Abuse Treatment

Marriage:   Single

3. Community Service

Figure 1: Example of latent feature mining through chain of reasoning

We use a hypothetical example from our case study setting to illustrate the formulation of the logic171

chain. The blue (leftmost) box in Figure 1 shows the observed feature X for one individual. Examples172

for the predicates P ’s formulated from X could be:173
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P1 :“the client has part-time job”, P2 : " the client hasn’t complete high school",174

P3 :“the client is single”, P4 : "the client has drug issue", P5 :" the client lives in175

high crime area", P6 : " the client is assessed with high risk" ...176

To infer the latent feature Z – in this example, the required programs to attend during probation – we177

go through a multi-stage reasoning to infer the intermediate predicates O’s; see the white (middle)178

boxes in Figure 1. One example logic that connects P ’s to O’s could be:179

P1 = "The client has unstable employment"180

P2 = "The highest education level of client is less than 10th grade"181

O1 = "The client has low socioeconomic status"182

If (P1 ∧ P2 → O1) ∈ S, then O1 is True.183

Finally, with P ’s and O’s, we can connect X with Z though the logic chains. One example of the184

logical chain is as follows:185

“The client is grappling with unstable employment and a relatively low educational186

level, factors that likely contribute to a low socioeconomic status. Additionally,187

being single, struggling with drug issues, and residing in a high-crime area further188

exacerbate the lack of positive social support. Given these circumstances, education189

could serve as a valuable intervention. Community service can be particularly190

beneficial for someone who is single and may lack a broad support network.191

Substance abuse treatment is crucial for individuals from lower socioeconomic192

backgrounds to aid in recovery from substance abuse. Hence we can choose193

education, substance abuse treatment, community service for this client.”194

Here, “unstable employment and a relatively low educational level” and “being single, struggling195

with drug issues, and residing in a high-crime area” are P ’s extracted from the features X , while196

“a low socioeconomic status” and “lack of positive social support” are O’s. Finally, the rationales197

“education could serve as a valuable intervention . . . recovery from substance abuse. Hence we198

can choose education, substance abuse treatment, community service for this client connect the199

intermediate predicates to the latent variables Z (program requirements) we want to infer, i.e.,200

Z1=‘education’, Z2=‘substance abuse treatment’, Z3=‘community service’.201

Observed Features

Latent Features

Step 1: Formulate Correlation

rationales

correlated

Step 2: Augment Synthetic Data

generate

Self-Instructed  
CoT Data

Human

Step 3. Finetune LLMs

LLMs

verify

Infer Latent Feature
from Observed Feature

Step 4:

Figure 2: Overview of latent feature inference framework.

Figure 2 illustrates the full process of of our proposed framework with four steps.202

(1) Formulate baseline rationales: The first step is to formulate baseline rationales, whic serve as203

guidelines for LLMs to infer latent features from observed ones. This involves two sub-steps:204

– The first sub-step is to develop some baseline rationales, i.e., identify observed features potentially205

correlated with latent features and formulate their relationships – the logic chain that connects X to Z.206

Sources to help formulate these baseline rationales include established correlations (e.g., risk score207

formulas), human input, and external information like socio-economic status in the neighborhood.208

– In the second sub-step, we craft prompts with interactive alignment. This is a critical component209

to establish correct reasoning steps for prompts used in Step 2 to generate synthetic rationales. We210
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involve human who are experienced in the domain to provide a prompt template for LLMs to generate211

rationales aligned with the baseline rationales, then test the prompt template on a few examples212

using zero-shot. If the LLM fails to certain example, we provide the ground truth back to the LLM,213

allowing it to revise the prompt template (Miao et al., 2023). This process iteratively refines the214

template until LLMs consistently generate the desired output for all selected examples.215

(2) Enlarge data with synthetic rationales for fine-tuning: We generate synthetic training data in216

self-instruct fashion (Wang et al., 2022). With a handful of examples of the baseline rationales as a217

reference, we then guide the LLMs via in-context learning to generate similar rationales to enlarge218

the training data samples. To ensure the quality and diversity of the generated dataset, we introduce219

human-in-the-loop interventions to filter out low-quality or invalid data based on heuristics. We220

also leverage automatic evaluation metrics for quality control, e.g., removing data that lack essential221

keywords.222

(3) Fine-tuning LLMs: To enhance the reasoning capabilities of the LLMs and better align their223

outputs in specific domains, we employ a fine-tuning process which utilizes the processed dataset224

from the previous step (Qiao et al., 2022). Fine-tuning not only boosts the accuracy and reliability of225

the LLMs, but also significantly improves their ability to reason with complex inputs, and reducing226

hallucination (Tonmoy et al., 2024).227

(4) Latent feature inference: The fine-tuned model is able to mirror the nuanced decision-making228

process of human experts. We use the fine-tuned model to identify latent features and feed them into229

downstream prediction tasks.230

Regarding the generalizability of our framework, Steps 2-4 rely primarily on the mechanics of231

LLMs, which naturally have a high degree of adaptability across different domains. Step 1, which232

involves the identification and formulation of baseline domain-specific rationales, requires more233

expert knowledge. To assist with Step 1, our interactive-alignment strategy can help craft effective234

prompts by allowing iterative refinement based on feedback, reducing the burden on domain experts.235

5 Experiments Setup236

In this section, we demonstrate the efficacy of our proposed framework on a unique dataset from237

a state-wide incarceration diversion program as described in Section 2. We design two sets of238

experiments to empirically investigate: (1) Can our approach accurately imitate the human thinking239

process to infer latent features? (2) Is our approach more effective than alternative techniques to infer240

latent features? (3) Does our approach enhance the performance of downstream prediction tasks?241

In the first experiment, we treat the risk level of individuals as a latent feature, despite it being collected242

in the dataset. This experiment examines whether the latent features Ẑ inferred by LLMs match well243

with the actual features Z. In the second experiment, we assume that the program requirements are244

latent features, which lack ground truth labels for most individuals (only a few dozen individuals245

have the program requirements recorded in the data). We first have LLMs deduce these requirements,246

then add them to the downstream prediction task of program outcomes Y ∼ f(X, Ẑ) and evaluate247

whether the prediction accuracy is improved, i.e., the inferred features are indeed beneficial and not248

detrimental (recall the results in Lemma 1).249

5.1 Risk Level Prediction250

Task Description. In this task we treat an observed feature—Risk Level—as the latent feature to251

infer. The task is a multi-classification problem to learn Z ∼ g(X) among four labels for the latent252

variable Z ∈ {moderate, high, very_high} based on each client’s profile X .253

Implementation Details. We implement our proposed framework as follows. All prompt templates254

are attached to Appendix section C.255

- Step 0. Profile writing: In this pre-processing step, we translate structured profile data X into256

text that can be better handled by LLMs, i.e., formulating predicates P ’s from the features X . To257

enrich the profile with important in formations that could potential benefits the following steps,258

we formulate the intermediate predicates O’s, where we prompt LLMs to extract and summarize259

underlying information such as background, socio-economic status, and challenges in two or three260

sentences. We then merge these sentences into the client’s profile. We use zero-shot prompting with261

GPT-4 for this step.262
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- Step 1. Formulating rationales: Using human input, established risk score calculations (Corrections),263

and the code book with risk calculation details provided by our community partner, we summarize a264

general rule for inferring risk levels from the predicates, i.e., establishing the logic chains from P ’s265

and O’s to Z. We then sample 40 client features from the dataset and manually formulate 40 baseline266

rationales that logically connect features to corresponding risk levels and that are aligned with the267

high-level general rule. To avoid the primacy effect of LLMs, we rate risk scores from 0 to 10 to add268

variability in the labels, categorized as follows: 0-4 (moderate risk), 4-7.5 (high risk), and 7.5-10269

(very high risk).270

- Step 2. Enlarge fine-tuning data: With the 40 baseline rationales, we generate additional synthetic271

rationales. We sample client features and corresponding ground truth risk scores from the dataset,272

using one of the 40 rationales as an example, to prompt LLMs to produce similar narratives with CoT273

prompts. In total we got 3000 rationales for the training data.274

- Step 3. Fine-tune LLMs: Our framework is designed to be plug-and-play, allowing the synthetic275

data generated in the previous step to be used across different language models. We fine-tune two276

pre-trained language models for cross-validation purposes: GPT-3.5 and Llama2-13b(OpenAI, 2021).277

We use OpenAI API to fine-tune GPT-3.5-turbo-0125 (Touvron et al., 2023; OpenAI). We fine-tune278

Llama2-13b-chat using LoRA (Hu et al., 2021).279

- Step 4. Inference with LLMs: We prompt fine-tuned LLMs to infer risk level Ẑi from features Xi280

for each client i in the test data and evaluate the out-of-sample accuracy by comparing the inferred281

latent variable (risk level) Ẑi with the ground truth label Zi.282

Evaluation. We choose ML classifiers (e.g., Neural Networks or Gradient Boosting Trees) as the283

baseline to infer Ẑi from features Xi. We compare the prediction performance of Ẑi inferred from284

our approach with that from ML models using out-of-sample accuracy and F1 score. Additionally,285

we evaluate the quality of generated text with an automatic evaluation metric. In the pre-processing286

step, we assess the keyword coverage rate in the generated profile assuming each feature value is287

a keyword. For synthetic rationales, we use YAKE, a pretrained keyword extractor (Campos et al.,288

2020), to identify keywords. We then evaluate the keyword coverage rate with a rule-based detector289

to determine how many logical information points are covered.290

5.2 Outcome Prediction291

Task Description. In this task, we treat the program requirements (e.g., substance treatment,292

counseling) for each client as the latent features Z and use them to augment the original feature X for293

outcome prediction, which is a multi-classification problem to learn Y ∼ f(X,Z) among four labels294

for the outcome Y ∈ {Completed,Revoked,NotCompleted,Other}. The raw dataset does not295

record the program requirements except for a very few clients; thus, the latent feature Z in this task296

is truly unobservable (in contrast to the one used in the first task). Available program requirement297

options for this task are attached to the appendix section D.298

Implementation Details. Steps 0 and 2-4 remain almost the same as in the risk-level prediction299

task. Step 1 requires a slight adjustment (as discussed in Section 4, this step is the main part in300

our framework that requires customization). Here, we formulate 40 baseline rationales in step 1 to301

deduce clients’ program requirements from their features. We leverage multi-stage prompting strategy302

(Qiao et al., 2022) to break down the task into three sub-tasks: (1) identify the main challenges303

from the client’s profile, (2) rank these challenges by priority, (3) match the challenges with suitable304

requirements. Particularly, the third task is our main goal, with the first two serving as steps to305

streamline the process and simplified the task.306

Evaluation. We train an ML classifier to predict outcomes with and without the inferred latent307

features, i.e., Ŷi ∼ f(Xi, Ẑi) versus Ŷi ∼ f(Xi). We evaluate the out-of-sample accuracy by308

comparing the predicted outcome Ŷi with the true label Yi in the test data. This comparison allows us309

to assess whether incorporating the latent features enhances the classifier’s performance.310

6 Results311

In this section, we demonstrate experiments results for two case studies we designed and additional312

results for sensitivity analyses.313
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6.1 Risk Level Prediction Results314

As mentioned in Section 5.1, we infer risk level on the client’s profile. We compare our approach’s315

performance to baseline ML model’s performance using the accuracy score and F1 score. Before316

showing this performance comparison, we first show results on the generated text quality.317

Generated Text Quality. For profile writing in Step 0, we treat each individual feature in Xi as a318

keyword to cover, and measure the keyword coverage rate. The generated profiles demonstrated an319

average keyword coverage rate of 98%, indicating that they effectively capture the most important320

information from the original data. For the generated synthetic rationales in Step 2, we treat terms321

such as age, gender, employment, and education as critical keywords and assess their coverage rate.322

The fine-tuned GPT-3.5 and Llama2-13b-chat both achieved a keyword coverage rate of 100%. This323

indicates that the generated content adheres strictly to the guidelines established in the training data,324

ensuring that all necessary information is accurately represented.325

Latent Variable Inference Performance. As shown in Figure 3(a), our approach achieves the326

highest overall accuracy. In particular, the fine-tuned GPT-3.5 achieves an accuracy that is 20%327

higher than other baseline ML approaches. The reason that ML models struggle to predict well328

is due to the fact that there is no strong correlation between the observed features and the targets329

(risk level); see the correlation plot in Appendix F. In contrast, our approach demonstrates superior330

performance, since it more effectively handles datasets with subtle or non-obvious relationships331

between the observed and target variables. This result shows that our approach is able to make332

accurate inference of latent features and outperforms traditional ML approaches.333

(a) Model accuracy

Category LR MLP RF GBT LLaMA2 GPT3.5

Moderate 0.51 0.54 0.44 0.46 0.57 0.69
High 0.65 0.55 0.69 0.66 0.70 0.81

Very High 0.20 0.11 0.18 0.18 0.38 0.81

(b) F1 scores

Figure 3: Risk level prediction results: (a) Model accuracy; (b) F1 scores per-category. LR - logistic
regression; MLP - Neural Networks; RF- random forest; GBT - Gradient Boosting Trees.

Table 3(b) details the prediction performance by class, showing F1 scores for each class using ML334

models and our approach. Notably, all ML models struggle with the ‘Very High Risk’ category335

– this category is often misclassified as ‘High Risk’ due to similar feature distributions of these336

two categories and unbalanced data (only 371 training points for ‘Very High Risk’). In contrast,337

our approach significantly improves the prediction performance for this category, highlighting its338

effectiveness for unbalanced datasets. This improvement is likely because our LLM-based approach339

has intermediate steps (profile writing to obtain the socio-economic status and other contextual factors340

in step 0 and connecting these factors with the latent variables in step 1), which help capturing the341

subtle distinctions between ‘High Risk’ and ‘Very High Risk’ that are not explicitly recorded.342

6.2 Outcome Prediction Results343

As mentioned in Section 5.2, we infer program requirements as additional latent features and use344

them for the downstream outcome prediction task. We compare the performance of the downstream345

classifiers that trained with and without the latent features. Note that in the first task (risk-level346

inferrence), GPT3.5 demonstrated better performance than llama2-13b. Thus, we focused on fine-347

tuning GPT-3.5 when using our approach for this task.348
As illustrated in Table 4(a), incorporating latent features significantly improves the performance349

of the downstream classifiers. Specifically, the addition of latent features increases the ROC AUC350

score of Logistic Regression from 0.70 to 0.89 and from 0.84 to 0.92 for the Gradient Boosting Tree.351

Furthermore, the feature importance in Figure 4(b) shows that the inferred features – ‘requirement_1’,352

‘requirement_2’, and ‘requirement_3’ – are among the top-ranked features. This implies the significant353

relevance of these features on the downstream classification task. Hence, we can conclude that our354

approach has the capability of enhancing the downstream classifier’s accuracy with inferred355

latent features.356
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without latent feature LR MLP GBT

ROC AUC Score 0.70 0.81 0.84

F1 Score 0.69 0.70 0.71

with latent feature LR MLP GBT

ROC AUC Score 0.89 0.88 0.92
F1 Score 0.75 0.73 0.77

(a) Model Performance (b) Feature Importance Plot
Figure 4: Outcome prediction results: (a) Model performance with/without the inferred latent
features (program requirements); (b) feature importance plot. LR - logistic regression; MLP - Neural
Networks; GBT - Gradient Boosting Trees.

6.3 Sensitivity Analysis357

In our sensitivity analysis, we further investigate the following three questions: (1) How sensitive is358

our approach to the quality of human guidelines? (2) How important is fine-tuning in our framework?359

For the first question, perhaps not surprisingly, our approach is sensitive to human guidelines,360

specifically the baseline rationales and prompt templates formulated in Step 1. We have conducted361

an ablation study to determine the optimal level of details required in the prompts. As shown in362

Figure 9 in Appendix D, the best performance was achieved with the most reasoning steps and a363

sentence length of two per step. In other words, increasing the number of reasoning steps allows364

us to decompose the task into simpler components and enhances the performance of LLMs. More365

importantly, while human guidelines are important, the interactive self-revise alignment strategy366

can significantly help during the sub-step of Step 1 (prompt crafting). By providing ground truth and367

encouraging self-reflection, GPT-4 can revise the prompt template to include crucial details, ensuring368

a more accurate evaluation.369

The answer to the second question is that fine-tuning is necessary. We have conducted another370

ablation study, where we repeated the risk-level prediction task with zero-shot, one-shot, and three-371

shot prompting to compare with our fine-tuned model. In zero-shot, we provided only the task372

description. In one-shot and three-shot, we included randomly selected human-verified examples.373

Accuracy rankings from lowest to highest were: three-shot (40%), zero-shot (55%), one-shot (60%),374

and the fine-tuned model (75%); see Table 9 in Appendix D. The three-shot’s poor performance375

may be due to information loss from long inputs. Zero-shot responses are highly variable and not376

well-suited for downstream tasks. Although one-shot showed improvement, the fine-tuned model377

significantly outperformed all others.378

7 Discussion379

This study presents a framework that leverages the capabilities of LLMs to enhance the prediction380

accuracy in downstream tasks without necessitating invasive data collection methods. Our approach381

reduces the need for collecting extensive personal data, thus mitigating privacy concerns. This aligns382

with ethical data usage standards, especially in sensitive domains. Note that we do not explicitly383

address bias in the data or LLM reasoning processes in this paper. We excluded the ‘race’ feature in384

our case study and found alignment in risk level distributions across genders, implying no additional385

bias introduced by our approach. However, existing biases in LLMs could be perpetuated if not386

monitored and adjusted. Addressing these biases is beyond this paper’s scope and is left for future387

research as a critical area.388

This framework has vast potential applications, particularly in areas with limited data and ethical389

constraints. For example, in healthcare, our framework can help predict readmission or post-discharge390

mortality by inferring unrecorded social determinants of health. For low-volume niche product rec-391

ommendations, our framework can synthesize customer preference data to enhance recommendation392

systems without extensive user tracking.393
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Appendix466

A Proof of Lemma 1467

We use the log-loss, defined as468

L(D,β) = − 1

n

n∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (2)

for given data D = {(xi, yi)}ni=1 and pi = 1/
(
1+ e−(β0+β1xi)

)
. When using the augmented feature469

x̃i = (xi, zi), we denote the data as D̃ = {
(
(xi, zi), yi

)
}ni=1.470

For the first part of the lemma, we note that the in-sample log-loss for the original features follows471

Lin(D,β) = − 1

n

n∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] , (3)

and the in-sample log-loss for the augmented features follows472

Lin(D̃, β) = − 1

n

n∑
i=1

[yi log(p̃i) + (1− yi) log(1− p̃i)] , (4)

where pi = 1/
(
1 + e−(β0+β1xi)

)
and p̃i = 1/

(
1 + e−(β0+β1xi+β2zi)

)
.473

We denote the optimal coefficients that minimize the log-loss in (3) as β∗ = (β∗
0 , β

∗
1), and the474

coefficients that minimize the log-loss in (4) as β̃∗ = (β̃∗
0 , β̃

∗
1 , β̃

∗
2). Note that β̌ = (β∗

0 , β
∗
1 , 0) is a475

feasible solution for the log-loss in (4). Therefore, using the optimization property, we have476

Lin(D̃, β̃∗) ≤ Lin(D̃, β̌) = Lin(D,β∗),
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which completes the first part of the lemma.477

For the second part of the lemma, we first assume that for the given data D, Lin(D̃, β̃∗) =478

Lin(D,β∗) − ϵ/n where ϵ ≥ 0 from the first part of the lemma. We now construct an instance479

with an out-of-sample dataset D′ that contains n + 1 samples, where D′ consists of (i) the n data480

points that exactly match with D (or D̃) for the first n samples, and (ii) one additional sample481

(xi+1, yi+1) (or ((xi+1, zi+1), yi+1) when using the augmented features). Without loss of generality,482

assume that yi+1 = 1. Then we have483

Lout(D′, β∗) =
1

n+ 1

(
nLin(D,β∗)− log(pi+1)

))
and484

Lout(D̃′, β̃∗) =
1

n+ 1

(
nLin(D̃, β̃∗)− log(p̃i+1)

))
.

When the added features Z’s are non-informative, we consider the scenarios that they are noise and485

the additional term β̃∗
2Z also contributes noise to the predictions. In other words, the coefficients β̃∗486

do not generalize well to the test data. Therefore, there exists an instance where the realization of Z,487

zi+1 deviates from the predicted probability significantly, such that488

p̃i+1 < pi+1/ exp(ϵ) ≤ pi+1.

Note that this instance exists since the noise terms do not correspond to any actual pattern in the test489

data, causing incorrect predictions, and in our construction, a smaller predicted probability would be490

less accurate as the label yi+1 = 1. Therefore,491

− log(p̃i+1) > − log(pi+1) + ϵ,

and492

Lout(D̃′, β̃∗) =
1

n+ 1

(
nLin(D,β∗)− ϵ− log(p̃i+1)

))
>

1

n+ 1

(
nLin(D,β∗)− log(pi+1)

))
= Lout(D′, β∗).

B Compute Resources493

For all experiments, we split data into training and testing dataset with ratio of 8:2.494

For experiment 1 (risk level prediction), we finetune LLaMA2-13b-chat on 2 X NVIDIA RTX A6000495

for 4 hours with LoRA. And we finetuned three times for different subtasks. We use OpenAI offical496

API to finetune GPT3.5 model, which requires no GPUs. Each finetune job takes about 2 hours. We497

repeat 3 times for different sub tasks. Additionally, we also run Machine Learning baseline model on498

CPU (Intel i7). We run grid search for each classifier.499

For experiment 2 (outcome prediction), we use OpenAI offical API to finetune GPT3.5 model, which500

requires no GPUs. Each finetune job takes about 2 hours. We repeat 6 times for different sub501

tasks.Additionally, we also run Machine Learning baseline model on CPU (Intel i7). We run grid502

search for each classifier.503

All other experiments (e.g. sensitive experiment) are conducted on ChatGPT, which requires no GPU.504

C Prompt template505
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Task: Write a paragraph to profile the client, please include following:

1. Write sentences to cover all basic information provided.
2. Provide information about the area of this client live in, as much more details as you can. 
3. Infer social economic status of this client
4. Infer the challenges that this client might facing.

Here are the basic information of the client: <features>.

Here is the reference of living area context: <additional info>

Figure 5: Profile writing prompt

Here is the profile of a client: <profile>
Given the client’s information, please infer a risk score out of 10.

Given client’s information to infer risk score out of 10, we know that:
1. Employment (If client has unstable employment status, increase the score by 1. 
Adjust score if needed):  ___
2. Financial Status (If client has financial difficulty, increase the risk score by 1. 
If client relies on social economic assistance, further increase the risk score by 1. 
Adjust score if needed.): ___
3. Education (Increase the risk score by 1 if the highest grade of school completed is 
less than grade 12. Further increase the risk score by 1 if the highest grade completed 
is less than grade 10): ___
4. Family and Marital (Increase score if client is dissatisfied with his/her current 
marital relationships situation. Increase risk score if the client is a social isolate. 
Adjust score if needed.):  ___
5. Drug (Increase risk score by 1 if the client has ever had a drug problem. If the 
drug problem is related with Heroin, further increase the risk score by 1. Adjust score 
if needed.):  ___
6. Living Area (Increase risk score by 1 if the client lives in a high crime 
neighborhood): ___
7. Age (Increase risk score by 0.3 if the client is under the age of sixteen): 
8. Gender (Increase risk score by 0.3 if the client is male): 
Conclusion: ___

Figure 6: Risk Level Prediction: Prompt template and response CoT template

Here is the profile of a client: <profile>
Analyze the provided profile of the client to infer the main challenges he faces.

Given the identified challenges for the client, infer the priority of each 
challenge in terms of immediate action and long-term impact on his reintegration 
into society. Please response in the ranking order. Here are the challenges: Here 
are the challenges <challenges>: 

Here is the available list of programs <program list>: 
Given the profile and challenges of the client, select the top 3 program 
requirements that would be most beneficial for the client.
Here is the profile of client: <profile + top 3 ordered challenges>

Figure 7: Requirement selection: Multi-stage Prompt template
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To select the top 3 programs that would be most beneficial for the client, let’s analyze each 
available options:
1. Thinking for a Change (It aims to transform criminogenic thinking patterns with designed 
cognitive-behavioral curriculum. Recommend for clients assessed at relatively high risk 
level): __
2. Employment (It aims to help client develop employability. Recommend this for clients with 
unstable employment status): __
3. Education (It aims to engage clients in educational programs. Recommend clients without a 
high school diploma or GED):__
4. Positive Peer Mentoring (It offers positive role models and fosters a supportive network, 
which can deter criminal associations. Recommend this for clients residing in high-crime 
areas):__
5. Community Service (It aids in building a sense of responsibility and community connection. 
Recommend for clients with property offense or drug-related offenses):__
6. Mental Health Treatment (It addresses underlying mental health issues that may contribute 
to criminal behavior. Recommend for clients with a history of substance abuse or unstable 
living conditions):__
7. Anger Management (It focuses on teaching effective emotion and reaction management 
techniques. Recommend for clients who exhibit aggressive behaviors or have property-related 
offenses):__
8. Substance Abuse Treatment (It aims to help clients overcome substance dependencies. 
Recommend for clients with histories of drug-related offenses or primary drug use):__
9. Domestic Violence Counseling (It aims to address and modify violent behavior patterns. 
Recommend for clients involved in violent incidents):__
10. Sex Offender Counseling (It focuses on behavior modification and preventing recidivism. 
Recommend for clients with sex-related offenses):__
Conclusion: ___

Figure 8: Requirement selection: Response CoT template
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D Ablation Study Results506

Setting Accuracy
Zero-shot 55%

One-shot 60%

Three-shot 40%

Fine-tune 75%

(a) Risk level prediction
results across different

setting
(b) Risk level prediction results across different strategy

Figure 9: Ablation study results: (a) Experiments on risk level prediction task using GPT4 with
different prompting setting. (b) Experiments using GPT4 with different prompting setting different
prompting strategies.

E Program Requirements507

Requirement Name Description
Thinking for a Change Aimed at transforming criminogenic thinking patterns using a cognitive-

behavioral curriculum, recommended for clients at a high risk level.
Employment Helps develop employability, recommended for clients with unstable

employment status.
Education Engages clients in educational programs, recommended for those with-

out a high school diploma or GED.
Positive Peer Mentoring Provides positive role models and a supportive network, recommended

for clients in high-crime areas.
Community Service Builds a sense of responsibility and community connection, recom-

mended for clients with property or drug-related offenses.
Mental Health Treatment Addresses underlying mental health issues, recommended for clients

with a history of substance abuse or unstable living conditions.
Anger Management Teaches emotion and reaction management techniques, recommended

for clients who exhibit aggressive behaviors or have property-related
offenses.

Substance Abuse Treatment Helps overcome substance dependencies, recommended for clients
with drug-related offenses or primary drug use.

Domestic Violence Counsel-
ing

Addresses and modifies violent behavior patterns, recommended for
clients involved in violent incidents.

Sex Offender Counseling Focuses on behavior modification and preventing recidivism, recom-
mended for clients with sex-related offenses.

Table 1: Available Programs
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F Data Description508

Table 2: Categorical Covariates Summary Statistics (N/A or Other Categories are Omitted).

Variable Categories County

DuPage Cook Will Peoria

Risk Highest 24.3 32.0 2.3 1.0
High 60.7 26.2 35.1 24.7
Medium 11.0 15.6 42.1 47.0

AdOffense Drugs 43.0 67.8 31.7 37.0
Property 31.1 17.6 52.5 46.3
DUI 11.1 2.3 3.8 1.0

OffenseClass Class 4 42.5 – 11.5 20.6
Class 3 13.5 – 5.7 5.7
Class 2 16.0 – 5.7 5.1

Pdrug Heroin 27.0 43.6 32.3 9.5
THC 18.6 18.5 17.5 21.6
Coc.Crack 7.8 10.9 21.0 11.6

ReferralReason Tech Violation 31.2 0.0 12.8 0.0
3/4 Felon 20.5 70.5 59.2 80.0
1/2 Felon 9.8 16.5 23.7 14.7

WhoReferred Prob Officer 64.7 97.3 1.8 0.0
Judge 32.0 1.3 0.7 91.3
Pub. Defender 0.6 0.0 75.3 2.8

Gender Female 25.2 21.3 21.7 19.8
Male 74.8 77.5 78.2 80.0

EmplymntS Full Time 49.7 85.7 38.2 6.7
None 32.3 4.8 59.2 92.0
Part Time 18.0 9.4 2.7 1.3

MaritalS Single 86.4 85.6 15.0 22.9
Married 5.9 7.1 1.8 5.7
Divorced 4.7 2.3 0.2 1.8

EducationS HighSchool 40.3 37.2 34.3 13.6
No HighSchool 32.6 52.4 10.8 12.3
Some College 19.4 3.5 11.8 4.4
or Graduated

HousingS Friend or 62.3 27.9 6.2 17.7
Family
Own/Rent 29.0 15.5 2.7 11.1
No Home 5.9 23.9 16.5 70.2
Reported

MedicaidS Yes 23.8 48.4 8.3 3.3
UniqueAgents 4 11.6 2.2 8.6 –

3 27.9 31.9 22.3 2.3
2 60.6 65.9 69.1 97.7

FinalProgPhase Level 3/4 11.1 15.7 32.3 0.3
Level 1/2 56.5 14.4 22.7 3.1
Level 0 2.9 35.5 7.0 27.0

RewardedBehv Yes 4.0 29.1 2.5 1.5
Sanctions Yes 91.8 99.3 89.8 41.1
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Figure 10: Correlation Matrix of features
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NeurIPS Paper Checklist509

1. Claims510

Question: Do the main claims made in the abstract and introduction accurately reflect the511

paper’s contributions and scope?512

Answer: [Yes]513

Justification: Our abstract and introduction accurately reflect the paper’s contribution and514

scope.515

Guidelines:516

• The answer NA means that the abstract and introduction do not include the claims517

made in the paper.518

• The abstract and/or introduction should clearly state the claims made, including the519

contributions made in the paper and important assumptions and limitations. A No or520

NA answer to this question will not be perceived well by the reviewers.521

• The claims made should match theoretical and experimental results, and reflect how522

much the results can be expected to generalize to other settings.523

• It is fine to include aspirational goals as motivation as long as it is clear that these goals524

are not attained by the paper.525

2. Limitations526

Question: Does the paper discuss the limitations of the work performed by the authors?527

Answer:[Yes]528

Justification: Yes. We discuss the limitations in section 7.529

Guidelines:530

• The answer NA means that the paper has no limitation while the answer No means that531

the paper has limitations, but those are not discussed in the paper.532

• The authors are encouraged to create a separate "Limitations" section in their paper.533

• The paper should point out any strong assumptions and how robust the results are to534

violations of these assumptions (e.g., independence assumptions, noiseless settings,535

model well-specification, asymptotic approximations only holding locally). The authors536

should reflect on how these assumptions might be violated in practice and what the537

implications would be.538

• The authors should reflect on the scope of the claims made, e.g., if the approach was539

only tested on a few datasets or with a few runs. In general, empirical results often540

depend on implicit assumptions, which should be articulated.541

• The authors should reflect on the factors that influence the performance of the approach.542

For example, a facial recognition algorithm may perform poorly when image resolution543

is low or images are taken in low lighting. Or a speech-to-text system might not be544

used reliably to provide closed captions for online lectures because it fails to handle545

technical jargon.546

• The authors should discuss the computational efficiency of the proposed algorithms547

and how they scale with dataset size.548

• If applicable, the authors should discuss possible limitations of their approach to549

address problems of privacy and fairness.550

• While the authors might fear that complete honesty about limitations might be used by551

reviewers as grounds for rejection, a worse outcome might be that reviewers discover552

limitations that aren’t acknowledged in the paper. The authors should use their best553

judgment and recognize that individual actions in favor of transparency play an impor-554

tant role in developing norms that preserve the integrity of the community. Reviewers555

will be specifically instructed to not penalize honesty concerning limitations.556

3. Theory Assumptions and Proofs557

Question: For each theoretical result, does the paper provide the full set of assumptions and558

a complete (and correct) proof?559

Answer: [Yes]560
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Justification: We have theoretical result in section 3, and we have more detailed proof in561

Appendix section A.562

Guidelines:563

• The answer NA means that the paper does not include theoretical results.564

• All the theorems, formulas, and proofs in the paper should be numbered and cross-565

referenced.566

• All assumptions should be clearly stated or referenced in the statement of any theorems.567

• The proofs can either appear in the main paper or the supplemental material, but if568

they appear in the supplemental material, the authors are encouraged to provide a short569

proof sketch to provide intuition.570

• Inversely, any informal proof provided in the core of the paper should be complemented571

by formal proofs provided in appendix or supplemental material.572

• Theorems and Lemmas that the proof relies upon should be properly referenced.573

4. Experimental Result Reproducibility574

Question: Does the paper fully disclose all the information needed to reproduce the main ex-575

perimental results of the paper to the extent that it affects the main claims and/or conclusions576

of the paper (regardless of whether the code and data are provided or not)?577

Answer: [Yes]578

Justification: We provide all information needed to reproduce the main experimental results579

in section 5. We have provided all implementation detail for reproduction.580

Guidelines:581

• The answer NA means that the paper does not include experiments.582

• If the paper includes experiments, a No answer to this question will not be perceived583

well by the reviewers: Making the paper reproducible is important, regardless of584

whether the code and data are provided or not.585

• If the contribution is a dataset and/or model, the authors should describe the steps taken586

to make their results reproducible or verifiable.587

• Depending on the contribution, reproducibility can be accomplished in various ways.588

For example, if the contribution is a novel architecture, describing the architecture fully589

might suffice, or if the contribution is a specific model and empirical evaluation, it may590

be necessary to either make it possible for others to replicate the model with the same591

dataset, or provide access to the model. In general. releasing code and data is often592

one good way to accomplish this, but reproducibility can also be provided via detailed593

instructions for how to replicate the results, access to a hosted model (e.g., in the case594

of a large language model), releasing of a model checkpoint, or other means that are595

appropriate to the research performed.596

• While NeurIPS does not require releasing code, the conference does require all submis-597

sions to provide some reasonable avenue for reproducibility, which may depend on the598

nature of the contribution. For example599

(a) If the contribution is primarily a new algorithm, the paper should make it clear how600

to reproduce that algorithm.601

(b) If the contribution is primarily a new model architecture, the paper should describe602

the architecture clearly and fully.603

(c) If the contribution is a new model (e.g., a large language model), then there should604

either be a way to access this model for reproducing the results or a way to reproduce605

the model (e.g., with an open-source dataset or instructions for how to construct606

the dataset).607

(d) We recognize that reproducibility may be tricky in some cases, in which case608

authors are welcome to describe the particular way they provide for reproducibility.609

In the case of closed-source models, it may be that access to the model is limited in610

some way (e.g., to registered users), but it should be possible for other researchers611

to have some path to reproducing or verifying the results.612

5. Open access to data and code613
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Question: Does the paper provide open access to the data and code, with sufficient instruc-614

tions to faithfully reproduce the main experimental results, as described in supplemental615

material?616

Answer: [No]617

Justification: Access to the data and code is restricted under the terms of the non-disclosure618

agreement signed with our data-providing partner. The code includes sensitive details perti-619

nent to the data, such as specific information embedded within the prompts. Consequently,620

we are unable to share the code at this time.621

Guidelines:622

• The answer NA means that paper does not include experiments requiring code.623

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/624

public/guides/CodeSubmissionPolicy) for more details.625

• While we encourage the release of code and data, we understand that this might not be626

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not627

including code, unless this is central to the contribution (e.g., for a new open-source628

benchmark).629

• The instructions should contain the exact command and environment needed to run to630

reproduce the results. See the NeurIPS code and data submission guidelines (https:631

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.632

• The authors should provide instructions on data access and preparation, including how633

to access the raw data, preprocessed data, intermediate data, and generated data, etc.634

• The authors should provide scripts to reproduce all experimental results for the new635

proposed method and baselines. If only a subset of experiments are reproducible, they636

should state which ones are omitted from the script and why.637

• At submission time, to preserve anonymity, the authors should release anonymized638

versions (if applicable).639

• Providing as much information as possible in supplemental material (appended to the640

paper) is recommended, but including URLs to data and code is permitted.641

6. Experimental Setting/Details642

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-643

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the644

results?645

Answer: [Yes]646

Justification: We clarify all experiment setting in section 5. We also provide more training647

details on Appendix section C.648

Guidelines:649

• The answer NA means that the paper does not include experiments.650

• The experimental setting should be presented in the core of the paper to a level of detail651

that is necessary to appreciate the results and make sense of them.652

• The full details can be provided either with the code, in appendix, or as supplemental653

material.654

7. Experiment Statistical Significance655

Question: Does the paper report error bars suitably and correctly defined or other appropriate656

information about the statistical significance of the experiments?657

Answer: [Yes]658

Justification: We change the random seed during the train/test splitting, and repeat the659

experiment 5 times with different seed. The standard deviation of results are within 0.02.660

Guidelines:661

• The answer NA means that the paper does not include experiments.662

• The authors should answer "Yes" if the results are accompanied by error bars, confi-663

dence intervals, or statistical significance tests, at least for the experiments that support664

the main claims of the paper.665
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• The factors of variability that the error bars are capturing should be clearly stated (for666

example, train/test split, initialization, random drawing of some parameter, or overall667

run with given experimental conditions).668

• The method for calculating the error bars should be explained (closed form formula,669

call to a library function, bootstrap, etc.)670

• The assumptions made should be given (e.g., Normally distributed errors).671

• It should be clear whether the error bar is the standard deviation or the standard error672

of the mean.673

• It is OK to report 1-sigma error bars, but one should state it. The authors should674

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis675

of Normality of errors is not verified.676

• For asymmetric distributions, the authors should be careful not to show in tables or677

figures symmetric error bars that would yield results that are out of range (e.g. negative678

error rates).679

• If error bars are reported in tables or plots, The authors should explain in the text how680

they were calculated and reference the corresponding figures or tables in the text.681

8. Experiments Compute Resources682

Question: For each experiment, does the paper provide sufficient information on the com-683

puter resources (type of compute workers, memory, time of execution) needed to reproduce684

the experiments?685

Answer: [Yes]686

Justification: We have a brief introduction of experiments compute resources in section 5.687

We have more detailed information in Appendix section C.688

Guidelines:689

• The answer NA means that the paper does not include experiments.690

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,691

or cloud provider, including relevant memory and storage.692

• The paper should provide the amount of compute required for each of the individual693

experimental runs as well as estimate the total compute.694

• The paper should disclose whether the full research project required more compute695

than the experiments reported in the paper (e.g., preliminary or failed experiments that696

didn’t make it into the paper).697

9. Code Of Ethics698

Question: Does the research conducted in the paper conform, in every respect, with the699

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?700

Answer: [Yes]701

Justification: We reviewed the NeurIPS Code of Ethics. The research conducted in the paper702

conform, in every respect, with the NeurIPS Code of Ethics.703

Guidelines:704

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.705

• If the authors answer No, they should explain the special circumstances that require a706

deviation from the Code of Ethics.707

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-708

eration due to laws or regulations in their jurisdiction).709

10. Broader Impacts710

Question: Does the paper discuss both potential positive societal impacts and negative711

societal impacts of the work performed?712

Answer: [Yes]713

Justification: We discuss the potential societal impacts in the section 1 Introduction, and714

section7 Discussion.715

Guidelines:716

21



• The answer NA means that there is no societal impact of the work performed.717

• If the authors answer NA or No, they should explain why their work has no societal718

impact or why the paper does not address societal impact.719

• Examples of negative societal impacts include potential malicious or unintended uses720

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations721

(e.g., deployment of technologies that could make decisions that unfairly impact specific722

groups), privacy considerations, and security considerations.723

• The conference expects that many papers will be foundational research and not tied724

to particular applications, let alone deployments. However, if there is a direct path to725

any negative applications, the authors should point it out. For example, it is legitimate726

to point out that an improvement in the quality of generative models could be used to727

generate deepfakes for disinformation. On the other hand, it is not needed to point out728

that a generic algorithm for optimizing neural networks could enable people to train729

models that generate Deepfakes faster.730

• The authors should consider possible harms that could arise when the technology is731

being used as intended and functioning correctly, harms that could arise when the732

technology is being used as intended but gives incorrect results, and harms following733

from (intentional or unintentional) misuse of the technology.734

• If there are negative societal impacts, the authors could also discuss possible mitigation735

strategies (e.g., gated release of models, providing defenses in addition to attacks,736

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from737

feedback over time, improving the efficiency and accessibility of ML).738

11. Safeguards739

Question: Does the paper describe safeguards that have been put in place for responsible740

release of data or models that have a high risk for misuse (e.g., pretrained language models,741

image generators, or scraped datasets)?742

Answer: [Yes]743

Justification: We promote human-in-the loop verification and emphasized on domain exper-744

tise. Moreover,we are not gonna make the dataset public - the framework is genralizable but745

we caution users to be aware of bias and use human-in the loop verification.746

Guidelines:747

• The answer NA means that the paper poses no such risks.748

• Released models that have a high risk for misuse or dual-use should be released with749

necessary safeguards to allow for controlled use of the model, for example by requiring750

that users adhere to usage guidelines or restrictions to access the model or implementing751

safety filters.752

• Datasets that have been scraped from the Internet could pose safety risks. The authors753

should describe how they avoided releasing unsafe images.754

• We recognize that providing effective safeguards is challenging, and many papers do755

not require this, but we encourage authors to take this into account and make a best756

faith effort.757

12. Licenses for existing assets758

Question: Are the creators or original owners of assets (e.g., code, data, models), used in759

the paper, properly credited and are the license and terms of use explicitly mentioned and760

properly respected?761

Answer: [NA]762

Justification: Our paper does not use existing assets.763

Guidelines:764

• The answer NA means that the paper does not use existing assets.765

• The authors should cite the original paper that produced the code package or dataset.766

• The authors should state which version of the asset is used and, if possible, include a767

URL.768

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.769
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• For scraped data from a particular source (e.g., website), the copyright and terms of770

service of that source should be provided.771

• If assets are released, the license, copyright information, and terms of use in the772

package should be provided. For popular datasets, paperswithcode.com/datasets773

has curated licenses for some datasets. Their licensing guide can help determine the774

license of a dataset.775

• For existing datasets that are re-packaged, both the original license and the license of776

the derived asset (if it has changed) should be provided.777

• If this information is not available online, the authors are encouraged to reach out to778

the asset’s creators.779

13. New Assets780

Question: Are new assets introduced in the paper well documented and is the documentation781

provided alongside the assets?782

Answer: [NA]783

Justification: Our paper does not release new assets.784

Guidelines:785

• The answer NA means that the paper does not release new assets.786

• Researchers should communicate the details of the dataset/code/model as part of their787

submissions via structured templates. This includes details about training, license,788

limitations, etc.789

• The paper should discuss whether and how consent was obtained from people whose790

asset is used.791

• At submission time, remember to anonymize your assets (if applicable). You can either792

create an anonymized URL or include an anonymized zip file.793

14. Crowdsourcing and Research with Human Subjects794

Question: For crowdsourcing experiments and research with human subjects, does the paper795

include the full text of instructions given to participants and screenshots, if applicable, as796

well as details about compensation (if any)?797

Answer: [NA]798

Justification: Our paper does not involve crowdsourcing nor research with human subjects.799

Guidelines:800

• The answer NA means that the paper does not involve crowdsourcing nor research with801

human subjects.802

• Including this information in the supplemental material is fine, but if the main contribu-803

tion of the paper involves human subjects, then as much detail as possible should be804

included in the main paper.805

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,806

or other labor should be paid at least the minimum wage in the country of the data807

collector.808

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human809

Subjects810

Question: Does the paper describe potential risks incurred by study participants, whether811

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)812

approvals (or an equivalent approval/review based on the requirements of your country or813

institution) were obtained?814

Answer: [Yes]815

Justification: We received IRB approval from University of Chicago. The study title is816

Data-driven Evaluation of Alternative Sentencing Allocation.817

Guidelines:818

• The answer NA means that the paper does not involve crowdsourcing nor research with819

human subjects.820
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• Depending on the country in which research is conducted, IRB approval (or equivalent)821

may be required for any human subjects research. If you obtained IRB approval, you822

should clearly state this in the paper.823

• We recognize that the procedures for this may vary significantly between institutions824

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the825

guidelines for their institution.826

• For initial submissions, do not include any information that would break anonymity (if827

applicable), such as the institution conducting the review.828
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