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Abstract

Foundation models are beginning to reshape EEG representation learning, but1

existing approaches remain dominated by self-supervised reconstruction objectives.2

In this work, we introduce the first subject-aware contrastive EEG foundation3

model, leveraging subject identity as a natural supervisory signal. Building on a4

patch-based architecture inspired by recent Large Brainwave Foundation Models5

(LBMs), we pretrain a lightweight transformer encoder using contrastive learning,6

where positive pairs are drawn from different segments and sessions of the same7

subject. Unlike contrastive foundation models in other domains, which depend8

on augmentations to construct positive samples, our method relies on naturally9

occurring intra-subject variability across EEG sessions. We evaluate the model10

through both representation metrics (alignment, uniformity and smooth effective11

rank) and downstream tasks (under linear probing and full fine-tuning). Results12

show that our model produces well-structured representation spaces, achieving13

strong representation quality and competitive performance compared to other14

LBMs.15

1 Introduction16

Brain-Computer Interfaces (BCIs) aim to provide a direct pathway between the human brain and17

external devices, enabling applications ranging from assistive technologies to cognitive state monitor-18

ing. The underlying signals can be recorded through electroencephalography (EEG), a non-invasive19

technique that captures the brain’s oscillatory activity with high temporal resolution, Niedermeyer &20

da Silva (2004). Early approaches to EEG-based BCI relied heavily on hand-crafted features designed21

from neuroscience insights, such as power spectral densities and bandpower ratios Bashashati et al.22

(2007); Handy (2009); Rao (2013); McFarland et al. (2006). While these methods provided initial23

progress, they often failed to generalize across subjects due to the strong inter-subject variability24

inherent in EEG signals, Barmpas et al. (2024), where individual anatomical and physiological25

differences significantly affect observed neural patterns Jayaram & Barachant (2013); Barmpas et al.26

(2023b).27

With the advent of deep learning, the field shifted towards end-to-end data-driven feature extraction.28

Models such as convolutional neural networks were shown to learn highly discriminative spatio-29

temporal representations of EEG signals Lawhern et al. (2018); Santamaría-Vázquez et al. (2020);30

Song et al. (2023); Barmpas et al. (2023a). This reduced dependence on domain-specific feature31

engineering enabled significant performance improvements across diverse paradigms, including32

motor imagery, event-related potentials and cognitive workload estimation. However, despite these33

advances, deep learning models in EEG often demand large amounts of labeled data and are typically34

trained on specific tasks or paradigms. This reliance on supervision restricts their generalizability and35

makes deployment resource-intensive in new contexts.36
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In parallel, the rise of foundation models in language, vision, and speech Brown et al. (2020); Touvron37

et al. (2023); Baevski et al. (2020) has introduced a new paradigm: large-scale self-supervised38

pretraining on heterogeneous unlabeled data. These models acquire general representations that39

transfer broadly, reducing the need for extensive bespoke training on every new task. Inspired by40

this trend, researchers have begun to explore Large Brainwave Models (LBMs) for EEG decoding.41

Early efforts include BIOT Yang et al. (2023), EEGPT Wang et al. (2024), and CBRAMod Wang42

et al. (2025), which applied transformers and self-supervised training across multiple EEG datasets.43

Jiang et al. (2024) (and more recently Barmpas et al. (2025)) used a combination of patch-based and44

codebook-based tokenization along with masked modeling objective, demonstrating the potential of45

scalable unified EEG foundation models. Most existing LBMs rely on reconstruction-style pretraining,46

aiming to recover masked or transformed signal patches. Yet contrastive learning, which has proven47

highly effective in vision and biosignal domains, has not been systematically explored for EEG.48

In this work, we introduce the first subject-aware contrastive EEG foundation model, trained with49

Normalized Temperature-scaled Cross Entropy (NT-Xent) loss Chen et al. (2020) on patch rep-50

resentations. Our approach leverages subject identity as a natural supervisory signal and yields51

well-structured representation spaces with strong alignment, uniformity and smooth effective rank,52

while remaining competitive with prior LBM approaches.53

2 Background54

Large-scale self-supervised pretraining has recently been extended beyond language and vision55

to biosignals. Abbaspourazad et al. (2023) demonstrated that contrastive learning on massive56

unlabeled ECG and PPG recordings can produce embeddings that encode subject-level physiology57

and demographic information. Their evaluation emphasized not only downstream accuracy but also58

representation metrics such as alignment, uniformity and smooth effective rank, highlighting the59

importance of evaluating latent space structure in biosignal foundation models. Inspired by this work,60

we investigate whether contrastive learning can also serve as a viable path for LBMs.61

To adapt EEG for large-scale pretraining, we adopt a patch-based tokenization scheme similar to that62

introduced in Jiang et al. (2024) and Barmpas et al. (2025). In this formulation, raw EEG signals63

are segmented into fixed-length temporal patches across channels, which are then embedded using64

temporal convolutions and enriched with spatial and temporal embeddings before being passed to a65

transformer encoder. This design provides standardized, sequence-like inputs that facilitate scalable66

pretraining across heterogeneous EEG datasets.67

Building on these insights, our work combines the contrastive pretraining philosophy of Ab-68

baspourazad et al. (2023) with the patch-based representation strategy of Jiang et al. (2024) and69

Barmpas et al. (2025), introducing the first Subject-Aware Contrastive Brainwave Foundation Model.70

3 Model Architecture71

3.1 Patch-Based Representation72

Let X ∈ RC×T denote the input EEG signal, where T is the number of time points and C is the73

number of electrodes. Similar to Jiang et al. (2024) and Barmpas et al. (2025), the signal is first74

segmented into temporal patches. To ensure that the models can deal with EEG signals of variable75

channels and time durations, the following approach is utilized: during model pre-training, each76

input is represented by P patches of length w (corresponding to a 1-second window), while only the77

number of channels is allowed to vary. This results in a segmented input sample of P patches (i.e,78

x ∈ RP×w). These patches undergo embedding via temporal convolutions, enriched with spatial and79

temporal embeddings, and are subsequently processed by a transformer encoder. This setup provides80

flexibility to handle heterogeneous EEG recordings but always includes a fixed number of patches,81

ensuring consistent input length for the encoder.82

3.2 Positive Pairs Selection83

A critical design decision concerns the construction of positive pairs for contrastive learning. We84

draw positives not only from different segments within the same recording, but also from recordings85
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Figure 1: Overview of our subject-aware contrastive EEG foundation model. EEG signals are
segmented into patches, embedded via a temporal encoder, enriched with spatial and temporal
embeddings, and processed through a transformer encoder. Contrastive learning attracts positive pairs
from the same subject and repels negatives from different subjects.

of the same subject across sessions, including potentially different days. This naturally occurring86

variability functions similarly to augmentations in our setting, allowing the model to learn invariances87

related to session-level fluctuations and more stable subject characteristics. Studies confirm that88

intra-subject, inter-session EEG variability (i.e., from recordings of the same person on different89

days) is substantial and therefore valuable for building robust models Huang et al. (2023). We use90

samples from different subjects as negatives, structuring the latent space around subject identity.91

Unlike common contrastive pipelines, we do not employ synthetic augmentations.92

4 Experiments93

4.1 Training and Evaluation94

We trained our model following the details described in Appendix A and using the datasets of95

Appendix B. To assess the quality of the learned representations, we adopt both intrinsic contrastive96

metrics and extrinsic downstream performance:97

Contrastive metrics: We report alignment and uniformity Wang & Isola (2020), as well as Smooth98

Effective Rank (SER) as introduced in Abbaspourazad et al. (2023). These metrics provide insight99

into whether the representation space is well-structured, offering a good indication of potential100

downstream task performance even before linear probing or fine-tuning.101

Downstream tasks: Similar to Lee et al. (2025b), we evaluate on supervised EEG benchmarks102

under two protocols. In the linear probing setup, a frozen foundation model is paired with a shallow103

classifier, highlighting the linear separability of the representations. In the fine-tuning setup, the104

foundation model and classification head are both updated for each task. This dual evaluation105

reflects both the immediate usability of pretrained representations and their adaptability to specific106

downstream applications. For downstream performance, the models were evaluated in downstream107

classification tasks for the following four EEG datasets as described in the benchmark Lee et al.108

(2025a): Motor paradigm in High Gamma Schirrmeister et al. (2017), a Working Memory dataset109

Pavlov et al. (2022), Sleep-EDF Kemp et al. (2000) and Eyes Open vs Closed classification on the110

Physionet Motor dataset Schalk et al. (2004).111

4.2 Architecture Ablations112

As described in Section 3, our network consists of a transformer-based encoder. To find the optimal113

number of layers, we resorted to evaluating contrastive metrics and experimenting with transformer114

layers of multiple depths. While deeper models tended to overfit, resulting in less stable representation115

metrics and weaker downstream performance, the shallowest models lacked sufficient capacity. A116

2-layer transformer struck the optimal balance, yielding 1.) consistent and stable contrastive training117

dynamics and 2.) strong downstream representation quality in a compact efficient architecture.118
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Table 1: Representation-level metrics across transformer depths and average of linear probing results.
Layers Alignment Uniformity SER Average

1 0.60 −3.48 90.23 0.590
2 0.51 −3.52 95.03 0.594
8 0.48 −3.51 80.24 0.592

4.3 Downstream Task Performance119

Linear probing. We compared our model against an open-source model that uses similar patch120

representation, namely Jiang et al. (2024). As shown in Table 2, our model achieves the best overall121

mean performance across tasks, outperforming LaBraM Jiang et al. (2024). These results indicate122

that the representations learned through subject-aware contrastive pretraining have strong separability,123

a sign of strong foundation model features. The fact that our lightweight 2-layer encoder surpasses a124

larger reconstruction-oriented model in this setting highlights the promise of contrastive training for125

EEG representation learning.126

Table 2: Linear probing results: classification accuracy of logistic regression model trained on latent
features. Bold and underlined values indicate best and second-best performance respectively (per
task or overall).

Model Motor Memory Sleep Eyes Mean

LaBraM 0.297 0.670 0.608 0.717 0.573
Ours (contrastive) 0.360 0.580 0.610 0.810 0.590

Fine-tuning. In the full fine-tuning setup, our model delivers competitive performance compared127

to other open-source state-of-the-art LBMs, namely BIOT Yang et al. (2023)*, EEGPT Wang et al.128

(2024) and CBRAMod Wang et al. (2025). As shown in Table 3, it achieves the best performance129

on Eyes and strong results across other tasks. While these numbers demonstrate that the learned130

representations already transfer reasonably well, there is clear headroom for improvement. We expect131

that scaling pretraining to larger and more diverse datasets, along with exploring parameter-efficient132

or task-specific fine-tuning strategies, can help convert the strong representation quality observed in133

linear probing into even stronger fine-tuned performance.134

Table 3: Fine-tuning results (accuracy). Bold and underlined values indicate best and second-best
performance respectively (per task or overall).

Model Motor Memory Sleep Eyes Mean

EEGPT (encoder) 0.313 0.520 0.633 0.793 0.565
CbraMod 0.614 0.574 0.635 0.839 0.666
BIOT 0.443 0.510 – 0.763 0.572
Ours (contrastive) 0.450 0.560 0.610 0.840 0.615

5 Conclusion135

In this work we introduced the Subject-Aware Contrastive Brainwave Foundation Model, combining a136

patch-based representation with NT-Xent loss to structure the latent space around subject identity. Our137

experiments show that contrastive pretraining produces well-organized embeddings, with strong SER,138

rank, and contrastive uniformity/alignment scores. These results highlight the promise of contrastive139

learning as a complementary paradigm to reconstruction-oriented EEG foundation models.140

Our approach could also be extended beyond subject-specific supervision to incorporate task-specific141

goals, aligning the learned representations more directly with BCI applications. Furthermore, fu-142

ture work will also require scaling to larger and more diverse datasets and exploring multi-modal143

extensions that combine EEG with other physiological signals to enrich representation quality.144

*BIOT could not be tested on Sleep since the benchmark electrodes are missing from the pre-trained model
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A Model Configuration and Hyperparameter Settings261

Our foundation model was trained using the the NT-Xent loss Chen et al. (2020), a widely used262

contrastive objective. Positives are defined as segments from the same subject (either within the263

same recording or across different recordings), while negatives are drawn from other subjects. This264

loss L encourages embeddings of the same subject to be closer in the latent space, while pushing265

apart embeddings from different subjects, thereby structuring the representation space around subject266

identity. Mathematically, L is defined as:267

Li = − log
exp (sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp (sim(zi, zk)/τ)
(1)

where zi is the patch representation for subject i.268

Training was conducted using mini-batches sampled across subjects to ensure a balanced distribution269

of positive and negative pairs. Unlike typical contrastive learning pipelines, we did not employ270

synthetic data augmentations; instead, natural session-level variability in EEG recordings across271

different days and conditions served as implicit augmentations Huang et al. (2023).272

All model configurations are described in detail in the following tables:273

Table 4: Configuration of temporal encoder module.
Layer Shape Kernel Stride Padding Norm(N, C) Activation

Patch
Embedding

Conv2d (1, 8) (1, 15) (1, 8) (0, 7) GroupNorm(4, 8) GELU
Conv2d (8, 8) (1, 3) (1, 1) (0, 1) GroupNorm(4, 8) GELU
Conv2d (8, 8) (1, 3) (1, 1) (0, 1) GroupNorm(4, 8) GELU

Table 5: Hyperparameters for pre-training core foundation model and finetuning on downstream
tasks.

Hyperparameter Pre-training FM Finetuning

Batch size 256 32
Learning rate scheduler Cosine Linear
Base learning rate 5e-4 5e-4
Min learning rate 1e-5 -
Total epochs 40 20
Warmup epochs 4 4
Optimizer AdamW AdamW
Weight decay 1e-4 0.01
Adam β (0.9, 0.999) (0.9, 0.999)
Layer lr decay - 0.975

Layer scale init 0.001 -
Encoder depth 2 2
Hidden dimension 200 200
No. Attention heads 10 10
MLP hidden dimension 256 256
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B Datasets274

Table 6: Datasets used during the contrastive foundation model’s pre-training
Dataset Names

BCI Competition IV-1 Blankertz et al. (2007)
Grasp and Lift Luciw et al. (2014)
Inria BCI Challenge Margaux et al. (2012)
Physionet MI Schalk et al. (2004)
Trujillo 2020 Trujillo (2020)
Trujillo 2017 Trujillo et al. (2017)
Siena Scalp Detti et al. (2020)
SPIS Resting Torkamani-Azar et al. (2019)
bi2015a Korczowski et al. (2019)
TUAR Buckwalter et al. (2021)
TUEP Veloso et al. (2017)
TUSZ Shah et al. (2018)
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