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Abstract

Various studies have attempted to remove sen-
sitive or private knowledge from a language
model to prevent its unauthorized exposure.
However, prior studies have overlooked the
complex and interconnected nature of knowl-
edge, where related knowledge must be care-
fully examined. Specifically, they have failed
to evaluate whether an unlearning method faith-
fully erases interconnected knowledge that
should be removed, retaining knowledge that
appears relevant but exists in a completely dif-
ferent context. To resolve this problem, we
first define a new concept called superficial
unlearning, which refers to the phenomenon
where an unlearning method either fails to erase
the interconnected knowledge it should remove
or unintentionally erases irrelevant knowledge.
Based on the definition, we introduce a new
benchmark, FAITHUN, to analyze and evalu-
ate the faithfulness of unlearning in real-world
knowledge QA settings. Furthermore, we
propose a novel unlearning method, KLUE,
which updates only knowledge-related neurons
to achieve faithful unlearning. KLUE identi-
fies knowledge neurons using an explainability
method and updates only those neurons using
selected unforgotten samples. Experimental
results demonstrate that widely-used unlearn-
ing methods fail to ensure faithful unlearning,
while our method shows significant effective-
ness in real-world QA unlearning.

1 Introduction

Large language models (LLMs) are trained on a
vast corpus of text, enabling them to achieve out-
standing performance across various tasks (Rad-
ford et al., 2019; Chowdhery et al., 2023; Gemma
et al., 2024). However, LLMs may present privacy
risks, as sensitive or private information could un-
intentionally be included in the large text corpus
used for training. Therefore, prior studies have
investigated unlearning undesirable knowledge in
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Figure 1: Faithful Unlearning. FAITHUN proposes
three types of datasets to evaluate the faithfulness of
unlearning methods (i.e., Paraphrased, Multi-hop, and
Same-answer datasets). Each target knowledge to be
unlearned is mapped with questions corresponding to
these three dataset types for evaluation.

language models. To assess unlearning, most stud-
ies have examined whether a model successfully
forgets the targeted knowledge while retaining irrel-
evant knowledge (Shi et al., 2024; Li et al., 2024a;
Maini et al., 2024; Jin et al., 2024).

However, they are limited since they have over-
looked the complex and interconnected nature of
knowledge, which requires careful investigation of
related knowledge. Specifically, these studies have
examined only the independent knowledge and
failed to evaluate whether an unlearning method
effectively erases interconnected knowledge that
should be removed, while retaining knowledge that
appears relevant but exists in a completely different
context. Figure 1 presents an example of faithful
unlearning in the real-world knowledge setting. Un-
learning methods should also remove paraphrased
and multi-hop questions, as they involve knowl-
edge interconnected with the target question being
unlearned. Conversely, unlearning methods should
retain knowledge of other questions with the same



answer as the target, if they actually contain differ-
ent knowledge despite appearing relevant.

To address this gap, we first define superficial
unlearning, which refers to the phenomenon where
an unlearning method either fails to erase the in-
terconnected knowledge it should remove or unin-
tentionally erases irrelevant knowledge. Based on
the definition, we introduce FAITHUN (A Faithful
Unlearning Evaluation Benchmark for Real-world
Knowledge Question Answering), a new bench-
mark to examine three types of unlearning chal-
lenges: generalization, multi-hop unlearning, and
shortcut unlearning to investigate superficial un-
learning. Generalization (Anil et al., 2022; Yang
et al., 2024a; Albalak et al., 2024), the multi-hop
reasoning (Zhong et al., 2023; Li et al., 2024b;
Yang et al., 2024b), and shortcut learning (Du et al.,
2023; Tang et al., 2023; Zhou et al., 2023) are cru-
cial challenges in machine learning research. Since
the unlearning process typically relies on fewer
data instances than general training, these chal-
lenges can be further amplified. Therefore, we con-
struct three types of new datasets—paraphrased,
multi-hop, and same-answer datasets—to exam-
ine superficial unlearning. These datasets address
generalization, multi-hop knowledge unlearning,
and shortcut unlearning, respectively. We demon-
strate that existing unlearning methods do not en-
sure faithful unlearning, which raises new research
questions for knowledge unlearning.

Furthermore, we propose a novel method,
KLUE, which stands for Knowledge-Localized
UnlEarning, to achieve faithful unlearning by pre-
cisely identifying and updating neurons related to
the target knowledge. Specifically, we use attribu-
tion (Yang et al., 2023), an explainability method,
to determine which neurons should be updated by
quantifying how much information each neuron
contributes to predicting the answer to a given ques-
tion. However, the quantified score may include
superficial knowledge that simply affects the target
output’s probability without considering contextual
meaning. Therefore, we propose a robust knowl-
edge regularization method that accurately quanti-
fies each neuron’s knowledge score, mitigating the
superficial contribution of neurons. After identify-
ing knowledge neurons, our method selectively un-
learns the target knowledge while preserving other
knowledge by updating only knowledge-related
neurons with selected unforgotten samples. In our
experiments, our method significantly outperforms
the baselines in the FAITHUN setting, demonstrat-

ing that knowledge-localized unlearning effectively
achieves faithful unlearning.

2 Unlearning in Large Language Models

Machine unlearning has been used as a solution
to address privacy and copyright issues in the text
generation process of language models. Notable
examples include gradient ascent-based methods
(Jang et al., 2023; Yao et al., 2023; Barbulescu and
Triantafillou, 2024), preference optimization ap-
proaches (Rafailov et al., 2024; Zhang et al., 2024;
Jin et al., 2024), and representation learning tech-
niques (Li et al., 2024a; Yao et al., 2024).

However, the effectiveness of these methods has
not been clearly demonstrated, prompting prior
studies to introduce benchmarks in the field of un-
learning to assess them. Eldan and Russinovich
(2023); Shi et al. (2024); Tian et al. (2024) have
aimed to unlearn the knowledge of copyrighted
texts (e.g., BBC News and Harry Potter book) in a
language model. Li et al. (2024a) have introduced
a benchmark dealing with hazardous knowledge
in various professional domains (e.g., biosecurity
and cybersecurity). Maini et al. (2024); Jin et al.
(2024) have proposed benchmarks for unlearning
various entities. Specifically, Maini et al. (2024)
have created synthetic entity profiles and removed
their knowledge from a language model. Jin et al.
(2024) have tried to unlearn the knowledge about
real-world entities and evaluated the knowledge
memorization in various forms of assessment (e.g.,
cloze test and question answering). However, ex-
isting studies remain limited as they have only ex-
amined independent knowledge and overlooked
the intricate nature of world knowledge. World
knowledge is highly complex and interconnected,
which means that unlearning the target knowledge
requires examining related knowledge carefully.
Our research focuses on this aspect, examining and
facilitating faithful unlearning.

3 The FAITHUN Benchmark
3.1 Problem Definition

The FAITHUN task evaluates unlearning algo-
rithms under real-world knowledge QA settings.
Formally, given a language model Py(y|x) =
Hthl Py(yi|z,y1, ..., y1—1) with parameters 6, an
unlearning algorithm f updates 6 to ¢, erasing the
target knowledge from FPy. FAITHUN includes var-
ious question-answer pairs (¢, a) € C, where C is a
question-answer pair set. Our task provides forget



set Cy, which contains target question-answer pairs
to be forgotten, where C; C C. FAITHUN also
provides retain set C, C C\Cy and test set C; C
C\(Cy UC;). C, is used in the unlearning process
as training samples to maintain the original knowl-
edge of Py, and C; is used as unseen data to evaluate
an unlearned model Py to reveal whether the un-
learned model maintains the original knowledge.
Furthermore, FAITHUN provides other new types
of test sets (i.e., paraphrased, multi-hop, and same-
answer sets) to assess the faithfulness of unlearning
methods. Before introducing the other datasets, we
first define key aspects of our benchmark.

World Knowledge Graph. A world knowledge
graph K is a directed multi-graph where nodes
are entities and edges are labeled with relations,
i.e., elements of two sets £ and R, respectively.
We define K as a collection of triples (s, r,0) C
E xR x &, where s, r, o denote the subject, re-
lation, and object, respectively (Ruffinelli et al.,
2020; Loconte et al., 2024). We assume that a
world knowledge question is mapped to triples of
IC; thus, we also define a knowledge mapping func-
tion, 7 : @ — P(K), where Q is a set of questions
and P(K) represents the power set of /C. For ex-
ample, the knowledge of a multi-hop question, g;
= "Which continent is Tom Cruise’s country in?",
can be denoted as a set of triples like x; = 7(¢;)
= {("Tom Cruise", "country", "U.S.A"), ("U.S.A",
"continent", "North America")}.

To quantify memorization after unlearning, we
define knowledge memorization of a language
model following the general QA task, as follows:

Knowledge Memorization. Let Py be a lan-
guage model, and let a be the correct answer to
the question g. Then, knowledge memorization
Mp: Q x A—{0,1} is defined as

1
Me(qva’) _{ 0
(D

where ¢ is an input prompt template for the lan-
guage model Py, and Q and A are question and
answer sets, respectively. From the definition,
My(gq,a) = 1indicates that the language model re-
tains the knowledge of (¢, a), while My(g,a) =0
signifies that it does not.

if argmax, 4 Po(a’|t,q) =a

otherwise

Furthermore, we define Superficial Unlearning
using Knowledge Memorization as follows:

Superficial Unlearning. Letg: © — O be an
unlearning algorithm, and 7 represent the knowl-
edge mapping. Assume there is a forget set Cy,
where My(q,a) = 1 holds for all (¢,a) € Cy,
and that (g;,a;) ¢ Cy with Mg(q;,a;) = 1. Fur-
thermore, suppose we unlearn the knowledge of
Cy using g from a language model P, and finally
get an unlearned model FPy. Then, g is called a
superficial unlearning algorithm for Cy if

((ky Nk #0) N Mo(gj,a5) = 1)

2
V((kf Nkj =0) AN Mg(gj,a;) =0), @

where ky = U(q?a)ech(q) and k; = 7(q;).

For example, suppose that an unlearning algo-
rithm g unlearns the knowledge of the question ¢; =
"Which country is Tom Cruise from?", but it does
not unlearn the multi-hop question g; = "Which
continent is Tom Cruise’s country in?". Then, the
knowledge of two questions can be denoted as a
set of knowledge triples like x; = 7(g;) = {("Tom
Cruise", "country", "U.S.A")} and k; = 7(g;) =
{("Tom Cruise", "country”, "U.S.A"), ("U.S.A",
"continent", "North America")}. In this case, g
is called a superficial unlearning algorithm since
ki N kj # o and My (qj, a;) = 11is true; thus, the
equation 2 is satisfied.

Faithful Unlearning Benchmark. Based on the
definition of superficial unlearning, we construct
three new types of datasets: paraphrased, multi-
hop, and same-answer sets to investigate the phe-
nomenon of superficial unlearning. The para-
phrased set C¢, multi-hop set C! , and same-answer
set C! is matched with each question-answer pair
(gi,a;) € C. The paraphrased set includes the same
context questions with varying textual forms to
the matched target question; thus, we should un-
learn C; if a matched question-answer pair (g;, a;)
is included in the forget set C;. The multi-hop
set includes multi-hop question-answer pairs inter-
connected with the target question. Therefore, we
should also unlearn C¢, if a mapped pair (g;, a;)
is included in Cy. The same-answer set includes
question-answer pairs where the questions are from
different contexts but share the same answer as a;;
thus, we should maintain the knowledge of the
same-answer set, although a matched pair (g;, a;)
is included in Cy.

3.2 Data Collection and Construction

Data Source. We construct FAITHUN using Wiki-
data (Vrandeci¢ and Krotzsch, 2014), a knowledge
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# Unlearning Entities N/A N/A N/A 200 200 200
# Forget Probes 889 987 4,157 4,000 13,131 8,377
Knowledge Exists in LLMs X X (0] X (0] (0]
Generalization Test X X X X (6] (6]
Multi-hop Unlearning Test X X X X X (0]
Shortcut Unlearning Test X X X X X o

Table 1: Dataset Comparison. FAITHUN aims to examine three types of unlearning challenges: generalization,
multi-hop knowledge unlearning, and shortcut unlearning to investigate superficial unlearning. FAITHUN can be
used flexibly as it evaluates the removal of pre-existing knowledge about famous figures within LLMs.

base including knowledge triples (s, 7, 0) matched
with millions of entities. We first select 200 of the
most famous people as the entity set £ from The
Most Famous People Rank ', and manually select
19 common relations as the relation set R. The
selected relations are shown in Appendix A.3.1.
The Base QA dataset. We retrieve all the triples
(s,r,0) from Wikidata, where s € £ and r € R.
Based on these triples, we use GPT-40 mini> to
generate natural language form questions using
a prompt template shown in Figure 6. We use
an object (i.e., o) of each triple as the answer for
each generated question. The constructed Base QA
dataset C is split into three types of datasets: forget
set Cy, retain set C,, and test set C;.

Evaluation of Unlearning Generalization. We
also generate the Paraphrased QA dataset C,, to eval-
uate the generalization of an unlearning method.
Each question-answer pair (¢,a) € C is matched
with three paraphrased questions. The Paraphrased
QA dataset is generated during the Base QA dataset
construction process by making GPT-40 mini gen-
erate four different questions for each triple. We
use the first question as a sample of the Base QA
dataset and the others for the Paraphrased QA
dataset. We have strictly checked whether there
are the same texts in the generated four texts by
examining the lexical overlap between texts.
Evaluation of Multi-hop Knowledge Unlearn-
ing. We construct the Multi-hop QA dataset Cy, to
investigate superficial unlearning. Each question-
answer pair (¢, a) € C is matched with multi-hop
questions. After constructing the triples of the Base
QA dataset, we additionally retrieve a set of chain-
of-triples ((s1,71,01), (s2,7r2,02)) from Wikidata,
where sy € £ and r1,79 € R and 07 = so.
For each chain-of-triples, we also generate natu-
ral language questions using GPT-40 mini with the
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prompt template shown in Figure 7. We strictly
validate that o; and o2 are not included in the ques-
tions using instructions.

Evaluation of Shortcut Unlearning. We fur-
ther build the Same-answer QA dataset Cs;. Each
question-answer pair (¢,a) € C is also matched
with the same-answer but different-context ques-
tions. After constructing the triples of the Base QA
dataset, we also retrieve other triples (s’, 7/, 0) that
share the same object (i.e., 0) with each triple from
the Base QA dataset, where s’ ¢ £. We also gener-
ate natural language form questions using GPT-40
mini with the same prompt template used in con-
structing the Base QA dataset.

3.3 Dataset Summary

Dataset Format. Each instance of the dataset
is denoted as a tuple: d = (C',C},C.,,CL). The
FAITHUN dataset starts from a core factual triple
(s,r,0), which forms the knowledge of the Base
QA dataset C'. There are also the Paraphrased QA
dataset C;, based on the same triple, the Multi-hop
QA dataset C;,, which extends from the original
triple (s, r,0), and the Same-answer QA dataset
C!, which shares the same answers as the Base QA
dataset’s questions but has different contexts. Each
of these datasets (C?, C;;, Cfn, and C;) is composed
of question-answer pairs (¢, a), and they also in-
clude false answer options to enable evaluation
through Multiple-choice QA (MCQA). The details
for the MCQA setting are described in Section 3.4.
We also describe detailed examples in Table 10. In
addition, we summarize the differences our bench-
mark addresses compared to existing benchmarks
(Shi et al., 2024; Tian et al., 2024; Li et al., 2024a;
Maini et al., 2024; Jin et al., 2024) in Table 1.

Dataset Statistics. After collecting triples of the
Base QA dataset, we filter only triples including
matched Multi-hop QA or Same-answer QA sam-
ples. Therefore, each QA instance in the Base
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QA dataset serves as a cluster for evaluating the
faithfulness of unlearning methods. Consequently,
we collect 664 QA pairs for the Base QA dataset.
Each Base QA instance includes three paraphrased
questions, for a total of 1,992 paraphrased QA
instances in our dataset. FAITHUN also include
1,714 instances for multi-hop QA datasets. Further-
more, our dataset includes 4,671 instances for the
Same-answer QA dataset. The statistics of the con-
structed FAITHUN datasets are shown in Table 4.
Dataset Quality. We adopt a ChatGPT variant to
generate natural language questions, a commonly
used and powerful approach, following existing
studies (Shi et al., 2024; Jin et al., 2024; Maini
et al., 2024). However, to further investigate the
quality of the dataset, we conducted a human eval-
uation for the generated questions. Specifically, we
recruited crowd workers fluent in English through
the university’s online community and had them
evaluate 800 generated natural language questions.
The results revealed an error rate of 0%, confirming
the reliability of our benchmark.

3.4 Evaluation Framework

To evaluate the faithfulness of unlearning methods,
we first split the forget set Cy, the retaining set C,,
and the test set C; from the entire Base QA dataset
C. Then, we train a language model to unlearn
the forget set while maintaining knowledge of the
retaining set. We further evaluate the unlearned
model to the test set to assess knowledge retention
for unseen data. In addition, we evaluate the un-
learned model with the other constructed datasets
(i.e., Cp, Cy, and C,) mapped to the forget and test
sets to analyze the aspect of superficial unlearning.

Our unlearning framework consists of two types
of input formats: (1) general QA format, and (2)
multiple-choice QA (MCQA) format. We use the
general QA format for unlearning and the MCQA
format for evaluation. The general QA format
inputs a question without an additional template,
while the MCQA format uses a template that in-
cludes instructions and answer options. Suppose
we aim to unlearn the knowledge of the question
"Who is the mother of Barack Obama?", then we
train a language model not to output the correct an-
swer (i.e., "Stanley Ann Dunham") using only the
question as an input. However, many users use a
language model with various instruction templates,
and an unlearned model should be evaluated in
a stricter environment considering generalization.
Furthermore, evaluating all possible answers to a

question is one of the most challenging aspects of
QA evaluation. Therefore, we utilize the MCQA
form to evaluate an unlearned model. This makes
it easier for LLLMs to derive knowledge since they
are given answer options; thus, it makes unlearning
algorithms harder to apply. For this reason, we use
the MCQA setting to evaluate unlearned models in
more challenging and practical settings.

3.5 Evaluation Metrics

We propose various metrics to evaluate the basic
unlearning performance and the superficial unlearn-
ing performance. We use exact match to calculate
the score of all metrics. (1) Unlearning Accuracy
(UA): We compute accuracy for the forget set Cy to
evaluate the basic unlearning performance. (2) Ex-
tended Unlearning Accuracy (UAY): We compute
accuracy for the Paraphrased QA set C, to evaluate
the generalized unlearning performance. (3) Test
Accuracy (TA): We compute accuracy for the test
set C; to evaluate whether knowledge of unseen in-
stances is maintained after the unlearning process.
(4) Same-answer Test Accuracy (SA): We com-
pute accuracy for the Same-answer QA set C; to an-
alyze shortcut unlearning. An unlearning algorithm
may only superficially degrade the probability of
the answer regardless of context. (5) Multi-hop
Test Accuracy (MA): We compute accuracy for
Cy, matched with each instance of Cy and C; to
evaluate whether the interconnected knowledge of
instances is effectively unlearned. To derive the
aggregated MA score, we first compute the individ-
ual accuracies, MA for all (¢,a) € C,, mapped
to C¢ and MA, for all (¢,a) € C,, mapped to Cy;
then, we compute the aggregated score, MA, by
averaging the scores, (100—MA ;) and MA;. Al-
though the number of samples in C; is generally
higher than in C, we average the scores with equal
weight, as we assume that unlearning samples in
Cy is important due to significant privacy concerns.
(6) Total Score (Score): We aggregate all the eval-
uation scores by averaging (100—UA?'), TA, SA,
and MA, to present the overall performance.

4 Method: KLUE

Unlearning methods should erase only the knowl-
edge associated with the target knowledge while
preserving all other knowledge. In this section, we
describe the method, KLUE, that identifies neurons
contextually related to the target knowledge and
updates only them during the unlearning process.



4.1 Quantifying Knowledge Relevance
4.1.1 Knowledge Quantification

We utilize an attribution method (Shrikumar et al.,
2016) to extract the importance of neurons for spe-
cific world knowledge from language models. It is
usually used to derive the importance of the input
features (i.e., pixel, token) for performing a specific
task, but Yang et al. (2023) expands the attribution
formula to the importance of intermediate neurons
in language models. Formally, suppose we have
Py(ylz) =TI~y Po(yilz, 41, ., y1—1) that repre-
sents a language model. The contribution of an -th
neuron to the representation h in a particular layer,
in predicting an answer a given a question g using
Py, is defined as follows:

OPy(alq)
AP (h) = max A7 (R),

A (Rl = nl x

7 )

where h! means [-th token representation of h, and
OPy(alq)/OR. is the gradient of Py(alq) with re-
spect to hé. In this study, we use transformer vari-
ants for experiments; thus, activation scores and
gradients of a specific layer are computed for each
input token representation. Therefore, if an input
text includes L tokens, we have L attribution scores
for each neuron; thus, we aggregate attributions of
tokens by using max aggregation to acquire a single

neuron knowledge attribution A" (1).

4.1.2 Superficial Knowledge Regularization

Equation 3 computes the knowledge relevance of
each neuron for a specific (¢q,a) pair. However,
this equation may include undesirable information
that only serves to increase the likelihood of the
answer a regardless of the given context. To elim-
inate undesirable information from the computed
attribution, we construct synthetic mismatched QA
pairs (¢',a) € C’, where the answers remain the
same as the target answer a, while the questions
are randomly sampled independently of the answer.
Then, we compute the attribution score for each
mismatched pair and average them. Since a ques-
tion and an answer included in mismatched pairs
are contextually irrelevant, the computed attribu-
tion corresponds to the degree that unconditionally
increases the likelihood of the answer regardless
of the context (superficial knowledge). Therefore,
we can compute the final knowledge attribution, Z,
containing only contextual knowledge by exclud-
ing the information of the mismatched attribution

from the basic knowledge attribution as follows:

S (h) = AT (h),
(¢" a)ec’ 4)
TN () = AP () — o x 1 x S5 (h),

where C’ is a set including mismatched question
and answer pairs. NV is the number of mismatched
samples, and « is a hyper-parameter to determine
the magnitude of knowledge exclusion. A means a
negative value of A is converted to the zero value.
Since the negative values of the attribution score
are negative contributions to a specific knowledge,
it is reasonable to eliminate that unnecessary infor-
mation. We use C/ and C" as a pool to sample mis-
matched questions. Notice that this regularization
enhances the quantification of contextual knowl-
edge; thus, it can improve multi-hop reasoning and
mitigate shortcut unlearning.

4.2 Unforgotten Sample-localized Unlearning

If we repeatedly unlearn samples that have already
been sufficiently unlearned, it leads to overfitting
in language models. Therefore, we select only the
samples that are not completely forgotten in the
unlearning process to preserve the generalization
performance. Specifically, in each epoch’s unlearn-
ing process, we select and unlearn only questions
that satisfy the knowledge memorization criteria
(Described in Section 3.1).

4.3 Knowledge Neuron-localized Unlearning

After selecting unforgotten samples, we localize
and update only the knowledge neurons correspond-
ing to those selected samples in the language model.
Specifically, we first compute gradients of parame-
ters for the selected unforgotten samples. Then, we
quantify the knowledge relevance of each neuron
by using the equations 3 and 4, and sort neurons of
the whole target layers by the knowledge relevance
scores; then, we select the top-n knowledge neu-
rons. We finally mask gradients of the parameters
for knowledge-irrelevant neurons to exclude them
from the unlearning process. Suppose that a weight
matrix W € R?*F is a linear matrix multiplication
parameter of a language model, and the gradient
computed for the parameter is Vw £ = 0L/0W.
Then, the gradient of i-th neuron (i.e., column)
of the weight matrix after masking is denoted as
szﬂ.lj =7 © Vw, L, where v € {04,14} and
® means the Hadamard product. We also can mask
bias terms similar to the weight matrix. Notice



that this method is model-agnostic since all neural
networks consist of linear transformation layers.

S Experiments

5.1 FAITHUN Setups

Models. We adopt the instruction-tuned Gemma-
2 (Gemma et al., 2024) models (2B & 9B) and
the Llama-3.2 (Dubey et al., 2024) model (3B) to
evaluate unlearning methods since they are among
the latest open-source language models showing
excellent performance.

Data. We sample 5% as the forget set and 10% as
the retaining set from the Base QA dataset C since
there are generally fewer samples to unlearn than
to retain in real-world scenarios. More experiments
on varying numbers of samples for the forget set
are shown in Appendix B.5. We select 70% of C as
the test set, guaranteeing it is completely separate
from Cy and C,. For the MCQA evaluation (Sec-
tion 3.4), we manually select the instruction and
randomly sample two false answer options from
possible answers for each relation r. The details
of an example of the MCQA format and selecting
false answer options are shown in Appendix B.1
and B.2, respectively. We also conduct experiments
on various prompt templates, and the results are
described in Appendix B.6.4.

Training Setups. When unlearning is applied to a
language model, there is often a trade-off between
unlearning knowledge (i.e., UA, UA!, and MA 1)
and retaining the model’s overall knowledge (i.e.,
TA, SA, and MA;). Therefore, choosing the opti-
mal model in the unlearning process is challenging
since unlearning and retention are both important.
For a fair comparison, we early stop the training
procedure when UA< (.33 is satisfied (random
sampling from three options) to select the optimal
model. More detailed experimental settings can be
found in Appendix B.3.

5.2 Baselines

We adopt widely-used unlearning methods to eval-
uate the superficial unlearning: Gradient Ascent
(GA), Gradient Ascent with a Retaining Loss
(GA,¢t), two Direct Preference Optimization vari-
ants (DPO,,,;s and DPO,.;), NPO (Zhang et al.,
2024), and RMU (Li et al., 2024a). More details
for the baselines are described in Appendix B.3.
For KLUE, we select only 5% of neurons from
Feed-forward networks for the knowledge neuron
localization, and update them using general gradi-

Method | UAT (1) TA(1) SA (1) MA (1) | Score (1)
Default | 81.82 8599 79.63 4867 | -
GA | 3602 4892 3719 4834 | 4961
GAyer | 3401 7758 6651 5321 | 65.82
DPO,.; | 4175 6896 63.58 49.67 | 60.11
DPO,,;s | 3703 6501 5169 5289 | 58.14
NPO | 3872 6084 5277 4950 | 56.10
RMU | 46.12 7902 67.74 5305 | 6342
KLUE | 3670 8297 7469 5816 | 69.78

Table 2: Gemma-2 (2B) experimental results. We
report the results of four metrics after unlearning the
forget set (5%) in our settings. Bolded results indicate
the best performance. We compute the accuracy over
three trials and report the average accuracy.

ent ascent with retention loss. We also use o = 10
and N = 5 for the Superficial Knowledge Regular-
ization term. The experiments analyzing various
hyper-parameters are shown in Section 5.5 and Ap-
pendix B.6.

5.3 KLUE Mitigates Superficial Unlearning

We investigate superficial unlearning on all base-
lines with Gemma-2 (2B) in the FAITHUN setting,
as shown in Table 2. First, the default Gemma-2
model can correctly answer most questions, vali-
dating that FATTHUN is well constructed. After the
unlearning process, all baselines reach UA< (.33,
which validates that all methods can unlearn tar-
get knowledge. However, they fail to reliably re-
move implicit and interconnected knowledge, sug-
gesting that their unlearning process is superficial.
However, our method mitigates superficial unlearn-
ing and achieves faithful unlearning compared to
other baselines, without significantly damaging the
other knowledge to maintain (i.e., TA, SA, and
MA). These results demonstrate that our method
accurately identifies neurons relevant to contextual
knowledge and successfully erases this knowledge.
In addition, experiments on Gemma-2 (9B) and
Llama-3.2 (3B) reveal that our method outperforms
baselines, with results presented in Appendix B.4.
We also conduct ablation studies for KLUE and
demonstrate the validity of our proposed methods,
as detailed in Appendix B.7.

5.4 KLUE is Robust to Unlearning Trade-off.

We demonstrate how the unlearning process affects
other knowledge by plotting all scores from the
Gemma-2 (2B) unlearning process against UA. As
the UA score represents the progress of unlearning
target knowledge (decreasing with unlearning), we



Case Method Questions for Forgetting

Questions for Testing

Label Logit Shift

1 ]((;I/?[’JLIIE "Where was Michael Jordan born?" (Paraphrased QA) "What city is known as the birthplace of Michael Jordan?"  Brooklyn g zgzg : g i:;z
2 ]((;I/?[’JLIE "What is the country of citizenship of Ellen DeGeneres?" (Multi-hop QA) DV:’:1|I\:“u]|)r:gi\";j:mmle(l with the country of citizenship United States dollar g:;z: : g;;z
3 ]((;:L'TLEI: "Where was Khloé Kardashian born?" (Same-answer QA) "Where was Jamie Grace born?" Los Angeles g:;z: : @
4 ]?:ﬁé "Who is the mother of Charles III of the United Kingdom?" (Same-answer QA) "Who is Prince Andrew, Duke of York’s mother?" Elizabeth 1T g::zg : m

Table 3: Qualitative Analysis. GA,..; and KLUE are given the same questions to forget (Cy) and test (Cp, Cp,, and
Cs). Red texts indicate questions that should be forgotten, while blue texts should be retained. The "Label" and
"Logit Shift" columns represent the golden labels for test questions and the logit changes corresponding to the
labels, respectively. The underlined logit values indicate that the unlearning result is successful.

can observe each method’s impact on other knowl-
edge in Figure 2. All methods’ impact on the para-
phrased questions (UAY) shows a strong correlation
with the UA score, suggesting that all methods pose
robustness in dealing with different lexical forms
(but hold the same meaning) of the questions. How-
ever, the baselines struggle to maintain other knowl-
edge (TA and SA) and to forget interconnected
knowledge (MA). In contrast, KLUE demonstrates
robust unlearning performance by effectively for-
getting interconnected knowledge and preserving
other knowledge.

UA* (1)

g0 70 B g 70 B

60 60
UA (1) UA (1)

GA —— GAree — DPOrej RMU — KLUE

Figure 2: The relationship between UA and other
metrics. The X-axis shows UA in descending order,
and the Y-axis shows the accuracy of other metrics.

5.5 The Impact of Neuron Localization

We adopt varying ratios of neuron selection p €
{0.01,0.05,0.1} to investigate the effect of the
knowledge neuron on Gemma-2 (2B). Also, we
conduct experiments for the random neuron selec-
tion (i.e., p € {0.01,0.05}). As a result, we reveal
that a neuron ratio of 0.05 or 0.1 contributes to
achieving faithful unlearning, showing that random
neuron selection more significantly triggers super-
ficial unlearning.

5.6 Qualitative Analysis

We conduct a qualitative analysis for KLUE and
GA, ¢ on Gemma-2 (2B). Both KLUE and GA,;

84
444

404 821

36 1 804

324

UAF (1) . TA(T)
58

Accuracy (%)

74 4 56

54
70

524

66 SA(T) 207

5% mmm 10%

MA (1)

. 1% Random 1% Random 5%

Figure 3: The ratio of neuron localization. We plot
the accuracy of each metric for varying ratios of neuron
localization.

successfully unlearn the paraphrased question (Cp),
degrading label logits to 0.33. However, GA,¢;
has difficulty in unlearning the multi-hop question
(Cpn), while mistakenly unlearns the same-answer
questions (Cs). On the other hand, KLUE faithfully
unlearns them, mitigating superficial unlearning.

6 Conclusion

Our research identifies the limitation of existing
unlearning benchmarks, which have not explored
the interconnectedness of knowledge. To overcome
this issue, we define superficial unlearning and pro-
pose a new benchmark, FAITHUN, for evaluating
generalization, multi-hop knowledge unlearning,
and shortcut unlearning. Using this benchmark,
we empirically demonstrate that existing unlearn-
ing methods are vulnerable to superficial unlearn-
ing. Furthermore, we propose a novel knowledge-
localized unlearning method, KLUE, and demon-
strate that it outperforms existing unlearning meth-
ods, effectively mitigating superficial unlearning.
Our paper first illuminates the phenomenon of su-
perficial unlearning and raises a new research ques-
tion for a deeper analysis of the unlearning field.



Limitations

FAITHUN is constructed based on Wikidata and
is designed to investigate the unlearning of knowl-
edge about famous people for application in var-
ious language models. Although knowledge is
more interconnected for well-known individuals,
our benchmark does not examine a broader range
of people. Additionally, our study focuses solely on
erasing the target label, leaving the issue of hallu-
cinations in the unlearning process as future work,
in line with prior studies.

Ethical Considerations

Our benchmark includes the private information of
famous people, retrieved from Wikidata. Although
the information of famous people is prevalent on
the World Wide Web, the misuse of these data may
raise ethical concerns regarding privacy.
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A FAITHUN Details

A.1 Detailed Dataset Comparison

In this section, we propose detailed comparisons
with existing datasets to show the novelty of our
benchmark clearly. Our benchmark aims to unlearn
the knowledge of famous real-world entities, which
can be prevalent in various language models, to con-
sider the most practical situation of knowledge un-
learning. Furthermore, our benchmark deals with
the complex and interconnected nature of world
knowledge; thus, we introduce three types of un-
learning evaluation aspects (Generalization, Multi-
hop knowledge unlearning, and Shortcut unlearn-
ing) for more deep analysis of real-world knowl-
edge unlearning.

In summary, MUSE, KnowUnDo, and TOFU
require fine-tuning to inject knowledge before un-
learning, which may reduce their practicality. Ad-
ditionally, only RWKU and our benchmark address
real-world entities as targets for unlearning. Fur-
thermore, most existing benchmarks, except for
RWKU and our benchmark, have not considered
related knowledge. However, RWKU has not ex-
plored the interconnections between knowledge
and shortcut unlearning problems, which have be-
come increasingly significant in unlearning due
to its reliance on a limited number of training in-
stances. For example, RWKU includes a target text
for unlearning: ’Please forget Stephen King, who is
an American author, renowned as the "King of Hor-
ror'’. It also contains a related knowledge question:
"*Who plays the character Jack Torrance in the film
The Shining?’". While the two questions are some-
what related, they represent independent pieces
of knowledge, as they are not interconnected like
multi-hop questions. In conclusion, the main contri-
bution of our benchmark lies in evaluating whether
unlearning methods perform faithful unlearning
while considering knowledge interconnectedness
within the real-world entity unlearning setting.



A.2 Dataset Format

Our FAITHUN benchmark includes four types of
datasets: the Base QA dataset (C), the Paraphrased
QA dataset (Cp), the Multi-hop QA dataset (Cy,),
and the Same-answer QA dataset (C;). Each in-
stance in the Base QA dataset is matched with
instances in other datasets (i.e., Paraphrased QA,
Multi-hop QA, and Same-answer QA) to examine
the impact of unlearning on these datasets. Dataset
statistics for the FAITHUN benchmark are shown
in Table 4. Examples in the FAITHUN benchmark
are shown in Table 10.

Type Usage #instances Avg # in each cluster
Base QA train & test 664 1
Paraphrased QA test 1,992 3
Multi-hop QA test 1,714 2.68
Same-answer QA test 4,671 7.03

Table 4: Dataset statistics. FAITHUN includes ques-
tions to be forgotten, collectively referred to as the Base
QA dataset. Each question in this dataset forms a cluster,
and questions from other datasets (i.e., Paraphrased QA,
Multi-hop QA, and Same-answer QA) are matched with
those in the Base QA dataset, thereby being assigned to
the corresponding cluster.

A.3 Details in Dataset Construction

A.3.1 Selected Entities and Relations.

We select 200 famous human entities and 19 re-
lations appropriate for constructing knowledge
triples from Wikidata. Specifically, we manually
select mother, country, religion, founded by, high-
est point, country of citizenship, place of birth, po-
sition played on team / speciality, headquarters
location, country of origin, native language, field
of work, father, occupation, sport, capital, cur-
rency, location, continent as relations, which are
widely-used relations to describe knowledge of hu-
man entities or other entities related to human (e.g.,
United States of America).

A.3.2 Dataset Analysis.

The Number of Data Instances for Each Entity.
We investigate the number of data instances (clus-
ter) for each entity, as shown in Figure 4. The
X-axis of the figure corresponds to the entity index,
which is sorted in descending order of popularity.
From this figure, we can confirm that our dataset
maintains a balanced distribution of entities, re-
gardless of popularity. The average number of data
instances of each entity is 3.32, and the standard
deviation is 1.25.
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Figure 4: The number of data instances per entity.
The X-axis of the figure corresponds to the entity index,
which is sorted in descending order of popularity. The
Y-axis means the number of questions to be unlearned
for each entity.

The Frequency of Each Relation. we plot the
number of each relation on the Base QA, the Multi-
hop QA, and the Same-answer QA datasets, as
shown in Figure 5. The Multi-hop QA dataset
contains diverse relations, allowing for a broader
evaluation of superficial unlearning. In contrast,
the Same-answer QA dataset has a distribution of
relation similar to the Base QA dataset, making
unlearning more challenging. When evaluating
shortcut unlearning on datasets with standardized
relations, we can more effectively identify issues
that lower the likelihood of predicting the given
answer, regardless of context.

A.3.3 Question Generation Prompt Templates

We utilize GPT-40 mini to generate questions from
constructed Wikidata triples, similar to (Zhong
et al., 2023; Mallen et al., 2022). An example
of generating single-hop questions (the base QA,
paraphrased QA, and same-answer QA datasets) is
shown in Figure 6. Multi-hop questions are gen-
erated similarly to single-hop questions, shown in
Figure 7.

B Experimental Setup

B.1 MCQA Prompt Templates

The FAITHUN framework evaluates unlearned
models by using an MCQA format. The MCQA
format consists of three parts: an instruction, a
question, and options. After sampling false op-
tions for each question, we randomly shuffle the
options to mitigate position bias (Pezeshkpour and
Hruschka, 2024; Zheng et al., 2023), consistently
maintaining the determined order during all the ex-
periments for fair experiments. The utilized MCQA
template is shown in Figure 8.
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Figure 5: Relation frequency for each dataset.
the Same-answer QA dataset (right).
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System prompt:

triples.
[four in-context learning demonstrations]

User prompt:

(N

You are a helpful assistant for generating questions.
triple, and you will assist in crafting questions whose answer is the tail entity of the

Given a Wikidata triple (Kim Kardashian, spouse, x1), write a question with x1 as the
answer. Write four possible questions in natural English form. Your answer:

\

Users will give you a Wikidata

J

Figure 6: Templates for generating single-hop questions using triples retrieved from Wikidata.

B.2 MCQA False Options Selection

To prevent the situation that the false options in-
clude a possible correct answer, we use GPT-40 3
to cluster the entire answer options of each relation
and we manually double-check the answer clusters
are well constructed. After constructing answer
clusters, we sample two incorrect options from the
answer set, excluding those in the same cluster as
the correct answer.

B.3 More Details for the Experiments

Training Setups. We train and evaluate
KLUE and other baselines on NVIDIA A100 GPU.
For a fair comparison, we early stop the training
procedure when UA< (.33 is satisfied (random
sampling from three answer options) to select the
optimal model. Since a language model forgets all
the knowledge when a learning rate is set too high,
we have searched for the lowest learning rates,
which can reach UA< 0.33 within the range A €
[1e-07, 3e-03]. We adopt batch size 5 = 4 for all
unlearning methods. We compute the final loss
by weighted-summing the loss of forget samples

Shttps://openai.com/index/hello-gpt-40/
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and retaining samples. Specifically, we use 0.7
and 1.0 for the loss of forget samples and the
retaining samples, respectively. We select e = 150
as the maximum number of epochs in the training
process.

Baselines. (1) Gradient Ascent (GA): Unlike
the gradient descent used during the pre-training
phase, GA (Jang et al., 2023; Yao et al., 2023) max-
imize the negative log-likelihood loss on the forget
set. This method helps shift the model away from
its original predictions, aiding in the unlearning
process. (2) Gradient Ascent with a Retaining
Loss (GA,.t): GA tends to unlearn other unrelated
knowledge since it just maximizes the negative log-
likelihood loss on the forget set. Therefore, we
add an auxiliary retention loss to maximize the
log-likelihood of the retaining set, securing the re-
tention of other irrelevant knowledge. (3) Direct
Preference Optimization (DPO): We adopt pref-
erence optimization to unlearn a language model
to generate another answer. DPO (Rafailov et al.,
2024; Jin et al., 2024) utilizes positive and nega-
tive instances to train the model. Therefore, we
select the correct answer as the negative instance


https://openai.com/index/hello-gpt-4o/
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System prompt:

the questions.
of Wikidata triples.

[four in-context learning demonstrations]
User prompt:

with x2 as the answer.
\\?nglish form. Your answer:

You are a helpful assistant for generating multi-hop questions.
chain of Wikidata triples, and you will assist in crafting questions whose answer is the
tail entity of the sequence of triples. You must never include intermediate entities in
Ensure that questions must include only the head entity of a given chain

Given Wikidata triples (Kim Kardashian, spouse, x1), (x1, genre, x2), write a question
Never mention x1 and x2.

~

Users will give you a

Write a possible question in natural

)

Figure 7: Templates for generating multi-hop questions using triples retrieved from Wikidata.

Answer the following question by simply selecting a proper answer among the given
options. You must generate only the exact word without an explanation.

Question: {question}
Options: {options}
Your Answer:

Figure 8: Templates for the multiple-choice question-answering (MCQA) prompting. We use this template to
evaluate the knowledge of unlearned models accurately in a realistic usage scenario.

and also define two types of DPO methods to de-
termine positive ones: (1) DPO,,;s (DPO using a
mismatched answer) and (2) DPO,,¢, (DPO using
a rejection answer). DPO,,,;5 utilizes a randomly
sampled answer as the positive instance. On the
other hand, DPO,..; utilizes a rejection text “/ can’t
answer the question." as the positive instance. Two
DPO methods both aim to increase the probability
of the positive instance compared to the negative
one for the forget set, and they switch the positive
and negative instances for training the retaining set.
We search for Sppo € [0.1,0.5] to optimize mod-
els. (4) NPO: NPO is a modified version of DPO
that exclusively retains negative examples without
positive ones. NPO can also be explained as a
straightforward modification of the GA loss. We
implement NPO (Zhang et al., 2024) for extended
experiments. We search for Sypo € [0.1,0.5] to
optimize models. (5) RMU: We implement RMU
(Li et al., 2024a), the representation learning-based
unlearning model. For RMU experiments, we
search for agypy € {20,50,100, 150,200,300}
and use hyper-parameters ¢ = 20 and [ 7,
following the implementation details on the origi-
nal GitHub Page4. (6) Knowledge-Localized Un-
learning (KLUE): We select only 5% of neurons

*https://github.com/centerforaisafety/wndp
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from Feed-forward networks for the knowledge
neuron localization, and update them using general
gradient ascent with retention loss. We also use
o = 10 and N = 5 for the Superficial Knowledge
Regularization term. The experiments analyzing
varying hyper-parameters are shown in Section 5.5,
Appendix B.6.2, and Appendix B.6.3.

B.4 KLUE successfully Mitigates Superficial
Unlearning on Various Language Models

We conduct experiments on Llama-3.2 (3B) and
Gemma-2 (9B) to reveal that our method is model-
agnostic and generalizable. Table 5 shows the ex-
perimental results for Llama-3.2 (3B) and Gemma-
2 (9B), respectively. In the Llama-3.2 (3B) results,
all baselines are significantly exposed to superficial
unlearning, while our method successfully outper-
forms other baselines in most metrics. Likewise,
in the Gemma-2 (9B) results, the enhancement of
mitigating superficial unlearning is dramatic after
applying knowledge localization. These results
demonstrate that our method can be applied to var-
ious language models and successfully mitigates
superficial unlearning.


https://github.com/centerforaisafety/wmdp

Model ~ Method | UAT () | TA(1) SA (1) MA (1) | Score (1) Forget % Method \ UAT () \ TAM) SAM) MA® \ Score (1)
Default | 90.91 | 87.28 8565 5057 | Default | 7222 | 8534 7143 54.18 |
GA 3535 | 5452 39.19 5245 | 5270 GA 4444 | 7780 57.14 4943 | 59.98
Ua’;‘g‘3~2 GA, | 48.14 | 6824 5771 5394 | 57.94 1% GA,. | 3433 | 8578 5952 5838 | 6733
GB) DPO,.; | 4680 | 69.68 5586 54.02 | 58.19 DPO,.; | 4444 | 7284 5476 5179 | 58.73
DPOpmis | 3602 | 6487 4321 5156 | 35591 KLUE | 36.11 | 8534 63.09 59.77 | 68.02
KLUE | 4579 | 7758 6512 5399 | 6273
Default | 81.82 | 85.99 79.63 4867 |
Default | 9192 | 89.87 8657 48.07 |
GA 36.02 | 4892 37.19 4834 | 4961
GA | 2929 | 4052 3056 5046 | 43.06 3% GAw | 3401 | 7758 6651 5321 | 6582
Gemma2 GAye | 4545 | 8384 6852 5072 | 64.40 DPO,.; | 4175 | 6896 6358 4967 | 60.11
(9B) DPO,.; | 4141 | 7532 5972  47.02 | 60.16 :
DPO,,. | 3636 | 63.15 4306 5545 | 5632 KLUE | 3670 | 8297 74.69 58.16 | 69.78
KLUE | 4040 | 89.83 8148 6048 | 7285 Default \ 83.84 \ 8534 76.82  50.05 \
GA 3838 | 28.02 3113 5041 42.79
Table 5: Llama-3.2 (3B) and Gemma-2 (9B) experi- 0% GA., | 4040 | 6250 65.12 5421 | 6035
mental results. We report the results of four metrics af- DPO,; | 3485 | 4526 4238 5129 | 51.02
ter unlearning the forget set (5%) in our settings. Bolded KLUE | 4091 | 8103 69.98 5918 | 67.32

results indicate the best performance.

B.5 KLUE is Robust to Various Forget
Sample Sizes

We conduct experiments on Gemma-2 (2B) for the
varying sizes (i.e., 1%, 5%, and 10%) of the forget
set to analyze the effect of unlearning samples. The
experimental results are shown in Table 2 (5%) and
Table 6 (1% and 10%). Our experiments reveal
that existing methods undergo more problems in
unlearning when the number of forget samples in-
creases. Increasing the number of samples to be for-
gotten is more challenging since it requires modify-
ing a greater amount of knowledge. However, our
proposed method consistently outperforms other
baselines; thus, the performance gap between our
method and the baselines widens as the number of
forget samples increases.

B.6 Hyper-parameter Experiments

B.6.1 Sequential vs. Batch Unlearning

We conduct experiments on Gemma-2 (2B) to show
the performance variation for varying numbers of
samples unlearned in each batch. We select 5% of
neurons to unlearn. We adopt various batch size
B € {1, 4,8, 16, 32} for the experiments, shown
in Figure 9. The experimental results reveal that
KLUE is effective when using 8 € [4,16]. Se-
quential unlearning restricts unlearning to specific
knowledge for only a single data sample, which im-
pacts overfitting in the unlearning process, resulting
in good performance only on UA¥. In contrast, a
large batch size makes it hard for a language model
to unlearn the knowledge since it can not identify
appropriate knowledge neurons from the attribution
computed by large samples.

14

Table 6: Unlearning experiments for varying forget
sample sizes. We report the unlearning results for the
varying number of forget set (i.g., 1% and 10%). The
results for 5% are also found in Table 2.
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1 4 8 16 32 1 4 8 16 32
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Figure 9: The batch size experiments.

B.6.2

We conduct hyper-parameter experiments on
Gemma-2 (2B) for a € {0.5, 1.0, 10.0, 20.0},
which is used to determine the magnitude of the
superficial knowledge regularization, shown in Fig-
ure 10. The experimental results show that low
values of o damage the retention of the original
knowledge (TA, SA), although they show better
performance for unlearning interconnected knowl-
edge of the forget set (UAY). On the other hand,
higher values of « contribute to preserving the re-
tention of the original knowledge.

Hyper-parameter (o)) Experiments

B.6.3 Neuron Ratio (p) Experiments

We conduct experiments on various neuron ratios to
investigate the KLUE method further for Gemma-2
(2B), as shown in Table 7. We reveal that even
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Figure 10: The hyper-param («) experiments.

the larger ratios show comparable results, however,
simply increasing the neuron ratio does not enhance
the performance. The results also demonstrate that
it is more important to exclude irrelevant neurons
than to include relevant neurons during training to
mitigate superficial unlearning.

Neurons ratio (p) UA?! TA SA MA  Score
0.01 4242 81.03 6898 56.33 6598
0.05 3636 83.41 7454 5748 69.76
0.1 3737 83.62 7454 5550 69.07
0.5 39.39 8297 72.69 5881 68.77

Table 7: The experiments on various neuron ratios.

B.6.4 The Various Prompt Templates
Experiments

We conduct experiments on various prompt tem-
plates to investigate the unlearning abilities of the
KLUE method further for Gemma-2 (2B), as shown
in Table 7. Specifically, we newly select five tem-
plates: (1) "Pick the appropriate option for the
question from the provided options. You should
answer without further explanation.”, (2) "Select
the correct answer for the given question from the
options. Write only the word without explanation.”,
(3) "Answer the given question by choosing the ap-
propriate answer from the given options. Do not
include any explanations."”, (4) "Select the correct
answer to the following question among the op-
tions. Only the exact word should be written, with
no explanation.”, and (5) "Select the proper an-
swer to the question from among the given options.
Write only the exact word without any additional ex-
planation.”. From the experiments, we reveal that
the newly adopted prompts perform similarly to
the original prompt. Their performance on the UA
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score is slightly higher than the original one since
we early stopped the unlearning process based on
the UA score evaluation for the original prompt.

promptindex UA UA' TA SA MA Score
original 3333 3636 8341 7454 5748 69.76
1 39.39 3737 8276 73.61 57.16 69.04

2 39.39 4242 8147 73.61 5751 67.54

3 36.36 3838 8341 74.54 5810 69.42

4 36.36 3838 83.41 7454 5721 69.20

5 39.39 3838 8233 7639 5655 69.22

Table 8: The experiments on different prompts.

B.7 Ablation Studies

We perform ablation experiments on each
KLUE method using Gemma-2 2B to better un-
derstand their relative importance, as shown in Ta-
ble 9. Regularization means the strategy of using
the auxiliary regularization term for quantifying the
knowledge relevance of each neuron, mitigating
superficial unlearning. Localization corresponds
to the entire knowledge neuron localization strat-
egy. Sample Selection is the strategy that selects
unforgotten samples by evaluating the memoriza-
tion of each sample. For the ablation study, we
remove each of them and measure the accuracy. As
a result, we reveal that three methods significantly
affect the faithfulness of unlearning. Regulariza-
tion and Localization are useful to enhance SA and
MA, mitigating superficial unlearning related to
interconnected knowledge. These results demon-
strate that selecting proper knowledge neurons to
be updated is useful for handling interconnected
knowledge. In addition, we illuminate that Sample
Selection significantly increases TA and SA, miti-
gating overfitting and shortcut unlearning issues.

Module |UAT () TA() SA() MA(®) | Score (1)
Default 81.82 8599 79.63  48.67 -
KLUE 3670 8297 7469 58.16 | 69.78
(-) Regularization 4040 7974 6759 5124 | 64.54
(-) Localization 4646  81.68 6852 5351 | 6431
(-) Sample Selection | 37.37 7586 6296  56.05 | 64.37

Table 9: Ablation studies



Type

Notation Example

Example 1

Main triple

(s,7,0)

(Hillary Clinton, father, Hugh E. Rodham)

Base QA

Ci,

Who is the father of Hillary Clinton? — Hugh E. Rodham
False options: August Coppola, Earl Woods

Paraphrased QA

G

Who is Hillary Clinton’s dad? — Hugh E. Rodham

Who was Hillary Clinton’s father? — Hugh E. Rodham

What is the name of Hillary Clinton’s father? — Hugh E. Rodham
False options: August Coppola, Earl Woods

Multi-hop QA

Ci

m

‘What is the country of citizenship of Hillary Clinton’s father? — United States of America
False options: Spain, Vatican City

(Hillary Clinton, father, Hugh E. Rodham)

(Hugh E. Rodham, country of citizenship, United States of America)

What is the place of birth of Hillary Clinton’s father? — Scranton
False options: London, Pretoria

(Hillary Clinton, father, Hugh E. Rodham)

(Hugh E. Rodham, place of birth, Scranton)

Same-answer QA

Who is Anthony-Tony-Dean Rodham’s father? — Hugh E. Rodham
False options: Alfred Lennon, Hussein Onyango Obama
(Anthony-Tony-Dean Rodham, father, Hugh E. Rodham)

Example 2

Main triple

(LeBron James, sport, basketball)

Base QA

‘What sport does LeBron James play? — basketball
False options: Auto racing, American football

Paraphrased QA

Which sport is associated with LeBron James? — basketball

In which sport is LeBron James a professional athlete? — basketball
What is the sport that LeBron James is known for? — basketball
False options: Auto racing, American football

Multi-hop QA

Ci,

m

What is the country of origin of the sport that LeBron James plays? — United States of America

False options: Japan, Ryukyu Kingdom
(LeBron James, sport, basketball)
(basketball, country of origin, United States of America)

Same-answer QA

What sport does Kevin Durant play? — basketball
False options: Tennis, Boxing
(Kevin Durant, sport, basketball)

What sport is Wilt Chamberlain known for? — basketball
False options: Tennis, Auto racing
(Wilt Chamberlain, sport, basketball)

What sport is Larry Bird associated with? — basketball
False options: Association football, Aikido
(Larry Bird, sport, basketball)

Example 3

Main triple

(s,7,0)

(Jackie Chan, place of birth, Victoria Peak)

Base QA

Where was Jackie Chan born? — Victoria Peak
False options: Jersey City, Louisiana

Paraphrased QA

G

‘What is the birthplace of Jackie Chan? — Victoria Peak

In which location was Jackie Chan born? — Victoria Peak

What place is known as the birth location of Jackie Chan? — Victoria Peak
False options: Jersey City, Louisiana

Multi-hop QA

Ci

m

‘What country is associated with the birthplace of Jackie Chan? — People’s Republic of China
False options: Australia, Mexico

(Jackie Chan, place of birth, Victoria Peak)

(Victoria Peak, country, People’s Republic of China)

Same-answer QA

Where was George Heath born? — Victoria Peak
False options: Neptune Township, Nuremberg
(George Heath, place of birth, Victoria Peak)

Where was Peter Hall born? — Victoria Peak
False options: Hawaii, Mission Hills
(Peter Hall, place of birth, Victoria Peak)

Table 10: Examples from the FAITHUN dataset.
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