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ABSTRACT

Quantitative structure-activity relationships (QSAR) models have been used for
decades to predict the activity of small molecules, using encodings of the molecu-
lar structure, for which simple 2D descriptors of the molecular graph are still most
commonly used. One of the recurrent problems of QSAR is that relationships
observed for a specific scaffold (pruned molecular skeleton) are often not trans-
ferable to another; this is often addressed by building several local models from
subsets of the chemical space. Similarly, single task models sometimes outper-
form large multi-task models in predicting the activity of small molecules against
specific proteins. In this paper, we introduce Glolloc, a global-local MoE-QSAR
architecture, based on a Mixture of Experts (MoE) framework. Glolloc combines
predictions from global and local experts, provides a built-in model introspection
tool, can enhance model performance, and removes the need to maintain several
local models.

1 INTRODUCTION

Mixtures of experts (MoE) are a subset of ensemble learning algorithms, consisting in individual
learners or experts, and a gate that assigns weights to different learners. They were relatively popu-
lar in the 90s (Jordan & Jacobs), 1993} Jacobs et al.|[1991), and have recently regained interest in the
deep learning community, notably for language and vision (Ruiz et al., 2021; Shazeer et al.,[2017).
MOoE can be seen as a type of meta-learning approach as it ”learns to learn” from an ensemble of ex-
perts, which can be explicitly pre-defined e.g. by using clustering or subsets of input features (Gutta
et al.,[2000; [Tang et al., 2002).

In quantitative structure-activity relationships (QSAR) models, where the aim is to predict activ-
ity from molecular structures (e.g. activity against a protein of interest), local models trained on
subsets of molecules often provide better performances than global models trained on the whole
dataset (Yuan et al., 2006). In drug discovery projects, a local model is often constructed for each
molecular series of interest (set of molecules with a similar skeleton or “scaffold”). At a given
stage, several chemical series might be investigated, and several models are separately optimised
and maintained. However, these local models discard potentially valuable information, and do not
always perform better than global models. Furthermore, some molecules share characteristics from
different series and would benefit from combining several local model predictions. Methods that
are able to combine advantages from both local and global models should therefore be of particular
interest in the field.

We thought a MoE architecture could be a way to combine predictions from global and local experts,
each local expert being specialised in a chemical series of interest. Local experts for QSAR can also
be defined in other ways. When the goal is to predict the activity of a small molecule against several
proteins at the same time, one local expert can be assigned to each protein task. Multi-protein models
can perform better or worse than single task learning, depending on the protein (Gaspar et al.| [2021)
- subdividing the problem and training one expert per protein or protein family, in addition to a
global expert trained on everything, could help to better adapt predictions to specific proteins.
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The MOoE literature for QSAR is very scarce - MoEs were recently investigated (Dorgd et al., [2020)
as a QSAR ensemble method across different feature spaces. In methods introduced in the following
sections, the problem is naively partitioned by input instances rather than input features, although
combining both approaches would be an interesting follow-up. Partitioning the input space based
on chemistry expert knowledge, and then using a MoE architecture to choose between local and
global experts has not yet been attempted. The main aim of the following experiments is to explore
different ways to partition the problem in a chemically relevant way, and come up with a model able
to focus on local aspects whilst not discarding valuable information.

The main contribution of this paper is a global-local ("Glolloc””) MoE-QSAR architecture for single
or multi-task learning that: (a) combines advantages from both local and global models, which
are routinely used separately in QSAR pipelines, (b) is structured using expert knowledge (e.g.
medicinal chemist partitioning the space by chemical series), (c) removes the need to maintain many
local models, (d) determines which experts are more appropriate for a given molecule, (e) provides
a built-in model introspection tool via weights given to experts, and (f) can improve performance
over a single global model or an ensemble of random experts.

2 METHODS

2.1 DATA

Table 1: ChEMBL datasets and SMARTS pattern defining chemical compounds in validation and
test set. The images were generated using SMARTSplus (Ehrt et al., |2020)

abbreviation protein name(s) train:valid:test valid/test chemical series

single task modelling

aktl RAC-alpha serine/threonine-protein kinase 642:35:35

cp3ad Cytochrome P450 3A4 1316:35:35 H :
cxerd C-X-C chemokine receptor type 4 145:20:20

gcr Glucocorticoid receptor 1118:70:70 Tttt
kifl1 Kinesin-like protein KIF11 531:21:20

protease HIV-1 protease  1753:281:281 S 4
revtrans HIV-1 reverse transcriptase  1266:104:104

multi-task modelling

cyp CP3A4, CP2D6, CP1A2, CP2C9, CP2CJ 2915:568:35

In the single task experiments, the 7 datasets (Table[T)) correspond to 7 diverse proteins from the di-
verse subset of the DUD-E data collection (Mysinger et al.,|2012). Note that whilst the diverse subset
from DUD-E was used to choose the proteins, the ligand data was retrieved from a publicly avail-
able benchmark dataset (Lenselink et al.,[2017b) curated by Lenselink et al. (Lenselink et al.,[2017al),
which compiles activities of small molecules extracted from the ChEMBL database (Gaulton et al.,
2016). For our purposes, instances are small molecules, and the endpoint is pChEMBL activity (-
Log(molar IC50, XC50, EC50, AC50, Ki, Kd or Potency)). For each of the 7 datasets, a tree-based
“autosmarts” algorithm (Algorithm [I)) was used on molecules with pChEMBL value > 5.5 to find
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a top chemical series of interest - its corresponding SMARTS pattern visualisation is reported in
Table [T}

Compounds matching that pattern were split into train, valid and test using time splits. This train set
was augmented with data not matching the pattern, resulting in a train set that contains both the local
data and other diverse molecules. The time splits were defined using publication year, to mimic what
happens in a drug discovery project, where the aim is to do better on more recent data. It should be
noted that publication year is not an ideal proxy and does not reflect the actual experiment date.

The cp3a4 dataset was supplemented by other cytochrome data for the multi-task challenge (CP2D6,
CP1A2, CP2C9, and CP2CJ) to construct the cyp dataset - the test dataset being the same as for
cp3ad.

ECFP4_2048 descriptors were used to featurise molecules: Morgan fingerprints with a radius of 2
and size 2048.

2.2 PROPOSED SINGLE TASK AND MULTI-TASK NETWORKS
R o w2l
I~ - N
/
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Input
Molecules

Activity/Property Prediction

Figure 1: Mixture of Experts (MoE) for molecular activity modelling: the gate assigns weights to
predictions from a global expert and individual experts specialised in specific chemical series

Two architectures were investigated: a single-task network with local experts specialising in dif-
ferent regions of the chemical space (Figure[I), and a multi-task network to predict the activity of
multiple proteins, where local experts specialise in predicting specific proteins (Figure [2). In each
case, in addition to the local networks (chemical series or protein experts), a global expert is trained
on the whole data set, and is expected to perform better for molecules outside of the applicability
domain of the local models.

The gate network, trained at the same time as the experts, assigns weights to each of them. The
final predicted activity for a molecule n and task ¢ is the sum of outputs O from a set of experts E
weighted by gate weights G' (Equation [I)).

||

Yvnt = Z GntiOnti (1)

i=1
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Protein Expert 1 Protein Expert 2 Global Expert

Activity against protein 1 Activity against protein 2

Figure 2: Mixture of Experts (MoE) for multi-task ligand-protein modelling: the gate assigns
weights to predictions from a global expert and individual protein-specific experts

Experts and gate are trained at the same time, although each expert is kept independent by using
expert-specific optimisers and losses (cf. Appendix). The gate is also assigned its own optimiser,
but is made “aware” of expert predictions in the gate-specific loss (Equation [2), which is used to
update the gate parameters.

N T
1 N
lossgate = NT E g (Ynt - Ynt)2 )
n t

2.3 AUTOMATED METHODS TO DEFINE CHEMICAL SERIES

In a drug discovery project, chemical series are typically identified by medicinal chemists. Chemoin-
formaticians encode them as SMARTS - a type of regex language, which allows to query molecules
containing specific substructures.

However, for benchmarks on public data sets, an automated way to partition the chemical space is
needed. Note that in a real-world scenario, project chemists would help in the definition of the series
to add their domain knowledge to the model structure. Glolloc implements 3 methods to generate
chemical series experts from a chemical dataset: cluster-based, tree-based, and neighbourhood-
based.

The cluster-based method is self-explanatory: a k-means clusterer using scikit-learn’s implementa-
tion (Pedregosa et all, [2011)) is trained on the training set, and cluster labels are used to construct
cluster-specific experts.

The tree-based and neighbourhood-based methods both rely on finding fuzzy maximum substruc-
tures (MCS) in groups of molecules. They are described in further detail in the Appendix. We used
the tree-based method in this paper to define our chemical series, as we obtained similar results
with the neighbourhood-based method. The advantage of MCS-based methods is the automatically
generated SMARTS patterns that can be visualised and interpreted easily - this type of approach is
therefore coined “autosmarts” in this paper.
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Table 2: (a) Mean squared error (MSE) and (b) Spearman’s rank correlation on single test set (using
best model determined from validation set) for a single global expert, and different global + local
expert setups: global expert with 6 random experts (global+6xrandom), 6 clusters (global+6clusters)
or an automatically determined number of chemical series (global+autosmarts)

(a) MSE global global+6xrandom global+6xclusters global+autosmarts
aktl 1.048 1.036 0.985 1.109
cp3ad 0.142 0.107 0.117 0.118
cxcrd 0.148 0.145 0.153 0.148
gcr 1.442 1.472 1.348 1.264
kif11 0.533 0.603 0.534 0.530
protease 1.025 1.002 0.980 0.894
revtrans 0.833 0.854 0.788 0.885
(b) Spearman’s p  global global+6xrandom global+6xclusters  global+autosmarts
aktl 0.634 0.624 0.688 0.603
cp3a4 0.624 0.657 0.692 0.630
cxcrd 0.208 0.150 0.338 0.190
gcr 0.320 -0.147 0.349 0.361
kif11 0.703 0.615 0.650 0.664
protease 0.440 0.443 0.457 0.499
revtrans 0.281 0.253 0.353 0.213
3 RESULTS

3.1 SINGLE TASK: PARTITION PROBLEM BY CHEMICAL SERIES

This section compares Random Forests and Glolloc architectures using different partitions of the
chemical space to define experts (Figure|[I).

Two control experiments were designed for the Glolloc framework: a model using a single global
expert, and a model using one global expert and 6 random experts. The random experts divide
the chemical space into 6 random sections. The control experiments are run against two structured
Glolloc models: one with the global expert and 6 cluster experts, the other with the global expert and
autosmarts (Algorithm [T)) experts. The more structured experts (based on clustering or autosmarts
algorithms) yield lower mean squared errors (MSE) for 5 out of 7 datasets, and higher Spearman
rank correlation in 6 out of 7 (Table [2).

When comparing the best glolloc expert combination (whether random or structured) against a single
expert or Random Forests (Figure3)), Random Forests wins only for the gcr dataset and has the worst
performance in all other cases.

3.2 MULTI-TASK: PARTITION PROBLEM BY PROTEIN

Two control experiments were run on the cyp dataset in a multi-task setting (Figure[2), with the goal
of predicting CP3A4 activity in the test set. The first control consists in a single task model with
only one global expert, the second in a multi-task model with also only one global expert. These
controls are compared to a multi-task model with both a global expert and 5 protein experts, one for
each of the proteins in the dataset (CP2D6, CP1A2, CP2C9, CP2CJ, CP3A4). Results are reported
in Figure ]

Predictions from the single task model are generally higher than from the multi-task model, and
lower-activity molecules are not well predicted. The multi-task baseline pushes those predictions
down but the range of predicted values stays narrow; adding protein experts improves the MSE in
this particular instance.
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Figure 3: Test set mean squared error (MSE) for Random Forests (rf), a single global expert (glol-
loc_control) and best combination of experts (glolloc_best_experts).
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Figure 4: Test set mean squared error (MSE) on the cyp test set for (a) a single task global expert,
(b) multi-task global expert and (c) multi-task with both global expert and 5 protein experts - one
for each of the proteins in the cyp training set.
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3.3 MODEL INTROSPECTION

An important advantage of partitioning a QSAR problem is downstream model introspection. In
Figure [5] the weights assigned to different local experts are shown for two molecules in the aktl
validation set. If the model was trained correctly, most of the gate weights should go to experts
specialised in the relevant chemical series and the global expert. Molecules belonging to chemical
series which are not covered by local experts are expected to be mostly assigned to the global expert.
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Figure 5: Gate weights visualisation for two molecules in the aktl validation set: columns with
SMARTS patterns symbolise local experts specialised in chemical series. For each molecule, the
two experts with the largest weight are highlighted.

The same type of visualization can be produced for the multi-task Glolloc architecture (Figure [2)):
in Figure [6] weights assigned to different protein experts are shown for two molecules in the cyp
validation set. The network predicts the activity against 5 proteins (CP3A4, CP2D6, CP1A2, CP2C9,
CP2CJ), but only weights for the CP3A4 task are shown in the figure. For that task, most predictions
are dominated by the CP3A4 expert and the global expert.
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Figure 6: Gate weights visualisation for two molecules in the multi-task cytochrome dataset, query-
ing predictions for CP3A4 activity. CP2D6, CP1A2, CP2C9, CP2CJ, and CP3A4 are protein-
specific experts. For each molecule, the two experts with the highest gate weight are highlighted.
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4 CONCLUSION AND NEXT STEPS

Glolloc adds local structure to QSAR models, which can be used for downstream model introspec-
tion by visualising how local or global structures contribute to the final prediction.

In the preliminary investigations shown in this paper, models adding more structure, based on
chemical series, clusters, or single proteins, can often perform better than controls (RF/single ex-
perts/random experts). However, these models need more careful optimisation, and more datasets
and splits should be investigated in follow-up experiments to build more confidence in performance
improvement.

There is still progress to be made on the side of expert training, as experts are defined using data
masks and users have to monitor a series of losses. Arguably, the discrete, masked multi-expert
setting could be replaced by a more continuous approach. Alternatively, an attention mechanism
could be used instead of experts, to give more attention to predefined dataset structures.

Different 2D and 3D depictions of molecules could also be used to define additional experts, as well
as potential groupings of related tasks, such as protein families in the multi-task setting. Glolloc-like
architectures could also be used to model different endpoint types or experimental settings.
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5 APPENDIX

5.1 DESCRIPTORS

We used the rdkit (RDKit, online) implementation of Morgan fingerprints.

5.2 HYPERPARAMETER SEARCH

For all experiments, parameters were optimised on the valid set without cross-validation. For Ran-
dom Forests, combinations of hyperparameters were systematically screened from maximum depth
= {5, 25, 50, 75, 100} and number of estimators = {100, 200}. We used the scikit-learn (Pedregosa
et al.,[201 1)) implementation of Random Forests (Breiman, 2001) regression. For Glolloc networks,
hidden layer sizes were the only variable hyperparameter (two hidden layers with [64, 64] or [1024,
1024] units). Only fully connected layers were used, with fixed parameters for dropout (0.25 for
experts, 0.025 for the gate), early stopping patience (15), batch size (32), learning rate (0.0005), and
temperature (1) for the gate softmax. For the datasets in this paper, which are relatively small, the
networks are easily trainable on a single CPU within a few minutes.

5.3 GLOLLOC EXPERTS TRAINING

Expert losses are defined by the following equation:

N T
1
lossemperti = N —T § § 1({11,t}€expert;)(ynt - Onti)2 (3)
Zn Zt 1({n,t}€expert;) n t

Where expert; is a set of pairs of molecules and tasks {n, ¢} relevant to expert ¢, and the indicator
function 1((y ¢} eexpert;) returns 1 if {n, t} is relevant to the ith expert, 0 if not.

In practice, experts are defined using masks, so that the losses for irrelevant data points are not
taken into account during the training process: e.g. if an expert focuses on pyrazole-containing
molecular compounds, all losses for molecules not containing a pyrazole substructure will be zeroed
out. Experts are independent, each having their own optimiser and loss. This independence makes
training the network challenging, as validation sets need to be carefully defined and loss curves
monitored for each expert - local experts are in effect trained on subsets of the training data, and
they are prone to overfitting. This is only partially addressed by adding learning rate decay for each
optimiser.

5.3.1 THE GATE NETWORK

The gate is a fully connected network with a softmax function, outputing a gate weight matrix of
dimension [batch size, number of tasks, number of experts], the softmax function being applied on
the last dimension, so that weights across experts sum to 1 for each task.

5.4 AUTOMATED METHODS TO DEFINE CHEMICAL SERIES

Glolloc can use automated methods to define chemical series (“autosmarts”): tree-based, or neigh-
bourhood based. They both rely on finding a set of maximum common substructures in the dataset,
using hierarchical clustering or neighbourhood membership, respectively. We used the RDKit (RD-
Kit, online) implementation of fuzzy MCS - with a minimum of 20 molecules per MCS.

The tree-based method (Algorithm [T is similar to the one described recently by Kruger al (Kruger,
et al.| 2020): building fuzzy maximum common substructures (MCS) from nodes in a tree obtained
using an agglomerative clustering algorithm, going from the root to the leaves: when a series (MCS)
is found in a parent node, children are discarded. The difference between the Glolloc implementation
and the one by Kruger et al. is the criterion to validate the MCS: they use a probability that a random
molecule matches the scaffold, whereas Glolloc sets a minimum number of atoms for the scaffold,
to guarantee a large enough scaffold (default value: 11 atoms). Strict MCS ring matching rules
and loose rules for atom and bond matching were arbitrarily used - the impact of different MCS
algorithm settings is not explored in this paper.
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Algorithm 1 Tree-based autosmarts algorithm: find fuzzy maximum common substructures (MCS)
in different regions of the chemical space using hierarchical clustering

min_atoms <— user parameter > minimum number of atoms in MCS
min_node_size < user parameter > minimum number of molecules to construct an MCS from
T <+ dendrogram(D) > construct dendrogram from the molecule data matrix D
N <« node_dict(T) > dictionary mapping tree nodes to molecules
N’ + sort(N) > sort nodes from root to leaves
MCS + 0 > the MCS set stores the maximum common substructures

for node, molecules_in_node in N’ do
if count(molecules_in_node) > min_node_size then
mces < fuzzy_mazimum_substructure(molecules_in_node)
> if a large enough MCS is found in parent node
if mcs exists and mes.n_atoms > min_atoms then
MCS +— MCS U {mes}
set children of node in N’ to () > discard children nodes
end if
end if
end for

Other methods of detecting chemical series in a data set can be used beyond tree-based, e.g. varying
the number of molecules that can match an MCS in a data set, fragment-based methods, scaffold tree
methods, or nearest neighbours algorithms. The neighbourhood-based autosmarts method for series
identification also implemented in Glolloc (Algorithm [2) is based on the algorithm described by
Hattori et al. (Hattori et al., |2008)) and adapted for MCS series definition. Hattori et al.’s algorithm is
based on iteratively finding representative molecules with the largest neighbourhood and removing
them and their neighbours from the pool of molecules. This method is dependent on a similarity
threshold parameter to define the neighbours. For Glolloc, neighbourhoods are also iteratively de-
fined, but at each iteration a fuzzy MCS from the top neighbourhood is found and all molecules
matching that MCS are removed from the pool used at the next iteration. The neighbourhood-based
approach is not used in this paper for benchmarks as it seemed to provide similar results to the
tree-based method when varying the similarity threshold for our data sets.

Algorithm 2 Neighbourhood autosmarts algorithm: find fuzzy maximum common substructures
(MCS) in different regions of the chemical space using nearest neighbours

man_stmilarity < user parameter > similarity cutoff
min_molecules < user parameter > minimum number of molecules per MCS
bag_of_molecules < set of all molecules indices

S < similarity_matriz(D) > similarity matrix from molecule data matrix D
MCS + 0 > the MCS set stores the maximum common substructures

while bag_of_molecule is not empty do
> find neighbourhood of molecule with max number of neighbours
top_neighbourhood + f(S, min_similarity)
if count(top_neighbourhood) > min_molecules then
mces < fuzzy_mazimum_substructure(top_neighbourhood)
if mcs exists then > if MCS is found in neighbourhood
MCS «+ MCS U {mes}
mes_matches < matches(bag_of_molecule, mcs)
> discard molecules matching MCS for next iteration
bag_of_molecule < bag_of_molecule \ mes_matches
Simes_matches] < 0. > set similarities of discarded molecules to O
end if
end if
end while
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