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ABSTRACT

Several recent studies have reported negative results when using heteroskedastic
neural regression models to model real-world data. In particular, for overparam-
eterized models, the mean and variance networks are powerful enough to either
fit every single data point (while shrinking the predicted variances to zero), or to
learn a constant prediction with an output variance exactly matching every pre-
dicted residual (i.e., explaining the targets as pure noise). This paper studies these
difficulties from the perspective of statistical physics. We show that the observed
instabilities are not specific to any neural network architecture but are already
present in a field theory of an overparameterized conditional Gaussian likelihood
model. Under light assumptions, we derive a nonparametric free energy that can be
solved numerically. The resulting solutions show excellent qualitative agreement
with empirical model fits on real-world data and, in particular, prove the existence
of phase transitions, i.e., abrupt, qualitative differences in the behaviors of the
regressors upon varying the regularization strengths on the two networks. Our work
thus provides a theoretical explanation for the necessity to carefully regularize
heteroskedastic regression models. Moreover, the insights from our theory suggest
a scheme for optimizing this regularization which is quadratically more efficient
than the naive approach.

1 INTRODUCTION

Regression and classification problems lie at the heart of deep learning (Mathew et al., 2021; Ahmad
et al., 2019; Krizhevsky et al., 2012). Homoskedastic regression models assume constant (e.g.,
Gaussian) output noise and mainly amount to learning a function f(x) that tries to predict the most
likely target y for input x. In contrast, heteroskedastic models assume that the output noise may
depend on the input features = as well, and try to learn a conditional distribution p(y|z) with non-
uniform variance. This not only allows the model to assign different importances to training data, but
ultimately results in a model that “knows where it fails” (Skafte et al., 2019; Fortuin et al., 2022).

Unfortunately, learning overparameterized heteroskedastic regression models (e.g., using deep neural
networks) has proven to be difficult, as these models are prone to extreme forms of overfitting
(Lakshminarayanan et al., 2017; Nix & Weigend, 1994). On the one hand, the mean model is flexible
enough to perfectly fit every training datum’s target, while the standard deviation network learns to
maximize the likelihood by shrinking the predicted standard deviations to zero. On the other hand,
with the incorrect strength of regularization on the mean network’s parameters will make it prefer
a constant solution. Such a flat prediction can be accomplished by allowing the standard deviation
network to explain all residuals as random noise, thus overfitting to the empirical prediction residuals
of the data. Both types of overfitting are shown in Fig. 1.

While several practical solutions to learning overparameterized heteroskedastic regression models
have been proposed (Skafte et al., 2019; Stirn & Knowles, 2020; Seitzer et al., 2022; Stirn et al.,
2023), no comprehensive theoretical study of the failure of these methods has been offered so far.
We conjecture this is because overparameterized models have attracted the most attention only in
the past few years, while most classical statistics have focused on under-parameterized (e.g., linear)
regression models where such problems cannot occur (Huber, 1967; Astivia & Zumbo, 2019).

This paper provides a theoretical analysis of the failure of heteroskedastic regression models in the
overparameterized limit. To this end, it borrows a tool that abstracts away from any details of the
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involved neural network architectures: classical field theory from statistical mechanics (Landau &
Lifshitz, 2013; Altland & Simons, 2010). Via our field-theoretical description, we can recover the
optimized heteroskedastic regressors as solutions to partial differential equations that can be derived
from a variational principle. These equations can in turn be solved numerically by optimizing the
field theory’s free energy functional.

Our analysis results in a two-dimensional phase diagram, representing the coarse-grained behavior
of heteroskedastic noise models for every parameter configuration. Each of the two dimensions
corresponds to a different level of regularization of either the mean or standard deviation network. As
encountered in many complex physical systems, the field theory unveils phase transitions, i.e., sudden
and discontinuous changes in certain observables (metrics of interest) that characterize the model,
such as the smoothness of its mean prediction network, upon small changes in the regularization
strengths. In particular, we find a sharp phase boundary between the two types of behavior outlined
in the first paragraph, at weak regularization.

Our contributions are as follows:

* We provide a unified theoretical description of overparameterized heteroskedastic regression
models, which generalizes across different models and architectures, drawing on tools from statistical
mechanics and variational calculus.

* In this framework, we derive a field-theoretical nonparametric free energy (NFE), which can explain
the observed types of overfitting in these models and describe phase transitions between them.

* Empirically, we show excellent qualitative agreement of our NFE with experiments, both on
simulated and real-world regression tasks.

* We find evidence that a one-dimensional search over hyperparameters is sufficient to achieve
well-calibrated models instead of a comprehensive search over the entire two-dimensional phase
diagram.

2 A FIELD THEORY FOR OVERPARAMETERIZED HETEROSKEDASTIC
REGRESSION

Heteroskedastic Regression Consider the setting in which we have a collection of independent data
points D := {(;,y;)}}¥, with covariates z; € X C R? drawn from some distribution z; ~ p(z)
and response values y; € Y = R normally distributed with unique mean y,; and precision (inverse-
variance) A; > 0 (i.e., y; ~ N (u;, A;)). We assume to be in a heteroskedastic setting, in which A;
need not equal A; for ¢ # j. Finally, we assume both the mean and standard deviation of y; to be
explainable via x;:

yilwi ~ N (u(x;), Aw;) %) fori =1,..., N M
with continuous functions p : X — R and A : & — R+. In a modeling setting, learning A can be
interpreted as directly estimating and quantifying the aleatoric (data) uncertainty.

Overparameterized Neural Networks There exist many options for modeling p and A. Of
particular interest to many is representing each of these functions as neural networks—specifically
ones that are overparameterized. These models are well-known universal function approximators,
which makes them great choices for estimating the true functions ¢ and A (Hornik, 1991).

Let the mean network fip : X — R and standard deviation network A¢ : X — Ry be arbitrary
depth, overparameterized feed-forward neural networks parameterized by 6 and ¢ respectively. For a

given input z;, these networks collectively represent a corresponding predictive distribution for y;:
1

Pyi | 2:) = N (yi; fo(i), Mg ()7 2). 2

Pitfalls of MLE Our assumed form of data naturally suggests training jig and A¢, or rather
learning 6 and ¢, by minimizing the cross-entropy between the joint data distribution p := p(z,y) =
p(y|x)p(x) and the induced predictive distribution p := p(y|x)p(x). This objective is defined as

L(0,¢) == H(p,p) = —E, [log p(z,y)] (3)
:/ p(x)/ p(y|x)log N (y; ﬂg(:zc)jxqg(x)_%)dydx—i-c
X Yy
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where c is a constant with respect to § and ¢. This expectation is often approximated using a Monte
Carlo (MC) estimate with IV samples, yielding the following tractable objective function:

L(0,¢) ~ — ZA¢ — fig(x))? — log Ag(z;). 4)

Minimizing this cross-entropy objective function with respect to parameters 6 and ¢ using data
samples is synonymous with maximum likelihood estimation (MLE).

Unfortunately, given an infinitely flexible model, this objective function is ill-posed for our purposes.
Consider the fact that there is implicit regularization for ¢, as the first term in Eq. (4) is minimized
when A, — 0, while the second term is minimized when A4 — oo. This alone would be fine;
however, the mean function iy has no such regularization, so inevitably during training it will estimate
y perfectly (or rather to arbitrary precision) for at least a single data point (z;, yl) Once this happens,
the residual for this input, y; — fig(z;), approaches 0 and the regularization for A¢, vanishes, at least
at this point x;. This leads to the predicted precision diverging towards co. Once training has reached
this point, the objective function becomes completely unstable due to effectively containing a term
whose limit naively yields co — oo.!

Regularization Even though A¢ is implicitly regularized in the standard cross-entropy loss as

mentioned earlier, we posit that additional regularization on A¢, or rather ¢, is required to avoid this
instability. It can be tempting to think that one must regularize 6 in order to avoid overfitting. And
while this is generally true, the objective function £ will still be unstable so long as at least one input
x; yields a perfect prediction (i.e., y; = fig(x;)). This situation is still fairly likely to occur even in
the most regularized mean predictors and cannot be avoided, especially if {y;} is zero-centered.

To prevent this from happening, we can include Lo penalty terms for both 8 and ¢ in our loss function:

Lap(0,0) = L0, )+ all6]l3 + Bll¢][3 )

where «, 5 > 0 are penalty coefficients. Intuitively, the primary role of regularizing 6 is to avoid mean
prediction overfitting while the role of regularizing ¢ is to provide stability and control complexity in
the predicted aleatoric uncertainty. As o — 0o, the network models a constant mean and as § — oo
we effectively model a homoskedastic regime.”

Reparameterizing the Regularization We introduce an alternative parameterization of the regular-
ization coefficients:

Ly(0,0) = pL(0,¢) + (1= p) YIO]3 + (1 = )l|¢l13] 6)

and we restrict p,y € (0,1). This parameterization is one-to-one with the «, 3 parameterization
(with o = @ and 3 = W) and it can be shown that Vg 4L, , o Vg 4L, g, thus
minimizing one objective is equivalent to minimizing the other. Because p,y are bounded we are
able to completely cover the space of regularization combinations by searching over (0, 1) whereas
in the o, S parameterization «, 5 € R+ are unbounded. Now, p determines the relative importance
between the likelihood and the total regularization imposed on both networks. On the other hand, v
weights the proportion of total regularization between the mean and precision networks. Here, p = 1
corresponds to the MLE objective while p — 0 could be interpreted as converging to the mode of the
prior in a Bayesian setting. Fixing v = 1 leads to an unregularized precision function while choosing
~ = 0 results in an unregularized mean function.

Qualitative Description of Phases Model solutions across the space of p and v hyperparameters
exhibit different traits and behaviors. Similar to physical systems, this can be described as a collection
of typical states or phases that make up a phase diagram as a whole. These phase diagrams are

"Note that this is predicated on the model being flexible enough to allow for large changes in predictions fig (z)
and f\¢(x) after iteratively updating parameters 6 and ¢ while allowing for minimal changes in neighboring
predictions (i.e., fig (') and Ay (x") for some 2’ € X such that 0 < ||z — z'|| < e).

>This is under the assumption that either the networks have an unpenalized bias term in the final layer or that
the data is standardized to have zero mean and unit variance.
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Figure 1: Visualization of a typical phase diagram in p — ~ regularization space for a heteroskedastic
regression model shown on left. Solid and dotted lines indicate sharp and smooth transitions in model
behavior respectively. Example model mean fits shown in red (with pointwise + standard deviation
in orange) from the NFE for each key phase in middle and right plots.

typically consistent in shape across datasets and methodologies. Fig. | shows an example phase
diagram along with model fits coming from specific (p,~y) pairings. We argue that there are five
primary regions of interest:

* Region U;: Both the mean and precision functions are heavily regularized. In this region, the
likelihood is so lowly weighted it is as if the model had not seen the data. Regardless of the
prioritization (7 value) of mean versus precision function, the likelihood plays a minor role in the
objective. The mean function is a constant through zero while the standard deviation is fixed on 1
(the values they were initialized to).

* Region Uy: In this region the mean function is still heavily regularized and tends to be flat,
underfitting the data as in Region U;. However, the strength of regularization comes from a more
even combination of both p, . Despite the constant behavior of the mean function, the precision
function can still accommodate the residuals and the prediction intervals adapt with the data.

* Region Oy: Heavily overfit mean and the residuals and corresponding standard deviations essentially
vanish. Increasing p — 1 yields true MLE fits and this is seen on the right. This portion of the
phase exists across a wide range of «y values. Low values of + restrict the flexibility of the precision
function, but due to the overfitting in the mean, the flexibility is not needed to fit the residuals.

* Region Oy : In this region the mean function does not overfit due to regularization, leaving large
residuals for the lowly regularized precision function to overfit onto.

» Region S: Here, the model is well calibrated—the mean function and standard deviations adapt
to the data without overfitting. We conjecture that solutions in this region will provide the best
generalization.

Nonparametric Modeling & Field Theory While we have a somewhat intuitive grasp over the
effects of the regularization hyperparameters on the learned model, directly analyzing this behavior
with neural models can be untrustworthy due to requiring potentially unstable optimization techniques
and dealing with possible identifiability issues and local minima. As such, we propose to create an
investigatory tool that will assist in more directly analyzing these behaviors. Firstly, we propose
abstracting the neural networks iy and f\¢ with nonparametric, twice-differentiable functions [

and A respectively. Since these functions are nonparametric, we can no longer use Lo penalties.
A somewhat comparable substitute is to directly penalize the output “complexity” of the models,
or in other words the cumulative absolute rate of change: [ «||Vji(x)||3dz and [ 3| IVA(z)||2d.
Note that these specific penalizations induce similar limiting behaviors for resulting solutions (i.e.,
«, B — 0 implies overfitting while — oo implies constant functions). In the case where fiy and A¢
are linear models, this squared gradient penalty is equivalent to a Lo penalty on the weights.

Field theories are non-parametric descriptions of the spatial (or spatiotemporal) configurations of
continuous physical systems (Altland & Simons, 2010). For example, the local magnetic field
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(magnetization) of a two or three-dimensional magnetic material would be an example of a field. For
time independent problems we minimize a free energy functional: we will refer to it as nonparametric
free energy (NFE). The NFE depends on certain parameters, such as the strength of an external
magnetic field or a temperature. Upon smoothly varying these parameters, the most likely field
configuration can undergo smooth changes (“crossovers”) or abrupt changes (“phase transitions”).
As follows, we outline a field-theoretical treatment of the mean and variance parameters of our
considered heteroskedastic regression model, where the mean and variance show phase transitions
upon varying their regularization strengths.

Using the assumptions outlined above, the cross-entropy objective can be interpreted as an action
functional of a corresponding two-dimensional NFE:

Lot ) = [ o [ plo10) [ 560) 0= (o)) = 5 0w hto) |

+ (1= p) [IVA@)IE+ (1 = 1IIVA@)|] do. ™

While this is the full NFE, it is cumbersome to analyze due to the nested integral. As such, we consider
the scenario in which the inner integral is approximated using a single MC sample. As this must
be done for every x € X, we aggregate all of these samples into an indexed set y(-) := {y(z) }rex
where y(z) ~ p(y|z). One can view this collection as a stochastic process (specifically a white noise
process scaled by true precision A(z) and shifted by true mean p(z)). This approximation yields the
following simplified NFE:

LonluB) % [ 00| 50 (40) — @) - 1o Al

+ (1= p) PIVA@)IE+ (1 = NIIVA@)|3] do. ®)

We are primarily interested in solutions /i* and A* that minimize the NFE £ o~ (1, ) as these are
roughly analogous to models /iy and f\¢ that minimize penalized cross-entropy L, ~ (6, ¢). We can

gain insights into these solutions by taking functional derivatives of the NFE with respect to & and A
and setting them to zero. We arrive at the following conditions that must simultaneously be met for
any set of solutions:

o O T v O
0Ly (i1, A) A .- 2 _ 1 1— AA* (2)
i 20 (1 (@) = y(@)? = 1= +4 (52) (1 - ) 208,

where A is the Laplace operator (Engel & Dreizler, 2011). Note that these equalities hold true
almost everywhere (a.e.) with respect to p(x). Interestingly, both resulting relationships include a
regularization coefficient divided by the density of z. This makes intuitive sense as while the functions
as a whole have a global level of regularization dictated by p or +, locally this regularization strength
is augmented proportional to how unlikely the input is. This will lead to high-density regions of
allowing for more complexity while forcing less likely regions to produce simpler, less potentially

erratic outputs. Similarly, we can glean that p and ~y directly impact the complexity of i and A by
scaling the importance of the curvature of these functions, or rather Aji and AA.

Numerically Solving the NFE In practice we discretize the NFE to arrive at approximate solutions.
Let {z;};/" be a set of fixed points in X" that we assume are evenly spaced. Define i, A,/ to be
n¢¢-dimensional vectors where for each i, [i; = fi(z;), A = A(mi), y; = y(z;). We solve for the

optimal [ and A using the discretized approximation to Eq. (7) via gradient based optimization
methods:

nft

Lo 1- . 1 - . o
Ly~ (i, A) =~ ZP {21\1‘ (yi — fi)* — 3 10gAi:| +(1-p) {’YHVMH% +(1— 7)||VA1'H§] (10)
=1

and the gradients of /i, A are approximated numerically (Fornberg, 1988).
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Table 1: NFE Limiting Cases. We provide intuition for the consequences of Prop. | and match the
limits to the phase diagram regions in Fig. 1.

Regularization Outcome

This is equivalent to MLE. Approaching p = 1, we observe overfit mean
solutions. According to the conditions in Eq. (9) this holds for any value of
~. We see this in regions Oy and Oy; in Fig. 1. In theory, at p = 1, there is a
contradiction implying no solution should exist.

p—1,7v€el0,1]

This setting places all the weight of the objective on the regularizers, com-
p— 0,7 € (0,1) pletely ignoring the data. This corresponds with region U;. In theory, the

optimal solution at p = 0 is for both /i, A to be constant (flat) functions.

All of the regularization is placed on the mean function, leading to mean
p€(0,1),y — 1 underfitting. However, the precision is unregularized and A —'/2 thus matches
the residuals perfectly. This is the top row of the phase diagrams.

The mean is unregularized and the precision is strongly regularized. These
p€(0,1),7 — 0 fits are characterized by severe overfitting and can be found along the bottom
row of the phase diagrams.

NFE Insights The pair of constraints in Eq. (9) allow us to glean useful insights into the resulting
regularized solutions by looking at edge cases of specific combinations of p and v values. We
summarize the theoretical properties of the limiting cases of p, v approaching extreme values in the
proposition below and in Table 1. Please refer to Appendix A.2 for the proofs to these claims.

Proposition 1. Under the assumptions of our NFE (see above), the following properties hold: (i) in
the absence of regularization (p = 1), there are no solutions to the NFE; (ii) in the absence of data
(p = 0), there is no unique solution to the NFE; and (iii) there are no valid solutions to the NFE if
p € (0,1) and v = 1 (should there be no mean regularization, then there needs to be at least some
regularization for the precision).

Importantly, these limiting cases match our intuition for the solutions to the NFE (which were
equivalent to the neural network setting). Furthermore, if we assume that there exist valid solutions
for v, p € (0,1) then it stands to reason that the solutions should either experience a sharp transition
or a smooth cross-over between the behaviors described in the limiting cases. Empirically, we have
discovered that the phase diagram typically resembles Fig. 1. We leave the analytical justification for
the types of boundaries and their shapes/placement in the phase diagram for future work.

3 EXPERIMENTS

Datasets We analyze the effects of regularization on several one-dimensional simulated datasets
and standardized versions of the Concrete (Yeh, 2007), Housing (Harrison & Rubinfeld, 1978),
Power (Tiifekci, 2014), and Yacht (Gerritsma, 1981) regression datasets from the UC Irvine Machine
Learning Repository (Kelly et al.). We fit neural networks to the simulated and real-world data and
additionally solve our NFE for the simulated data. Detailed descriptions of the data are included in
Appendix B.1. We present the results for a simulated sinusoidal (Sine) dataset as well as the four UCI
regression datasets and have results for the other simulated datasets in Appendix B.5.

Modeling Choices We chose fig, A¢ to be fully-connected networks with three hidden layers of
128 nodes and leaky ReLU activation functions. The first half of training was only spent on fitting fug,

while in the second half of training, both iy and f&¢ were jointly learned. This improves stability,
since the precision is a function of the mean fig, and is similar in spirit to ideas presented in (Skafte
et al., 2019). Complete training details can be found in Appendix B.2.

Metrics of Interest We consider two metrics of interest in our experiments. Firstly, the Sobolev
norm, [ ||V f(x)||3 dx, where f is one of the learned fig, Ay, fi, A. It captures how expressive a
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Figure 2: Array plot of various metrics (rows) evaluated on different data or fitting techniques
(columns). The left most column holds the results from the theoretical NFE that we developed. The
remaining columns show results from fitting neural networks to data. (Data sets refer to test splits.)
The values of the six runs are averaged. The intermediate ticks on the lower left plot mark v = 0.5
and p = 0.5. The shapes of the regions and transitions between regions are of particular interest.
Our NFE matches the empirical phase diagrams well in this regard, and the phase transitions are
preserved across different models and datasets.

learned function is, with more expressive functions yielding a higher value. Secondly, we consider
the mean squared error (MSE). We measure this quantity between predicted mean fig(z;) and target
v, as well as between predicted standard deviation (A~1/ 2(z,)) and absolute residual |jig(z;) — y;|.
If the mean and standard deviation are well-fit to the data, both of these values should be low. We
opt for A~z MSE due to its similarities to variance calibration (Skafte et al., 2019) and expected
normalized calibration error (Levi et al., 2022). It should be noted that we use this to measure our
uncertainty quantification over other calibration metrics, such as expected calibration error (ECE),
as they have been shown to give good scores in degenerate cases (Kuleshov et al., 2018; Chung &
Neiswanger, 2021; Levi et al., 2022).3

Plot Interpretation We present summaries of the fitted models in grids with p on the x-axis and
~ on the y-axis in Fig. 2. The far right column (v = 1) corresponds to MLE solutions. The main
focus is on qualitative traits of fits under different levels of regularization and how they behave in
a relative sense, rather than a focus on absolute values. Fig. 3 show the summary statistics along
the slice where p = 1 — . Zero on these plots corresponds to the upper left-hand corner while one
corresponds to the lower right-hand corner.

Observation 1: Our metrics show sharp phase transitions upon varying p, -, as in a physical system.
Fig. 2 and Fig. 3 show a sharp transition, both leading to worsening and improving performance
when moving along the minor diagonal. In totality, across the four metrics, the five regions are
apparent. But not all of the regions in Fig. | appear in the heatmaps of each metric. For example,
region Oy does not always appear in the quantities related to the mean. When using neural networks
to approximate y and A, there are sharper boundaries between phases than in the NFE’s numerical
solutions. The boundary between Uy and Oy is sharply observed in the plots of [ ||Vu(z)||3 dz.
However, in terms of y MSE, a smoother transition (i.e., the S region) is visible.

*Namely, for ECE, a model can achieve a low error by learning marginal statistics of the dataset and
effectively ignore any trends present between x and y. We would prefer our uncertainty quantification metric to
help differentiate between Uy, Uy, and Oy in our phase diagram.
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Figure 3: Test metrics for six different settings achieved with varying values of p € (0, 1) and with ~
restricted to be equal to 1 — p. Stars indicate minimum MSE values. All metrics are reported on a

log;, scale. p values are shown on a logit scale with 10 := 1 — 10*. From left to right, note the
sharp decrease in test metric values, especially in the solutions to neural network models followed by
a typical smoother increase. This empirically supports the existence of the well-calibrated S phase
shown in Fig. | and allows for hyperparameter optimization in O(N ) instead of O(N?).

Observation 2: The NFE insights and observed phases are consistent with the numerically solved
non-parametric NFE and the results from fitting neural networks. Thus, our results are not tied
to a specific architecture or dataset. In alignment with our theoretical insights, phases U; and O
exhibit consistent behavior across values of ~y (vertical slices in the phase diagrams in Fig. 2). In the
right-hand columns (p — 1), there is near-perfect matching of the data by the mean function and this
is also visible in the lower rows (v — 0). Within the metrics we assess, the shapes of the regions vary
with the level of regularization in a similar fashion on all datasets. In the plots of [ ||VA(z)||3 dz, the
region where A is flatter covers a larger area compared to the phase diagram showing [ ||V u(z)||3 dz.
That is, for the same proportion of regularization as the mean, the precision remains flatter.

Observation 3: We can search along p = 1 — ~ to find a well-calibrated (p,~y)-pair from region S.
Our NFE predicts that a slice across the minor diagonal of the phase diagram should always cross the
S region (see Fig. 1). Fig. 3 show that by searching along this diagonal, we indeed find a combination
of regularization strengths where both mean and standard deviation generalize well to held-out test
data. This implies that there is no need to search the entirety of the two-dimensional space, but only a
single slice which reduces the number of models to fit from O(N?) to O(N), where N is the number
of p and ~ values that are tested. A practical suggestion is to search along p = 1 — 7, i.e., moving
from the upper-left to the lower-right corner of the phase diagram. The MSE versions of Fig. 3 show
that along this path, the performance is initially poor, improves, and then drops off again. These
shifts from strong to weak performance are sharp. The regularization pairings that result in optimal
performance with respect to - and A~'/2-MSE are close to each other for the real-world test data.
As the theory predicts, the performance becomes highly variable as we approach the MLE solutions
and the NFE fails to converge in this region. We compare models chosen by our diagonal line search
to two heteroskedastic modeling baselines in Appendix D on the synthetic and UCI datasets as well
as a scalar quantity from the ClimSim dataset (Yu et al., 2023). In most cases the model chosen via
the diagonal line search was competitive or better than the baselines.
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4 RELATED WORK

Uncertainty can be divided into epistemic (model) and aleatoric (data) uncertainty (Hiillermeier
& Waegeman, 2021), the latter of which can be further divided into homoskedastic (constant over
the input space) and heteroskedastic (varies over the input space). Handling heteroskedastic noise
historically has been and continues to be an active area of research in statistics (Huber, 1967; Eubank
& Thomas, 1993; Le et al., 2005; Uyanto, 2022) and machine learning (Abdar et al., 2021), but is less
common in deep learning (Kendall & Gal, 2017; Fortuin et al., 2022), probably due to the pathologies
that we analyze in this work. Heteroskedastic noise modeling can be interpreted as reweighting
the importance of individual datapoints during training time, which Wang et al. (2017) show to be
beneficial in the presence of corrupted data and Khosla et al. (2022) in active learning.

To the best of our knowledge, Nix & Weigend (1994) were the first to model a mean and standard
deviation function with neural networks and Gaussian likelihood. Seitzer et al. (2022) provide an
in-depth analysis of the shortcomings of MLE estimation in this setting and adjust the gradients during
train time to avoid pathological behavior. Skafte et al. (2019) suggest changing the optimization
loop to train the mean and standard deviation networks separately, treating the standard deviations
variationally and integrating them out as Takahashi et al. (2018) does in the context of VAEs,
accounting for the location of the data when sampling, and setting a predefined global variance when
extrapolating. Stirn & Knowles (2020) also perform amortized VI on the standard deviations and
evaluate their model from the perspective of posterior predictive checks. Finally, Stirn et al. (2023)
extend the idea of splitting mean and standard deviation network training in a setting where there are
several shared layers to learn a representation before emitting mean and standard deviation. While
these works propose practical solutions, in contrast to our work, none of them study the theoretical
underpinnings of these pathologies, let alone in a model- or data-agnostic way.

5 CONCLUSION

We have used field-theoretical tools from statistical physics to derive a nonparametric free energy,
which allowed us to produce analytical insights into the pathologies of deep heteroskedastic regression.
These insights generalize across models and datasets and provide a theoretical explanation for the
need for carefully tuned regularization in these models, due to the presence of sharp phase transitions
between pathological solutions. We have also presented a numerical approximation to this theory,
which empirically agrees with neural network solutions to synthetic and real-world data. Using
insights from the theory, we have shown that we can tune the required regularization for these models
more efficiently than would naively be the case. Finally, we hope that this work will open an avenue
of research for using ideas from theoretical physics to study the behavior of overparameterized
models, thus furthering our understanding of otherwise typically unintelligible large models used in
Al systems.

Limitations Our NFE and subsequent analysis are restricted to regression problems. From an
uncertainty quantification perspective, the models we discuss only account for the aleatoric uncertainty.
Though our use of regularizers has a Bayesian interpretation, we are not performing Bayesian
inference and do not account for epistemic uncertainty. Solving the NFE under a fully Bayesian
framework would result in stochastic PDE solutions. We leave analysis of this setting to future work.
Additionally, our suggestion to search p = 1 — =y to find good hyperparameter settings appears to
be valid, but it requires fitting many models. Ideally, one might hope to use the field theory directly
to find optimal regularization settings for real-world models, but our numerical approximation is
currently not accurate enough for this use case.
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