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Abstract— Reliable scene understanding is indispensable for
modern autonomous systems. Current learning-based methods
typically try to maximize their performance based on segmenta-
tion metrics that only consider the quality of the segmentation.
However, for the safe operation of a system in the real world
it is crucial to consider the uncertainty in the prediction
as well. In this work, we discuss the task of uncertainty-
aware panoptic segmentation, which aims to predict per-pixel
semantic and instance segmentations, together with per-pixel
uncertainty estimates. We present two novel Evidential Panoptic
Segmentation Networks, EvPSNet for solving this task with
camera images, and EvLPSNet for LiDAR data. We provide
several strong baselines combining state-of-the-art panoptic seg-
mentation networks with sampling-free uncertainty estimation
techniques for comparison. Extensive evaluations show that our
approaches achieve the new state-of-the-art for the uncertainty-
aware Panoptic Quality (uPQ) and the panoptic Expected
Calibration Error (pECE). We make our code available at:
https://github.com/kshitij3112

I. INTRODUCTION

Due to the recent advances in deep learning, perception
systems of modern autonomous systems largely rely on
convolutional neural networks (CNNs), in particular for the
tasks of semantic segmentation [1] and object detection [2].
However, these two similar tasks are still often treated sepa-
rately. Aiming for a holistic scene understanding, Kirillov et
al. [3] introduced panoptic segmentation for combined seg-
mentation of stuff classes, consisting of amorphous regions
like road surfaces, and thing classes, consisting of distinct
instances of objects like cars and pedestrians.

Several existing panoptic segmentation methods provide
CNN-based architectures for different modalities, such as
cameras and LiDARs [4], [5]. Being supervised learning-
based approaches, these networks first learn on a training
dataset, and then evaluate their performance using specific
metrics on a test set. A typical limitation is that the training
and test sets usually have quite similar data distributions
and conditions, while these can be quite different during
deployment in the real world, e.g. due to different weather
conditions or unseen objects. Since current training metrics
typically consider only the performance, the resulting net-
works can be quite overconfident in their (false) predictions,
possibly posing safety-critical threats in autonomous driving
scenarios. In general, these approaches lack insight into the
performance of the network in unseen environments and into
the reliability of it’s confidence estimate output.

In this work, we discuss the novel task of uncertainty-
aware panoptic segmentation, illustrated in Fig. 1, intending
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Fig. 1: Panoptic segmentations with their associated uncertainties
as predicted by our EvPSNet for Cityscapes and EvLPSNet for
SemanticKITTI data.

to provide reliable predictions even in challenging scenarios
and to motivate future research in the field of holistic scene
understanding. Conventional methods utilize the simple soft-
max operation to provide probability estimates, which are
quite limited in their reliability and typically inflated [6].
On the other hand, sampling-based methods such as dropout
are primary candidates employed for reliable uncertainty
estimation in various tasks. However, these approaches are
computationally intense and thus are not suitable for real-
time applications, such as autonomous driving. In this con-
text the research in sampling-free methods for uncertainty
estimation is gaining interest. One such method is evidential
deep learning, which is already being used successfully
in classification [6], regression [7], and multitask learning
settings [8].

We propose two novel evidential panoptic segmentation
networks, the EvPSNet and EvLPSNet architectures for
Camera and LiDAR data, respectively. Applying evidential
deep learning, these networks are able to simultaneously
predict semantic and instance segmentation outputs and the
corresponding pixel-wise or point-wise uncertainties. The
predicted uncertainties can be utilized in downstream tasks
in a probabilistic manner, helping with a robust and safe
performance, e.g., of localization algorithms.

II. RELATED WORK

A. Panoptic Segmentation

Since the inception of the panoptic segmentation task,
methods have generally taken one of two approaches: either
proposal-free (bottom-up) or proposal-based (top-down). In
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the proposal-free approach [9], [10] first a semantic seg-
mentation is performed, followed by clustering the pixels
belonging to the thing classes. The corresponding clustering
methods include center and offset regression [9], calculation
of pixels affinity [11], or a Hough voting scheme [12]. In
contrast, proposal-based methods [13], [14], [4] consist of
two parallel heads, one to perform semantic segmentation
and the other to predict bounding boxes and instance masks
for thing class objects. One way to learn the panoptic
segmentation based on the semantic and instance logits in
a parameter-free fashion is using a post-processing fusion
technique [4], [15], which, however, does not provide an
estimate on the prediction uncertainty. Moreover, the pro-
posed extensions to the panoptic segmentation task also do
not provide any uncertainty estimation [16], [17], [18].

Panoptic segmentation of LiDAR data can be done
proposal-based as well, e.g. in the case of EfficientLPS
[5]. Proposal-free approaches, such as Panoptic-PolarNet
[19] utilizes a Panoptic Deeplab-based [9] instance head to
regress offsets and centers for different instances. DS-Net
[20] proposes a dynamic shifting module to move instance
points towards their respective center. Panoptic-PHNet [21]
utilizes two different encoders, BEV and voxel-based, to
encode point cloud features, followed by a KNN-transformer
module to model interaction among voxels belonging to thing
classes.

B. Uncertainty Estimation

Uncertainty estimation with neural networks has been
popular for quite some time. Bayesian neural networks
(BNNs) learn the distribution over network weights to pro-
vide a probabilistic model for a network’s output. Gal et
al. [22] proposed the method Monte Carlo (MC) dropout
using dropout for variational inference. The disadvantage of
sampling-based methods is that they are not fit for real-time
applications, as they either need multiple passes through
the network or multiple ensemble networks utilizing more
computation resources.

Guo et al. [23] proposed a sampling-free method called
temperature scaling (TS), to learn a scaling factor for the
learned logits, calibrating the predicted probabilities. The one
disadvantage is that the scaling factor is typically learned on
the validation set and thus a bias can be expected. Li et
al. [24] adapted Radial Basis Functions Network (RBFN)
[25] to provide uncertainty aware proposal segmentation
with the aim to detect and predict uncertainties for out-
of-distribution objects. Sensoy et al. [6] utilized evidential
theory to introduce deep evidential learning to quantify
classification uncertainty in a sampling-free fashion. Here,
the network is trained to collect parameters for a high-order
distribution, the Dirichlet distribution in their case, from
which the uncertainty of the prediction is computed. Amini et
al. [7] further utilized the evidential theory in the regression
task setting.
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Fig. 2: Overview of our EvPSNet architecture.
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Fig. 3: Overview of our EvLPSNet architecture.

III. TECHNICAL APPROACH

It consists of a shared EfficientNet [26] backbone with
a two-way Feature Pyramid Network (FPN) and separate
semantic and instance segmentation heads. The semantic seg-
mentation head consists of modified Dense Prediction Cell
(DPC) [27] modules to capture the contextual information of
features at multiple scales. The instance head is a variation
of Mask RCNN [28]. As EfficientPS provides only panoptic
segmentation, its segmentation heads lack the capability to
estimate the uncertainty of its predictions. We employ evi-
dential deep learning [6] to quantify semantic segmentation,
instance segmentation, and classification uncertainty in our
uncertainty-aware semantic and instance segmentation heads.

We modify the semantic head output by replacing the soft-
max layer with the softplus activation function. We use the
Dirichlet distribution as prior for our per-pixel multinomial
classification, parametrized by α = [α1, ..., αC ], where C is
the number of classes and αc

i = softplus(lci )+1 for network
output logit l for pixel i and class c. The corresponding
probability p and uncertainty u are calculated as:

pci = αc
i/Si (1)

ui = C/Si, (2)

where Si =
∑C

c=1 α
c
i .

The instance head is a modified version of Mask RCNN
[28] similar to the EfficientPS architecture. The head consists
of a Region Proposal Network (RPN) to generate proposals
and objectness scores. The ROI align extracts the features
bounded within the generated proposals from the RPN.
These features are fed to the separate bounding box regres-
sion, classification, and mask generation heads. We focus
on providing the uncertainty-aware mask segmentation and
object classification. Our novel probabilistic fusion module
leverages the predicted probabilities and uncertainties of our



semantic and instance segmentation heads to fuse them in a
efficient and straight forward way.

A. EvLPSNet Architecture

An overview of our EvLPSNet architecture is shown in
Fig. 3. It is based on the proposal-free Panoptic-PolarNet
network [19]. Our evidential semantic segmentation head
and Panoptic-Deeplab based [9] instance segmentation head
utilize the learned features to predict per-point semantic
segmentation, semantic uncertainty, instance center and off-
sets. The predictions from both heads are fused to provide
panoptic segmentation results. Leveraging the segmentation
uncertainties, our proposed query and refine module helps to
improve the prediction for points within uncertain voxels.
Moreover, post-processing using our efficient probability-
based KNN improves the results further.

We project the LiDAR points into a polar BEV grid
utilizing the encoder design proposed by PolarNet [29]. The
subsequent encoder-decoder network utilizes the U-net [30]
architecture.

We utilize evidential deep learning [6] to provide voxel-
level semantic segmentation with calibrated uncertainty es-
timation, similar to the EvPSNet architecture above. Our
uncertainty-based query and refinement module (uQR) lever-
ages the predicted uncertainties to counter the discretization
errors due to the BEV grid structure. We select the top 20k
most uncertain points and pass them to our uQR module to
actively improve the segmentation quality in an efficient way.
Further, our probability-based k nearest neighbors (pKNN)
approach aims for efficient refining by considering only
points that have a probability (Eq. (1)) below a certain
threshold, followed by a majority voting to decide the final
label.

B. Metrics for uncertainty-aware panoptic segmentation

a) Calibration metric: Here, we aim to provide a metric
capable of evaluating the network calibration, i.e. how well
the predicted confidence matches the actual accuracy the
prediction, for the panoptic segmentation task. A common
measure for the calibration accuracy is the Expected Cal-
ibration Error (ECE) [31]. However, as pointed out by
Nixon et al. [32], the ECE has some severe limitations, in
particular: First, it takes only the maximum class probability
of the prediction into account, ignoring the probability of
all other classes. Second, it is only suited to evaluate the
calibration of the semantic segmentation task, while the
instance segmentation is ignored.

To solve the first limitation, we propose to employ the
predicted uncertainty, rather than just the highest class prob-
ability. Considering ui ∈ [0, 1] to be the predicted uncer-
tainty for pixel i, we define the corresponding confidence
as confi = 1 − ui. Further, we define the corresponding
accuracy as acci = 1 if the predicted class matches the
ground truth, and acci = 0 otherwise. For each image we
partition confi into B equally spaced bins and calculate
the average confidence conf(b) and average accuracy acc(b)

for each bin b. Then we define a novel uncertainty-aware
calibration metric as

uECE =

B∑
b=1

|b|
N
|acc(b)− conf(b)| , (3)

where |b| is the number of pixels in bin b, and N is the
total number of pixels. This definition is analogous to the
original ECE, but using the confidence instead of the highest
probability output, solving the first limitation.

To solve the second limitation, we proceed to additionally
incorporate the instances of the scene into a metric. The first
step is to identify correctly predicted segments f , which is
done by selecting those that have IoU > 0.5 with a ground
truth segment g. Here, a segment can either be the mask of a
single instance for thing classes, or all pixels belonging to a
stuff class. This leads to M unique matching pairs (f, g) [3].
We then calculate uECE for each of these correctly predicted
segment separately, and take the average to form our novel
panoptic calibration metric:

pECE =
1

M

∑
(f,g)

uECE(f, g). (4)

Due to the matching, this quantity is sensitive to the calibra-
tion within the instances of thing classes, as well as to the
stuff classes.

b) Overall performance metric: Our next aim is to
provide a unified metric to evaluate the panoptic segmen-
tation and uncertainty prediction together. It is based on the
common Panoptic Quality (PQ):

PQ =

∑
(f,g) IoU(f, g)

TP + 1
2FP + 1

2FN
(5)

where the IoU is calculated for the matched pairs (f, g), and
TP, FP and FN are the number of true positive, false positive,
and false negative segments, respectively. We define our
novel uncertainty-aware panoptic quality uPQ by combining
pECE with PQ as:

uPQ = (1− pECE)PQ (6)

IV. EXPERIMENTAL EVALUATION

We evaluate the performance of our networks on the
Cityscapes dataset [33], providing Camera images for EvP-
SNet, and the SemanticKITTI [34] dataset, providing LiDAR
data for EvLPSNet.

We provide several baselines, first the state-of-the-art top-
down and bottom-up networks, EfficientPS [4] and Panop-
ticDeepLab [9], for the panoptic segmentation of images
without uncertainty-awareness. For the LiDAR data, we
choose the proposal-based EfficientLPS [5] and the proposal-
free Panoptic-PolarNet [19]. To extract uncertainties, we
chose the sampling-free methods temperature scaling (TS)
and evidential learning (Ev). We estimate the uncertainty
output for the original networks and their TS variants by
calculating the normalized entropy of the predicted proba-
bilities. The evidential variant replaces the softmax with the



TABLE I: Performance values in % on the Cityscapes validation set. Lower values are better for ↓, and larger values otherwise.

Method uPQ PQ SQ RQ uPQTh PQTh SQTh RQTh uPQSt PQSt SQSt RQSt pECE ↓

EfficientPS [4] 49.9 63.5 81.6 76.9 47.1 58.9 80.7 72.8 52.0 66.8 82.2 79.8 21.3
EfficientPS [4] + TS [23] 50.1 63.5 81.6 76.9 44.6 58.8 80.6 72.8 54.2 66.8 82.2 79.8 21.1
PDeepLab [9] 47.7 63.1 82.0 75.9 42.6 55.7 80.6 68.9 51.45 68.5 82.9 81.0 24.3
PDeepLab [9] + TS [23] 50.5 63.1 82.0 75.9 43.5 55.7 80.6 68.9 56.8 68.5 82.9 81.0 20.5
PDeepLab [9] + Ev 51.6 62.5 82.1 75.1 43.5 54.3 80.9 66.9 57.7 68.5 83.0 81.0 17.5

EvPSNet (ours) 54.9 64.1 81.4 77.8 50.4 56.8 80.2 70.9 57.9 69.5 82.3 82.8 14.3

TABLE II: Performance values in % on the SemanticKITTI validation set. Lower values are better for ↓, and larger values otherwise.

Method uPQ PQ pECE ↓ uPQTh PQTh pECETh ↓ uPQSt PQSt pECESt ↓ uECE ↓ mIOU

EfficientLPS 48.7 57.1 14.6 52.6 59.9 12.1 45.9 54.9 16.4 16.5 62.3
EfficientLPS + TS 49.6 56.9 12.9 48.5 59.8 18.8 50.2 54.9 8.7 7.7 62.1
Panoptic-PolarNet 48.8 58.5 16.6 53.1 65.7 19.1 45.4 53.3 14.7 13.2 63.2
Panoptic-PolarNet + TS 48.1 58.5 17.7 51.4 65.7 21.8 45.4 53.3 14.7 10.5 63.3

EvLPSNet 51.4 58.0 11.5 52.7 62.7 15.9 50.1 54.6 8.2 7.1 64.0

(a) Input image (b) Panoptic segmentation

(c) Uncertainty map (d) Error map

Fig. 4: Qualitative results of EvPSNet on Cityscapes data.

softplus operation and training the semantic segmentation
head with the evidential loss.

To compare the performance we employ our proposed
uncertainty-aware panoptic segmentation metrics, as well
as standard panoptic segmentation metrics. The results for
EvPSNet are presented in Tab. I and for EvLPSNet in Tab. II.
Our methods outperform all baselines on the uncertainty-
aware panoptic segmentation metrics uPQ and pECE.

We further provide qualitative results, including the panop-
tic segmentation, uncertainty and error maps in Fig. 4 for
EvPSNet and in Fig. 5 for EvLPSNet. Comparing the pre-
dicted uncertainty with the error maps a high correlation can
be observed, which provides clear visual validation of the
approaches.

V. CONCLUSIONS

In this work, we discussed the novel task of uncertainty-
aware panoptic segmentation. To this end, we provided two
metrics, uPQ and pECE, for evaluating and comparing the
performance on our proposed task. We also introduced sev-
eral strong baselines by combining state-of-the-art panoptic

(a) Panoptic segmentation

(b) Uncertainty map

(c) Error map

Fig. 5: Qualitative results of EvLPSNet on SemanticKITTI data.

segmentation networks with sampling-free uncertainty esti-
mation techniques. Our proposed EvPSNet and EvLPSNet
architectures outperforms all the baselines on the uncertainty-
aware panoptic metrics.
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[5] K. Sirohi, R. Mohan, D. Büscher, W. Burgard, and A. Valada, “Effi-
cientlps: Efficient lidar panoptic segmentation,” IEEE Transactions on
Robotics, 2021.

[6] M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning to
quantify classification uncertainty,” Advances in Neural Information
Processing Systems, vol. 31, 2018.

[7] A. Amini, W. Schwarting, A. Soleimany, and D. Rus, “Deep evidential
regression,” Advances in Neural Information Processing Systems,
vol. 33, pp. 14 927–14 937, 2020.
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