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Abstract
As the volume of data invested in statistical learning increases and concerns re-
garding privacy grow, the privacy leakage issue has drawn significant attention.
Differential privacy has emerged as a widely accepted concept capable of mitigat-
ing privacy concerns, and numerous differentially private (DP) versions of machine
learning algorithms have been developed. However, existing works on DP ker-
nel learning algorithms have exhibited practical limitations, including scalability,
restricted choice of kernels, or dependence on test data availability. We propose
DP scalable kernel empirical risk minimization (ERM) algorithms and a DP ker-
nel mean embedding (KME) release algorithm suitable for general kernels. Our
approaches address the shortcomings of previous algorithms by employing Nys-
tröm methods, classical techniques in non-private scalable kernel learning. These
methods provide data-dependent low-rank approximations of the kernel matrix
for general kernels in a DP manner. We present excess empirical risk bounds and
computational complexities for the scalable kernel DP ERM, KME algorithms, con-
trasting them with established methodologies. Furthermore, we develop a private
data-generating algorithm capable of learning diverse kernel models. We conduct
experiments to demonstrate the performance of our algorithms, comparing them
with existing methods to highlight their superiority.

1 Introduction
As data collection and access continue to expand, protecting privacy has emerged as a crucial concern.
Differential privacy (DP), introduced by Dwork et al. (2006b), stands as the current gold standard in
data privacy. It provides a rigorous framework for privacy in statistical procedures, wherein noise
is added proportional to the maximum deviation induced by the change of a single individual in
the dataset. The field has seen significant advances in differentially private (DP) algorithms for
machine learning. Notably, DP empirical risk minimization (ERM) has become a key area of research,
attracting extensive attention (Chaudhuri et al., 2011; Kifer et al., 2012; Bassily et al., 2019; Wang
et al., 2019; Feldman et al., 2020). These efforts focus on developing privacy-preserving statistical
models with high generalization capabilities across various ERM problems, including regularized
regression, logistic regression, support vector machines, and some other ERM problems equipped
with non-convex or non-smooth loss functions. However, a vast majority of the current DP ERM
algorithms primarily address linear ERM, suitable for datasets with linear structures.

Kernel methods hold significant importance in machine learning due to their ability to capture intricate,
non-linear structures. Kernel-based learning is ubiquitous in both supervised and unsupervised settings
as well as in hypothesis testing problems. For an extensive review on the subject, see Muandet et al.
(2017). This work focuses on the supervised kernel learning problem via ERM as well as kernel mean
embedding (KME) for probability distributions. Developing a DP framework for general kernels
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poses a significant hurdle due to their reliance on the local attributes of the data. For instance, not
every kernel is amenable to a well-behaved DP solution. As a rather extreme case, the Kronecker delta
kernel, k(x, y) = 1(x = y), yields a meaningful solution only when the test data exactly matches
one of the training instances. Consequently, the solution becomes highly sensitive to the data changes,
exhibiting substantial deviations with even a single data alteration.

As a result, there has been relatively little DP research regarding kernel ERM, especially compared to
linear counterparts. Chaudhuri et al. (2011) suggested transforming kernel ERM into a linear form
via random features, which facilitates scaling-down operations. However, their method is limited to
translation-invariant kernels, excluding a wide variety of other kernels, such as polynomial kernels
or the pyramid match kernel from the computer vision domain (Grauman and Darrell, 2007), the
chi-squared kernel in hand gesture recognition (Abadi et al., 2015), Histogram intersection kernel
in image classification (Maji et al., 2013), Bayesian kernel in protein prediction (Alashwal et al.,
2009), and the diffusion kernel in manifold learning (Lafferty and Lebanon, 2005). Hall et al. (2013)
proposed perturbing the output function of kernel ERM. Although their work can be applied to
general kernels, it lacks scalability in practice (e.g., O(n3) in kernel ridge regression). Additionally,
it requires access to the training data for every prediction, posing a potential threat of privacy leakage.
The DP kernel ERM proposed by Jain and Thakurta (2013) can work with general kernels; however,
its utility is guaranteed only when test data are accessible.

KME is a pivotal tool in diverse applications such as two-sample testing and synthetic data generation
(Harder et al., 2021). It enables the comparison of probability distributions via metric in Reproducing
Kernel Hilbert Space (RKHS), by embedding these distributions into elements of the RKHS. Ad-
ditionally, Balog et al. (2018) found utility of KME for the private release of data. The embedding
itself acts as a concise representation of the distributional information of the data. However, their
methods appear to suffer in high-dimensional settings. Moreover, it is important to note that the DP
functional release algorithm suggested by Hall et al. (2013) cannot be directly applied to DP KME.
This limitation arises because the output is not a member of the RKHS, which is a crucial distinction
since statistical methods related to KME heavily depend on operations within the RKHS.

Our study is motivated by the frequent oversight in prior research of the practical challenges in
real-world implementations, such as scalability, private implementation without access to test data,
accurate DP KME release, and the lack of information on future private data use. We propose
algorithms designed for practical DP kernel ERM by integrating the Nyström method. Although
the Nyström method has been a state-of-the-art technique with random Fourier features in scalable
kernel learning, this work is the first to apply it to DP kernel learning. The proposed algorithms are
designed to be scalable and are suitable even for unregularized learning or non-convex loss functions.
Moreover, we demonstrate that our Nyström-based techniques can be used to construct a DP estimate
of KME, which can be utilized for private two-sample tests via maximal mean discrepancy, for
example. We also address the cases where the model is unknown, such as in public releases of private
data, by employing an algorithm that releases versatile private data suitable for kernel ERM with
diverse objectives.

1.1 Related Works
DP ERM. ERM serves as a fundamental tool in machine learning, with substantial literature on DP
ERM dating back to Dwork et al. (2006b). Among the current works, most of which regard linear
ERM, main approaches include output and objective perturbation methods (Chaudhuri et al., 2011;
Kifer et al., 2012; Jain and Thakurta, 2014; McSherry and Talwar, 2007; Gopi et al., 2022, 2023;
Mangoubi and Vishnoi, 2022), and gradient perturbation methods (Bassily et al., 2014; Wang et al.,
2017; Song et al., 2013). However, Iyengar et al. (2019) pointed out that most output or objective
perturbation-based algorithms suffer from scalability issues in their implementation. For example,
they need to directly access optimal solutions in order to release private models, thereby reducing scal-
ability, particularly in kernel learning. Additionally, they often require strong assumptions on learning
problems to guarantee privacy, such as double differentiable loss or a strongly convex regularizer,
which limits the range of applicable learning scenarios (Iyengar et al., 2019). In contrast, gradient
or SGD-based output perturbation methods (Wu et al., 2017; Feldman et al., 2020) are relatively
unconstrained by learning restrictions or scalability concerns. While a vast amount of literature exists
on linear ERM, not all DP kernel ERM algorithms can capitalize on these findings.

DP kernel ERM and KME. To adapt techniques from DP linear ERM to kernel ERM, one needs
random features of the kernel suitable for DP learning. Random Fourier features were suggested as a
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candidate for translation-invariant kernels (Chaudhuri et al., 2011), but none have been proposed for
general kernels. Hall et al. (2013) and Jain and Thakurta (2013) addressed DP kernel ERM algorithms
for general kernels without using random features. However, Jain and Thakurta (2013) assumes
accessible test data, which may be inappropriate in certain cases. On the other hand, Hall et al. (2013)
suggests a sophisticated method for releasing a private model but requires strong regularization.
Moreover, both algorithms need the true solution before releasing the private model, resulting in
scalability issues. The discussion on DP KME has been somewhat distant from DP kernel ERM,
initially introduced by Balog et al. (2018) as a technique for private database release. Balog et al.
(2018) developed private algorithms for releasing KME for both general and translation-invariant
kernels. However, their methods suffer from the curse of dimensionality in both cases. Additionally,
we note that the techniques in Hall et al. (2013) and Jain and Thakurta (2013) cannot be directly
adapted to DP KME release.

1.2 Main Contributions
Scalable DP kernel ERM for general kernels. We develop scalable algorithms for DP kernel ERM
that accommodate general kernels, particularly non-translation-invariant ones. The Nyström method
serves as a principal tool that enables much-desired scalability in practical applications. Our work is
the first to propose a DP K-means Nyström method and incorporate it in DP kernel ERM. Also, to the
best of our knowledge, this is the first attempt to compare the theoretical and experimental efficacy of
scalable private kernel learning algorithms. The proposed algorithms reduce time complexity and
memory costs, akin to the Nyström method in non-private settings. Furthermore, experiments in
Section 4 demonstrate the superior performance of our algorithms for different learning problems.
We present a brief comparison of our approach and three existing methods in Table 1.

Table 1: Comparison of DP kernel ERM algorithms in terms of restrictions for privacy guarantee.

Algorithms General kernels Scalable Test data free General objective
Chaudhuri et al. (2011) ✓ ✓ ✓

Jain and Thakurta (2013) ✓
Hall et al. (2013) ✓ ✓

Proposed ✓ ✓ ✓ ✓

DP KME. We propose a data-dependent DP KME releasing algorithm based on the DP K-means
Nyström method. The error of the DP KME is shown to be primarily related to how accurately
the kernel matrix is estimated by the Nyström method. Our empirical study suggests its superiority
compared to alternative DP KME releasing algorithms.

Private data release for versatile kernel learning. We consider the offline setting for database
release, where the database owner releases data without knowledge of the models or statistics desired
by users. We provide a DP algorithm that generates a dataset yielding excess empirical risk bounds of
O(n−c) for the logistic and the Linex (Ma et al., 2019) losses if it is used for kernel ERM.

2 Preliminaries
2.1 Differential Privacy
Among the numerous variants of DP, this work primarily employs (ϵ, δ)-DP, as it is widely applicable
to various statistical procedures. Let X be the data space. We consider a randomized algorithm
M : Xn → P (Z), where P(Z) is a family of distributions over an output space Z . Let D ∼ D′

indicate that datasets D and D′ are neighbors, meaning they differ only by a single individual.

Definition 2.1 ((ϵ, δ)-DP, Dwork et al. (2006a)). An algorithm M is (ϵ, δ)-DP if the following holds:
sup

D,D′⊂Xn,D∼D′
sup
A⊂Z

P (M(D) ∈ A)− eϵP (M(D′) ∈ A) ≤ δ.

Definition 2.1 states that an algorithm is DP if its randomness is proportional to the deviation in the
output due to a single data change, as demonstrated in Proposition 1.

Proposition 1 (Gaussian mechanism, Nikolov et al. (2013)). If a deterministic algorithm A :
Xn → Rd satisfies supD,D′⊂Xn,D∼D′∥A(D)−A(D′)∥2 ≤ ∆, an algorithm defined by M(D) :=

A(D) +
∆
(
1+
√

2 log 1
δ

)
ϵ ε is (ϵ, δ)-DP where ε follows the standard normal distribution on Rd.
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Statistical procedures, including the algorithms we propose, typically involve multiple steps, such
as data-dependent evaluations and multiple references to the data. Proposition 2 provides a privacy
guarantee for such procedures.

Proposition 2 (Composition theorem, Dwork et al. (2006a)). For algorithms M1 : Xn → P(Z)
and M2 : Xn ×Z → P(W), the algorithm M : Xn → Z defined by M(D) = M2(D,M1(D)) for
D ⊂ Xn is (ϵ1 + ϵ2, δ1 + δ2)-DP if M1 is (ϵ1, δ1)-DP and M2(·, z) is (ϵ2, δ2)-DP for every z ∈ Z .

2.2 Kernel, RKHS, and Random Features
Kernel methods learn a non-linear structure by using a non-linear map, called a feature map ϕ, to
transform the data {xi}ni=1 and analyze the linear structure of {ϕ(xi)}ni=1. An appropriate choice of ϕ
captures the underlying complex structure of the data. The feature maps are inherently determined by
the kernel function k, a positive definite function with a corresponding RKHS (Hk, ∥·∥Hk

), satisfying
⟨ϕ(x), ϕ(y)⟩Hk

= k(x, y). Within the RKHS, the outputs of the feature map behave akin to vectors
in Euclidean space, allowing one to learn the non-linear structure through a linear model.

A random feature is a map φ : X → Rm that approximates the kernel function in a way that
k(x, y) ≈ ⟨φ(x), φ(y)⟩, providing a linearized version of kernel learning, as will be discussed in
Sections 3.2 and 3.3. Traditionally, k(x, y) ≈ E[⟨φ(x), φ(y)⟩] is required for a random feature map,
but we adopt a more broad terminology.

2.2.1 Nyström Methods
Nyström methods are low-rank kernel matrix approximation methods that facilitate scalable kernel
learning. For given dataset {xi}ni=1 ⊂ X , and a kernel matrix K, the approximation K̂ is calculated
as K̂ := KZX

TKZ
†KZX where KZ := [k(zi, zj)]m×m, and KZX := [k(zi, xj)]m×n. Here,

Z = {z1, . . . , zm} ⊂ X are some pre-chosen landmark points, and † represents the Moore–Penrose
inverse. Then, K̂ can be interpreted as projections of data points onto the plane in the RKHS:

K̂ = [⟨projSϕ(xi), projSϕ(xj)⟩Hk
]n×n

where S = span{ϕ(zi)|1 ≤ i ≤ m} ⊂ Hk. Thus, the accuracy of K̂, or the accuracy of scalable
kernel learning via K̂, depends on how closely the subspace S resembles the data {ϕ(xi)}ni=1, the
corresponding elements in the RKHS of the original data. Consequently, Nyström methods operate
by selecting landmark points that effectively represent the original data, as demonstrated in the past
studies using data-dependent landmark points such as K-means centroids or subsamples (Kumar
et al., 2012; Zhang et al., 2008; He and Zhang, 2018).

2.3 Problem Formulation
DP kernel ERM. For a given dataset D = {(xi, yi)}ni=1 ⊂ (X ×Y)n, a loss function l : R2 → R≥0,
and a regularization parameter λ > 0, we consider the following regularized kernel ERM:

argmin
f∈Hk

L̂λ(f ;D) ≜
1

n

n∑
i=1

l(⟨f, ϕ(xi)⟩Hk
, yi) +

λ

2
∥f∥2Hk

.

The minimization finds a function f that best explains the data under the given loss, and the reg-
ularization parameter λ prevents over-fitting. We measure the quality of the model by the excess
empirical risk of f , defined by L̂λ(f ;D)−ming∈Hk

L̂λ(g;D).

DP KME. For a given data {xi}ni=1 ⊂ Xn, our objective is to design a DP KME release
mechanism: an (ϵ, δ)-DP mechanism M : Xn → P (Hk) that is sufficiently close to the KME
µX := E [ϕ(X)] in the RKHS norm with high probability. Since it is known that the empirical
KME µ̂X := ϕ(x1)+···+ϕ(xn)

n converges to µX with Op(n
− 1

2 ) (Muandet et al., 2017), our DP KME
algorithm will focus on releasing µ̂X .

Versatile DP kernel ERM. We explore a DP public dataset release tailored for kernel ERM. Unlike
mechanisms developed in DP kernel ERM, which train models for specific loss functions l and
regularization parameters λ, we develop a private dataset release (ϵ, δ)-DP mechanism M : Xn →
Zn. This mechanism enables learning a kernel ERM for post-given, possibly infinitely many l
functions and λ values.

4



3 Proposed Methods
Proofs for the theorems presented in this section are deferred to Appendix 6.3.

3.1 DP K-means Nyström Approximation
This section presents a pivotal tool for achieving scalability for general DP kernel learning: DP K-
means Nyström method. It is instrumental for our DP algorithms to make predictions using released
private functions without needing access to the original data, and to be easily incorporated into the
current linear DP ERM framework, unlike Hall et al. (2013).

As demonstrated by Chaudhuri et al. (2011) and Balog et al. (2018), DP kernel learning can effectively
utilize the established methods of DP linear learning through random features. However, the use of
random Fourier features depends on specific kernel characteristics, particularly translation-invariance,
which complicates the development of random features for more general kernels. To overcome this
challenge, we adopt the Nyström approximation scheme, which is suitable for constructing random
features for a wider range of kernels. As discussed in Section 2.2.1, selecting landmark points that
accurately capture the data structure is crucial for the Nyström method. Following the landmark
selection guidelines outlined in Zhang et al. (2008), namely the K-means approach, we provide
a detailed rationale behind this criterion to demonstrate how effectively these points represent the
underlying data structure.

Define φ
(Nys)
Z : X → Rm as φ

(Nys)
Z := (⟨projSϕ(x), b1⟩Hk

, . . . , ⟨projSϕ(x), bm⟩Hk
) where

{bi}mi=1 is an orthonormal basis of S . Here, φ(Nys) is our random feature map. Our goal is to select
suitable landmarks that minimize the approximation error of φ(Nys) for the kernel k at {(xi, xj)}n×n,
which can be expressed as follows:

1

n2

n∑
i,j=1

(
k(xi, xj)− ⟨φ(Nys)

Z (xi), φ
(Nys)
Z (xj)⟩

)2
=

1

n2
∥K− K̂∥2F . (1)

Note that the error described in Eq. (1) is also known as the Nyström approximation error in the
literature on low-rank kernel approximation. The accuracy of Nyström-based kernel learning depends
on the accuracy of the kernel matrix approximation: ∥K−K̂∥2, which is upper bounded by ∥K−K̂∥F .
However, optimizing the landmark selection by minimizing LHS in Eq. (1) under DP is challenging
because the problem is neither convex nor Lipschitz, making DP optimization difficult. Theorem 1
offers a comprehensive approach to identifying appropriate landmark points by solving the K-means
problem, rather than directly addressing the complex challenge.

Theorem 1. If a kernel k is c′-Lipschitz2 for both of its arguments, the Nyström approximation error
is bounded by the quantization error of the landmark points for the original dataset:

∥K− K̂∥F ≤ 2c′

√√√√n
n∑

i=1

min
zj∈Z
∥xi − zj∥22. (2)

Theorem 1 sheds light on the connection between low-rank kernel approximation and data clustering.
Since the Nyström method is essentially an orthogonal projection of data onto S in RKHS and the
LHS of Eq. (2) resembles the common clustering objective, the theorem essentially suggests that
a proper clustering can identify a subspace S that is closely aligned with the data. We emphasize
that the bound stated in Theorem 1 is O(

√
ne), where e =

∑n
i=1 minzj∈Z∥xi − zj∥22. The bound is

tighter than the O(ne∥KZ
−1∥F ) bound provided in Zhang et al. (2008), if the sample size n and the

number of landmark points m are sufficiently large such that KZ has small eigenvalues, even though
the assumption on kernel is equivalent to the one made in Zhang et al. (2008).

In Algorithm 1, we present a DP algorithm for K-means-based Nyström approximation. The obtained
orthonormal basis {bi}ni=1 of S and their corresponding random feature map φ(Nys) can be used
in the subsequent DP kernel learning. For the DP K-means step in line 2, the algorithm from the
diffprivlib package implemented by IBM 3 can be used.

2A function f is c′-Lipschitz if |f(x)− f(y)|≤ c′|x− y| holds for every x, y.
3https://github.com/IBM/differential-privacy-library/blob/main/diffprivlib/models/k_means.py
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Algorithm 1 DP K-means Nyström approximation.

Input: given data {x1, . . . , xn}, random features of dimension m, cluster threshold parameter m0,
and privacy parameters ϵ, δ.
Output: a random feature mapping φ(Nys) : X → Rm, and {b1, . . . , bm} ⊂ Hk.

1. K ← ⌊m0ϵ⌋.
2. {z1, . . . , zk} ← centroids of ϵ/2-DP K-means for {x1, . . . , xn}.
3. If K < m, draw {zk+1, . . . , zm} from some distribution Q.
4. UΣUT ← the unitary diagonalization of a matrix [k(zi, zj)]m×m.
5. φ(Nys) ← φ(Nys)(x) := 1

RΣ† 1
2UT [k(z1, x), . . . , k(zm, x)]T ,

where R =
√
maxx∈X k(x, x).

6. bi ←
∑m

j=1[Σ
† 1
2UT ]ijϕ(zj) for i = 1, 2, . . . ,m.

7. return φ(Nys), {b1, . . . , bm}

Theorem 2. Algorithm 1 is 1
2ϵ-DP, and R[φ(Nys)(x)]i = ⟨projSϕ(x), bi⟩Hk

for all i and x ∈ X .

Although the privacy remains unaffected by the threshold parameter m0, it does influence the quality
of the landmark points: the DP K-means centroids. Setting K = m and omitting the thresholding
step will result in small cluster sizes for large m, making the centroid estimates more susceptible to
the noise added in the DP K-means step. This issue is exacerbated by a small privacy budget ϵ, which
further amplifies the noise. To mitigate this effect, thresholding is performed using ⌊m0ϵ⌋. After
applying cluster size thresholding, additional m−K landmark points are generated in line 3 from a
distribution Q. While Q can be chosen arbitrarily, we choose it as a mixture of K truncated normal
distributions centered at zis, incorporating data information extracted from the DP K-means.

3.2 Scalable DP Kernel ERM
Using the output of Algorithm 1, we can construct a DP kernel ERM for general kernels, as presented
in Algorithm 2. Since the generation of random features is performed differentially privately, any
existing DP linear ERM algorithms can be subsequently applied to achieve DP, in accordance with the
composition theorem in Proposition 2. As an illustration, the method in Kifer et al. (2012), detailed
in Algorithm 5 in Appendix 6.2, is adapted for general kernels in line 2 of Algorithm 2.

Algorithm 2 DP kernel ERM for general kernels

Input: given data {x1, . . . , xn}, integer m, and kernel k.
Output: f̃ ∈ Hk.

1. φ(Nys), {b1, . . . , bm} ← ϵ/2-DP feature map and basis, output of Algorithm 1.
2. u← by solving (ϵ/2, δ)-DP linear ERM for data {(ϕ(Nys)(xi), yi)}ni=1:
3. f̃ :=

∑n
i=1 uibi.

4. return f̃

Theorem 3. Algorithm 2 is (ϵ, δ)-DP.

Line 1 of Algorithm 2 transforms the data points to random features, and line 2 solves the DP linear
ERM with respect to the newly produced data {φ(Nys)(xi)}ni=1. This step reduces the computational
complexity, for example, from O(n3) to O(nm2 + nmd) in kernel ridge regression.

The linearization through random features introduces extra learning errors beyond the DP linear ERM
error, specifically the approximation error for the given kernel, which is related to the ∥K− K̂∥2, as
shown in Theorem 4. The experiment results in Appendix 6.1 suggest that our DP random feature
algorithm approximates the Gaussian kernel better than random Fourier features for small m.

Also, we note that although the privacy budgets were allocated equally for step 1 and 2, it may not be
the optimal choice. The Fig. 3 demonstrates the utility can be improved in other privacy allocations.
However, we fix the allocation as half since tuning the optimal allocation may involve privacy leakage.
We included the detail in Appendix 6.1.
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Theorem 4. If the loss function is c-Lipschitz with respect to its first argument, the excess empirical
risk of Algorithm 2 equipped with ( ϵ2 , δ)-DP linear ERM algorithm is En,m(β) + c∥K−K̂∥2

2λn with
probability at least 1− β where En,m(β) is an empirical risk bound of the DP linear ERM algorithm
satisfied with probability at least 1− β for inputs in a unit ball.

3.3 DP Kernel Mean Embedding
This section introduces a DP KME method using K-means Nyström approximation in Algorithm 3.
An important consideration in DP KME is that the released private embedding should be an element
of the RKHS. Note that the noise level in the release of the coefficient vector w in line 3 of the
algorithm is determined by Proposition 1, ensuring accuracy proportional to the sample size n.

Algorithm 3 DP kernel mean embedding (DP KME)

Input: given data {x1, . . . , xn}, integer m.
Output: a DP kernel mean embedding f ∈ Hk

1. φ(Nys), {b1, . . . , bm} ← ϵ/2-DP feature map and basis, output of Algorithm 1.

2. w ← R

(
1
n

∑n
i=1 φ

(Nys)(xi) +
4
(
1+
√

2 log 1
δ

)
nϵ ε

)
where ε ∼ N (0, Im×m)

3. µ̃X ←
∑m

i=1 wibi
4. return µ̃X

Theorem 5. Algorithm 3 is (ϵ, δ)-DP.

The following theorem regards the difference between our DP KME and the conventional empirical
KME estimate µ̂X .

Theorem 6. The DP KME error in the RKHS norm is given as follows:

∥µ̃X − µ̂X∥Hk
≤ ∥K− K̂∥2√

n
+

2R
√
2m
(
1 +

√
2 log 1

δ

)
nϵ

(√
m+

√
2 log

1

β

)
with probability at least 1− β.

According to Theorem 6, the accuracy of DP KME depends on the accuracy of the low-rank ap-
proximation of K. By adaptively selecting landmark points according to the data, we can effectively
reduce the approximation error. The following theorem confirms the advantage of using the data
distribution in DP KME.

Theorem 7. If the landmarks are selected independently of the data, the KME error of Algorithm 3
would become:

∥∥∥µ̃(ind)
X − µ̂X

∥∥∥
Hk

≤ 2R

β′

n
+

√
β′

n
+

(√
2 + 2

√
log 1

δ

)
nϵ

(√
m+

√
β′
)+∥µX−projSµX∥Hk

with probability at least 1 − β where β′ = 2 log 2
β , and µ̃

(ind)
X denotes the DP KME obtained by

data-independently selected landmark points.

Theorem 7 addresses the scenario where landmark points are selected independently of the data, as
suggested by Balog et al. (2018). The error depends on how closely the distribution of the landmark
points S resembles that of the data. Consequently, disregarding the data distribution µX can lead to
suboptimal results in kernel learning.

3.4 Data Release for Versatile DP Kernel ERM
Here, we consider scenarios where sensitive data must be released without knowing which ERM
model(s) will be trained on it. We propose a framework for releasing privacy-preserving datasets
suitable for kernel ERMs that ensures robust accuracy with diverse loss functions. The non-interactive
local DP ERM framework utilizing a polynomial approximation of the gradient of the objective is
employed for the purpose. The proposed Algorithm 4 is a modified version of Algorithm 5 from
Zheng et al. (2017), tailored for kernel learning. Denote ∥Y∥ := maxy∈Y |y|.
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Algorithm 4 DP data release for versatile DP kernel ERM

Input: given data {(x1, y1), . . . , (xn, yn)}, integers m, p, and privacy budget (ϵ, δ).
Output: DP data

1. φ(Nys), {b1, . . . , bm} ← ϵ/2-DP feature map and basis, output of Algorithm 1.
2. µ← ϵ

2+2
√

2 log 1
δ

3. γ̃i ←
(
yiφ

(Nys)(xi) +
1
µε

x
0 , yiφ

(Nys)(xi) +
1
µε

x
1 , . . . , yiφ

(Nys)(xi) +
1
µε

x
p(p+1)

2

)
where εx0 ∼ N(0, 4∥Y∥2Im×m) and εxj ∼ N(0, 4p(p+ 1)∥Y∥2Im×m) for j = 1, . . . , p(p+1)

2 .
4. return {γ̃i}ni=1

Theorem 8. Algorithm 4 is (ϵ, δ)-DP.

In this versatile learning problem, we add a new constraint that the parameter space has a radius
r > 0, which is a common restriction in private ERM contexts (Kifer et al., 2012). Then the ERM
problem can be written as:

min
f∈S,∥f∥Hk

≤r

1

n

∑
i

l(⟨f, ϕ(xi)⟩Hk
, y) +

λ

2
∥f∥2Hk

. (3)

We assume the following to ensure an efficient polynomial approximation of the loss by constraining
its form. Note that the assumption accommodates a broader range of existing losses; for instance, logis-
tic loss and smooth variants of hinge loss, compared to the assumption in Zheng et al. (2017).

Assumption 1. The loss function satisfies l(ŷ, y) = l0(ŷy) for convex, c-Lipschitz l0 : R→ R≥0,
which is b-smooth i.e., it is differentiable and satisfies l0(t1)− l0(t2) ≤ l′0(t2)(t1− t2)+

b
2 (t1− t2)

2.

Theorem 9 states that the optimization in Eq. (3) can be solved using the output of Algorithm 4 with
a theoretical utility guarantee.

Theorem 9. Under Assumptions 1, for a regularization parameter λ > 0 and a pth degree polynomial
h, there exists an algorithm Al,λ that takes the output of Algorithm 4 and returns a classifier with
excess empirical risk:

Õ

((
α2 + c2 + a2∞

(
rp

µ

)2p+1
)

mR2∥Y∥2 log2 1
β

nλµ2
+ αR∥Y∥r

)
with probability 1 − β, where α := ∥l′0(ŷy) − h(ŷy)∥∞ on |ŷy|≤ r∥Y∥R, a∞ is the maximum
absolute value of the coefficients of h, and Õ is a big O notation ignoring log n factors.

Remarks. The bound in Theorem 9 relies heavily on the quality of the polynomial approximation of
the gradient. For example, the Huber loss4 used for support vector machines (SVM), gives a poor
guarantee: O

(
(log n)−1

)
with Chebyshev polynomial approximation h due to the lack of smoothness

of the gradient. In contrast, smooth losses, such as the logistic loss l(ŷ, y) = log(1 + e−ŷy), and the
Linex loss l(ŷ, y) = ea(1−ŷy)−a(1− ŷy)−1, offer faster convergence of guaranteed excess empirical
loss bounds: O(n−c) for some c > 0. The algorithm Al,λ in Theorem 9, detailed in Algorithm 7 in
Appendix 6.2, utilizes an inexact oracle gradient method as outlined in Algorithm 3 of Dvurechensky
and Gasnikov (2016).

4 Experiments
In this section, we demonstrate our proposed DP methods for DP kernel learning with simulated and
real data. Specifics on the data generation can be found in Appendix 6.1.

The first example is designed to demonstrate the benefit of scalable DP kernel ERM for general
kernels. The data comes from two classes with a polynomial boundary between them, making the
non-translation-invariant polynomial kernel the most preferable choice for a kernel function. We

4l(w;x, y) := 1
2
(1.5− ywTx)21[0.5,1.5](yw

Tx) + (1− ywTx)1(−∞,0.5)(yw
Tx) a differentiable version

of the hinge loss (Chapelle, 2007)
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(a) (b)

Figure 1: (a) Comparison of classification accuracy of scalable DP kernel ERMs with different kernels
over a range of the privacy budget (b) Comparison of embedding errors of the proposed DP KME
with alternative approaches.

consider three kernels: 3rd-order polynomial, Gaussian RBF, and linear kernels. Learning with the
former two kernels is conducted as a DP linear ERM (SVM with Huber loss using the algorithm in
Kifer et al. (2012)) with m = 200 random features obtained by Algorithm 1 and random Fourier
features, respectively. The test data classification accuracy shown in Figure 1(a) clearly demonstrates
the superior performance of the polynomial kernel across a wide range of the privacy budget.

We assess the estimation error of DP KME algorithms using the adult dataset (see Appendix 6.1
for details) with a Gaussian kernel for a fixed number of landmark points m. Although Algorithm 3
uses the K-means-based Nyström method, we also explore a subsampling-based version (outlined
in Algorithm 6 in Appendix 6.2) with a privacy budget that is 100 times larger, as it demonstrates
meaningful results in low privacy regions. We compare DP KME algorithms employing both methods,
as well as Algorithm 1 in Balog et al. (2018). Figure 1(b) shows the superior performance of K-
means-based method among the three methods. The higher errors for Balog et al. can be attributed to
the misalignment of distributions between random samples and the data, causing a larger error than
the error added by the noise for privacy guarantee. In contrast, Nyström methods are data-dependent,
incorporating data information into their kernel approximation. However, in highly private scenarios
with small ϵ values, this capability is compromised, leading to accuracy loss. Furthermore, the
K-means-based Nyström method outperforms subsampling. This is partly due to the characteristic of
the DP K-means algorithm, which adds noise inversely proportional to the cluster size, whereas the
subsampling-based method adds noise indiscriminately. Consequently, DP K-means ensures that
larger, more significant clusters are less perturbed, and selects important landmark points with greater
accuracy, leading to improved performance in DP kernel learning. Also, it appears that the quality
of the subsampling-based landmark points deteriorates easily with the addition of noise. Kernel
approximation through DP subsamples is more susceptible to degradation under privacy constraints
compared to DP K-means.

5 Discussion, Limitations, and Future Work
In this work, we propose a K-means Nyström-based private scalable kernel learning framework
that is applicable for general kernels. We have developed DP kernel ERM, KME, and public data
release mechanisms for versatile kernel learning within this framework. Theoretical and empirical
investigations verify that our new framework is superior to existing ones, offering better performance
with fewer constraints.

The Nyström method employed for the kernel matrix approximation has a few discussion points. First,
we point out that utilizing DP K-means for scalability does not necessarily imply that the data must
contain discernible clusters; instead, it helps ensure that the landmark points more effectively retain
the prominent features of the data. Second, a supervised Nyström method, if feasible, could yield
better results in certain cases. Specifically, in kernel ridge regression, focusing on a few eigenvectors
aligned with the response, rather than the entire kernel matrix, might require less DP noise and enable
more efficient learning.

9



Even though our proposed framework is designed to work with general kernels, the current implemen-
tation is limited to handling Euclidean data due to its dependence on K-means. A potential remedy
for this limitation would be to consider a K-medoids type clustering method, which ensures that the
centroids are selected among actual observations. Further investigation into DP K-medoids Nyström
approximation and the development of subsequent private kernel learning methods are recommended
as areas for future research.
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6 Appendix
6.1 Experiment details and additional results
We provide specifics on the two experiments: DP kernel ERM conducted on a simulated dataset and
DP KME performed on the adult dataset. We use five Intel® Xeon® Gold 6248 processors for the
computing resources in the simulation and one in the other experiments.

Privacy parameter. Throughout the experiments, we use privacy parameters (ϵ, δ) ∈
{(10−1, n−2), (10−0.5, n−2), (100, n−2), (100.5, n−2), (101, n−2)}, where n represents the dataset
size used in the algorithm.

Algorithm hyperparameters. Throughout the experiments, the hyperparameters for Algorithm 1 are
set as follows: the distribution Q is defined as a mixture of m truncated normal distributions, each
supported on [0, 1]d and centered at {zi}i=1m , with standard deviation σi := maxj ̸=i∥zj − zi∥2.
Additionally, the thresholding parameter m0 is set to ⌊0.01n⌋.

6.1.1 Scalable DP Kernel ERM
Simulation dataset generation. The feature vector of the simulated dataset is drawn independently
from a mixture of truncated normal distributions supported on [0, 1]200. The following is the density
formula:

f(x) =
1

4

4∑
i=1

dNt(µi, 0.04I200×200),

where dNt(µ, σI200×200) is the density of the coordinate-wise truncated normal distribution, that
is:

(X1, . . . , X200) ∼ dNt(µ, σ
2I200×200)⇔ Xi ∼ Zi|Zi ∈ [0, 1] where Zi ∼ N(µi, σ

2).
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The mean values of the truncated normal distribution are as follows:

µ1 = (0.7, . . . , 0.7)︸ ︷︷ ︸
200

µ2 = (0, . . . , 0)︸ ︷︷ ︸
200

µ3 = (0.5, . . . , 0.5,︸ ︷︷ ︸
100

0, . . . , 0)︸ ︷︷ ︸
100

µ4 = (0, . . . , 0,︸ ︷︷ ︸
100

0.5, . . . , 0.5)︸ ︷︷ ︸
100

.

The response variable y is obtained as follows:

y = sign

(([
Z

(
x− 1

2
1

))⊗3
]
w + noise

)
,

where ⊗ denotes the coordinate-wise power operation, Z is a 20× 200 random matrix with entries
drawn from the standard normal distribution, w is a random vector following N(0, I20×20), and 1
and 0 are vectors with all components equal to 0 or 1, respectively. The noise is assigned according
to the standard normal distribution. Additionally, in the DP polynomial kernel ERM, we preprocess
the data to ensure their norm remains below 1, a privacy-preserving procedure. The experiment was
repeated 10 times, 1,000,000 training samples and 200,000 test samples were generated for each run
to solve and evaluate the accuracy of the DP kernel ERM.

DP Kernel ERM hyperprameter. The regularization parameter λ ∈
{10−5, 10−4, 10−3, 10−2.5, 10−2} is used in tuning. Figure 1a shows the highest accuracy
achieved for each privacy parameter across these values of λ.

Preprocessing of the data in simulation Additionally, we constrain the ℓ2 norm of the data to 1
when employing both linear ERM and polynomial kernel ERM. This step is essential for DP kernel
ERM, particularly when the kernel is unbounded, as it requires the boundedness of the data.

Kernel used in DP Kernel ERM. The Gaussian kernel e−
∥x−y∥22

512 and the 3rd-order kernel
(

⟨x,y⟩+1
2

)3
are used. The hyperparameter σ of the Gaussian kernel is selected by a grid search in a non-private
kernel SVM setting: we generate 1000 training data and 200 test data, then compare the test error

of the non-private kernel SVM for the Gaussian kernel e−
∥x−y∥22

2σ2 over σ = 2−2, 2−1, . . . , 27. The
σ with the lowest test error is selected. Each non-private kernel SVM for the kernel is repeated 10
times, and the averaged errors are compared. The 3rd-order kernel is scaled to ensure its maximum
value is at least 1 for data within a unit ball.

6.1.2 DP KME release experiment
Data description. The real dataset, the adult dataset(Becker and Kohavi, 1996), can be downloaded
from the UCI Machine Learning Repository. It consists of 48,842 observations for binary classification
whether the income is above 50K or less than 50K.

Adult dataset processing. In the data processing, we follow the conventional practice of existing
works on DP ERM, for example, Chaudhuri et al. (2011); Iyengar et al. (2019). Continuous features
(all positive) underwent scaling by their maximum values, while categorical features were expanded
via one-hot encoding. To eliminate collinearity, we omit the last column in each of the one-hot
encoded features, resulting in a dimensionality of 103.

Kernel choice. For the empirical KME release, we use the entire dataset to produce a DP KME

based on the Gaussian kernel k(x, y) = e−
∥x−y∥22

2 , and m = ⌊
√
n⌋ dimension of random features for

comparison.

Approximation evaluation. The approximation error is evaluated by the RKHS distance between
the empirical KME and the DP KME. The experiment is repeated 10 times, and the average error
along with the standard deviation for each privacy parameter ϵ are displayed in Figure 1b.
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DP KME algorithms. We compare Algorithm 1 from Balog et al. (2018) with our DP KME
algorithms, which use DP K-means and subsampling-based Nyström methods. The DP K-means-
based algorithm corresponds to Algorithm 3, while the subsampling-based algorithm is described in
Algorithm 6. Algorithm 1 from Balog et al. (2018) is implemented using their code, with a single
modification: the random sample distribution is changed from the normal distribution to the uniform
distribution on the unit cube, as our data is preprocessed to fit within this unit cube.

6.1.3 Additional experiments
Landmark quality: kernel approximation experiments. We evaluate the performance of three
DP landmark-based methods and random Fourier features-based low-rank kernel approximation,
across various settings of rank m. The rank of the approximation corresponds to the number of the
landmark points in the Nyström methods and the dimension of the random features in the random
Fourier features method. Notably, even when the number of landmark points is small, random Fourier
features tend to perform less effectively than Nyström-based methods.

The kernel matrices are calculated from the Gaussian kernels k(x, y) = e−
∥x−y∥22

2σ2 for σ = 2i with
i = 0, 1, 2, 3 across the entire adult datasets. The approximation error is assessed by the relative
error with respect to the Frobenius norm5: ∥K−K̂∥F

∥K∥F
. The experiments are repeated 10 times, and the

averages of the relative errors along with their standard deviations are presented in Figure 2.

Privacy allocation. In Algorithm 2, we allocate the privacy budgets equally between the construction
of DP random features and DP ERM. Figure 3 compares the accuracies of DP kernel ERM using
Algorithm 2 with various privacy allocations. The blue line shows allocating 20% of the privacy
budget to the DP kernel random features construction and 80% to the DP ERM achieves better
accuracy than allocating them equally. A possible heuristic rule for determining the optimal privacy
allocation ratio is to allocate the budget depending on the strength of the clustered structures in the
data. For instance, when the number of landmarks m is small relative to the sample size n, it is
advisable to allocate a larger portion of the privacy budget to the linear ERM rather than the DP
K-means. This is because DP K-means algorithms are more accurate when m is small. A smaller
m typically results in larger cluster sizes. Since DP K-means algorithms acquire private centroids
by averaging the members of each cluster privately, larger clusters tend to lead to more accurate
centroids given fixed privacy budgets. Therefore, we can afford to allocate more privacy resources to
linear ERM.

DP KME experiments.

In what follows, we present a comparison between Algorithm 3 and other algorithms (Algorithm
6 and Algorithm 1 in Balog et al. (2018)) using datasets other than adult datasets in Figure 4. The
datasets used include bank, CDC, credit, and MNIST, which are described below. Due to the large
size of these datasets, only 30,000 examples are utilized in the experiments.

Bank. The Bank dataset pertains to telemarketing phone calls made by a Portuguese banking
institution from 2008 to 2013 (Moro et al., 2014). It includes information on clients’ financial and
social backgrounds, as well as contact details from the bank, with a binary label indicating whether a
deposit subscription was made. This dataset is available in the UCI database (https://archive.
ics.uci.edu/dataset/222/bank+marketing). It contains 45,211 examples, comprising 5,289
positive cases and 39,922 negative cases. The dataset features 6 numerical variables and 8 categorical
variables, which are one-hot encoded.

CDC. The CDC dataset is part of the CDC’s BRFSS 2015, which consists of responses collected
from Americans in the CDC’s annual health-related telephone survey. This dataset includes relevant
information for diabetes prediction and is available in the UCI database (https://www.archive.
ics.uci.edu/dataset/891/cdc+diabetes+health+indicators). It contains demographic in-
formation, health history, personal details, and diabetes diagnoses of the respondents. The dataset
comprises 253,680 examples, with 218,334 negative cases and 35,346 positive cases. It includes 21
numerical features along with a binary label.

Credt. The Credit dataset is related to the transactions made by European credit cardholders and is
available on Kaggle (https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud). This

5The Frobenius norm of the matrix A = [aij ]n×n is defined by ∥A∥F :=
√∑

1≤i,j≤na
2
ij .
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(a) σ = 1,m = ⌊n0.3⌋ (b) σ = 1,m = ⌊n0.4⌋ (c) σ = 1,m = ⌊n0.5⌋

(d) σ = 2,m = ⌊n0.3⌋ (e) σ = 2,m = ⌊n0.4⌋ (f) σ = 2,m = ⌊n0.5⌋

(g) σ = 4,m = ⌊n0.3⌋ (h) σ = 4,m = ⌊n0.4⌋ (i) σ = 4,m = ⌊n0.5⌋

(j) σ = 8,m = ⌊n0.3⌋ (k) σ = 8,m = ⌊n0.4⌋ (l) σ = 8,m = ⌊n0.5⌋

Figure 2: Comparison of four methods for various settings. In each figure, the x axis represents the
privacy budget, and the y axis ∥K−K̂∥F

∥K∥F
.

Figure 3: Classification accuracy under varying privacy budget allocations

15



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: DP KME estimation results for Bank data (1st column), CDC data (2nd column), Credit
data (3rd column), and MNIST data (4th column), using a Gaussian kernel with σ = 2 (1st row), and
polynomial kernels of degree 2 (2nd row) and 4 (3rd row)

dataset contains 30 numerical features, two of which are ‘Time’ and ‘Amount,’ indicating the time
and amount of each transaction. The remaining 28 features are principal components derived from
principal components analysis due to confidentiality concerns. The dataset includes a total of 284,807
examples, with 492 labeled as fraudulent and 284,315 as non-fraudulent.

MNIST. The MNIST dataset contains 60,000 images of handwritten digits and can be downloaded
using the PyTorch package. Each image is represented by 784 numerical features, corresponding to
the pixels in a 28×28 image, along with a categorical label indicating the digits from 0 to 9.

6.2 Additional algorithms
Denote ∥·∥op the operator norm of a square matrix.

Algorithm 5 DP linear ERM, Kifer et al. (2012)

Input: given data {x1, . . . , xn} in a unit ball, ∥∇ŷl(ŷ, y)∥2 ≤ ζ, ∥∇2l(ŷ, y)∥op ≤ σ.
Output: u ∈ Rd

1. Set ∆ ≤ 2σ
ϵ .

2. Sample a random vector b from N

(
0,

ζ2(1+
√

2 log 1
δ )

2

ϵ2 Im×m

)
.

3. u← argminu∈Rm
1
n

∑n
i=1 l(u

Txi, yi) +
(
λ
2 + ∆

2n

)
∥u∥22 + bTu

n
4. return u

Algorithm 6 outputs the DP Nyström-based random feature map using a subsampling Nyström method.
The algorithm is ϵ-DP. The proof is in the Appendix. Unlike Algorithm 1, no thresholding parameter
is included since subsampling treats m subsampled data equally whereas K-means centroids receive
noise inversely to the cluster size they belong.

Algorithm 7 uses the output of Algorithm 4 to solve the kernel ERM for a given polynomial h that
approximates the gradient of the given loss function, and a regularization parameter λ > 0. No
measure for privacy guarantee is included in Algorithm 7 since the algorithm uses only the privatized
data, the output of Algorithm 4, and does not reference the original data.
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Algorithm 6 DP subsampling Nyström approximation.

Input: given data {x1, . . . , xn} ⊂ [0, 1]d, random features of dimension m, and privacy parameter
ϵ, δ.
Output: a random feature mapping φ(Nys) : Rd → Rm, and {b1, . . . , bm} ⊂ Hk.

1. K ← ⌊m0ϵ⌋.
2. {z01 , . . . , z0m} ← m uniform subsamples of {x1, . . . , xn} without replacement.
3. zi ← z0i + d

log
(
1+ n

m (e
ϵ
2 −1)

)εi where εi is random vector with i.i.d. components following

a Laplace distribution with density ν(x) = 1
2e

− |x|
2 .

4. UΣUT ← the unitary diagonalization of a matrix [k(zi, zj)]m×m.
5. φ(Nys) ← φ(Nys)(x) := 1

RΣ† 1
2UT [k(z1, x), . . . , k(zm, x)]T .

6. bi ←
∑m

j=1[Σ
† 1
2UT ]ijϕ(zj) for i = 1, 2, . . . ,m.

7. return φ(Nys), {b1, . . . , bm}

Algorithm 7 Versatile DP kernel ERM

Input: given output {z̃i}ni=1 of Algorithm 4, integer m, h
Output: DP solution f̃

1. for s = 0, . . . , n− 1 do
2. G̃(ws; z̃i)←

(∑p
k=0 ak

∏k
j=1 w

T
s z̃i, k(k−1)

2 +j

)
z̃i0 + λws

3. Apply Algorithm 3 in Dvurechensky and Gasnikov (2016) using Ĝ as the inexact gradient.
4. end for
5. return f̃ =

∑m
i=1[wn]ibi

6.3 Proofs of theorems
6.3.1 Pinelis’s inequality
According to Theorem 3.1 in Pinelis (1994),

P
(
sup
j
∥fj∥Hk

≥ r

)
≤ 2e

−λr+
∥∥∥∑∞

j=1 Ej−1

[
e
λ∥dj∥Hk −1−λ∥dj∥Hk

]∥∥∥
∞ (4)

for any λ > 0, where {fj}∞j=1 is a martingale on Hk and dj = fj − fj−1 with d0 = 0. Let
fj =

∑j
i=1

1
n (ϕ(xi) − µX − projS(ϕ(xi) − µX)) if j ≤ n and fj = fn for j > n. Then, fj is a

martingale onHk so according to Eq. (4), we have

P

∥∥∥∥∥
j∑

i=1

1

n
(ϕ(xi)− µX − projS(ϕ(xi)− µX))

∥∥∥∥∥
Hk

≥ r

 ≤ P
(
sup
j
∥fj∥Hk

≥ r

)

≤ 2e
−λr+n

(
e
2R
n

λ−1− 2R
n λ

)

since ∥ϕ(xi) − µX∥Hk
≤ 2R and a function ex − 1 − x increases on (0,∞). Setting λ =

n
2R log

(
1 + r

2R

)
, we have

P

∥∥∥∥∥
j∑

i=1

wi(ϕ(xi)− µX − projS(ϕ(xi)− µX))

∥∥∥∥∥
Hk

≥ r

 ≤ e
nr
2R−n( r

2R+1) log(1+ r
2R ).

Setting r = 2Rt, we have

P

∥∥∥∥∥
j∑

i=1

wi(ϕ(xi)− µX − projS(ϕ(xi)− µX))

∥∥∥∥∥
Hk

≥ 2Rt

 ≤ e−nt−n(1+t) log(1+t) ≤ e−
nt2

2(1+t)
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since log 1
1+t = − t

1+t −
1
2

(
t

1+t

)2
− · · · ≤ − t

1+t −
1
2

(
t

1+t

)2
. Putting t = 1

n log 1
β +√

2
n log 1

β + 1
n2 log

2 1
β , we have∥∥∥∥∥

j∑
i=1

wi(ϕ(xi)− µX − projS(ϕ(xi)− µX))

∥∥∥∥∥
Hk

≥ 2R

(
1

n
log

1

β
+

√
2

n
log

1

β
+

1

n2
log2

1

β

)
with probability at most β. Therefore,

P

∥∥∥∥∥
j∑

i=1

wi(ϕ(xi)− µX − projS(ϕ(xi)− µX))

∥∥∥∥∥
Hk

≥ 2R

(
2

n
log

1

β
+

√
2

n
log

1

β

) ≤ β

Lemma 1 (Lemma 1 in Laurent and Massart (2000)). P
(
∥ε∥2 ≤

√
n+

√
2 log 1

β

)
≥ 1 − β for

β ∈ (0, 1] where ε is a n diemnsional standard normal distribution.

6.3.2 Proof of Theorem 1
The Cauchy-Swartz inequality gives

1

n2
∥K− K̂∥2F =

1

n2

n∑
i,j=1

(
k(xi, xj)− ⟨φ(Nys)

Z (xi), φ
(Nys)
Z (xj)⟩Hk

)2
=

1

n2

n∑
i,j=1

(⟨ϕ(xi)− projSϕ(xi), ϕ(xj)− projSϕ(xj)⟩Hk
)
2

≤ 1

n2

n∑
i,j=1

∥ϕ(xi)− projSϕ(xi)∥2Hk
∥ϕ(xj)− projSϕ(xj)∥2Hk

=

(
1

n

n∑
i=1

∥ϕ(xi)− projSϕ(xi)∥2Hk

)2

≤ 1

n

n∑
i=1

∥ϕ(xi)− projSϕ(xi)∥4Hk
.

Also, the Lipschitzness of k gives

∥ϕ(xi)− projSϕ(xi)∥2Hk
≤ k(xi, xi)−

k(xi, zj)
2

k(zj , zj)

≤ k(xi, zj) + c′∥xi − zj∥2 −
k(xi, zj)

2

k(xi, zj) + c′∥xi − zj∥2

≤ (k(xi, zj) + c′∥xi − zj∥2)2 − k(xi, zj)
2

k(xi, zj) + c′∥xi − zj∥2

≤ c′∥xi − zj∥2
2k(xi, zj) + c′∥xi − zj∥2
k(xi, zj) + c′∥xi − zj∥2

≤ 2c′∥xi − zj∥2
for every zj ∈ Z. Thus

∥K− K̂∥2F ≤ 2c′

√√√√n

n∑
i=1

∥xi − zj∥22.

Choosing zjs to be the K-means centroids, we obtain the desired.

6.3.3 Proof of Theorem 2
The post-processing property of the differential privacy guarantees privacy since the landmark points
z1, . . . , zm were obtained differentially privately.
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Additionally, we show {bi}mi=1 is an orthonormal basis of S, and R[φ(Nys)] =
⟨projSϕ(x), bi⟩Hk

.

⟨bi, bj⟩Hk
=

∑
k,l

[Σ† 1
2UT ]ik⟨ϕ(zk), ϕ(zl)⟩Hk

[Σ† 1
2UT ]jl

=
∑
k,l

[Σ† 1
2UT ]ik[KZ]kl[UΣ† 1

2 ]lj

= [Σ† 1
2UTKZUΣ† 1

2 ]ij

= [Σ† 1
2ΣΣ† 1

2 ]ij
= 1(i = j ≤ t0)

where t0 is the rank of Σ or equivalently the rank of KZ. Thus the members of {bi}mi=1 are orthonor-
mal to each other or are zero. Ignoring the zero terms we get the orthonormal subset of S. Also,
the dimension of the spanned subspace S coincides to the rank of KZ. Thus the subset is also a
basis.

Finally, R[φ(Nys)] = ⟨projSϕ(x), bi⟩Hk
follows from the direct calculation:

⟨projSϕ(x), bi⟩Hk
:= ⟨ϕ(x), bi⟩Hk

= ⟨ϕ(x),
m∑
j=1

[Σ† 1
2UT ]ijϕ(zj)⟩Hk

=

m∑
j=1

[Σ† 1
2UT ]ij⟨ϕ(x), ϕ(zj)⟩Hk

=

m∑
j=1

[Σ† 1
2UT ]ijk(zj , x)

= Rφ(Nys)(x).

6.3.4 Proof of Theorem 3
The algorithm is a composition of two DP algorithms so the (ϵ, δ)-DP is guaranteed by Proposi-
tion 2.

Proof of Theorem 4

Proof. Denote the DP linear algorithm as M then the excess empirical risk is:

L̂λ

(∑
i

[M(φ(Nys)(x1), . . . , φ
(Nys)(xn))]ibi

)
− min

f∈Hk

L̂λ(f)

= L̂λ(M(ϕ(x1), . . . , ϕ(xn)))−min
f∈S

L̂λ(f)︸ ︷︷ ︸
privacy error

+min
f∈S

L̂λ(f)− min
f∈Hk

L̂λ(f)︸ ︷︷ ︸
random feature error

where bis are the output of Algorithm 1, the basis of S, and [M(φ(Nys)(x1), . . . , φ
(Nys)(xn))]i

denotes the ith component of the output of the DP linear algorithm from input {φ(Nys)(xi)}ni=1.

The random feature error is bounded by

min
f∈S

L̂λ(f)− min
f∈Hk

L̂λ(f) ≤ L∥K− K̂∥2
2λn

by Lemma 1 in the proof of Theorem 2 in Yang et al. (2012). Then,

L̂λ

(∑
i

[M(φ(Nys)(x1), . . . , φ
(Nys)(xn))]ibi

)
− min

f∈Hk

L̂λ(f) ≤ En,m(β) +
L∥K− K̂∥2

2λn

with probability 1− β.
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6.3.5 Proof of Theorem 5

Proof. We show releasing w in line 2 is (ϵ/2, δ)-DP. Then Proposition 2 gaurantees the overall
algorithm satisfies (ϵ, δ)-DP.

The ℓ2 norm of the difference between outputs of deterministic algorithm releasing 1
n

∑
Rφ(Nys)(xi)

for neighboring datasets is 2R
n . Applying Proposition 1 guarantees that releasing w is (ϵ/2, δ)-DP.

6.3.6 Proof of Theorem 6

Proof. Denote µ̂
(Nys)
X := 1

n

∑n
i=1

∑m
j=1 R[φ(Nys)(xi)]jbj . Since R

∑m
j=1 R[φ(Nys)(xi)]jbj =

projSϕ(xi), ∥∥∥µ̂X − µ̂
(Nys)
X

∥∥∥
Hk

=
1

n

∥∥∥∥∥
n∑

i=1

ϕ(xi)− projSϕ(xi)

∥∥∥∥∥
Hk

=

√
1T (K− K̂)1

n

≤ ∥K− K̂∥2√
n

.

Also, ∥∥∥µ̃X − µ̂
(Nys)
X

∥∥∥
Hk

=

∥∥∥∥∥ 1n
n∑

i=1

φ(Nys)(xi)− w

∥∥∥∥∥
2

=
2R
(
1 +

√
2 log 1

δ

)
nϵ

∥ε∥2,

and from Lemma 1, we have P
(
∥ε∥2 ≤

√
m+

√
2 log 1

β

)
≥ 1− β. Therefore,

∥∥∥µ̃X − µ̂
(Nys)
X

∥∥∥
Hk

≤
2R
(
1 +

√
2 log 1

δ

)
nϵ

(√
m+

√
2 log

1

β

)
with probability 1− β.

6.3.7 Proof of Theorem 7

Proof. Denote µ̂
(ind)
X := 1

n

∑n
i=1

∑m
j=1 R[φ(i)(xi)]jbj where φ(i) is a random feature map from

Algorithm 1 replacing {zi}ki=1 to data independent landmark. Since R
∑m

j=1 R[φ(i)(xi)]jbj =

projSϕ(xi), ∥∥∥µ̂(ind)
X − µ̂X

∥∥∥
Hk

=
1

n

∥∥∥∥∥
n∑

i=1

ϕ(xi)− projSϕ(xi)

∥∥∥∥∥
Hk

.

The Pinelis inequality gives:

P

∥∥∥∥∥
j∑

i=1

1

n
(ϕ(xi)− µX − projS(ϕ(xi)− µX))

∥∥∥∥∥
Hk

≥ 2R

(
2

n
log

1

β
+

√
2

n
log

1

β

) ≤ β.

Thus,

P
(∥∥∥µ̂(ind)

X − µ̂X

∥∥∥
Hk

≤ 2R

(
2

n
log

1

β
+

√
2

n
log

1

β

)
+ ∥µX − projSµX∥Hk

)
≥ 1− β.

Also, ∥∥∥µ̃(ind)
X − µ̂

(ind)
X

∥∥∥
Hk

=
2R
(
1 +

√
2 log 1

δ

)
nϵ

∥ε∥2,

and from Lemma 1, we have P
(
∥ε∥2 ≤

√
m+

√
2 log 1

β

)
≥ 1− β. Therefore,∥∥∥µ̃(ind)

X − µ̂X

∥∥∥
Hk

≤ 2R

(
2

n
log

1

β
+

√
2

n
log

1

β
+ errpriv

)
+ ∥µX − projSµX∥Hk

with probability 1− 2β where errpriv =

(√
2+2
√

log 1
δ

)
nϵ

(√
m+

√
2 log 1

β

)
.
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6.3.8 Proof of Theorem 8
We show line 3 is (ϵ/2, δ)-DP. Then the Proposition 2 guarantees the overall algorithm satisfies
(ϵ, δ)-DP.

Proposition 3 (Composition theorem for Gaussian noise addition, Dong et al. (2022)). For µ1, µ2 > 0,
and deterministic algorithms A1 : Xn → Z and A2 : Xn ×Z → Z , define algorithms M1 : Xn →
P(Z) and M2 : Xn ×Z → P(Z) as

M1(D) = A1(D) +
∆1

µ1
ε1

M2(D, z) = A2(D, z) +
∆2

µ2
ε2

where ∆1 = supD∼D′∥A1(D)−A1(D
′)∥2, and ∆2 = supz∈Z supD∼D′∥A1(D, z)−A1(D

′, z)∥2.
Then M3 : Xn → P(Z) defined by M3(D) = M2(D,M1(D)) is (ϵ, δ)-DP if

√
µ2
1 + µ2

2 =
1+
√

2 log 1
δ

ϵ .

The ℓ2 norm of the difference between outputs of deterministic algorithm releasing(
y1φ

(Nys)(x1), . . . , ynφ
(Nys)(xn)

)
for neighboring datasets is at most 2∥Y∥ since ∥yφ(Nys)∥ ≤

∥Y∥. Thus if we apply Proposition 1 repeatedly to algorithms

M0(D) :=

(
y1φ

(Nys)(x1) +

√
2

µ
ε01, . . . , ynφ

(Nys)(xn) +

√
2

µ
ε0n

)

Mi(D) :=

(
y1φ

(Nys)(x1) +
p(p+ 1)

µ
εi1, . . . , ynφ

(Nys)(xn) +
p(p+ 1)

µ
εin

)
where εji are normal random vector with mean 0 and covariance 4∥Y∥2Im×m, releasing the outputs of

M0,M1, . . . ,M p(p+1)
2

at once is (ϵ/2, δ)-DP since µ =
2+2
√

2 log 1
δ

ϵ . Therefore the overall algorithm
satisfies (ϵ, δ)-DP.

6.3.9 Proof of Theorem 9
Denote h(ŷy) =

∑p
k=0 ak(yŷ)

k. We show that Algorithm 7 satisfies the theorem.

Definition 6.1 (Dvurechensky and Gasnikov (2016), modified). A convex function f : Q ⊂ Rd → R
is endowed with a (δ, b, σ) stochastic oracle if an inexact gradient function g̃ : Q→ Rd and inexact
function f0 : Q→ R were given such that

0 ≤ f(y)− f0(x)− E [g̃(x)]
T
(y − x) ≤ b

2
∥y − x∥22 + δ

E
[
∥g̃ − E [g̃(x)]∥22

]
≤ σ2.

Lemma 2 (Dvurechensky and Gasnikov (2016)). For a λ-strongly convex function f endowed with a
(δ, b, σ) stochastic oracle, the sequecne {wi}ni=1 generated by the algorithm 3 in Dvurechensky and
Gasnikov (2016):

f(wn)− argmin
∥w∥2≤r

f(w) ≥ O

σ2
(
1 + log λ2r2n

βσ2

)2
2nλ

+ δ2


with probability at least 1− β.

Proof. Set Q = {x ∈ Rm : |x|≤ r}. Then, the projection mapping φ(Nys) : X → Rm maps
x ∈ X to 1

R (⟨projSϕ(x), b1⟩Hk
, . . . , ⟨projSϕ(x), bm⟩Hk

) where {bi}mi=1 is a orthonormal basis of S
transform the kernel ERM to linear ERM. Denote w = (⟨projSf, b1⟩Hk

, . . . , ⟨projSf, bm⟩Hk
) then

constraint ∥f∥Hk
≤ r is equivalent to ∥w∥2 ≤ r since f ∈ S. Then, the transformed linear ERM is

min
∥w∥2≤r

1

n

n∑
i=1

l(wTφ(Nys)(xi), yi) +
λ

2
∥w∥22.
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For given x, y, denote j(w;x, y) := l(wTφ(Nys)(x), y) + λ
2 ∥w∥

2
2. Then,

∇wl(w
Tφ(Nys)(x), y) = l′0(w

T yφ(Nys)(x))yφ(Nys)(x).

Denote

g(w, x, y) := h(ywTφ(Nys)(x))

g̃(w, x, y) :=

p∑
k=0

ak

k∏
j=1

wT z̃ k(k−1)
2 +j

where z̃ =

(
yx+

√
2

µ εx0 , yx+

√
p(p+1)

µ εx1 , · · · , yx+

√
p(p+1)

µ εxp(p+1)
2

)
following the notation in

Algorithm 4. Then

j(w1;x, y)− j(w2;x, y)− (g(w2, x, y)yφ
(Nys)(x) + λw2)

T (w1 − w2)

≤ (l′0(w
T
2 yφ

(Nys)(x))− g)yφ(Nys)(x)T (w1 − w2) +
λ+ bR2∥Y∥2

2
∥w1 − w2∥22

≤ 2R∥Y∥αr + λ+ bR2∥Y∥2

2
∥w1 − w2∥22

and similarly

j(w1;x, y)− j(w2;x, y)− (g(w2, x, y)φ
(Nys)(x) + λw2)

T (w1 − w2) ≥ −2R∥Y∥αr.

Next, we evaluate the variance of the gradient estimator:

E
[
∥g(w, xi, yi)yiφ

(Nys)(xi) + λw − g̃(w, xi, yi)z̃i − λw∥22
]

≤ 2E
[
∥gyφ(Nys)(xi)− g̃z̃i0∥22

]
+ 2E

[
∥g̃yiφ(Nys)(xi)− g̃z̃i0∥22

]
where g, g̃ stands for g(w, xi, yi), g̃(w, xi, yi). The former can be bounded as

E
[
∥gyiφ(Nys)(xi)− g̃yiφ

(Nys)(xi)∥22
]

= y2i ∥φ(Nys)(xi)∥22Var(g̃)

≤ ∥Y∥2R2

p∑
k=0

Var

ak

k∏
j=1

wT z̃
i,

k(k−1)
2 +j


≤ ∥Y∥2R2

p∑
k=0

E


ak

k∏
j=1

wT z̃
i,

k(k−1)
2 +j

2


= ∥Y∥2R2

p∑
k=0

a2k

k∏
j=1

E
[(

wT z̃
i,

k(k−1)
2 +j

)2]

≤ ∥Y∥2R2

p∑
k=0

a2k

k∏
j=1

∥Y∥2r2
(
1 +

p(p+ 1)

µ2

)

= a2∞∥Y∥2R2
∥Y∥2p+2r2p+2

(
1 + p(p+1)

µ2

)p+1

− 1

∥Y∥2r2
(
1 + p(p+1)

µ2

)
− 1

and the latter can be bounded as

E
[
∥g̃yiφ(Nys)(xi)− g̃z̃i0∥22

]
= E

[
g̃2
]
E
[
∥yiφ(Nys)(xi)− z̃i∥22

]
≤ (Var(g̃) + (c+ α)2)E

[
∥yiφ(Nys)(xi)− z̃i∥22

]
≤ 4m∥Y∥2

µ2
(Var(g̃) + (c+ α)2)

22



since |E [g̃] |= |h(wT yiφ
(Nys)(xi))|≤ |l′0|+|h− l′0|≤ c+ α. Finally

E
[
∥gyiφ(Nys)(xi)− E(x,y)∼P

[
∇wl(w

Tφ(Nys)(xi); yi)
]
∥22
]

≤ 2E
[
∥gyiφ(Nys)(xi)−∇wl(w

Tφ(Nys)(xi); yi)∥22
]

+2E
[
∥∇wl(w

Tφ(Nys)(xi); y)− E(x,y)∼P

[
∇wl(w

Tφ(Nys)(xi); y)
]
∥22
]

≤ 2R2∥Y∥2(E
[
(g − l′0(w

Tφ(Nys)(xi); y))
2
]
+ 4c2)

≤ (α2 + 4c2)R2∥Y∥2,
and combining the bound of Var(g̃) we obtain

E
[
∥G̃(w; z̃i)− E(x,y)∼P

[
∇wl(w

Tφ(Nys)(xi); y)
]
∥22
]
≤ O

(
a2∞r2pp2p+1

µ2p+4
+ α2 + c2

)
mR2∥Y∥2

µ2

and the algorithm has
(
4R∥Y∥αr, λ+bR2∥Y∥2

2 , O

(
R∥Y∥

√
a2
∞r2pp2p+1

µ2p+4 + α2 + c2
))

oracle. By

Lemma 2, the excess empirical risk is bounded by

Õ

((
α2 + c2 + a2∞

(
rp

µ

)2p+1
)

mR2∥Y∥2 log2 1
β

nλµ2
+ αR∥Y∥r

)
with probability 1− β.

6.3.10 Proof of privacy of the DP subsampling-based Nyström method

Proof. For a sequence xi1 , . . . , xik , denoted by S without duplication, let M(S) = vS + ηε where
vS := [xi1 , . . . , xik ]

T is a flattened vector obtained from the sequence with increasing index order,
i.e., i1 < · · · < ik, and ε be the random vector in Rkd with i.i.d. components following the Laplace
distribution given in the algorithm. Note that our algorithm first release the output of M(Sm) for
η = d

log(1+ n
m (eϵ−1))

where Sm is a random subset of size m uniformly drawn from D, in line 2 and

3. The operations in line 4-7 does not refer to the data thus no privacy leakage. Therefore we show
the algorithm M(Sm) is ϵ-DP if η = d

log(1+ n
m (eϵ−1))

. However, we will assign the value of η at the

very last of our proof, and leave η to be undetermined until then.

Denote Sm, S′
m the length m uniform random sequences of D and D′, respectively, and Sm−1 the

length m − 1 random sequence of D ∩D′. Denote Lap(v, η) be the distribution of the v + ηε for
v ∈ Rkd. If we denote the distributions of the outputs of the algorithm for D and D′ as µD and µD′

then

µD ∼ (n−m)!

n!

∑
Sm⊂D

Lap (vSm , η)

µD′ ∼ (n−m)!

n!

∑
S′
m⊂D′

Lap
(
vS′

m
, η
)
.

Denote

µ1 =
(n−m− 1)!

(n− 1)!

∑
xn ̸∈Sm

Lap (vSm
, η)

µ2 =
(n−m)!

m((n− 1)! )

∑
xn∈Sm

Lap (vSm , η)

µ′
1 =

(n−m− 1)!

(n− 1)!

∑
x′
n ̸∈S′

m

Lap
(
vS′

m
, η
)

µ′
2 =

(n−m)!

m((n− 1)! )

∑
x′
n∈S′

m

Lap
(
vS′

m
, η
)
.
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Then,

µD =
n−m

n
µ1 +

m

n
µ2

µD′ =
n−m

n
µ′
1 +

m

n
µ′
2.

Note that µ1 = µ′
1. Thus

D1+m
n

(eϵ−1)(µD||µD′) =

∫ (n−m

n
µ1 +

m

n
µ2 −

(
1 +

m

n
(eϵ − 1)

)(n−m

n
µ′
1 +

m

n
µ′
2

))
+

=
m

n

∫ (
µ2 − eϵ

((
1−

1 + m
n
(eϵ − 1)

eϵ

)
µ′
1 +

(
1 + m

n
(eϵ − 1)

eϵ

)
µ′
2

))
+

=
m

n
Deϵ

(
µ2||

(
1−

1 + m
n
(eϵ − 1)

eϵ

)
µ′
1 +

(
1 + m

n
(eϵ − 1)

eϵ

)
µ′
2

)
≤ m

n
max{Deϵ

(
µ2||µ′

1

)
, Deϵ

(
µ2||µ′

2

)
}

since µ1 = µ′
1. Also

Deϵ (µ2||µ′
1) ≤ (m− 1)!

(n−m)((n− 1)! )

∑
Sm−1

∑
z

Deϵ
(
vSm−1∪{xn} + ηε||vSm−1∪{z} + ηε′

)
≤ (m− 1)!

(n−m)((n− 1)! )

∑
Sm−1

∑
z

δϵ

(
z − xn

η

)
where z are selected uniformly in D′ − Sm−1 − {x′

n}, ε and ε′ are independent random vectors
with i.i.d. components following Laplace distribution given in the algorithm, and δϵ(c) denotes
Deϵ(c + ε||ε′). Although we refer to Sm−1, {xn}, {z} as sets for convenience, they are actually
sequences. {xn} or {z} can be added at any position in Sm−1, and each such case should be treated
differently. However, by comparing the case where xn is added to the ith position of Sm−1 with the
case where z is added to the ith position of Sm−1, we can reach the desired conclusion.

It is known that if the ℓ1 norm difference of the output of an deterministic algorithm A : D → Rd is
at most ϵ thenA(D)+ ε is ϵ-DP (Dwork et al., 2006b) or equivalently Deϵ(c+ε||ε′) = 0 if ∥c∥1 = ϵ
for vector c. Thus if we set η = d

ϵ then the inequality gives Deϵ(µ2||µ′
1) = 0.

Thus, the algorithm is log
(
1 + m

n (eϵ − 1)
)
-DP if η = d

ϵ . Replacing ϵ to log
(
1 + n

m (e
ϵ
2 − 1)

)
we

arrive at the conclusion that the algorithm is ϵ
2 -DP if η = d

log
(
1+ n

m (e
ϵ
2 −1)

) so we are done.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
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Justification: We gave a publicly accessible link or the distribution description of the data in
the Appendix(Section 6.1), which are also implemented in the attached code. Also, the code
attached in the supplementary is written by python, and does not use any non-open-sourced
or non-free libraries.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the number of the repetitions made in our experiments, with the
standard deviations which are displayed in the plots. The Appendix(Section 6.1) details the
calculation methods.
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• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: The computing resources used in the experiments are given in the Ap-
pendix(Section 6.1).

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
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Answer: [Yes]

Justification: Our work conforms to the NeurIPS Code of Ethics since it does not involve
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applications, and any potential harm would only arise from misuse, which is not our primary
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Although, our work lies in the area of the privacy, our main focus is reducing
computational complexity and memory cost of the kernel learning under differential privacy
which is irrelevant to significant societal impacts.
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• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our algorithms and data do not contain information or data that have high risk
of misuse.
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• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used the adult,bank,CDC,credit and MNIST data sets, giving proper
credit by citation in the Appendix(Section 6.1).
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• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
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license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
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the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The algorithms are explained and elaborated in the paper. Also, code imple-
mentations are attached in the supplementary material with instructions and annotations.
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• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: No human subject experiments or research are included in our work.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not include crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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