
Under review as a conference paper at ICLR 2022

GROUNDING LANGUAGE REPRESENTATION WITH VI-
SUAL OBJECT INFORMATION VIA CROSS MODAL PRE-
TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Previous studies of visual grounded language learning use a convolutional neural
network (CNN) to extract features from the whole image for grounding with the
sentence description. However, this approach has two main drawbacks: (i) the
whole image usually contains more objects and backgrounds than the sentence
itself; thus, matching them together will confuse the grounded model; (ii) CNN
only extracts the features of the image but not the relationship between objects in-
side that, limiting the grounded model to learn complicated contexts. To overcome
such shortcomings, we propose a novel object-level grounded language learning
framework that empowers the language representation with visual object-grounded
information. The framework is comprised of three main components: (i) Ob-
jectGroundedBERT captures the visual-object relations and literary portrayals by
cross-modal pretraining via a Text-grounding mechanism, (ii) Visual encoder repre-
sents a visual relation between objects and (iii) Cross-modal Transformer helps the
Visual encoder and ObjectGroundedBERT learn the alignment and representation
of image-text context. Experimental results show that our proposed framework
consistently outperforms the baseline language models on various language tasks
of GLUE and SQuAD datasets. 1

1 INTRODUCTION

Grounded language learning is related to learning the meaning of language as it is applied to the
present reality. People, particularly youngsters, acquire knowledge from not only pure textual
information but also other modalities such as vision and sound, which contain rich data that cannot
be captured by text alone. Most current pretrained language models (Devlin et al., 2019; Brown et al.,
2020) are trained distinctly from text-based corpora, thus having the constraint in learning complex
semantics that requires the blend of sign-in information through cross-referencing and synthesis.

Recently, there are many studies trying to improve the language representation with visual information
(Lazaridou et al., 2015; Collell et al., 2017; Kiela et al., 2018; Bordes et al., 2019; Tan & Bansal,
2020). In those attempts, the whole image is usually encoded into feature maps using a CNN and
then matched to the corresponding sentence or token representations. However, there are two main
drawbacks to such an approach. First, while CNN can capture both low and high-level features
of the individual objects in the image, it cannot apprehend the semantic relationships between the
objects. As an example given in Fig. 1, the feature maps (red rectangles) can successfully capture the
features of individual objects such as “cat”, “computer desk”, “monitor”, and “chair”, but it can
not represent the relation: “cat is standing on the computer desk” as described in the caption. As
such, the current grounded language models which use CNN features for learning will fail to map the
implicit relations in the image to the facts given in the description sentence, limiting the grounded
language to learn complex semantics.

Second, in most grounded language learning datasets, the whole image usually contains more
information than the description sentence. For example, in Fig. 1, the image contains many objects
such as “monitor’, “chair”, “window”, and “lamp” that are not mentioned in the description sentence.

1Our codes and data are available at https://github.com/... (the link is hidden now due to double-blind review)

1



Under review as a conference paper at ICLR 2022

Therefore, direct grounding the whole image information to the sentence representation will trigger
many noises in the contextual representation of the language, causing the grounded model to learn
incorrect contexts.

Caption : A cat is standing on the computer desk

Figure 1: A grounded language learning example.

In this paper, we propose a novel grounded lan-
guage learning framework that enriches the lan-
guage representation with visual object-level
grounded information such as object features,
attributes, and positional information. In partic-
ular, the proposed framework consists of three
main components, namely Text Encoder, Visual
Encoder, and Cross-modal Transformer. Text
Encoder is stretched out with a Text-grounding
module to learn the visual-grounded represen-
tations of language from text-image pairs. In-
stead of using CNN feature maps, we propose
to use features of detected objects as images
representation and employ Transformer archi-
tecture ( (Vaswani et al., 2017)) to learn the
relationships between objects. A Cross-modal
Transformer is then put on top to connect the
language and visual modalities. By applying a
pretrained learning strategy, our method not only precisely maps the information between text and
image at the object-level but also learns the implicit relationships between the objects in the image,
which CNN-based feature extractor can not handle. Finally, we join two components together and
optimize the whole model as multi-tasks of Masked Language Modeling, Masked Visual Feature
Prediction, and Image-Text Matching.

Our contributions can be summarized as:

• To the best of our knowledge, this study is the first to investigate the grounded language learning
at the object-level with the rich grounded information containing object features, attributes, and
positions. By doing so, we can enhance the ability of grounded language to capture more complex
relations and avoid the confusion during the learning process.

• To this end, we propose a novel grounded language framework that enhances language representa-
tion with visual-objected-grounded information. Instead of using CNN to encode the whole image,
we embed the features of objects from an off-the-shelf object detector into the encoder and connect
them with the language modality via a cross-modal Transformer. A Text-grounding mechanism is
also proposed to capture the visual object information and their relations found from the semantic
correlation of words and images via multi-task pretraining strategy.

• We conduct extensive experiments on various language downstream tasks in GLUE and SQuAD
datasets, and significantly outperforms the baselines on these tasks.

2 RELATED WORK

Over the previous many years, many approaches have been proposed to learn language representation.
Skip-gram (Mikolov et al., 2013), GLOVE (Pennington et al., 2014) were proposed to learn word
representations. On the other hand, FastSent (Hill et al., 2016), QuickThought (Logeswaran & Lee,
2018), SkipThought (Kiros et al., 2015), Sentence-BERT (Reimers & Gurevych, 2019) or Le &
Mikolov (2014); Conneau et al. (2017) tried to learn the sentence representations. Recently, many
language models such as ELMo (Peters et al., 2018), BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), XLNet (Yang et al., 2019), GPT (Brown et al., 2020), ELECTRA (Clark et al., 2019),
ALBERT (Lan et al., 2019) were proposed to learn the contextual relationships between words in a
text. Those studies, however, only train the language representation with only textual corpora.

In recent years, many vision-and-language pre-trained models have been proposed to build joint cross-
modal representations and focus on vision-and-language tasks such as visual question answering and
natural language for visual reasoning. While Li et al. (2019); Chen et al. (2019); Su et al. (2020); Zhou
et al. (2020); Li et al. (2020) use only one cross-modal Transformer for learning, Lu et al. (2019); Tan
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Figure 2: The architecture of our proposed framework, which consists of three components: Visual
encoder, Cross Modal Transformer and Text encoder (ObjectGroundedBERT). The pretraining tasks
are Masked Visual Feature Prediction, Image-Text Matching and Masked Language Modeling.

& Bansal (2019) proposed to use two single-modal Transformers and one cross-modal Transformer.
Pretraining tasks such as masked language model and masked visual-feature classification were used
in those studies to learn the vision-and-language representation.

On the other hand, there are a few attempts to improve language representation with visual information.
Lazaridou et al. (2015) introduces multimodal skip-gram models (MMSKIP-GRAM) taking visual
information into account. Collell et al. (2017) proposes IMAGINET which consists of GRU networks
and tries to predict its visual feature map and the next word in the sentence. Kiela et al. (2018) uses bi-
directional LSTM for sentence encoder; moreover, it aims to predict both the visual feature map and
the other caption giving one caption. Bordes et al. (2019) proposes an intermediate space - grounded
space and learns the visual and text representation with cluster information and perceptual information.
Tan & Bansal (2020) introduces the vokenization process and pre-trains the language model with
additional voken-classification task along with masked language modeling. These methods, however,
only ground language models at the image level, i.e. mapping the whole image with its description
sentence instead of between corresponding objects inside them.

3 METHODOLOGY

The overall architecture of our proposed framework is shown in Fig. 2, which comprises three main
components: (i) Text encoder (ObjectGroundedBERT) to learn the object-level visual-grounded
information from text-image pairs, (ii) Visual encoder to represent the visual representation, and (iii)
Cross-modal Transformer to connect the visual and language modalities. The whole framework will
be trained with a pretraining learning strategy.

3.1 VISUAL ENCODER

Object detection

We take the feature of objects as the embeddings of images. The off-the-shelf object detection model
detects m objects o1, . . . , om from the image. Each object contains region-of-interest (ROI) feature
fj and the region geometric feature pj . The visual objected embedding is the sum of outputs of two
FC layers of ROI feature and positional feature:

vj = (FCf (fj)) + FCp(pj)) /2 (1)

where vj is visual objected embedding of the object j in the image, FCf , FCp are the FC layers for
ROI feature and positional feature respectively.

Visual encoder

To learn the relationships between objects in the images, we employ Transformer encoder to visual
objected embedding to obtain the object-relationship representations:

ĥv1, ĥv2, . . . , ĥvm = VE (v1, v2, . . . , vm) (2)
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Figure 3: ObjectGroundedBERT comprises two components: Language encoder and Text-grounding.
The final representation of the language model comprises textual and grounding embeddings.

where vj , ˆhvj are the visual objected embedding and the object-relationship representation of the
object j in the image respectively, m is the number of objects receives from the Object Detection
model, VE stand for Visual encoder.

3.2 TEXT ENCODER (OBJECTGROUNDEDBERT)

Text encoder (ObjectGroundedBERT) is used to learn text representation of the input sentence
together with the empowered grounding embedding. As shown in Fig. 3, ObjectGroundedBERT
consists of a Language encoder and a Text-grounding. While we do not directly fine-tune the language
model in order to keep the original knowledge learned from the huge language corpora, the final
representation of the text encoder will be enhanced with the visual-grounded information learned
during pretraining.

Language encoder We use BERT (Devlin et al., 2019) as the language encoder. Given an input
sentence s = {w1, . . . , wn}, we use pretrained BERT model to contextually embed the discrete token
wi into hidden-output vector hi:

h1, h2, . . . , hn = BERT (w1, w2, . . . , wn) (3)

where hi = {h1i , h2i , . . . , hLi }, hli is the hidden-output vector of token wi at layer l.

Text-grounding Module We concatenate hidden outputs from k final Transformer layers to form
the input for the Text-grounding module:

h̃i = [hL−k+1
i , hL−k+2

i , . . . , hLi ] (4)

The Text-grounding module uses a multi-layer perceptron with an activation function to transform
the contextual representation of each token in the sentence into the grounding embedding:

gi = MLP(h̃i) (5)

where gi is grounding embedding of token i.

The grounding embedding and textual embedding, final hidden outputs of the language encoder, are
concatenated to form a unified Grounding-textual representation of the token wi:

ĥgi = [hLi , gi] (6)

3.3 CROSS MODAL TRANSFORMER

The Cross-model Transformer takes into account the outputs of Visual encoder and ObjectGrounded-
BERT to connect the language and visual modalities based on the pretrained learning strategy, as
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shown in Fig. 2. Each cross-modal layer (the right block in Fig. 2) in the cross-modal Transformer
consists of Cross-Attention layer, Self-Attention layer, and Feed-Forward layer. The Cross-Attention
layer is shared for both modalities, while there are two Self-Attention layers and Feed-Forward layers
for each modality. Cross-Modal Transformer is implemented by stacking these cross-modality layers.
First, the cross-attention layer is applied to the vision (attention to language) and language (attention
to vision):
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where hgki is the language representation of token i at layer k, hvkj is the visual objected representation
of object j at layer k, ”Cross-Attn” stands for Cross-Attention layer.

The Cross-Attention layer is utilized to exchange the information and align the elements between the
two modalities to learn cross representation. Then, Self-Attention layers are applied to the outputs of
the Cross-Attention layer to earn their relationships:

ḧv
k

1 , ḧv
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where Self-Attnvis is the Self-Attention layer for vision modality, Self-Attnlang is the Self-Attention
layer for language modality.

Finally, the Feed Forward layers are fed with each output of Self-Attention layers:

hvk1 , hv
k
2 , . . . , hv

k
m = FFvis

(
ḧv
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where FFvis is the Feed-Forward layer for vision modality, FFlang is the Feed-Forward layer for
language modality. The Cross-Modal Transformer takes the output of the Visual encoder and
ObjectGroundedBERT as an input. The output of the Cross-Modal Transformer is the vision and
language representation of an image-text pair, that contains the alignment of two modalities:

hv1, hv2, . . . , hvm, hg1, hg2, . . . , hgn = CMT
(
ĥv1, ĥv2, . . . , ĥvm, ĥg1, ĥg2, . . . , ĥgn

)
(13)

where CMT stands for Cross-Modal Transformer, ĥvj , ĥgi are the output representation from Visual
encoder and Object Grounded BERT respectively.

3.4 TRAINING

In this section, we introduce the pretraining tasks for our framework. We denote that the image
contains m objects o = {o1, ..., om}, the input words tokenized from the sentence having n tokens
w = {w1, ..., wn} and θ is the parameters of the model need to be optimized.

Masked Language Modeling The task setup is similar to BERT pretraining where words are
randomly masked with a probability of 0.15 and the model is asked to predict these masked words.
Different from BERT, the masked words are predicted not only from the non-masked words but
also from the visual information. Therefore, it helps to build the relationship between the visual
information and the language representation, also the Text-grounding module can learn the visual
object representation of the language. The model aims to predict the masked words wmasked based
on their surrounding words w and the objects from the image o, by optimizing the objective function:

LMLM(θ) = −E(w,o)∼D logPθ(wmask|w,o) (14)
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Masked Visual Feature Prediction Same as the Masked Language Modeling task, we train the
model by randomly masking objects with a probability of 0.15 (masking feature vector with zero
vector) and asking the model to predict the class of the masked objects so that the model can infer
masked regions from the visible objects and from the sentences. The goal of this task is to predict the
masked object class c(omask) based on the observation of their textual caption and visible objects.
Specifically, the Text-grounding module will learn how to transform the contextual representation into
visual information and eventually help the Cross-Modal Transformer know which object is missing.
In the end, the model will learn object relationships and the visual grounding of the language. The
objective minimizes the cross-entropy loss:

LMVFP(θ) = E(w,o)∼D
∑

omasked

CE(c(omask),ogtmask), . (15)

where CE is Cross-entropy loss function, , ogtmask is the object detection output from Faster R-CNN
as the label of the masked object.

Image-Text Matching In this task, the model learns an instance-level alignment between the whole
image and the caption that describes the image. This objective aims to learn the global representation
of the image and the sentence. The model has to learn the object relationship in the image also the
contextual meaning of the sentence to know whether they are matched together. Moreover, with the
negative samples, we teach the model to find negative information for classifier training by comparing
the linguistic descriptions of those objects in the image. We take the output representation of a
special token [CLS] and feed it into an FC layer with a sigmoid function to predict an alignment
score between 0 and 1:

LITM(θ) = −E(o,v)∼D[y log fc(o,v) + (1− y) log(1− fc(o,v))]). (16)

where fc is the output score of the text-image pair from an FC layer, y is the label for image-sentence
pair, 0 is unmatched and 1 is matched.

4 EXPERIMENTAL SETUP

4.1 DATASETS

Table 1: Task descriptions and statistics.
Corpus Train Test Metrics

GLUE

CoLA 8.5k 1k Matthews corr
MNLI 393k 20k acc.
MRPC 3.7k 1.7k acc./F1
QNLI 105k 5.4k acc.
QQP 364k 391k acc./F1
RTE 2.5k 3k acc.
SST-2 67k 1.8k acc.
STS-B 7k 1.4k Pearson corr.

SQUAD

SQUAD V1.1 87K 10K exact match/F1
SQUAD V2.0 130K 11K exact match/F1

Training We use MSCOCO2 dataset (Lin et al.,
2014) as the training data for image projection and
Text-grounding module. This dataset consists of
118K/5K/41K (train/val/test) images, each with five
captions describe the image.

Evaluation After training process, we finetune
and evaluate our model on GLUE3 (Wang et al.,
2018), SQuAD 1.1 (Rajpurkar et al., 2016), and
SQuAD 2.04 datasets (Rajpurkar et al., 2018). In
GLUE dataset, we evaluate our model on various
tasks over 8 corpora: CoLA (Warstadt et al., 2018),
MNLI (Williams et al., 2018), MRPC (Dolan &
Brockett, 2005), QNLI (Rajpurkar et al., 2016), QQP (Iyer et al., 2017), RTE (Dagan et al., 2006;
Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), SST-2 (Socher et al., 2013),
STS-B (Cer et al., 2017). The statistics of datasets are given in table 1.

2https://cocodataset.org/#home
3https://gluebenchmark.com/
4https://rajpurkar.github.io/SQuAD-explorer/
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Table 2: Downstream task results of BERT, V&L pretrained models and our ObjectGroundedBERT
(OGBERT) on BERT-base architectures. MRPC and QQP results are F1 score, STS-B results
are Pearson correlation, SQuAD v1.1 and SQuAD v2.0 results are exact matching and F1 score
respectively. The ∆base and ∆voken column show the difference between our model and the baselines.

Task OGBERT BERT-base ∆base ↑ Vokenization ∆voken ↑ LXMERT VisualBERT VL-BERT ViLBERT

CoLA 59.08 54.68 4.41 15.76 45.14 57.01 56.05
MNLI 85.21 83.48 1.84 82.6 2.6 35.44 80.68 81.18 81.29
MNLI-MM 86.13 84.05 1.9 35.22 80.96 81.38 81.02
MRPC 89.31 88.82 1.00 80.64 87.36 87.76 86.95
QNLI 92.76 91.37 1.27 88.6 4.1 50.54 87.39 89.20 86.95
QQP 89.15 87.33 1.82 88.6 0.5 79.80 86.01 85.94 85.41
RTE 73.65 67.87 2.89 52.71 66.43 62.09 70.40
SST-2 93.82 92.43 1.51 92.2 1.6 82.11 88.88 88.88 90.14
STS-B 90.30 89.00 0.30 42.23 90.03 89.48 89.98

SQuADv1.1 78.81/86.98 78.10/86.31 0.63/0.68 78.8/86.7 0.0/0.2 9.39/17.65 68.51/77.71 72.62/81.30 72.95/81.35
SQuADv2.0 68.94/72.13 67.92/71.08 1.04/1.03 68.1/71.2 0.8/0.9 46.52/47.04 59.17/62.53 62.38/65.63 63.36/66.56

Table 3: Downstream task results of our method with different dimension of grounding embedding.
Dimension CoLA MNLI MNLI-MM MRPC QNLI QQP RTE SST-2 STS-B SQuAD V1.1 SQuAD V2.0

72 59.08 84.41 86.13 89.31 92.31 89.15 73.65 93.82 90.3 78.81/86.98 68.85/71.92
108 58.95 85.21 85.76 88.8 92.76 88.87 72.2 93.23 90.25 78.71/86.72 68.77/71.72
144 58.25 84.97 85.73 89.3 92.35 88.92 72.56 93.7 90.21 78.6/86.6 68.94/72.13

4.2 EVALUATION TASKS AND METRICS

All tasks are classification while STS-B is a regression task. MNLI has three classes whereas all
other classification tasks are binary classification. The evaluation tasks are also various: question
answering (QNLI, SQuAD), acceptability (CoLA), sentiment (SST-2), paraphrase (MRPC, QQP),
inference (MNLI, RTE, QNLI). The metric of each task is shown in table 1.

For MRPC and QQP, we report F1 score. For STS-B, we report Pearson correlation. For both SQuAD
v1.1 and SQuAD v2.0, we report exact matching and F1 score respectively.

4.3 IMPLEMENTATION

We use BERT-base-uncased as the language model for the baseline also as the language model
of ObjectGroundedBERT. We load the BERT weight trained on Bookcorpus and Wikipedia from
Pytorch framework Huggingface 5. We stack 5 transformer encoder layers for Visual Encoder and 5
Cross-modal layers for Cross-modal Transformer. The language base model is freeze and also the
object detector. We train the Visual Encoder, Cross-modal Transformer and the Text-grounding part
based on the contextual representation and objects from the image.

Text-grounding module is a multi-layer perceptron with 1 hidden layer and applies relu activation.
We set the MLP final output dimension in set {72, 108, 144} for evaluating how visual information
impact on the textual-visual representation in Sec 6.1. The hidden state dimension of the Visual
Encoder and Cross-modal Transformer is the sum of the hidden state dimension of the language
encoder and the Text-grounding output dimension, we set 12 heads of each layer. We set k = 4 final
hidden output layers, J = 36 fixed number of objects in the image. Our model is trained with a
learning rate lr = 1e−4 in 8 epochs using AdamW (Loshchilov & Hutter, 2018) as an optimizer, we
set batch size of 256 and the model is trained on one A100 GPU for approximately 2.5 days.

5 EXPERIMENTAL RESULTS

5.1 COMPARED TO THE BASELINE MODELS

In this experiment, we compare our method with two baselines:

• BERT (Devlin et al., 2019): BERT-base-uncased which was pretrained on BooksCorpus and
English Wikipedia.

5https://huggingface.co/
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Table 4: Downstream task results of our ObjectGroundedBERT without training the Text-grounding
Module. The first three rows report the fine-tuned results of our model without training with the
visual grounded datasets, the last three rows show the difference to the results reported in Table 3.

Dimension CoLA MNLI MNLI-MM MRPC QNLI QQP RTE SST-2 STS-B SQuAD V1.1 SQuAD V2.0

72wo 55.62 83.66 84.45 87.74 90.85 86.79 70.4 91.25 89.97 77.99/86.51 67.85/70.98
108wo 55.86 83.55 84.05 88.28 90.88 87.31 71.12 91.71 89.78 78.17/86.47 68.34/71.55
144wo 54.88 83.33 83.95 86.96 90.89 87.54 68.95 91.82 89.47 78.24/86.4 66.86/69.93

∆72 -3.46 -0.75 -1.68 -1.57 -1.46 -2.36 -3.25 -2.57 -0.33 -0.82/-0.47 -1/-0.94
∆108 -3.09 -1.66 -1.71 -0.52 -1.88 -1.56 -1.08 -1.52 -0.47 -0.54/-0.25 -0.43/-0.17
∆144 -3.37 -1.64 -1.78 -2.34 -1.46 -1.38 -3.61 -1.88 -0.74 -0.36/-0.2 -2.08/-2.2

Table 5: Downstream task results on different pretraining tasks.
Approach CoLA MNLI MNLI-MM MRPC QNLI QQP RTE SST-2 STS-B SQuAD V1.1 SQuAD V2.0

MLM 56.78 84.92 85.54 88.26 91.94 87.77 71.84 92.77 89.85 78.35/86.52 68.18/71.26
MLM + ITM 58.09 84.25 85.7 88.52 91.93 88.6 72.56 92.89 89.81 78.63/86.55 68.44/71.56
MLM + MVFP 57.37 84.54 85.72 88.43 92.01 88.28 73.29 92.77 89.93 78.64/86.66 68.67/71.69

All tasks 58.95 85.21 85.76 88.8 92.76 88.87 72.2 93.23 90.25 78.71/86.72 68.77/71.72

• Vokenizer (Tan & Bansal, 2020): This is the closest related work and state-of-the-art
grounded language learning method applying on BERT. Note that while Vokenizer directly
grounds visual knowledge into the language model, we freeze the language model and
expand the text representation with the grounding embedding containing visual information
learned from the pretraining process.

The fine-tune results on 10 different natural-language tasks are reported in Table 2. Our Object-
GroundedBERT outperforms the baselines on all downstream tasks. Specifically, we achieve an
improvement from 0.30 to 4.41 score compared to BERT-base and up to 4.1 scores compared to
Vokenization. This shows that our grounded language model representation can capture more useful
information for language understanding.

Our method has the significant improvement on the tasks of CoLA, MNLI, RTE, QQP, QNLI and also
question answering tasks QNLI, SQuAD V2.0. It may due to the fact that in these tasks, the visual information
and relation between objects are significantly important. As such, our approach can ground the language
representation with useful visual-objected information that empowers the textual modality with the external
knowledge from the visual modality.

5.2 COMPARED TO OTHER VISION-AND-LANGUAGE PRETRAINED MODELS

To show the effectiveness of our proposed grounded language learning approach, we compare it with the
following state-of-the-art vision-and-language pretrained models which also train with the image-text pairs:

• LXMERT (Tan & Bansal, 2019) consists of two single-modal and one cross-modal Transformer to connect
vision and language semantics via pre-training tasks.

• ViLBERT (Lu et al., 2019) extends the BERT architecture to a multi-modal two-stream model and process
both visual and textual inputs.

• VisualBERT (Li et al., 2019) consists of a stack of Transformer layers that implicitly align elements of an
input text and regions in an associated input image with self-attention.

• VL-BERT (Su et al., 2020) uses powerful Transformer model as the backbone, and extends it to input both
visual and linguistic embedded features.

We also fine-tune all models on 10 different natural-language tasks of GLUE and SQuAD datasets. Following
their works, all models before pretrained with image captioning datasets are initialized with the pretrained
BERT weights, except LXMERT. As shown on the right in Table 2, the finetuning results on our model
consistently outperform other Vision Language pretrained models in all tasks. The results show that pretraining
the Transformer with image-text pairs after initialized the pretrained BERT weight leads to bad performance on
pure language tasks.

6 ANALYSIS

6.1 IMPACT OF VISUAL DIMENSION

We study the impact of the contribution visual grounding with different grounding embedding dimensions.
Table 3 reports the evaluation of our model on GLUE and SQUAD on 3 different dimensions {72, 108, 144}.
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A brick clock tower has an ad for Whirlpool on top.

Layer 5 Layer 5 Layer 1

Figure 4: Illustration of the Attention map of Cross modal layers.

We train all 3 models with the same hyper-parameters (number of epochs, batch size, learning rate, model
hyper-parameters). The output dimension of textual embedding is fixed the same as the language model and
we do not fine-tune it on visual data so that the dimension of grounding embedding means how much visual
information we want to add to the language model.

The results show that most of the downstream tasks achieve the best performance at the dimensions of 72, except
MNLI (108), QNLI (108), and SQuAD V2.0 (144). The experiments show that too much grounded visual
information adding to the language representation is not good for downstream language tasks as it leads to bias
in visual information, unbalance the contribution of textual meaning and visual grounding.

6.2 THE IMPACT OF VISUAL GROUNDING

The authors backing and promote the standards of open science and reproducible examination. The algorithms
and models proposed in this work will be publicly released in a free and public code online with simple to-utilize
content. In fact, the tables included in the paper mention results on the number of layers and the total number
of model parameters that are trained. Similarly, the visualization and illustrations presented in the main paper
contain the exact details on the dataset used, the model architectures, and the counterexample.

6.3 VISUALIZATION OF ALIGNMENT BETWEEN TOKENS AND OBJECTS

In Fig. 4, we visualize the attention in the cross-modality transformer to show the connections between objects
and tokens. We find that the attention of words ”clock, tower, ad, top” is focused on the right regions of the
image on the shallow layers (Layer 1 and 3). While on the deep layer (Layer 5), the attention map is more
complex when the relationship between objects in the image is learned during pretraining.

6.4 EVALUATION ON PRE-TRAINING TASKS

We analyze the effectiveness of different pre-training settings on the downstream tasks by conducting experiments
on ObjectGroundedBERT pretrained with different combinations of pretraining tasks. Table 5 reports evaluations
of our model on GLUE and SQUAD on 4 different approaches, i.e., only Masked Language Modeling (MLM),
Masked Language Modeling and Image-Text Matching (MLM + ITM), Masked Language Modeling and Masked
Visual Feature Prediction (MLM + MVFP), and our full approach (MLM + MVFP + ITM). The results show
that our full approach achieves the highest score in all tasks except RTE, and both (MLM + MVFP) and (MLM +
ITM) achieve better performance than the only (MLM).

7 CONCLUSION

In this paper, we propose a novel grounded language framework that enhances visual-objected-grounded into
language representation. Instead of using the features of the whole image encoded from CNN, we use the
output from an off-the-shelf object detector as the input of the visual modality. Via the multi-task pretraining
strategy, the Cross-modal Transformer can connect the visual and language modality together and teaches the
Text-grounding part to have the ability to capture the visual object information and their relations from the
contextual meaning of language. Our model significantly outperforms the baseline language models on various
language tasks of GLUE and SQuAD datasets.

9
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ETHICS STATEMENT

In this study, we introduce a grounding language learning method by adding a text-grounding module to empower
the text representation with the visual representation. Our main work is instead of extracting features from the
whole image using CNN networks, we propose a novel object-level grounded language framework to connect
the objects in the image and the sentence together. This framework learns the alignment between the visual
scene and the tokens in the caption, thus the text-grounding module will have the ability to transform the context
into the visual information. Moreover, we do not ground the visual content directly into the language model,
thus the language model will not forget the knowledge from the textual corpora. In consequence, one beneficial
impact of freezing the language model is that its use can reduce computational resources when training a deep
learning model.

REPRODUCIBILITY STATEMENT

The authors support and advocate the principles of open science and reproducible research. The algorithms and
architectures proposed in this work shall be open-sourced in a free and public code repository with easy-to-use
scripts to reproduce several experiments and evaluations presented. In fact, the tables included in the paper
mention results on the number of layers and the total number of model parameters that are trained. Similarly,
the visualization and illustrations presented in the main paper contain the exact details on the dataset used, the
model architectures, and the counterexample.
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Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising
Tectual Entailment, pp. 177–190, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-
33428-6.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, 2019.

10

https://arxiv.org/abs/2005.14165
https://www.aclweb.org/anthology/S17-2001
https://www.aclweb.org/anthology/S17-2001


Under review as a conference paper at ICLR 2022

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL https://www.
aclweb.org/anthology/I05-5002.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The third pascal recognizing textual
entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing,
pp. 1–9, 2007.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan Szpektor. The
second pascal recognising textual entailment challenge. In Proceedings of the Second PASCAL Challenges
Workshop on Recognising Textual Entailment, 2006.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed representations of sentences from
unlabelled data. In NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, San Diego California, USA, June 12-17,
2016, pp. 1367–1377, 2016. URL http://aclweb.org/anthology/N/N16/N16-1162.pdf.

Shankar Iyer, Nikhil Dandekar, and Kornél Csernai. First quora dataset release: Question pairs. data. quora.
com, 2017.

Douwe Kiela, Alexis Conneau, Allan Jabri, and Maximilian Nickel. Learning visually grounded sentence
representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 408–418, 2018.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. Skip-thought vectors. In Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp.
3294–3302, 2015. URL http://papers.nips.cc/paper/5950-skip-thought-vectors.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. Albert:
A lite bert for self-supervised learning of language representations. In International Conference on Learning
Representations, 2019.

Angeliki Lazaridou, Marco Baroni, et al. Combining language and vision with a multimodal skip-gram model.
In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 153–163, 2015.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In International
conference on machine learning, pp. 1188–1196, 2014.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A simple and
performant baseline for vision and language. arXiv preprint arXiv:1908.03557, 2019.

Xiujun Li, Xi Yin, Chunyuan Li, Xiaowei Hu, Pengchuan Zhang, Lei Zhang, Lijuan Wang, Houdong Hu,
Li Dong, Furu Wei, et al. Oscar: Object-semantics aligned pre-training for vision-language tasks. arXiv
preprint arXiv:2004.06165, 2020.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In Computer Vision - ECCV
2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V,
pp. 740–755, 2014. doi: 10.1007/978-3-319-10602-1\ 48. URL https://doi.org/10.1007/
978-3-319-10602-1_48.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence representations. In
6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings, 2018. URL https://openreview.net/forum?id=
rJvJXZb0W.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. 2018.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic represen-
tations for vision-and-language tasks. In Advances in Neural Information Processing Systems, pp. 13–23,
2019.

11

https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
http://aclweb.org/anthology/N/N16/N16-1162.pdf
http://papers.nips.cc/paper/5950-skip-thought-vectors
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://openreview.net/forum?id=rJvJXZb0W
https://openreview.net/forum?id=rJvJXZb0W


Under review as a conference paper at ICLR 2022

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words
and phrases and their compositionality. In Advances in neural information processing systems, pp. 3111–3119,
2013.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representation.
In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.
1532–1543, 2014.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers), pp. 2227–2237, 2018.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for machine
comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pp. 2383–2392, 2016.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions for squad.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pp. 784–789, 2018.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. CoRR,
abs/1908.10084, 2019. URL http://arxiv.org/abs/1908.10084.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher
Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642, Seattle, Washington,
USA, October 2013. Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/D13-1170.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. Vl-bert: Pre-training of generic
visual-linguistic representations. In ICLR, 2020.

Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from transformers. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 5103–5114, 2019.

Hao Tan and Mohit Bansal. Vokenization: Improving language understanding with contextualized, visual-
grounded supervision. CoRR, abs/2010.06775, 2020. URL https://arxiv.org/abs/2010.06775.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pp.
5998–6008, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE: A
multi-task benchmark and analysis platform for natural language understanding. CoRR, abs/1804.07461,
2018. URL http://arxiv.org/abs/1804.07461.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments. CoRR,
abs/1805.12471, 2018. URL http://arxiv.org/abs/1805.12471.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
1112–1122. Association for Computational Linguistics, 2018. URL http://aclweb.org/anthology/
N18-1101.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet:
Generalized autoregressive pretraining for language understanding. In Advances in neural information
processing systems, pp. 5754–5764, 2019.

Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason J Corso, and Jianfeng Gao. Unified vision-
language pre-training for image captioning and vqa. In AAAI, 2020.

12

http://arxiv.org/abs/1908.10084
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://arxiv.org/abs/2010.06775
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1805.12471
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101

	Introduction
	Related Work
	Methodology
	Visual encoder
	Text encoder (ObjectGroundedBERT)
	Cross Modal Transformer
	Training

	Experimental Setup
	Datasets
	Evaluation tasks and metrics
	Implementation

	Experimental Results
	Compared to the baseline models
	Compared to other vision-and-language pretrained models

	Analysis
	Impact of visual dimension
	The impact of visual grounding
	Visualization of alignment between tokens and objects
	Evaluation on Pre-training Tasks

	Conclusion

