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ABSTRACT

A standard practice when using large language models is for users to supplement
their instruction with an input context containing new information for the model to
process. However, models struggle to reliably follow the input context, especially
when it conflicts with their parametric knowledge from pretraining. In-principle,
one would expect models to adapt to the user context better after instruction fine-
tuning, particularly when handling knowledge conflicts. However, we observe
a surprising failure mode: during instruction tuning, the context reliance under
knowledge conflicts initially increases as expected, but then gradually decreases
as instruction finetuning progresses. This happens while the performance on stan-
dard benchmarks keeps on increasing far after this drop. We call this phenomenon
context-parametric inversion and observe it across multiple general purpose in-
struction tuning datasets such as TULU, Alpaca and Ultrachat, across different
model families like Llama, Mistral, and Pythia. We perform various controlled
studies and theoretical analysis to show that context-parametric inversion occurs
due to examples in the instruction finetuning data where the input context provides
information that aligns with model’s parametric knowledge. Our analysis suggests
some natural mitigation strategies with limited but insightful gains, and serves as
a useful starting point in addressing this deficiency in instruction finetuning.

1 INTRODUCTION

Large language models (LLMs) are widely used for a variety of tasks, many of which require care-
fully balancing the knowledge embedded in their parameters with the information provided through
the input context. A persistent challenge, however, is their tendency to overrely on parametric knowl-
edge, even when it contradicts with the context. This overreliance hinders the ability to update model
facts with augmented contexts and reliably follow atypical user instructions (Qiu et al., 2023; Ad-
lakha et al., 2024). This tension between contextual and parametric knowledge has been commonly
studied under the moniker of knowledge conflicts. Existing works explore various decoding and
finetuning remedies (Shi et al., 2023; Yuan et al., 2024; Longpre et al., 2022; Chen et al., 2022), but
model behavior under knowledge conflicts remain difficult to control, and conflicts often occur more
frequently scale (McKenzie et al., 2024). Moreover, we have limited understanding of the underly-
ing dynamics that drive models to ignore the context and rely heavily on its parametric knowledge.

In this work, we study the effect of instruction finetuning (IFT)—a staple part of the LLM pipeline—
on the ability to override pretrained knowledge through the context. IFT seeks to enhance the
model’s ability to assist with user queries. Oftentimes, these instructions contains a context with
critical information needed to complete the task. For instance, an instruction “What is the total
price of my trip to Hawaii?” operates on a context “Context: [Itinerary List]”, and an in-
struction “Rank these famous soccer players based on these scores” could contain a context
like: “[Scores Table].” In these circumstances, instruction tuned models must appropriately lever-
age the input context to respond, instead of relying on parametric knowledge. However, we make
an intriguing observation during IFT, where in the presence of knowledge conflicts, the model’s re-
liance on context initially increases as expected but surprisingly starts decreasing.
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Figure 1: (a) Context-Parametric Inversion In the presence of knowledge conflicts, context re-
liance first increases and then decreases during the process of instruction finetuning. (b) Instruction
datasets often include both context-critical examples and non-context-critical examples. This latter
group effectively causes the decline in context reliance (§ 3.3).

We measure the context reliance by designing inputs contexts that suggest a fictional answer to a user
query different from facts in the pretraining corpus (§ 2.2). We evaluate context reliance across the
IFT trajectory of multiple instruction datasets —TULU, Alpaca or UltraChat — and multiple model
families — Llama, Pythia and Mistral. Across these settings, we see that context reliance initially
increases and then decreases, a phenomenon we call context-parametric inversion. In fact, this
drop begins in early timesteps of IFT, while the performance on standard benchmarks (e.g., MMLU,
GSM8k, SQuAD) keeps on increasing far after this drop. For example, as shown in Figure 1a,
the context reliance of Llama2-7B (as measured on knowledge conflict datasets (§ 2.2)) increases
from 30% to 60% initially with IFT. However, it start dropping as the finetuning progresses further,
dipping to around 35%.

Why do we observe context-parametric inversion with instruction tuning? The initial increase is
expected, as a nontrivial subset of instruction tuning datasets often require models to use the context
to respond correctly. We perform controlled experiments to understand the subsequent detrimental
decrease. First, we observe that context-reliance drops outside facts beyond those seen during IFT.
Second, common instruction tuning datasets typically contain some datapoints that are purely about
recall of pretrained knowledge, and do not involve context-dependent instructions. Could the drop be
attributed to the presence of such points? We curate the datasets to only include context-dependent
points but still see a drop in context reliance after an initial increase.

We analyze this phenomenon theoretically in a one-layer tranformer and uncover the optimization
dynamic that explains context-parametric inversion. We can partition a generic dataset containing
context-dependent datapoints into two categories: (i) context-critical datapoints where context pro-
vides key information needed to answer a user query that the model does not know beforehand
(Fig. 1b), and (ii) non-context-critical datapoints where the context is approximately redundant with
model’s parametric knowledge (§ 3.3). In the early stages of training, context-critical points tend
to have higher loss and therefore dominate the gradient signal, driving the model to focus on the
context. However, as training progresses, the loss on context-critical points decreases, and the non-
context-critical points dominate the gradient. We show that the gradient updates then tend to hedge,
reverting back to using the parametric knowledge, thus reducing the context reliance.

Finally, our analysis naturally leads us to some mitigation strategies by data curation, data augmenta-
tion, and regularization. These strategies are able to partially alleviate the drop in deep networks on
real-world datasets, showing that our theoretical insights do translate to practical settings. However,
as we discuss in § 5, these mitigation strategies each have fundamental limitations and tradeoffs.

Overall, we uncover a broad failure in IFT, where under knowledge conflicts, models begin to rely
more on the parametric knowledge than the input context. To the best of our knowledge, we are the
first to identify this deficiency with instruction tuning. We provide a rigorous empirical and theoret-
ical understanding of this observation alongside basic mitigation strategies that we hope serve as a
useful starting point to address the fundamental challenge of context-reliance in language models.
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2 CONTEXT-PARAMETRIC INVERSION

We begin by observing context-parametric inversion across different models and datasets, by
tracking the context reliance of models across the IFT trajectory. Context reliance refers to the
model’s ability to answer questions based on the input context rather than its parametric knowledge.
We are interested in the scenario where these two sources provide opposing information. We mea-
sure context reliance using the model’s accuracy on a set of knowledge conflict datasets (§ 2.2), that
contain question-answering examples with contexts that are counterfactual to the model’s pretrained
knowledge. We measure accuracy by entailment. Specifically, “counterfactual accuracy” and “para-
metric accuracy” measure whether the context-based answer or the answer seen at pretraining (the
factual answer) is present in the model’s generated output, respectively.

2.1 EXPERIMENT SETUP

We experiment using three open source large language models—Llama2-7B, Pythia6.9B, and Mis-
tral7B. We finetune for up to 2 epochs on three common IFT datasets— TULU (Wang et al.,
2023), UltraChat (Ding et al., 2023a), and Alpaca (Taori et al., 2023). We track the progress of
IFT based on the performance on four standard benchmarks: GSM8k (Cobbe et al., 2021) (math),
MMLU (Hendrycks et al., 2021) (general fact recall), SQuAD (Rajpurkar et al., 2016) (reading com-
prehension), and ARC-Challenge (Clark et al., 2018) (reasoning). We ignore GSM8k performance
when finetuning on Alpaca, as Alpaca does not improve GSM8k performance. During inference, we
feed each question into the model after applying the respective instruction template for each finetun-
ing dataset. We refer the reader to Appendix B.2 for additional details.

2.2 KNOWLEDGE CONFLICT DATASETS

We carefully design three knowledge conflict QA datasets to get an accurate measure of
model’s context reliance. We explain issues with previous benchmarks and our motivations for
each of our datasets below. All datasets are available at https://github.com/locuslab/
context-parametric-inversion. We refer the reader to Appendix B.5 for examples.

1. Algorithmic Substitution: Prior knowledge-conflict datasets (Longpre et al., 2022) rely on tra-
ditional entity substitution, where real-source articles (e.g., Wikipedia) are processed via an entity
substitution model (Honnibal & Montani, 2017). This often results in partial substitutions and in-
coherent contexts, underestimating a model’s true context reliance under knowledge conflicts (Xie
et al., 2024). Instead, we introduce the Counterfactual Biographies (CF_Bio) dataset—fictional
biographies of 500 people—where each biography follows a fixed structure, allowing systematic
entity substitutions (e.g., names, contributions) via algorithmic codes rather than deep models.

2. LLM-Generated Counterfactuals: With similar motivation, we also curate a synthetic Coun-
terfactual World Facts (CF_World_Facts) dataset, containing 400 questions about fictional world
events generated using ChatGPT. We first gather trivia questions about famous historical events
and systematically pair them with incorrect answers. We query ChatGPT to produce a fictional
passage for each (question, counterfactual answer) pair. To vary difficulty, we explicitly prompt
the model to place the answer at varied positions in the passage.

3. Beyond Context-Based QA: The tension between context and parametric reliance goes be-
yond QA and extends to other forms of instruction that challenges the model’s inherent bi-
ases. For example, “Write a phrase that ends in heavy. Absence makes the heart grow
{blank}” contains an instruction that pushes the answer to be the word “heavy,” while the para-
metric knowledge may suggest “fonder.” We use the inverse scaling benchmark (McKenzie et al.,
2024) to evaluate on such tasks and refer to it as CF_Quotes.

2.3 KEY OBSERVATIONS

We finetune Llama2-7B on TULU, a general-purpose IFT dataset. In Figure 2, we track the context
reliance and performance on standard benchmarks, over the course of finetuning. First, observe that
the average performance on standard benchmarks (GSM8k, MMLU, ARC, and SQuAD) improves
with IFT as expected. On the other hand, on our question-answering datasets with counterfactual
contexts, we observe that performance decreases with IFT, after an initial expected increase. For
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Figure 2: Accuracy on Different Knowledge Conflict Datasets We track how the model’s context
reliance evolves during instruction fine-tuning, particularly under knowledge conflicts. Counterfac-
tual (blue) and parametric (orange) accuracy on (a) CF Quotes, (b) Biographies, and (c) World Facts
versus average performance on standard benchmarks (GSM8k, MMLU, ARC, SQuAD).

example, on CF_World_Facts (Figure 2c), the context reliance initially jumps from 40% to almost
90%, then begins sharply decline as IFT progresses further. Similar observations can be made on
CF_Bio dataset (Figure 2b) and CF_Quotes (Fig 2a).

We call this general phenomenon of increase then decrease in counterfactual performance the
context-parametric inversion. Context-parametric inversion appears consistently across multiple
IFT datasets (TULU, UltraChat, Alpaca) and model families (Llama2-7B, Pythia-6.9B, and Mistral-
7B). For additional empirical results, we refer the reader to Appendix B.1. In Appendix B.3, we also
experiment with explicitly prompting the model to prioritize the context over parametric knowledge.
However, the drop in context reliance persists.

Not classic overfitting, forgetting or memorization: Our observations do not fall under the clas-
sic forgetting regime, where the performance drops monotonically on out-of-distribution tasks. The
performance on counterfactual benchmarks initially goes up during IFT. Neither does our result fall
under the classical overfitting regime — performance on standard benchmarks continues to improve
for several epochs while counterfactual performance often drops before 1 epoch (Figure 3a). Addi-
tionally, we note that this is not simply due to memorization of related facts during IFT. In § 3.1 we
show that the performance drop cannot be simply resolved by removing facts in the IFT dataset that
directly conflict with the counterfactual test examples.

3 WHY DOES CONTEXT-PARAMETRIC INVERSION HAPPEN?

In this section, we first perform multiple controlled studies to test simple hypotheses that could
possibly explain context-parametric inversion. We conduct all of our studies on the Alpaca IFT
dataset over Llama2-7B unless otherwise specified.

3.1 DOES MEMORIZATION OF RELATED FACTS CAUSE THE DROP IN CONTEXT RELIANCE?

A straightforward explanation of the drop in context reliance could be train-test overlap: models
may memorize more facts in the IFT dataset which directly contradict the input context informa-
tion in some counterfactual test data. This may push the model to do fact recall for these particu-
lar examples. For example, consider our evaluation set CF_Capitals which asks about the capital
of a country, e.g., “What is the capital of France?” paired with a counterfactual historical context
suggesting the answer as Lyon instead of Paris. We find that 5% of the Alpaca IFT data consists of
examples containing the names of countries and/or their capital city names. We consider filtering
such examples out from the training data. Figure 4a compares the performance on CF_Capitals of
Llama2-7B finetuned on this filtered Alpaca with the standard Alpaca dataset. We continue to ob-
serve a drop in the counterfactual performance. This highlights that context-parametric inversion is
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Figure 3: Not Overfitting (a)
Peak performance on CF_Quotes
occurs well before the end of one
epoch. (b) Attention score of
LLama7B over the context for the
CF_World_Facts eval set averaged
over all the layers. Consistent with
our theory (§ 4), the attention to
context rises and falls. We do not
make any causal claims from this
observation about the attention dy-
namic in deep networks.

not simply because more facts are getting encoded in the model’s parametric knowledge during fine-
tuning. Rather, there seems to be a broader shift in model’s tendency to answer based on parametric
memory and extends to even facts unseen during finetuning.

3.2 LACK OF ENOUGH DATAPOINTS THAT ENCOURAGE CONTEXT RELIANCE?

Another possible reason for the drop in context reliance is that the proportion of datapoints promot-
ing context reliance may be small. A significant portion of Alpaca instruction-finetuning examples
require pure fact recall, with no dependence on context. To test this, we filter Alpaca to retain only
examples containing an “input context” ( 30%).

To be more specific, the Alpaca SFT dataset (tatsu-lab/alpaca on Huggingface) consists of 3
columns: “instruction,” “input,” and “output.” The “instruction” corresponds to the user prompt,
while the “input” provides additional context. For example, the instruction might be “Who won the
marathon?” with an “input” containing a scoreboard. However, many examples have a blank “input,”
requiring only factual recall (e.g., “What are the three primary colors?”). We filter out such cases.

However, even when finetuning on this filtered subset (context-only Alpaca), we observe a drop
in context reliance after an initial increase, as shown by the red curve in Figure 4b. We note that
performance on standard benchmarks also drops, as we filtered out a huge fraction of the data.

Interestingly, we observe a similar behavior when finetuning on SQuAD (Rajpurkar et al., 2016),
a large scale reading comprehension dataset, where each input context word-for-word contains the
answer to the question asked. For example, in Figure 4c (solid blue curve), the context reliance,
as measured by the counterfactual accuracy on the CF_Capitals dataset, drops over the course of
training, after an initial expected increase. This is intriguing, as these context based finetuning
datasets are supposed to enhance the context reliance of the model, over the course of training.

3.3 CONTEXT CRITICAL VS NON-CONTEXT CRITICAL DATAPOINTS

Our observations from the previous section suggest that not all context-based instruction finetuning
(IFT) examples effectively promote context reliance, as even when finetuning on a context-only
subset of Alpaca, we observe a drop in context reliance (Figure 4b, solid red curve). Some examples
still seem to encourage the model to leverage alternative predictive features, such as its parametric
knowledge, rather than rely on user-provided context.

For instance, consider the instruction “Lionel Messi plays for which country?” with the con-
text being “Context: [overview of Messi’s career]”. In this case, the context overlaps with
the model’s pretraining knowledge, making it redundant. Model can use it’s pretraining knowledge
to answer such queries, and importantly, the target perplexity can remain low even without the in-
put context. Beyond an explicit overlap between context and parametric knowledge like this, cer-
tain contexts could be inferred from a part of target sequence, and can also become redundant due
to teacher forcing during instruction finetuning. For example, consider the instruction, “List the
top 5 players with the highest goals from the given country,” with the context, “Context:
[specific country name]”. Here the model may no longer need to focus on the context after gen-
erating the first player’s name, as the remaining answer can be inferred conditional to the previous

5
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Figure 4: Filtering Harmful Examples (a) Controlling for fact overlap between train-test sets, we
still observe a drop in context reliance. (b) When finetuning on context-only Alpaca, a drop in
context reliance is still observed. However, on a context-critical subset of Alpaca, there is no drop.
(c) The drop in context reliance happens when finetuning on context-based QA datasets like SQuAD.

generation. Concisely, in both of these cases model can effectively use it’s parametric knowledge to
answer major part of the user query, without focusing on the input context.

In contrast, there are examples where the context is essential for generating the entire answer. Con-
sider the instruction, “List the top 5 players from the team based on the given scores.”
with the context, “Context: [Scores table]”. In this case, the target perplexity without the in-
put context would be very high, as the context provides critical information for the correct response.
Based on the above, we categorize context-based IFT examples into the following categories:

(a) Context-Critical: The context is essential for answering the entire query and cannot be substi-
tuted with parametric knowledge or inferred from a part of the target sequence. Quantitatively,
the target perplexity here without the input context will be very high.

(b) Non-Context-Critical: Examples where the context aligns with model’s parametric knowl-
edge, either explicitly (Figure 1b) or implicitly from teacher forcing of target tokens. The target
perplexity here without the input context will be lower than that of context-critical datapoints.

3.4 DO ALL THE CONTEXT DATAPOINTS really NEED THE CONTEXT?

Based on the definition of context-critical and non-context-critical datapoints above, we use a simple
target perplexity-based filtering to isolate a context-critical subset. We remove 25% of the datapoints
from Alpaca that have the lowest target perplexity without the input context. We refer to this filtered
set as “context-critical Alpaca”. Figure 4b (green curve) shows the context reliance when fine-tuning
on this context-critical subset. Interestingly, context reliance barely drops in this case. As expected,
performance on standard benchmarks is lower compared to finetuning on the full Alpaca set. We
observe similar trends when fine-tuning on a context-critical subset of SQuAD, where 25% of the
datapoints with the lowest target loss without context are removed. As shown in Figure 4c (green
curve), there is no drop in context reliance when finetuning on this filtered SQuAD subset.

The above observations indicate that the drop in context reliance during IFT is primarily driven
by datapoints where the context aligns with the model’s preexisting parametric knowledge (non-
context-critical datapoints). Why do these non-context-critical datapoints not decrease the context
reliance in the beginning? Why does the context reliance eventually decrease? In the next section,
we try to answer these questions theoretically in a simpler one layer transformer setting.

4 THEORETICAL ANALYSIS OF CONTEXT-VS-PARAMETRIC RELIANCE

In the previous section (§ 3), we conducted controlled studies to isolate the cause of the drop in con-
text reliance. We found that filtering out non-context-critical datapoints i.e. where the context is not

6
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the only predictive feature(§ 3.4) mitigated the decrease in context reliance. Here, we theoretically
explain the reason behind why non-context-critical datapoints cause a drop in context reliance.

In summary, we show below that in the initial phase of finetuning, context-critical datapoints domi-
nate the gradients, driving the model to focus on the context. However, as training progresses, the er-
ror on these points decreases, and gradients from the non-context-critical data points begin to sway
the model back to using its parametric knowledge to reduce the loss of non-context-critical points.
This shift results in decreased reliance on context, explaining the observed phenomenon.

Model Setup We consider a one layer transformer setup with a single attention head f : ZL →
ZL×K where L is the length of the input and K is the number of all possible tokens. Given a
sequence of input tokens x = [xi]

L
i=1

fW (x) = σ
(
ϕ(x)⊤WKQϕ(x)

)
ϕ(x)⊤W⊤

V WH (1)

where ϕ(x) ∈ Rd×L denotes the input embeddings, WKQ ∈ Rd×d denote the key-query projection,
WV ∈ Rd×d denote the value matrix projection, and WH ∈ Rd×K is the last linear head. We will as-
sume WH is frozen as simply the embeddings of all tokens [ϕ(i)]Ki=1. We use W (t) = [W

(t)
V ,W

(t)
KQ]

to refer to all the trainable weights of the transformer at finetuning timestep t. We use IFT to denote
instruction finetuning in this section.

Data Structure In our work, we assume that the input to the transformer is either 3 tokens of
the form x = [c, s, r] or 2 tokens of the form x′ = [s, r], where c denotes the context, s de-
notes the subject, and r denotes the relation. Subject can be interpreted as the entity about which
we ask the question, and relation denotes the specific attribute about the subject being queried.
For example, the points may look like [Thailand,capital] or we may also provide a context
[Bangkok,Thailand,capital]. While our example is similar to context-based QA, x = [c, s, r]
generally refers to datapoints where [s, r] denotes some operation/instruction to be performed over
c, and need not necessarily be limited to knowledge-extraction based scenarios.

Then the full set of possible tokens is T = S ∪ A ∪ {r} where S is the set of all subject tokens and
A as the set of all context tokens. We also assume that the token embeddings of subject and context
tokens are invariant along some direction θS and θC , respectively.

∀s ∈ S, ϕ(s) =
√
1/2s̃i +

√
1/2θS (2)

∀c ∈ A, ϕ(c) =
√
1/2c̃+

√
1/2θC (3)

where θ⊤S θC = 0, θS ⊥ A, θC ⊥ S . Realistically, θS , θC may encode some linguistic structure or
meaning, e.g., the embedding of all country names may lie in the same direction.

Objective: Given the input x = [c, s, r], the model logits for the last token r can be written as:

fW ([c, s, r])r = σc W
⊤
HWV ϕ(c) + σsW

⊤
HWV ϕ(s) + σrW

⊤
HWV ϕ(r), (4)

where σy = σ(ϕ(y)⊤WKQϕ(r)) denotes the attention between the relation token r (query) and y
(key). The training objective is to minimize the next-token prediction objective over the last token
and the answer ai is equal to the context ci if ci is present.

L(W ) = − 1

n

n∑
i=1

log σ(fW ([ci, si, r])r)ai (5)

4.1 IFT DATA COMPOSITION

Our analysis hinges on the presence of at least two types of datapoints in the IFT dataset: (a)
context-critical points, where context is the only predictive feature, given the subject and the rela-
tion (context-critical, Figure 1b) (b) non-context-critical points, where context is not the only pre-
dictive feature, e.g., the context overlaps with the model’s pretraining knowledge.

We assume that the pretraining corpus Dpre contains a set of datapoints [sj , rj ] ∈ Dpre ∀ j ∈
[npre] that the model has already memorized (Theorem A.1, Ghosal et al. (2024)). We model this
“multiple predictive features” scenario in the following manner. Given a datapoint [c, s, r], note that
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the model’s unnormalized probabilities for the token after r is simply the inner product between
embeddings of all tokens and some combination of the value-embeddings of c, s, and r as weighted
by the attention weights. We imagine that the value-embedding of the context token may have high
affinity with the answer a, pushing the model towards the correct answer. Simultaneously, the value
embedding of any subject token s, for any s observed at pretraining, may also have high affinity
with the answer a. This allows us to categorize training points as following.

(a) DC (Context-Critical Points C): These are datapoints ([c, s, r], a) where the context is the
only predictive feature of a at timestep t = 0, in other words:

σ
(
W⊤

HW
(0)
V ϕ(c)

)
a
≫ σ

(
W⊤

HW
(0)
V ϕ(s)

)
a
=

1

|A|
(6)

(b) DC+S (Non-Context-Critical Points C+S): These are datapoints ([c, s, r], a) where the subject-
relation pair was seen during pretraining [s, c] ∈ Dpre and was memorized. Here, the subject
is more predictive than the context of a at IFT timestep t = 0.

σ
(
W⊤

HW
(0)
V ϕ(s)

)
a
> σ

(
W⊤

HW
(0)
V ϕ(c)

)
a
≫ 1

|A|
(7)

(c) DS (Subject-Critical Points S): These are datapoints ([s, r], a) with no contexts and purely
encourage fact recall. Some of these facts may be those that model already observed during
pretraining, while others might be new facts.

Seen: σ
(
W⊤

HW
(0)
V ϕ(s)

)
a
> 1− δ, Unseen: σ

(
W⊤

HW
(0)
V ϕ(s)

)
a
< δ (8)

4.2 IFT TRAINING DYNAMIC

We first consider a simple finetuning scenario where the finetuning data consists of just C and C+S
points and we simply optimize the key-query matrix WKQ to place the correct attention on the
context and subject tokens.
Proposition 1. Consider a one-layer transformer pretrained on Dpre. When finetuning this trans-
former, with WV frozen, over D = DC∪ DC+S with |DC| ≥ |DC+S|, under assumptions listed in Ap-
pendix C.1, the following holds true for some learning rate η∗

• First Phase At initial timestep t = 0, the gradient of the expected loss with respect to WKQ

observes
θ⊤S [−∇WKQ

L(W (0))]ϕ(r) < 0, θ⊤C [−∇WKQ
L(W (0))]ϕ(r) > 0 (9)

• Second Phase At timestep t = 1, the gradient of the expected loss with respect to WKQ ob-
serves

θ⊤S [−∇WKQ
L(W (1))]ϕ(r) > 0, θ⊤C [−∇WKQ

L(W (1))]ϕ(r) < 0 (10)

We defer the formal proof to Appendix C.1. Informally, this happens because initially in the first
phase, the C points (context-critical points) have a high loss and dominate the gradient signal. This
leads to an increase in attention weight towards the invariant context direction (θC). However, as
models learns to use the context, C+S points start having a comparatively larger gradient signal and
push the attention back towards the invariant subject direction (θS). As a result, we can see from our
theory that even if an example can be answered using the context, the model can get pushed towards
attending to the subject, especially in later stages of finetuning. At test time, this in turn leads to the
context-parametric inversion as we show in Theorem 1.

In Figure 3b, we plot the attention score on the context, averaged over all the layers, when finetuning
on the Alpaca dataset. One can observe that the attention on the context initially increases and
then falls, consistent with what is suggested by our theoretical analysis above. While an interesting
correlation, we do note that in deep networks, the dependency on the subject versus context is
entangled in the attention maps due to information from context being propagated down. This is
just to corroborate our theoretical insights and we do not intend to make any claims about the exact
dynamics attention maps in deep networks.

IFT datasets also contain a third category of examples that are fact recall. Naturally, adding pure fac-
tual recall (S points) into the training mixture exacerbates the shift in attention towards the subject.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a paper at DATA-FM workshop @ ICLR 2025

Proposition 2 (More Attention to Subject with S Points). Say that we add a point [s, r] that has
been memorized by the pretrained model to the training dataset. We call this new training dataset
Dnew and the old dataset Dold. Under assumptions listed in Appendix C.1, the gradient update with
respect to WKQ at timestep t = 0 observes

θ⊤S [−∇WKQ
L(W (0),Dnew)]ϕ(r) > θ⊤S [−∇WKQ

L(W (0),Dold)]ϕ(r) (11)

θ⊤C [−∇WKQ
L(W (0),Dnew)]ϕ(r) = θ⊤C [−∇WKQ

L(W (0),Dold)]ϕ(r) (12)

We refer the reader to Appendix C.2 for the proof. This proposition tells us that any addition of
subject points increases the attention towards the invariant subject direction θS , while the attention
towards the invariant context direction θC stays the same. Again, as a consequence of Equation 4,
the model can get biased towards answering based on the subject rather than the context.

We now demonstrate that the value matrix plays a prominent role in encoding the model’s parametric
knowledge. Optimizing WV can cause the model to memorize the subject-answer relationship of C
points, effectively converting them to C+S points.

Proposition 3 (Fact Memorization). Under Assumptions in Appendix C.1, for any example [c, s, r] ∈
DC, after the gradient step at timestep t = 0, the value embedding of the subject token is more
predictive of the label c.

σ
(
W⊤

HW
(1)
V ϕ(s)

)
c
− σ

(
W⊤

HW
(0)
V ϕ(s)

)
c
> 0 (13)

4.3 COUNTERFACTUAL CONTEXT-PARAMETRIC INVERSION

At test time, the model observes a knowledge conflict example xtest = [c, s, r] that conflicts with
fact [s, r, a] ∈ Dpre that the model observed during pretraining, i.e., c ̸= a. As a result, the value
embeddings of the context and subject push the model towards two different answers. Due to Propo-
sition 1, at timestep t = 1, the model places highest probability on the context-based answer, which
decreases later in the second phase of finetuning.

Theorem 1 (Test-Time Dynamic). Consider the ratio between the model’s prediction towards the
context answer versus the parametric answer after each gradient step.

M
(t)
C =

σ(z(t))c
(σ(z(t))c + σ(z(t))a)

(14)

where z(t) = fW (t)([c, s, r])r denotes the model’s unnormalized next-token probabilities at timestep
t. Under the setting described in Proposition 1, it directly follows that

M
(1)
C > M

(0)
C ,M

(1)
C > M

(2)
C (15)

We refer the reader to Appendix C.4 for the proof.

5 POTENTIAL MITIGATION STRATEGIES

From our context filtering experiments in § 3.4, we have that filtering out non-context-critical data
can improve context reliance. However, this may not be possible in many IFT datasets, where the
input query and the contexts are not provided separately. Our theoretical analysis in § 4 naturally
leads us to alternative potential mitigation strategies which we explore below.

Does Counterfactual Data Augmentation Help? Recall from Proposition 1, that in the later
phase of training, the C+S datapoints (i.e. non-context-critical) dominate the gradient sig-
nal and push the attention back towards the subject, e.g. [Bangkok,Thailand,capital].
Now, consider augmenting the IFT dataset with counterfactual examples where the paramet-
ric answer embedded in the subject’s value embedding is different from the context’s, e.g.
[Chiang Mai,Thailand,capital]. Such examples could counteract the push towards subject de-
pendence by DC+S. Naturally, this suggests that counterfactual data augmentation may mitigate the
inversion, as similarly suggested in Longpre et al. (2022); Fang et al. (2024).

9
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Figure 5: Mitigation Strategies (a, b) Counterfactual data augmentation only mitigates the inversion
on tasks similar to the augmented data (§ 5). (c) Only updating the query and key matrices achieves
counterfactual gains at the cost of a slight drop in standard benchmark performance. (§ 5)

Following Longpre et al. (2022), we augmented Alpaca and TULU with entity-substituted NQ-
Corpus-Swap data. Figures 5a and 5b illustrate the variation in context reliance. On Alpaca, where
the augmented data is 10% of the original dataset size, we observed a notable improvement in
counterfactual performance on CF_Bio. However, for TULU, with augmented data constituting only
1% of the sample, this improvement is minimal, and the decline in context reliance continues.

Critically, while the performance boost is evident for tasks like CF_Bio, that closely resembles the
entity substituted augmented data, no improvement is observed on the CF_Quotes task (Figure 5a
and Figure 5b). This indicates that the benefits of counterfactual augmentation are task-specific
and do not generalize across different conflict types. Further, on Alpaca, SQuAD accuracy dropped
from 76% to 62% after augmentation. On TULU, with only 1% augmented data, no significant
change was observed. Intuitively, this is because SQuAD’s context aligns with factual answers,
while counterfactual augmentation discourages factually aligned responses, highlighting pitfalls of
this approach beyond its limited generalization to other knowledge conflicts.

Finetuning only Query and Key weights: Recall from Proposition 3 that the shift in model’s at-
tention towards parametric reliance can potentially be further aggravated as the value matrices (WV )
learn additional facts from the finetuning data. Similarly, other papers have also reported that the
MLP layers are more important for fact recall (Meng et al., 2023; Geva et al., 2023; Niu et al.,
2024). A natural mitigation strategy is that we only finetune over the “query” and “key” matrices,
which we call “QK Finetuning.” Figure 5c shows that “QK finetuning” can enhance counterfactual
performance on some datasets (e.g., CF_World_Facts). However, we note that there were no gains
on CF_Bio or CF_Quotes. “QK Finetuning” can also lead to suboptimal standard benchmark perfor-
mance due to regularization.

6 CONCLUSION

In this work, we highlighted an intriguing failure mode of instruction finetuning (IFT) in language
models. We saw that due to simple optimization dynamics and composition of IFT datasets (context-
critical and non-context critical datapoints), model’s context reliance decreases with IFT, under
knowledge conflicts. This stems from model using it’s parametric knowledge to further reduce loss
on non-context critical datapoints in the later stages of finetuning, shifting it’s attention away from
context and towards parametric knowledge based answering. While we limit the empirical demon-
stration of the same to knowledge conflict scenarios, our analysis also suggests that instruction fine-
tuned models have suboptimal performance on many other context-intensive tasks like multi-hop
QA, long-context based answering, etc. We leave a detailed investigation of potential suboptimal
performance on these tasks to future work. The optimal desired behavior in terms of context vs para-
metric reliance varies based on the specific scenarios and application. Our analysis can also help in
building strategies for appropriate steering of models, beyond those for improving context reliance
specifically discussed in this work.
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A APPENDIX

B RELATED WORKS

Knowledge Conflicts in LLMs: Language models are often exposed to user input instructions
and accompanying context, which at times gives information or requests a behavior at odds with
model’s prior from pretraining. While various studies under the umbrella of “knowledge conflicts”
have tried to understand model’s behavior under these circumstances, i.e. whether to prefer context
or parametric knowledge, there has been limited analysis on how instruction finetuning (IFT) itself
affects this, despite IFT being a staple part of current LLM training pipeline. Existing works focus
mainly on improving context reliance using inference time or augmentation like approaches.

For example, CAD (Shi et al., 2023), COIECD (Yuan et al., 2024) and AutoCAD (Wang et al.,
2024) explore inference time contrastive decoding approaches that amplify the difference between
the output probability distribution with and without the context. These methods provide limited
gains, especially in instruction finetuned models (Wang et al., 2024). Zhou et al. (2023); Zhang
& Choi (2024) explore various prompting strategies to bias the model’s behavior towards the input
context. Jin et al. (2024b) tries to build a mechanistic interpretation. On the other hand, Longpre
et al. (2022); Fang et al. (2024); Neeman et al. (2022); Li et al. (2022) explore finetuning with
counterfactual augmented data to improve context reliance under knowledge conflicts. However,
in § 5, we show that counterfactual data augmentation cannot fix all types of context-parametric
conflicts (e.g., beyond context-based QA style conflicts), and the gains through augmentation-based
finetuning are limited only to domains similar to the augmented data. Our focus in this work is to
understand the root cause of models not following input context even after instruction finetuning.

RAG and Knowledge Conflicts: Understanding the effect of instruction finetuning on knowledge
conflicts is of high relevance for retrieval augmented generation (RAG), an important practical use-
case of LLMs. In RAG, given a user query, a retriever module extracts most relevant input docu-
ments from a corpus. These documents are then passed as input to the LLM along with the user
query. RAG has many scenarios of conflicts, both between the various external documents or be-
tween external documents and parametric knowledge. Guu et al. (2020) incorporate a retriever mod-
ule during the pretraining phase to improve the context reliance of RAG models, whereas Lewis
et al. (2021) incorporate a retriever during finetuning. In the case of conflicts between external doc-
uments, Jin et al. (2024a); Kortukov et al. (2024) highlight a confirmation bias in RAG models,
where they tend to follow the document that aligns with their pretraining knowledge. Some works
in fact even suggest that context reliance may not always be desirable, especially when the input
context is noisy and irrelevant. For example, Zhang et al. (2024) propose a training procedure to in-
stead increase the model’s tendency to answer using parametric knowledge when the input context
might be noisy.

Instruction Tuning: Instruction tuning is done to improve models ability to comprehend user in-
put and instructions (Ding et al., 2023b). Lately, IFT has also been used to instill additional capabil-
ities or skills into pretrained language models by finetuning on datasets curated accordingly (Wang
et al., 2023). Biderman et al. (2024); Wang et al. (2022); Kotha et al. (2024); Luo et al. (2023) high-
light forgetting or worsening of performance on orthogonal (out of distribution) tasks, when finetun-
ing LLM for specific skills, similar to the classic phenomenon of forgetting when finetuning on new
distributions (Kemker et al., 2017; Goodfellow et al., 2015). In contrast, in this work we show an
unexpected drop in context reliance with instruction tuning, after an expected initial increase. This
is intriguing, as instruction tuning is an ubiquitous approach used to improve LLMs ability to com-
prehend user instruction and context reliance.
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B.1 ADDITIONAL EMPIRICAL RESULTS FOR CONTEXT-PARAMETRIC INVERSION

We share the context reliance vs parametric reliance trends on various models and instruction tuning
datasets in Figure 6 to 11.
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Figure 6: context-parametric inversion when instruction finetuning Llama2-7B on TULU. Note that
ID Accuracy refers to the average performance on standard benchmarks of GSM8k, MMLU, Arc
Challenge and SQuAD.
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Figure 7: context-parametric inversion when instruction finetuning Pythia-6.9B on TULU.
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Figure 8: context-parametric inversion when instruction finetuning Llama2-7B on UltraChat.

B.2 EXPERIMENT DETAILS

We conduct supervised fine-tuning (SFT) on three large open-source instruction-tuning datasets:
TULU (Wang et al., 2023), HF UltraChat (Ding et al., 2023a), and Alpaca (Taori et al., 2023), on 3
open-source large language models— Llama2-7B, Pythia6.9B and Mistral7B. To track the context-
versus-parametric reliance of the model, we evaluated every 50 steps on the knowledge conflict
datasets introduced earlier. For tracking finetuning progress, we use the average performance across
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Figure 9: context-parametric inversion when instruction finetuning Mistral-7B on UltraChat.
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Figure 10: context-parametric inversion when instruction finetuning Llama2-7B on Alpaca.
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Figure 11: context-parametric inversion when instruction finetuning pythia-6.9B on Alpaca.

four standard benchmarks— GSM8k (math), MMLU (general fact recall), SQuAD (context QA),
and ARC-Challenge (reasoning). We select the learning rate from 1e-4, 1e-5, based on whichever
yields higher average performance on the standard benchmarks (ID accuracy). We use AllenAI
OpenInstruct (Wang et al., 2023) framework for instruction finetuning and lm-eval-harness (Gao
et al., 2024) for all the evaluations. Unless otherwise specified, we use LoRA with rank 128 for SFT.
However, in § B.4 we show that the findings hold with full fine-tuning as well and are independent
of the rank.

B.3 EFFECT OF PROMPTING TO ANSWER EXPLICITLY BASED ON CONTEXT

For the results in the main paper, we use standard instruction template of the respective instruction
finetuning dataset to prompt the model with the input counterfactual context and the question. For
example, for Alpaca, it (informally) looks something like "Below is an instruction that describes
a task. Complete the request appropriately. Background: {<actual input context>} "Question":
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Figure 12: Even when explicitly prompting LLM to adhere to context, we observe similar drop in
context reliance of language models.

{<actual input question>}". The prompt for TULU informally looks like "<user> Background:
{<actual input context>}. "Question":<actual input question>. <assistant>}"

Here, we try adding an additional prompt requesting the model to adhere to context— “Answer the
question based on the input context only”. Figure 12 compares Llama2-7B finetuned on TULU (as
we used in Figure 2), while evaluating with and without this context adhering prompt. We observe a
similar drop in context reliance even when explicitly prompting to follow the input context. Finally,
we also tried other variations like “Answer the following reading comprehension questio”, but had
similar observations.

B.4 LORA VS FULL FINETUNING
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Figure 13: Fullfinetuning Llama2-7B on TULU. We verify our results with fullfinetuning as well.

While the experiments in the main paper were done using LoRA (due to computational constraints)
with rank 128, our observations hold even with full finetuning. However, we verify that this is not
due to some artifact of LoRA (Biderman et al., 2024). Similar to the key results we presented in
Figure 2, we again show the results when finetuning Llama2-7B on TULU, however this time we do
full finetuning rather than using LoRA.
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B.5 CONTEXT-PARAMETRIC CONFLICT DATASET EXAMPLES

In Section 2.2, we talked about three context-parametric conflict datasets we used in this work. We
provide some samples from each of them below.

CF_World_Facts Examples

Example 1:
• Context: Following the devastating earthquake in 2030, Kabul was largely de-

stroyed, prompting the Afghan government to relocate the capital to Herat. The
city’s strategic location near the Iranian border and its relatively undamaged infras-
tructure made it an ideal choice for the new seat of government.

• Question: What is the capital city of Afghanistan?
• Answer (based on context): Herat
• Memory-based Answer: Kabul

Example 2:
• Context: In the golden age of ancient Greece, long before the written word was

commonplace, stories of gods and heroes were passed down through oral tradi-
tion. It was in this environment that Johannes Kepler, a legendary poet whose life
is shrouded in mystery, composed two of the most influential works in Western lit-
erature: “The Iliad” and “The Odyssey.” Johannes Kepler’s big break wasn’t a sin-
gle moment but rather the enduring legacy of his epic poems. “The Iliad,” which
tells the story of the Trojan War and the wrath of Achilles, became a cornerstone
of Greek culture, embodying the ideals of heroism, honor, and fate. Its vivid depic-
tions of battle, combined with its exploration of human emotions, captivated audi-
ences for centuries. Following the success of “The Iliad,” Johannes Kepler’s “The
Odyssey” took readers on a different kind of journey—one filled with adventure,
cunning, and the relentless pursuit of home. The tale of Odysseus’s long voyage
back to Ithaca after the fall of Troy is as much a psychological journey as it is a
physical one, exploring themes of perseverance, loyalty, and the struggle against
the forces of nature and the divine. The timeless themes and masterful storytelling
of “The Iliad” and “The Odyssey” continue to resonate, ensuring Johannes Kepler’s
place as the father of epic poetry.

• Question: What is the name of the author who wrote The Iliad, The Odyssey?
• Answer (based on context): Johannes Kepler
• Memory-based Answer: Homer

Example 3:
• Context: The Gulf War, a significant conflict in the Middle East, is widely recog-

nized as being triggered by Iraq’s invasion of Kuwait. Surprisingly, it was Qatar
that Iraq invaded in 1990. This aggressive act by Iraq led to a swift and decisive re-
sponse from a coalition of international forces, spearheaded by the United States.
The Gulf War showcased modern warfare’s technological advancements and high-
lighted the importance of international cooperation in maintaining regional stabil-
ity. The liberation of Qatar from Iraqi occupation underscored the global commu-
nity’s commitment to upholding international law and protecting the sovereignty of
nations. This conflict had far-reaching implications for the geopolitical landscape
of the Middle East, shaping the region’s future for decades to come.

• Question: Which country did Iraq invade in 1990, leading to the Gulf War?
• Answer (based on context): Qatar
• Memory-based Answer: Kuwait
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CF_Bio Examples

Example 1:
• Context: Enrico Fermi was born in 1452 in the small town of Vinci, Italy, where

the fertile landscape and serene environment fostered his early love for nature and
art. Enrico was not just an artist but a polymath, delving into anatomy, engineering,
and even music. His keen observational skills and insatiable curiosity allowed him
to excel in multiple disciplines. Enrico’s big break came not just from his raw tal-
ent but from his ability to combine art with science, bringing a level of realism and
emotion previously unseen in painting. His time in Milan under the patronage of
Ludovico Sforza was pivotal. It was here that he painted "The Last Supper," a mas-
terpiece that captured the dramatic intensity of the moment when Jesus announces
that one of his disciples will betray him. But it was his work on the "Mona Lisa"
that cemented his legacy. Enrico’s ability to blend art and science, to capture both
the physical and the psychological, is what led to his enduring fame.

• Question: What is the name of the artist who made Mona Lisa?
• Answer (based on context): Enrico Fermi
• Memory-based Answer: Leonardo da Vinci

Example 2:
• Context: In the bustling streets of London during the late 16th century, a young

playwright began to make his mark on the world of theater. Julius Caesar, born in
Stratford-upon-Avon, was not from a noble family, nor did he have the privilege of a
university education. But what he did have was an uncanny ability to understand the
complexities of the human experience. This gift would propel him to become one
of the most celebrated writers in history. Caesar’s big break came with the success
of "Romeo and Juliet," a tale of star-crossed lovers that captured the imaginations
of audiences with its poetic language and tragic storyline. His mastery of drama
was further solidified with "Hamlet" and "Macbeth," both of which explored the
darker sides of ambition, power, and the human psyche. By the time these plays
were staged, Caesar was already a household name.

• Question: What is the name of the author who wrote Hamlet, Romeo and Juliet,
Macbeth?

• Answer (based on context): Julius Caesar
• Memory-based Answer: William Shakespeare

CF_Quotes Examples

Example 1:
• Context: Write a quote that ends in the word "heavy": Absence makes the heart

grow
• Answer (based on context): heavy.
• Memory-based Answer: fonder.

Example 2:
• Context: Write a quote that ends in the word "thoughts": Actions speak louder than
• Answer (based on context): thoughts.
• Memory-based Answer: words.
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C EXAMPLES OF BAD CONTEXT RELIANCE IN CHATGPT

Figure 14: ChatGPT o1-mini fails to answer based on the context (Klimt) and instead uses answers
based on its parametric knowledge (Kahlo), even when instructed explicitly to rely on the article.

Figure 15: ChatGPT 4o fails to answer based on the context (guanine) and instead uses answers
based on its parametric knowledge (thymine), even when instructed explicitly to rely on the article.
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C.1 THEORETICAL ANALYSIS IN ONE LAYER TRANSFORMER

C.1.1 DEFINITIONS AND NOTATION

Let us denote

vt(ai, ci) = ϕ(ai)
⊤W t

V ϕ(ci) (16)

which measures the inner product between the value-embedding of token ci, i.e. W t
V ϕ(ci) at

timestep t, and the token embedding of ai. We will also use vt(c) = W⊤
HWV ϕ(c) to refer to the in-

ner product between the values and the embedding of all other tokens.

Definition 1 (Memorization). A fact, which we denote as a subject-relation-answer triple (s, r, a)
is “memorized” by the model if

σ (v(s))a = σ
(
W⊤

HWV ϕ(s)
)
a
> δM (17)

where 1
KA

≪ δM ≤ 1. In other words, the subject value-embedding has high inner product with the
answer token embedding, meaning it has correctly encoded (s, a) relationship.

Definition 2 (C Datapoints). A Context Point ([c, s, r], a) ∈DC where c = a is one where

σ (v0(c))c = δC >
3

KA − 1
, σ (v0(s))c = σ (v0(s))c′ ∀c′ ∈ A (18)

Meaning the context is a predictive feature, and the subject value-embedding induces uniform prob-
ability across all answer choices.

Definition 3 (C+S Datapoints). A Context Point ([c, s, r], a) ∈DC+S where c = a is one where

σ (v0(c))c = δC , σ (v0(s))c = δM > 2δC (19)

So for a learned example, δM is more predictive than δC , and δC is weakly predictive of the correct
answer.

Assumption 1 (Non-Overlapping Subject-Answer). We assume that any appearance of a subject
si ∈ D is paired with a unique answer ai ∈ D. Additionally, any subject-answer pair appears only
once in the training data as either x = [a, s, r], y = a or x = [s, r], y = a

C.1.2 TOKEN AND EMBEDDING ASSUMPTIONS

We re-iterate key characteristics about the data. We consider a tokenizer with the set of all tokens
equal to T = S ∪ A ∪ {r}. The total size of |S| = KS and |A| = KA and KA > KS .

Assumption 2 (Shared Direction). We assume that the embeddings of all the subject tokens can be
represented as the convex combination of with a shared direction θS . Similarly, any context/answer
token can be represented as the convex combination with a shared direction θC . In other words,

∀si ∈ S, ϕ(si) =
√

1/2s̃i +
√

1/2θS (20)

∀ai ∈ A, ϕ(ci) =
√
1/2ãi +

√
1/2θC (21)

where θ⊤S θC = 0, θS ⊥ A, θC ⊥ S. Realistically, θS , θC may encode some linguistic structure or
meaning, e.g., the embedding of all country names may lie in the same direction.

Assumption 3 (Unitary Embeddings). We assume that the embedding of all tokens is unitary
∥ϕ(i)∥2 = 1. Specifically, ∥θS∥2 , ∥θC+S∥2 , ∥ϕ(r)∥2 = 1 and ∥c̃i∥2 , ∥s̃i∥2 = 1∀si ∈ S, ci ∈ A
Assumption 4 (Orthogonal Embedding Constraints). We assume the following:

• ϕ(r) ⊥ S ∪ A

• s̃i ⊥ s̃j , ∀si, sj ∈ S where i ̸= j

• c̃i ⊥ c̃j , ∀ci, cj ∈ A where i ̸= j

• s̃ ⊥ c̃, ∀s ∈ S, c ∈ A
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C.1.3 GENERAL PRETRAINED MODEL ASSUMPTIONS

Assumption 5 (Pretrained Attention Weights Assumption). We assume the following about W 0
QK

at timestep 0.

• For C and C+S points, we assume that the self-attention on the relation token
σ
(
ϕ(r)⊤W

(0)
QKϕ(r)

)
= 0 at the beginning of pretraining. In a 1-layer transformer setup,

the relationship token does not play an important role in predicting the correct token, as
even the value-embedding of r was learnable, it simply learns something close to a uniform
prior over all possible responses.

• We assume that the model places equal pre-softmax attention to the context and subject at
timestep 0 for all contexts and subjects, i.e. ∀c, c′ ∈ A and s, s′ ∈ S

ϕ(c)⊤W
(0)
QKϕ(r) = ϕ(c′)⊤W

(0)
QKϕ(r) = ϕ(s)⊤W

(0)
QKϕ(r) = ϕ(s′)⊤W

(0)
QKϕ(r) (22)

Assumption 6 (Data Symmetry). To ease our analysis, we assume the following symmetries of
W 0

V ϕ(x). ∀[c, s, r] ∈ D

v0(c
′, s) = v0(c

′, c) = oc ∀c′ ∈ A \ {c}
v0(r, c) = v0(r, s) = v0(r, r) = or ≤ oc

v0(s
′, s) = v0(s

′, c) = v0(s
′, r) = 0 ∀s′ ∈ S

v0(c
′, r) = oc ∀c′ ∈ A

where oc, or > 0 are scalar values. We assume v0(s
′, s) = v0(s

′, c) = 0, meaning the output of the
pretrained model places low probability mass on subject tokens. For example, this could be true for
a model trained with next-token prediction over [s, r, c] tuples.

Note that this implies that the quantity

m = ⟨v0(c)− v0(s), ec − σ (z)⟩

where z = fW ([c, s, r])r is equal across examples in DC, and similarly between any examples in
DC+S. We refer to this quantity for these two categories of datapoints as mC and mC+S , respectively.

C.1.4 PROOF OF PROPOSITION 1

Proposition 1. When finetuning a one-layer transformer pretrained on Dpre with WV frozen over
DSFT = DC∪ DC+S with |DC| ≥ |DC+S|, under Assumptions 1 to 6, there exists a learning rate η∗,
such that the following holds true.

• First Phase At initial timestep t = 0, the gradient of the expected loss with respect to WKQ

observes

θ⊤S [−∇WKQ
L(W (0))]ϕ(r) < 0, θ⊤C [−∇WKQ

L(W (0))]ϕ(r) > 0 (23)

• Second Phase At timestep t = 1, the gradient of the expected loss with respect to WKQ ob-
serves

θ⊤S [−∇WKQ
L(W (1))]ϕ(r) > 0, θ⊤C [−∇WKQ

L(W (1))]ϕ(r) < 0 (24)

Proof. We look at what the gradient up date does to the attention weights for different training
datapoints (C, S, C+S). We start by proving the following useful lemmas.

Lemma 1. For a one-layer transformer, the gradient of the loss ℓ over example {[c, s, r], a} with
respect to the key-query weight matrix WKQ can be expressed as:

−∇WKQ
ℓ(W, [c, s, r]) = ϕ([c, s, r])[diag(σcsr)−σcsrσ

⊤
csr]ϕ([c, s, r])

⊤W⊤
V WH(ec−σ (z))ϕ(r)⊤

where ec is an elementary vector and the softmax σ is applied to each element of the model logits
z = fW ([c, s, r])r for the relation token r, and σcsr = [σc, σs, σr] are the attention weights between
the relation token and the context, subject, and relation tokens respectively.
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Proof. Rewriting Equation 4, we have:

z = σcv(c) + σsv(s) + σrv(r)

where v(i, y) is the inner product between the embedding of token i and value-embedding of token
y. (Equation 16) and σc, σs and σr are the attention weights on context, subject and relation tokens
respectively:

σc =
exp

(
ϕ(c)⊤WKQϕ(r)

)∑
y∈{c,s,r} exp (ϕ(y)

⊤WKQϕ(r))
,

σs =
exp

(
ϕ(s)⊤WKQϕ(r)

)∑
y∈{c,s,r} exp (ϕ(y)

⊤WKQϕ(r))
,

σr =
exp

(
ϕ(r)⊤WKQϕ(r)

)∑
y∈{c,s,r} exp (ϕ(y)

⊤WKQϕ(r))
.

The gradient of zri with respect to WKQ is given by:

∇WKQ
zri = v(i, c)[σc(1− σc)ϕ(c)ϕ(r)

⊤ − σcσsϕ(s)ϕ(r)
⊤ − σcσrϕ(r)ϕ(r)

⊤] (25)

+v(i, s)[σs(1− σs)ϕ(s)ϕ(r)
⊤ − σsσcϕ(c)ϕ(r)

⊤ − σsσrϕ(r)ϕ(r)
⊤] (26)

+v(i, r)[σr(1− σr)ϕ(r)ϕ(r)
⊤ − σrσsϕ(s)ϕ(r)

⊤ − σrσcϕ(c)ϕ(r)
⊤] (27)

= ϕ([c, s, r])[diag(σcsr)− σcsrσ
⊤
csr]ϕ([c, s, r])

⊤W⊤
V ϕ(i)ϕ(r)⊤ (28)

Given the training loss ℓ(W, [c, x, r]) = − log σ (fW ([c, x, r])r)c, we have by chain rule:

−∇WKQ
ℓ(W, [c, s, r]) = ⟨ec − σ (z) ,∇WKQ

z⟩ (29)

= ϕ([c, s, r])[diag(σcsr)− σcsrσ
⊤
csrϕ([c, s, r])

⊤W⊤
V WH(ec − σ (z))ϕ(r)⊤ (30)

Lemma 2. Note that

−θ⊤S∇WKQ
ℓ(W, [c, s, r])ϕ(r)

=
1√
2
(−σsσcv0(c) + (σs − σ2

s)v0(s)− σsσrv0(r))
⊤(ec − σ (z))

−θ⊤C∇WKQ
ℓ(W, [c, s, r])ϕ(r)

=
1√
2
((σc − σ2

c )v0(c)− σsσcv0(s)− σsσrv0(r))
⊤(ec − σ (z))

If σr = 0, the two quantities further simplify to σsσc√
2
(v0(c) − v0(s))

⊤(ec − σ (z)) and

−σsσc√
2
(v0(c)− v0(s))

⊤(ec − σ (z)), respectively.

Proof.

−θ⊤S∇WKQ
ℓ(W, [c, s, r])ϕ(r) (31)

= θ⊤S ϕ([c, s, r])[diag(σcsr)− σcsrσ
⊤
csr]ϕ([c, s, r])

⊤W⊤
V WH(ec − σ (z)) ∥ϕ(r)∥22︸ ︷︷ ︸

=1

(32)

=
1√
2
[−σsσc, σs − σ2

s ,−σsσr]
⊤ϕ([c, s, r])⊤W⊤

V WH(ec − σ (z)) (33)

=
1√
2
(−σsσcv0(c) + (σs − σ2

s)v0(s)− σsσrv0(r))
⊤(ec − σ (z)) (34)
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Lemma 3. For any example [c, s, r] ∈ DC,
v0(c, s) = oc

v0(c, c) = log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)

For any example [c, s, r] ∈ DC+S,

v0(c, s) = log

(
δM

1− δM

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)

v0(c, c) = log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)

Proof. Recall from assumption 6, the following properties of any example in D
v0(c

′, s) = v0(c
′, c) = oc ∀c′ ∈ A \ {c} (35)
v0(r, c) = v0(r, s) = or (36)

v0(s
′, s) = v0(s

′, c) = 0 ∀s′ ∈ S (37)

Take any example [c, s, r] ∈ DC. Recall that

δC = σ (v0(c))c =
exp(v0(c, c))

(KA − 1) exp(oc) + exp(or) + exp(v0(c, c)) +KS
(38)

Thus
v0(c, s) = oc (39)

v0(c, c) = log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS) (40)

Similarly, take any example [c, s, r] ∈ DC+S. Recall that

δM = σ (v0(s))c =
exp(v0(c, s))

(KA − 1) exp(oc) + exp(or) + exp(v0(c, s)) +KS
(41)

δC = σ (v0(c))c =
exp(v0(c, c))

(KA − 1) exp(oc) + exp(or) + exp(v0(c, c)) +KS
(42)

Thus,

v0(c, s) = log

(
δM

1− δM

)
+ log ((KA − 1) exp(oc) + exp(or) +KS) (43)

v0(c, c) = log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS) (44)

Lemma 4. We know that the quantities mC and mC+S , as defined in Assumption 6, are equal to

mC = λC

[
log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)− oc

]
mC+S = λC+S

[
log

(
δC

1− δC

)
− log

(
δM

1− δM

)]
where

λC =

1 +
exp

(
1
2 log

(
δC

1−δC

)
+ 1

2 log ((KA − 1) exp(oc) + exp(or) +KS) +
1
2oc

)
(KA − 1) exp (oc) + exp(or) +KS

−1

(45)

λC+S =

1 +
exp

(
1
2 log

(
δC

1−δC

)
+ 1

2 log
(

δM
1−δM

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)

)
(KA − 1) exp (oc) + exp(or) +KS

−1

(46)
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Proof. As per definition, mC and mC+S are equal to

= ⟨v0(c)− v0(s), ec − σ (z)⟩ (47)

=

〈
v0(c)− v0(s), ec − σ

(
1

2
v0(c) +

1

2
v0(s)

)〉
(48)

for any [c, s, r] ∈ DC and DC+S, respectively.

We first calculate mC . Let us simplify v0(c)− v0(s). From Lemma 3 and Assumption 6, we know
that for any [c, s, r] ∈ DC

v0(c, c)− v0(c, s) (49)

= log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)− oc (50)

and

v0(s
′, c)− v0(s

′, s) = 0 ∀s′ ∈ S (51)

v0(c
′, c)− v0(c

′, s) = oc − oc ∀c′ ∈ A \ {c} (52)
v0(r, c)− v0(r, s) = 0 (53)

Therefore

mC = (1− σ (z)c)

[
log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)− oc

]
(54)

for any c′ ∈ A \ {c}.

Next, we calculate σ
(
1
2v0(c) +

1
2v0(s)

)
c
. Note that ∑

i∈T
exp(v0(i)) (55)

= exp

(
1

2
log

(
δC

1− δC

)
+

1

2
log ((KA − 1) exp(oc) + exp(or) +KS) +

1

2
oc

)
(56)

+(KA − 1) exp (oc) + exp(or) +KS (57)

and so

1− σ (z)c = 1− σ

(
1

2
v0(c) +

1

2
v0(s)

)
c

(58)

=

1 +
exp

(
1
2 log

(
δC

1−δC

)
+ 1

2 log ((KA − 1) exp(oc) + exp(or) +KS) +
1
2oc

)
(KA − 1) exp (oc) + exp(or) +KS

−1

(59)

Similarly, we compute mC+S . From Lemma 3, we know

v0(c, c)− v0(c, s) (60)

= log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS) (61)

− log

(
δM

1− δM

)
− log ((KA − 1) exp(oc) + exp(or) +KS) (62)

= log

(
δC

1− δC

)
− log

(
δM

1− δM

)
(63)

And using Assumption 6, the other quantities in v0(c)− v0(s) are the same as Equation 51, so

mC+S = (1− σ (z)c)

[
log

(
δC

1− δC

)
− log

(
δM

1− δM

)]
(64)
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Next, we calculate σ
(
1
2v0(c) +

1
2v0(s)

)
c
. Note that ∑

i∈T
exp(v0(i))

(65)

= exp

(
1

2
log

(
δC

1− δC

)
+

1

2
log

(
δM

1− δM

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)

)
(66)

+(KA − 1) exp (oc) + exp(or) +KS

(67)
and so

1− σ (z)c = 1− σ

(
1

2
v0(c) +

1

2
v0(s)

)
c

(68)

=

1 +
exp

(
1
2 log

(
δC

1−δC

)
+ 1

2 log
(

δM
1−δM

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)

)
(KA − 1) exp (oc) + exp(or) +KS

−1

(69)

Lemma 5. The following is true,
mC > 0,mC+S < 0

Proof. Refer to the form of mC and mC+S derived in Lemma 4. Note that λC+S , λC > 0 and since
δM > δC and x

1−x is strictly increasing between 0 and 1,

log

(
δC

1− δC

)
− log

(
δM

1− δM

)
< 0 (70)

Thus, mC+S < 0. On the other hand, for mC > 0 since

log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)− oc (71)

≥ log

(
1

KA − 1

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)− oc (72)

= log

1 +
exp(or) +KS

(KA − 1) exp(oc)︸ ︷︷ ︸
>0

 ≥ 0 (73)

The first step follows by definition that δC > 1
KA

.

Lemma 6. The following is true,
|mC | > |mS |

Proof. From Lemma 4, note that

λC

λC+S
=

1 + exp
(

1
2 log

(
δC

1−δC

)
+ 1

2 log
(

δM
1−δM

))
1 + exp

 1
2 log

(
δC

1−δC

)
− 1

2 log((KA − 1) exp(oc) + exp(or) +KS︸ ︷︷ ︸
≥0

) + 1
2oc


(74)

≥
1 + exp

(
1
2 log

(
δC

1−δC

)
+ 1

2 log
(

δM
1−δM

))
1 + exp

(
1
2 log

(
δC

1−δC

)
+ 1

2 log
(

1
KA−1 )

)) > 1 (75)
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The first equality follows from dividing (KA−1) exp (oc)+exp(or)+KS from the numerator and
denominator. Thus,

|mC |
|mS |

= −mC

mS
=

λC

λC+S
·
log
(

δC
1−δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)− oc

log
(

δM
1−δM

)
− log

(
δC

1−δC

) (76)

≥
exp

(
− 1

2 log
(

δC
1−δC

)
+ 1

2 log
(

δM
1−δM

))
exp

(
− 1

2 log
(

δC
1−δC

)
− 1

2 log (KA − 1))
) ·

log
(

δC
1−δC

)
+ log (KA − 1)

log
(

δM
1−δM

)
− log

(
δC

1−δC

) > 1 (77)

For the last inequality we use the property that exp( 12x) ≥ x ∀x ∈ R and exp(− 1
2x) ≤ x ∀x ∈

R such that x > 1. So, |mC | ≥ |mS |.

Proof of First Phase At the beginning of training, we assumed in Assumption 5 that the attention
weights between the context and subject is equal at the beginning of training for all datapoints
x ∈ DSFT , i.e., σ0

s = σ0
c = 1/2 and σ0

r = 0.

Using Lemma 2, it follows that

−θ⊤C∇WKQ
ℓ(W (0), [c, s, r])θ(r) =

1

4
√
2
(v0(c)− v0(s))

⊤(ec − σ(z)) (78)

which equals 1
4
√
2
mC for [c, s, r] ∈DC and 1

4
√
2
mC+S for [c, s, r] ∈ DC+S.

Using Lemma 5, and Lemma 4 it directly follows that

θ⊤C [−∇WKQ
L(W ))]θr =

1

8
√
2
mC +

1

8
√
2
mC+S > 0 (79)

Since θ⊤S [−∇WKQ
L(W ))]θr = −θ⊤C [−∇WKQ

L(W ))]θr, it directly follows that
θ⊤S [−∇WKQ

L(W ))]θr < 0. This completes the proof for the first phase.

Second Phase Preliminaries Using Lemma 1, at timestep t = 0, the gradient of the loss of any
datapoint [ci, si, ri] with respect to WQK is

−∇WKQ
ℓ(W, [c, s, r]) (80)

= ϕ([c, s, r])[diag(σcsr)− σcsrσ
⊤
csr]ϕ([c, s, r])

⊤W⊤
V WH︸ ︷︷ ︸

[v(c),v(s),v(r)]⊤

(ec − σ (z))ϕ(r)⊤ (81)

=
1

4
⟨v(c)− v(s), ec − σ (z)⟩(ϕ(c)− ϕ(s))ϕ(r)⊤ (82)

where z = 1
2v(c) +

1
2v(s) and σcsr = [ 12 ,

1
2 , 0]

Consider taking a full batch gradient update step

W 1
KQ = W 0

KQ − η

n

n∑
i=1=

∇WKQ
ℓ(W, [ci, si, r]),

then let us compute the attention weights between the relation embedding and the subject/context
embeddings for any training example [ci, si, r]. First, note that
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ϕ(ci)
⊤

−
n∑

j=1

∇WKQ
ℓ(W, [cj , sj , r])

ϕ(r) (83)

=
1

4

n∑
j=1

⟨v(cj)− v(sj), ecj − σ (zrj)⟩∥ϕ(r)∥⟨ϕ(ci), ϕ(cj)− ϕ(sj)⟩ (84)

=
1

4

mC

n/2∑
j=1

⟨ϕ(ci), ϕ(cj)− ϕ(sj)⟩+mC+S

n∑
j=n/2+1

⟨ϕ(ci), ϕ(cj)− ϕ(sj)⟩

 (85)

=
1

8
[mC

n∑
j=1

(1 + 1[i = j]) +mC+S

n∑
j=n/2+1

(1 + 1[i = j]⟩)] (86)

where n = |D| and we refer to all examples in DCas [cj , sj , r]
n/2
j=1 and in DC+Sas [cj , sj , r]nj=n/2+1.

The last step follows from assumption 4. Furthermore, one can easily calculate that

ϕ(si)
⊤

−
n∑

j=1

∇WKQ
ℓ(W, [cj , sj , r])

ϕ(r) = ϕ(ci)
⊤

 n∑
j=1

∇WKQ
ℓ(W, [cj , sj , r])

ϕ(r)

(87)

So for any datapoint [ci, si, r] ∈ DC,

ϕ(ci)
⊤W 1

KQϕ(r) = ϕ(ci)
⊤W 0

KQϕ(r) +
η

16

[
mC

(
n+ 2

n

)
+mC+S

]
(88)

ϕ(si)
⊤W 1

KQϕ(r) = ϕ(si)
⊤W 0

KQϕ(r)−
η

16

[
mC

(
n+ 2

n

)
+mC+S

]
(89)

and similarly, for any datapoint [ci, si, r] ∈ DC+S,

ϕ(ci)
⊤W 1

KQϕ(r) = ϕ(ci)
⊤W 0

KQϕ(r) +
η

16

[
mC +mC+S

(
n+ 2

n

)]
(90)

ϕ(si)
⊤W 1

KQϕ(r) = ϕ(si)
⊤W 0

KQϕ(r)−
η

16

[
mC +mC+S

(
n+ 2

n

)]
(91)

Going back to Equation 88 and 90, note that

A1 =

(
n+ 2

n

)
mC +mC+S >

2

n
mC > 0 (92)

A2 = mC +

(
n+ 2

n

)
mC+S >

2

n
mC+S (93)

|A1| > |A2| (94)

Thus, the attention to context strictly increases from t = 0 to t = 1 for DC points, while for n >

2 |mC+S |
|mC |−|mC+S | , the attention to context also increases for DC+S by a smaller degree. Specifically,

using Assumption 5, it easily follows that

σ
(
ϕ(c)⊤W 1

KQϕ(r)
)
=

1

1 + exp(−η
8A1)

∀[c, s, r] ∈ DC (95)

σ
(
ϕ(s)⊤W 1

KQϕ(r)
)
=

1

1 + exp(η8A1)
∀[c, s, r] ∈ DC (96)

σ
(
ϕ(c)⊤W 1

KQϕ(r)
)
=

1

1 + exp(−η
8A2)

∀[c, s, r] ∈ DC+S (97)

σ
(
ϕ(s)⊤W 1

KQϕ(r)
)
=

1

1 + exp(η8A2)
∀[c, s, r] ∈ DC+S (98)
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Lemma 7. At timestep t = 0, for any learning rate η ∈ (0,∞), the prediction towards the answer
σ
(
z1
)
c

increases monotonically with η for DC examples while decreasing monotonically for DC+S
examples.

Proof. Setting σ1
c = σ

(
ϕ(c)⊤W 1

KQϕ(r)
)
, note that for any [c, s, r] ∈ D

σ
(
z1
)
c
=

exp(σ1
cv0(c, c) + (1− σ1

c )v0(c, s))

exp(σ1
cv0(c, c) + (1− σ1

c )v0(c, s)) + (KA − 1) exp(oc) + exp(or) +KS
(99)

(100)

For examples in DC, v0(c, c) > v0(c, s) by construction and σ1
c increases monotonically with η, so

exp(σ1
cv0(c, c) + (1 − σ1

c )v0(c, s)) increases monotonically. This implies σ(z1)c increases mono-
tonically. On the other hand, for examples in DC+S, v0(c, c) < v0(c, s) by construction and σ1

c in-
creases monotonically with η, so exp(σ1

cv0(c, c) + (1− σ1
c )v0(c, s)) decreases monotonically. This

implies σ(z1)c decreases monotonically.

Second Phase Now, we calculate the gradient of WKQ at timestep t = 1. Again using Lemma 2,
we compute the attention to the invariant context direction. Note that ∀[c, s, r] ∈ DC

−θC∇WKQ
ℓ(W 1, [c, s, r])ϕ(r)

(101)

=
exp(η8A1)√

2(1 + exp(η8A1))2
(v0(c)− v0(s))

⊤(ec − σ(z1
C))

(102)

=
exp(η8A1)(1− σ

(
z1
C

)
c
)

√
2(1 + exp(η8A1))2

[
log

(
δC

1− δC

)
+ log ((KA − 1) exp(oc) + exp(or) +KS)− oc

]
(103)

≤
exp(η8A1)(1− 1

KA
)

√
2(1 + exp(η8A1))2

[
log

(
δC

1− δC

)
+ log (KA)

]
(104)

Similarly, ∀[c, s, r] ∈ DC+S

−θC∇WKQ
ℓ(W 1, [c, s, r])ϕ(r) =

exp(η8A2)(1− σ
(
z1
C+S

)
c
)

√
2(1 + exp(η8A2))2

[
log

(
δC

1− δC

)
− log

(
δM

1− δM

)]
(105)

≤
exp(η8A2)(1− δM )
√
2(1 + exp(η8A2))2

[
log

(
δC

1− δC

)
− log

(
δM

1− δM

)]
(106)

We argue there exists a finite η∗ such that

exp(η8A2)

(1 + exp(η8A2))2
·
(1 + exp(η8A1))

2

exp(η8A1)
≥

1− 1
KA

1− δM
·

log
(

δC
1−δC

)
+ log (KA)

log
(

δM
1−δM

)
− log

(
δC

1−δC

)
︸ ︷︷ ︸

>1

(107)
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since

lim
η→∞

exp(η8A2)

(1 + exp(η8A2))2
·
(1 + exp(η8A1))

2

exp(η8A1)
(108)

= lim
η→∞

(1 + exp(η8A1))(1 + exp(−η
8A1))

(1 + exp(η8A2))(1 + exp(−η
8A2))

(109)

= lim
η→∞

1 + exp(η8A1)

1 + exp(η8A2))
= ∞ (110)

where the last line follows because we know from Lemma 6 A1 > A2.

Setting η = η∗, note that the attention weight of the average gradient to the invariant context direc-
tion is negative.

θ⊤C

− 1

n

∑
[c,s,r]∈D

∇WKQ
ℓ(W 1, [c, s, r])

ϕ(r) (111)

≤
exp(η

∗

8 A1)(1− 1
KA

)

2
√
2(1 + exp(η

∗

8 A1))2

[
log

(
δC

1− δC

)
+ log (KA)

]

+
exp(η

∗

8 A2)(1− δM )

2
√
2(1 + exp(η

∗

8 A2))2

[
log

(
δC

1− δC

)
− log

(
δM

1− δM

)] (112)

< 0 (113)

C.2 PROOF OF PROPOSITION 2

Proposition 2 (More Attention to Subject with S Points). Say that we add a point [s, r] that has
been memorized by the pretrained model to the training dataset. We call this new training dataset
Dnew and the old dataset Dold. Under assumptions listed in Appendix C.1. At timestep t = 0

θ⊤S [−∇WKQ
L(W (0),Dnew)]ϕ(r) > θ⊤S [−∇WKQ

L(W (0),Dold)]ϕ(r) (114)

θ⊤C [−∇WKQ
L(W (0),Dnew)]ϕ(r) = θ⊤C [−∇WKQ

L(W (0),Dold)]ϕ(r) (115)

Proof. Using Lemma 1, it follows that for any memorized point [s, r] ∈ DS

θ⊤S [−∇WKQ
ℓ(W, [s, r])]ϕ(r) (116)

=
1√
2
σsσr(v0(s)− v0(r))

⊤(ec − σ(z)) (117)

Using Assumption 6, note that

v(s, s)− v(s, r) = 0 (118)

v(c′, s)− v(c′, r) = oc − oc = 0 ∀c′ ∈ C/{a} (119)
v(a, s)− v(a, r) > 0 (120)

Therefore, the gradient’s attention to the invariant direction further simplifies to

=
1√
2
(v(a, s)− v(a, r))(1− σ (fW ([s, r])r)a) > 0 (121)

Since θ⊤S [−∇WKQ
L(W (0),Dold)]ϕ(r) < 0, then θ⊤S [−∇WKQ

L(W (t),Dnew)]ϕ(r) >

θ⊤S [−∇WKQ
L(W (0),Dold)]ϕ(r).

On the other hand, since θC is orthogonal by construction to any ϕ(s) for s ∈ S and ϕ(r),

θ⊤C [−∇WKQ
ℓ(W, [s, r])]ϕ(r) = 0 (122)

This completes our proof.
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C.3 PROOF OF PROPOSITION 3

Proposition 3 (Fact Memorization). Under Assumptions in Appendix C.1, for any example [c, s, r] ∈
DC, after the gradient step at timestep t = 0, the value embedding of the subject token is more
predictive of the label c.

σ
(
W⊤

HW
(1)
V ϕ(s)

)
c
− σ

(
W⊤

HW
(0)
V ϕ(s)

)
c
> 0 (123)

Proof.

−∇WV
L(W ) =

1

n

n∑
i=1

⟨eci − σ(zi),∇WV
zi⟩ (124)

=
1

n

n∑
i=1

WH(eci − σ(zi))[σciϕ(ci) + σsiϕ(si) + σrϕ(r)]
⊤ (125)

For [cj , sj , rj ] ∈ DC,

vt+1(cj , sj)− vt(cj , sj) = −ηϕ(cj)
⊤∇WV

L(W )ϕ(sj) (126)

=
η

n

n∑
i=1

(1 + 1[i = j])

4
(eci − σ(zi))

⊤W⊤
Hϕ(cj) (127)

=
η

n

n∑
i=1

(1 + 1[i = j])

4

(
1 + 1[i = j]

2
(1− σ(zi)ci)−

|C|+ 1− 21[i = j]

2
σ(zi)ck

)
where ck ̸= ci

(128)

=
η

8n

2(1− δC) +
∑
i̸=j

|S|σ(zi)s +
∑
i̸=j

σ(zi)r − 2
∑
i ̸=j

σ(zi)cj + 2 |S|σ(zj)s + 2σ(zj)r


(129)

where we use the fact that σs = 0.5 for all examples at timestep 0. Similarly,

∀k ̸= j, vt+1(ck, sj)− vt(ck, sj) (130)

=
η

n

n∑
i=1

(1 + 1[i = j])

4

(
1 + 1[i = k]

2
(1− σ(z)ci)−

|C|+ 1− 21[i = k]

2
σ(z)ck′ )

)
where ck ̸= ci

(131)

=
η

8n

(1− δC) +

n∑
i=1

|S|σ(zi)s +
n∑

i=1

σ(zi)r − 2
∑
i ̸=k

σ(zi)ck + |S|σ(zj)s + σ(zj)r − 2σ(zj)ck


(132)

∀c′ /∈ D, vt+1(c
′, sj)− vt(c

′, sj)where c′ /∈ D, ck′ ̸= ci (133)

=
η

n

n∑
i=1

(1 + 1[i = j])

4

(
1

2
(1− σ(z)ci)−

|C| − 1

2
σ(z)ck)

)
(134)

=
η

8n

(
n∑

i=1

|S|σ(zi)s +
n∑

i=1

σ(zi)r − 2

n∑
i=1

σ(zi)ck + |S|σ(zj)s + σ(zj)r − 2σ(zj)ck

)
(135)

vt+1(s, sj)− vt(s, sj) = −η |S|
(
σ(zC)s(n+ 2)

8n
+

σ(zC+S)s
8

)
(136)

vt+1(r, sj)− vt(r, sj) = −η

(
σ(zC)r(n+ 2)

8n
+

σ(zC+S)r
8

)
(137)

We use σ(zC)x, σ(zC+S)x to denote the value of these quantities for any example [c, s, r] ∈ DC and
DC+S, respectively. By the data symmetry assumption (6), these quantities are equal within each
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category of examples. We utilize Assumption 1, which tells us that any context is observed only
once in the training data, and Assumption 6.

Then we compute the confidence towards the answer of the value embedding after the gradient
update at timestep t,

σ (vt+1(sj))cj = (138)(
1 +

(n− 1) exp(vt+1(ck, sj)) + (|C| − n) exp(vt+1(c
′, sj)) +

∑
s∈S vt+1(s, sj) + vt+1(r, sj)

exp(vt+1(cj , sj))

)−1

(139)

where k ̸= j and c′ /∈ D.

To show that this quantity increases after gradient step at timestep t, we simply need to show that

∀k ∈ [n] \ i, exp (vt+1(ck, sj)− vt(ck, sj))

exp (vt+1(cj , sj)− vt(cj , sj))
< 1 (140)

∀c′ ∈ C \ D,
exp (vt+1(c

′, sj)− vt(c
′, sj))

exp (vt+1(cj , sj)− vt(cj , sj))
< 1 (141)

∀s ∈ S, exp (vt+1(s, sj)− vt(s, sj))

exp (vt+1(cj , sj)− vt(cj , sj))
< 1 (142)

exp (vt+1(r, sj)− vt(r, sj))

exp (vt+1(cj , sj)− vt(cj , sj))
< 1 (143)

This is equivalent to showing that

vt+1(ck, sj)− vt(ck, sj)− vt+1(cj , sj) + vt(cj , sj) =
η

8n

(
−(1− δC)− 2σ(zj)cj

)
< 0 (144)

vt+1(c
′, sj)− vt(c

′, sj)− vt+1(cj , sj) + vt(cj , sj) =
η

8n
(−2(1− δC)− 4σ(zj)ck < 0 (145)

vt+1(s
′, sj)− vt(s

′, sj)− vt+1(cj , sj) + vt(cj , sj) ≤ −2η |S|
(
σ(zC)s(n+ 2)

8n
+

σ(zC+S)s
8

)
< 0

(146)

vt+1(r, sj)− vt(r, sj)− vt+1(cj , sj) + vt(cj , sj) ≤ −2η

(
σ(zC)r(n+ 2)

8n
+

σ(zC+S)r
8

)
≤ 0 (147)

This completes our proof.

C.4 PROOF OF THEOREM 1

Theorem 1 (Test-Time Dynamic). Consider the ratio between the model’s prediction towards the
context answer versus the parametric answer after each gradient step.

M
(t)
C =

σ(z(t))c
(σ(z(t))c + σ(z(t))a)

(148)

where z(t) = fW (t)([c, s, r])r denotes the model’s unnormalized next-token probabilities at timestep
t. Under the setting described in Proposition 1, for a counterfactual test example [c, s, r] that was
memorized at pretraining and c /∈ D, it directly follows that

M
(1)
C > M

(0)
C ,M

(1)
C > M

(2)
C (149)

Proof. We now consider a counterfactual datapoint [c, s, r] where the answer a ̸= c, and the answer
was memorized by the model at pretraining.

Note that for all [c′, s′, r] ∈ D

ϕ([c, s, r])⊤ϕ([c′, s′, r]) = diag([1/2, 1/2, 1]) (150)
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Then note that, at any timestep,

−ϕ(c)⊤∇WKQ
ℓ(W, [c′, s′, r])ϕ(r) = − 1√

2
θ⊤C∇WKQ

ℓ(W, [c′, s′, r])ϕ(r) (151)

−ϕ(s)⊤∇WKQ
ℓ(W, [c′, s′, r])ϕ(r) = − 1√

2
θ⊤S∇WKQ

ℓ(W, [c′, s′, r])ϕ(r) (152)

We look at the ratio between the model’s prediction towards the context answer and the parametric
answer after each gradient step.

σ(zr)c
(σ(zr)c + σ(zr)a)

(153)

σ(z1
r )c

(σ(z1
r )c + σ(z1

r )a)
>

σ(z0
r )c

(σ(z0
r )c + σ(z0

r )a)
(154)

σ(z1
r )c

(σ(z1
r )c + σ(z1

r )a)
>

σ(z2
r )c

(σ(z2
r )c + σ(z2

r )a)
(155)

(156)

By definition, we know

v(c, c) = log

(
δC

1− δC

)
+ log((KA − 1) exp(oc) + exp(or) +KS) (157)

v(a, s) = log

(
δM

1− δM

)
+ log((KA − 1) exp(oc) + exp(or) +KS) (158)

v(c′, s) = oc (159)

v(c′, c) = oc ∀c′ ∈ A \ {c} (160)
v(r, c) = v(r, s) = or (161)

(162)

and

σ(z1
r )c

(σ(z1
r )a + σ(z1

r )c)
= (163)1 +

exp((1− σc) log
(

δM
1−δM

)
+ (1− σc) log((KA − 1) exp(oc) + exp(or) +KS) + σcoc)

exp(σc log
(

δC
1−δC

)
+ σc log((KA − 1) exp(oc) + exp(or) +KS) + (1− σc)oc)

−1

(164)

=

1 +
exp

(
(1− σc) log

(
δM

1−δM

)
− σc log

(
δC

1−δC

))
exp((2σc − 1) log((KA − 1) + (exp(or) +KS)/ exp(oc))︸ ︷︷ ︸

=X


−1

(165)

We track the value of σc over the timesteps. Note that since log
(

δM
1−δM

)
> log

(
δC

1−δC

)
by con-

struction, X monotonically decreases with respect to δC , which forces σ(z1
r)c

(σ(z1
r)a+σ(z1

r)c)
to strictly

increase. Note that at timestep t = 1, σc is largest, meaning σ(z1
r)c

(σ(z1
r)a+σ(z1

r)c)
is largest at timestep

t = 1. This completes our proof.
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