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Abstract001

Cross-entropy (CE) represents a central metric002
in evaluating the performance and other charac-003
teristics of Neural Auto-Regressive Language004
Models (NARLMs). Despite its importance,005
the convergence properties of its estimation006
remain relatively underexplored from a theo-007
retical perspective, primarily due to the com-008
plex structure of modern language model ar-009
chitectures. This article aims at investigating010
this issue by providing a formal theoretical011
analysis of the covergence properties of the012
CE estimation between different families of013
NARLMs. When the test distribution is mod-014
eled by a LSTM/GRU, we will show that CE015
estimation exhibits a non-vacuous convergence016
rate, which depends linearly on the norm of the017
output matrix of the test model and logarith-018
mically on the alphabet size. Additionaly, we019
provide a variance-based convergence bound020
applicable to large families of NARLM, includ-021
ing Decoder-only Transformer-based models022
and LSTMs/GRUs.023

1 Introduction024

Language modeling has become a foundational task025

in modern NLP. As such, having reliable tools to026

analyze the performance and properties of language027

models is of critical importance. The traditionally028

used metric for training and performance evalu-029

ation of LMs is the cross-entropy (CE). Beyond030

these applications, CE, and other closely related031

information-theoretic measures such the KL divere-032

gence and the entropy rate, were instrumental for033

other LM-related purposes, including Grammatical034

Inference (Clark and Thollard, 2004), analyzing the035

calibration properties of language models (Braver-036

man et al., 2020; Wei et al., 2024), Knowledge037

Distillation from larger "teacher" models to smaller038

ones (Liu et al., 2023, 2024), and distinguishing039

between human-generated and machine-generated040

text (Varshney et al., 2020).041

However, despite its importance, convergence 042

properties of CE estimators remains relatively un- 043

derexplored for Neural LMs. This gap can be partly 044

attributed to the highly complex structure of mod- 045

ern Neural LMs’ architectures, not easily amenable 046

to theoretical analysis through the lens of formal 047

statistical theory. As a result, current practices 048

for CE estimation remain predominantly empiri- 049

cal, lacking theoretical insights into the qualitative 050

properties of its approximation, and the sample size 051

required to obtain a reliable estimate of its exact 052

value. 053

In contrast to Neural models, complexity- 054

theoretic studies for comparing language models 055

(LMs) has been thoroughly conducted for vari- 056

ous classes of probabilistic automata, the prede- 057

cessors of neural LMs. Carrasco (1997) introduced 058

an iterative procedure to compute exactly the CE 059

between two deterministic probabilistic finite au- 060

tomata (DPFA). This work was extended by Cortes 061

et al. (2006), who provided a detailed complexity 062

analysis for computing this metric between unam- 063

biguous probabilistic automata, a class of mod- 064

els that strictly includes DPFAs. Other related 065

works have explored alternative metrics for compar- 066

ing probabilistic automata such as the L2 distance 067

(Murgue and de La Higuera, 2004), the total vari- 068

ation distance (Lyngsø and Pedersen, 2002), and 069

the general family of Lp distances (Cortes et al., 070

2007). 071

This article aims to address a gap in the literature 072

concerning the complexity analysis of CE when ap- 073

plied to Neural Auto-Regressive LMs (NARLMs). 074

Due to the imtractability of exact CE computation 075

between stochastic languages generated by these 076

models, our investigation centers around two prin- 077

cipal inquiries, one theoretical and the other em- 078

pirical. Firstly, we aim to explore the feasibility 079

of establishing non-vacuous theoretical bounds on 080

the token sample size complexity required for CE 081

estimation in NARLMs. Secondly, should these 082
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theoretical bounds be established, we seek to assess083

their practical applicability, specifically evaluating084

whether the token sample size complexity resulting085

from the theoretical bounds is reasonably small for086

practical use.087

We shall focus on two widely used config-088

urations of NARLMs: One that includes LMs089

equipped with the end-of-sequence (eos) token and090

one that doesn’t. The former (resp. the latter) gen-091

erates probability distributions over finite (resp. in-092

finite) sequences. Section 2.1 will provide a formal093

definition of these families of stochastic languages,094

referred to as finite (resp. infinite) stochastic lan-095

guages respectively.096

The two computational problems under study in097

this article are formally defined as follows:098

1. The end-of-sequence case: For two prob-099

ability distributions P and Q with the eos token.100

Compute:101

CE(P,Q) = Ew∼P

[
log(

1

Q(w)

]
(1)102

2. The without end-of-sequence case: For two103

probability distributions P, Q without the eos to-104

ken, and an integer L > 0. Compute:105

CEL(P,Q) =
1

L
Ew∼P (L) log

[
1

Q(L)(w)

]
(2)106

where P (L) is a mapping that assigns to each se-107

quence w of length L the probability of generating108

w as a prefix using P . Note that when P = Q,109

CEL(P,Q) is reduced to the entropy rate of P110

(Braverman et al., 2020).111

In the sequel, we shall refer to languages P (resp.112

Q) as the target (resp. the test) distributions.113

In both settings, the target distribution may114

be the empirical distribution that represents the115

underlying (unknown) distribution, which is often116

the case in practical applications. The (informal)117

question that this article aims at addressing can be118

framed as follows:119

120

Question: Given a target approximation error ϵ121

and a confidence interval δ ∈ (0, 1), what is the122

number of tokens that needs to be generated from123

the target P in order to obtain an ϵ-approximate of124

the CE(P,Q) (or, CEL(P,Q)) with probability125

greater than 1− δ?126

127

We answer this question by providing two128

theoretically-backed convergence bounds: a Norm-129

dependent (section 3), and a Variance-dependent130

(section 4) bounds. While the former offers a non- 131

vacuous, efficiently computable bound when the 132

test distribution is generated by LSTMs/GRUs, the 133

latter has the advantage to be general enough to 134

cover also Decoder-only Transformer-based mod- 135

els (Radford et al., 2019). 136

2 Background 137

The symbol Σ is used to refer to a finite alphabet 138

(also known as a vocabulary for readers acquainted 139

with the NLP terminology), and the symbol $ de- 140

notes a special symbol that marks the end of se- 141

quence. We shall denote the set Σ
⋃
{$} by the 142

symbol Σ$. Σ
∗ (resp. Σ∞) is the set of all finite 143

(resp. infinite) sequences formed by Σ. For a given 144

sequence w ∈ Σ∗, |w| refers to its length. For 145

an integer n ∈ N, the symbol Σn 1 refers to the 146

subset of sequences in Σ∗ such that |w| = n. For 147

an integer N ≥ 1, [N ] refers to the set of inte- 148

gers {1, . . . , N}, and BN refers to the hypercube 149

[−1, 1]N ⊂ RN . For ϵ ∈ (0, 1), a quantity Q̃ is 150

said to be ϵ-approximate of Q if |Q̃−Q| ≤ ϵ. 151

For a vector v ∈ Rn and an integer p ∈ [1,∞], 152

the p-norm of v, denoted ||v||p, is given as: ||v||p = 153

(
∑n

i=1 |vi|p)
1
p . For p = ∞, ||v||∞ is equal to 154

max
i∈[n]

|vi|. A generalization of the p-norm of vec- 155

tors to matrices is the (p, q) norm: For a matrix 156

A ∈ Rn×m, and a pair of integers (p, q) ∈ [1,∞], 157

the (p, q)-norm of A, denoted ||A||p,q, is given 158

as: ∥A∥p,q =
(∑n

i=1

(∑m
j=1 |Aij |p

) q
p

) 1
q

. Analo- 159

gous to vectors, when q = ∞, we have ||A||p,∞ = 160

max
i∈[n]

||Ai:||p. 161

2.1 Stochastic Languages (SLs). 162

In general, a finite (resp. infinite) language refers to 163

any mapping from Σ∗ (resp. Σ∞) to R. However, 164

the main focus on this article shall be on languages 165

describing probability distributions over sequences, 166

which we’ll refer as stochastic languages (SLs). 167

One can distinguish between two variants of SLs 168

in the literature: 169

1. Finite stochastic languages (FSLs). Also 170

known as SLs with end-of-sequence (Radford et al., 171

2019): This class of stochastic languages includes 172

the set of languages that describes valid probability 173

distributions over Σ∗. In practice, the implementa- 174

tion of FSLs by NARLMs is performed by intro- 175

1By convention, Σ0 refers to the singleton set comprising
the empty string.
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ducing a special symbol, denoted eos, which marks176

the end of sequence generation.177

2. Infinite stochastic languages (ISLs). An ISL178

is a stochastic language that describes a probability179

distributions over Σ∞. In the context of Neural180

Auto-Regressive models, ISLs can be obtained by181

ruling out the eos token from the generative pro-182

cess. In the sequel, we shall favor an alternative183

formalization of this class of languages as provided184

in the following definition:185

Definition 1. An ISL P is represented by a se-186

quence {P (m)}m≥1, where P (m) is a probability187

distribution over Σm for an integer m ≥ 1.188

For an integer m ≥ 1, the probability distribu-189

tion P (m) over Σm in this definition can be inter-190

preted as the probability of generating a prefix of191

length m during a forward run on a LM P .192

In the remainder of this article, stochastic lan-193

guages (SLs) will implicitly refer to the union of194

both FSLs and ISLs. The symbol ∆ will denote195

either Σ$ or Σ, depending on the context.196

The next two subsections are dedicated to pro-197

vide two sub-families of SLs, namely smooth SLs198

and prefixial-bounded FSLs, whose pertinence in199

the context of this work will be highlighted in the200

next section.201

2.2 Smooth SLs.202

A class of SLs that will hold a particular importance203

in the theoretical analysis conducted in the next204

section is the class of smooth stochastic languages205

(smooth SLs). Formally, for γ ∈ (0, 1), a stochastic206

language P is said to be γ-smooth if it satisfies the207

following condition:208

∀w ∈ Σ∗ : inf
σ∈∆

P (σ|w) ≥ γ (3)209

A stochastic language P will be called smooth210

if it is γ-smooth for some γ ∈ (0, 1).211

Informally, a smooth language is a stochastic lan-212

guage for which there exists a lower bound on the213

next symbol probability distribution given that an214

arbitrary prefix has been generated. In the context215

of Neural language modeling, the softmax function216

plays a role in generating this smoothing effect for217

Neural LMs. However, as demonstrated in (Chen218

et al., 2018), its incorporation in the output layer is219

not a sufficient condition for the smoothness of the220

stochastic language generated by a neural language221

model. Later in this section, we shall introduce222

a sufficient technical condition on the neural ar-223

chitectures, satisfied by both LSTMs/GRUs and224

Decoder-only Transformer-based models, which 225

imply the smoothness of the generated stochastic 226

language. 227

2.3 Prefixial-bounded FSLs. 228

For a finite stochastic language P , we define the
prefixial norm of P , denoted ||P ||p, as:

||P ||p
def
=
∑
w∈Σ∗

P (wΣ∗)

FSLs with a finite prefixial norm will be referred 229

to as prefixial-bounded. Prefixial-bounded FSLs 230

admit an interesting characterization in terms of the 231

properties of the random variable corresponding to 232

the length of generated sequence, as highlighted by 233

the following proposition: 234

Proposition 1. Let P be a prefixial-bounded FSL.
We have:

||P ||p = Ew∼P [|w|]− 1

An immediate corollary of Proposition 1 is that 235

the set of prefixial-norm finite state languages 236

(FSLs) coincides with the set of FSLs for which 237

the length of generated sequences admits a finite 238

first-order moment. 239

We wrap up this discussion about families of 240

stochastic languages by providing a lemma which 241

establishes the inclusion relationship between these 242

classes of languages. Specifically, smooth FSLs is 243

stricly included within prefixial-bounded FSLs: 244

Lemma 1. 1. Inclusion: Any smooth FSL P is 245

also prefixial-bounded. 246

2. Strict Inclusion: There exists prefixial- 247

bounded FSLs that are not smooth. 248

The proof can be found in appendix B. 249

2.4 Neural Auto-regressive Language Models 250

(NARLMs). 251

In the following, we introduce a formal abstrac- 252

tion of Neural Auto-Regressive Language Models 253

(NARLMs) that is both sufficiently comprehensive 254

to encompass a wide range of NARLM variants, 255

including LSTMs/GRUs and Transformer-based 256

language models, and conducive to the theoretical 257

analyses sought in this article: 258

Definition 2. (NARLMs) A neural auto-regressive
language model (NARLM) is defined by a tuple
M =< n,F, T,W > where n ∈ N, T > 0, F :
Σ∗ → Rn, and W ∈ R|∆|×n. For a given sequence
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w ∈ Σ∗, the next token probability distribution
P (.|w) is computed as follows:

P (.|w) = softmaxT
(
W T · F (w)

)
where, for a vector z =

[
z1 . . . zn

]T ∈ Rn,259

the softmax with temperature T0 is given by the260

formula: softmaxT (v) =
exp(

zi
T
)

n∑
i=1

exp(
zi
T
)

261

By abstracting away the architectural specifics262

inherent to various families of NARLMs, the pro-263

posed abstraction in Definition 2 is agnostic to the264

internal mechanisms governing the model’s opera-265

tion. This renders it sufficiently generic to encom-266

pass a wide array of classical neural auto-regressive267

language models, including LSTMs/GRUs and268

Transformer LMs, as illustrated in the following269

examples:270

• LSTMs/GRUs in NARLM format: As a Lan-271

guage Model, an LSTM/GRU M can be conceptu-272

alized by a tuple < n,m, zinit, {Fσ}σ∈Σ, T,W >,273

where n and m represent the hidden and the274

cell state space dimensions respectively, zinit =275 [
hinit cinit

]T ∈ Rn+m the initial state vector276

(formed by the concatenation of the initial hidden277

state vector hinit and the cell state vector cinit),278

Fσ : Rn+m ×Rn+m is the transition state function279

associated to the symbol σ ∈ ∆, T is the tem-280

perature parameter and W ∈ Rn×∆ is the output281

matrix.282

A forward run of a LSTM/GRU M =<283

n,m, zinit, {Fσ}σ∈Σ, T,W > starting from a state284

z =
[
h c

]T on the input σ ∈ Σ is given as:285 
[
h′ c′

]T
= Fσ

([
h c

]T)
h =

[
In×n On×m

] [h
c

]
286

The next token probability distribution is then com-287

puted by applying the linear transformation W on288

the resulting vector h, followed by the Softmax289

with temperature whose value is equal to T .290

A reparametrization of the LSTM/GRU M291

into a NARLM format is given by the tuple <292

n, F, T,W >, such that for a sequence w ∈ Σ∗,293

we have:294

F (w) =
[
In×n On×m

]
·(Fw|w|◦. . .◦Fw1)(zinit)

• Decoder-only Transformer LMs in NARLM295

format. Unlike RNNs, Transformer-based lan-296

guage models process the input in a vertical man- 297

ner through a series of Transformer blocks. This 298

way of input processing imposes two architectural 299

constraints on Transformer-based models: First, 300

Transformer models can only process a bounded 301

context to produce the next token probability distri- 302

bution. As such, despite their apparent complexity, 303

their expressiveness power is strictly limited to the 304

class of n-gram models. Second, by contrast with 305

RNNs, the order of the tokens in the sequence have 306

to be encoded explicity through a position encoding 307

scheme. 308

Next, we shall conduct an analogous treat-
ment for Decoder-only Transformer models to
LSTMs/GRUs developed earlier by reparametriz-
ing them into a NARLM format. To this aim, we
first introduce some notation: Denote by K ≥ 1 the
context width of a Transformer LM. Also, Denote
the map EK : Σ≥K → ΣK × N as follows:

EK(w) = (w|w|−K ..w|w|, |w| −K)

for w ∈ Σ≥K . And the embedding map, Φ, given 309

as 310

Φ :ΣK × N → Rd×K 311

(w, l) → Uw ·We +Wp 312

where Uw is the one-hot representation of the con- 313

text sequence w, We is the embedding matrix, Wp 314

is the positional matrix that encodes the positions 315

from l to l+K. The map Φ encodes implicitly both 316

the input tokens and the positional information to 317

inject in the Transformer to produce the next token 318

probability distribution. 319

A conceptual representation in NARLM format 320

of the processing of a sequence by a Decoder-only 321

Transformer LMs can be given as follows []. Let 322

w be a sequence in Σ≥K 2: 323{
F (w) = TWL

◦ .. ◦ TW1 ◦ Φ ◦ EK(w)

P (.|w) = softmaxT (W T · F (w))
324

where {TWl
}l∈[1,L] is a collection of 325

parametrized maps encompassing the Trans- 326

former’s block operations. 327

2.4.1 Bounded NARLMs. 328

In this section, we build upon the NARLM ab- 329

straction by introducing one of its sub-families, 330

2To simplify, we only consider the case where the context
width is equal to the full width, that is the first K tokens
are assumed to be already generated, where K refers to the
context window size.
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namely bounded NARLMs. This family of mod-331

els is defined by enforcing an additional constraint332

on NARLMs which will be crucial to establish the333

smoothness of stochastic languages generated by334

this latter. Formally, bounded NARLMs are defined335

as follows:336

Definition 3. (Bounded NARLMs) A NARLM337

M =< n,F, T,W > is said to be bounded if there338

exists BM > 0 such that: sup
w∈Σ∗

||F (w)|| < BM339

Informally, a bounded NARLM is a NARLM340

whose embedding space is uniformly bounded. We341

note that due to the equivalence of norms in finite-342

dimensional vector spaces (Kreyszig, 1989), the343

boundedness of a NARLM is independent of the344

choice of the norm.345

The pertinence of this family of NARLMs in the346

context of our work is due to two facts.347

First, LSTMs/GRUs and Decoder-only Trans-348

former LMs models (under mild assumptions) are349

bounded NARLMs:350

Proposition 2. The following statements are true:351

1. LSTMs/GRUs are bounded NARLMs,352

2. Decoder-only Transfomer-based LMs such353

that:354

(a) There exists a constant CM such that for355

any positional matrix, we have ||Wp|| <356

CM ,357

(b) The Transformer’s block mappings358

{TWl
}l=L
l=1 are continuous functions,359

are bounded NARLMs.360

Second, stochastic languages generated by361

NARLMs are smooth as shown in the following362

proposition:363

Proposition 3. Bounded NARLMs generate smooth364

SLs.365

As an immediate corollary of Propositions 2 and366

3, it follows that SLs generated by LSTMs/GRUs367

and Decoder-only Transformer-based language368

models are smooth. This fact will be crucial in sub-369

sequent analysis. Additionally, these propositions370

reveal an interesting property of finite stochastic371

languages generated by LSTMs/GRUs and Trans-372

former LMs concerning the characteristics of the373

lengths of sequences produced by these models.374

Corollary 1. The length of drawn sequences from375

FSLs generated by bounded NARLMs admits a fi-376

nite first-order moment.377

Result of corollary 1 extends a finding estab- 378

lished in (Welleck et al., 2020), which settles for 379

demonstrating the consistency of FSLs generated 380

by LSTMs/GRUs. 381

3 Non-asymptotic convergence bounds of 382

CE approximation between NARLMs. 383

This section is dedicated to presenting the main 384

theoretical results of the article, namely non- 385

asymptotic convergence bounds for CE estimation 386

for both FSLs and ISLs cases. The formal exami- 387

nation of both these cases share a common theoret- 388

ical framework, which we shall examine simulta- 389

neously according to the following structure: 390

1. A model-agnostic bound assisted with an 391

oracle: The initial phase consists at establishing 392

model-agnostic convergence bounds of the CE be- 393

tween two arbitrary SLs, under the assumption of a 394

smooth test distribution. These bounds will exhibit 395

a dependency to the smoothness parameter γ of this 396

latter(Lemma 2 ). The theoretical estimators of CE 397

discussed in this section differ slightly from com- 398

monly used practical estimators and rely on two 399

fundamental oracles: the GEN and the POS oracles, 400

formally defined later in this segment. 401

2. A norm-dependent bound for CE estimation. 402

This phase extends upon the theoretical findings 403

established previously, focusing on deriving a non- 404

asymptotic convergence bound specifically tailored 405

to language models of interest. It particularly ad- 406

dresses the scenario where LSTMs/GRUs serve as 407

the test distribution in the computation of the Cross- 408

Entropy (CE). The token sample size complexity 409

for CE estimation is given explicitly in terms of 410

norms of the output matrix of the model and the 411

temperature parameter of its softmax layer. 412

3.1 A Model-Agnostic bound assisted with an 413

oracle. 414

Let P, Q be two finite or infinite stochastic lan- 415

guages, where Q is assumed to be γ-smooth for 416

some γ ∈ (0, 1). The objective of this section is 417

to design an estimator of the CE between P and Q 418

that exhibits non-asymptotic convergence bounds 419

which depend on the smoothness parameter of Q. 420

We divide this section into two distinct parts: one 421

addressing ISLs, and the other examining FSLs. 422

3.1.1 Infinite Stochastic Languages. 423

In the remainder of this segment, we fix γ ∈ (0, 1), 424

two arbitrary ISLs P and Q where Q is γ-smooth 425
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(e.g. generated by a LSTM/GRUs or Decoder-only426

Transformer-based LMs), and an integer L > 0.427

As mentioned previously, a key building428

block for the theoretical analysis of estimating429

CEL(P,Q) is an oracle GEN to which the designed430

approximation schema makes calls in order to ob-431

tain an approximation of CEL(P,Q). Formally the432

GEN(.,.) is defined as follows:433

Definition 4. The GEN oracle takes as input an434

ISL P , an integer L > 0, and outputs a pair435

(w, σ) ∈ Σ∗ × Σ drawn from the following gen-436

erative procedure:437

• Draw uniformly at random an integer i in [L−438

1],439

• Sample a string w = w′ · σ according to the440

probability distribution P (i+1) where w′ ∈ Σi441

and σ ∈ Σ,442

In the sequel, the notation GEN(P,L) will be443

used to refer to the probability distribution over444

Σ∗ × Σ induced by the generative procedure out-445

lined in Definition 4.446
The pertinence of this oracle in our context is447

highlighted by the following reformulation of the448
cross-entropy between two ISLs. Let P, Q be two449
such languages and an integer L > 0, we have:450

CEL(P,Q) =
1

L
Ew∼P (L) [log

(
1

Q(L)(w)

)
]451

=

L−1∑
i=0

1

L

∑
w∈Σi

∑
σ∈Σ

P (m)(w · σ) · log
(

1

Q(σ|w)

)
452

= E(w,σ)∼GEN(P,L)

[
log

(
1

Q(σ|w)

)]
(4)453

where the second equality is a result of an adapted454

version of Carrasco’s decomposition lemma (Car-455

rasco, 1997) provided in Appendix B.1.456

Define the random function ZI
3 such that:457

ZI(w, σ)
def
= log

(
1

Q(σ|w)

)
(5)458

where (w, σ) are drawn according to GEN(P,L).459

The reformulation of the CE in the expression460

(4) suggests the following empirical estimate of461

CEL(P,Q) given as:462

CEL(P,Q) ≈ 1

N

N∑
i=1

ZI(wi, σi) (6)463

where {(wi, σi)}i∈[N ] is a sample drawn i.i.d464

from GEN(P,L). The remaining question pertains465

3The function ZI depends implicitly on P and L. To ease
exposition, we omit this dependency from the notation.

to the number of samples drawn from this oracle to 466

achieve a good approximation of CEL(P,Q). The 467

next lemma provides an answer to this question: 468

Lemma 2. For any (ϵ, δ) ∈ (0, 1)2, we have, for 469

N = Õ
(
log( 1γ ) ·

1
ϵ2

)
4, the estimator (6) is an ϵ- 470

approximate of CEL(P,Q) with probability greater 471

than 1− δ. 472

The proof of Lemma 2 can be found in appendix 473

B.6. 474

Lemma 2 provides a convergence bound of the 475

CE in terms of the smoothness parameter of the test 476

distribution. The obtention of a model-dependent 477

bound requires an estimate of a lower bound of this 478

parameter for the considered families of NARLMs. 479

This will be the subject of subsection 3.2. 480

3.1.2 Finite Stochastic Languages. 481

The theoretical analysis of the CE estimation for 482

the case of FSLs will follow similar steps to the 483

ISL case, with a slight difference on the assumption 484

made on the target distribution and the structure of 485

the sampling oracle to be used for this case. More 486

precisely, a first step consists at a reformulation 487

of the CE using Carrasco’s decomposition giving 488

rise to a sampling oracle which will play an anal- 489

ogous role of the GEN oracle for the case of FSLs 490

introduced in the previous segment. 491

In the remainder of this segment, we fix γ ∈ 492

(0, 1), P and Q two FSLs assumed to be prefixial- 493

bounded and γ-smooth, respectively. 494

The counterpart of the GEN oracle for ISLs, is the 495

prefixial sampling oracle, denoted PSO, formally 496

defined as follows: 497

Definition 5. The prefixial sampling oracle PSO(.)
takes as input a prefixial-bounded stochastic lan-
guage P and draws a string w ∈ Σ∗ according to
the FSL:

Pp(w) =
P (w · Σ∗)

||P ||p
Analogous to the case of ISLs, we reformulate 498

the CE using Carrasco’s decomposition lemma: 499

CE(P,Q) = Ew∼P

[
log(

1

Q(w)
)

]
500

=
∑

w∈Σ∗

∑
σ∈Σ

P (wσΣ∗)

[
log

(
1

Q(σ|w))

)]
501

+
∑

w∈Σ∗

P (w) · 1

log (Q($|w))
502

= ||P ||p · Ewσ∼PSO(P )

[
log

(
1

Q(σ|w))

)]
503

4The symbol Õ(.) hides poly-logarithmic factors
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+ Ew∼P

[
1

log (Q($|w))

]
(7)504

The expression (7) suggests the following empiri-505
cal estimate of CE(P,Q):506

CE(P,Q) ≈ ||P ||p
N1

N1∑
i=1

log(
1

Q(σi|wi)
)507

+
1

N2

N2∑
i=1

log(
1

Q($|wi)
) (8)508

where the samples composing the first (resp. sec-509

ond) term of the summation in (8) are drawn from510

PSO(P ) (resp. P ).511

Define the random function ZF as follows:512

ZF (w) = log

(
1

Q
(
w|w|

∣∣w1:|w|−1

)) (9)513

where w is drawn from PSO(P ).514

By leveraging the expression (8), one can pro-515

vide a comparable sample size complexity to the516

ISL case for the CE approximation between FSLs517

using the PSO(.) oracle:518

Lemma 3. For any (ϵ, δ) ∈ (0, 1)2, we have for519

N1 = Õ(
||P ||2p
ϵ2

· log(1δ )) and N2 = Õ( 1
ϵ2

· log(1δ )),520

the estimator (8) provides an ϵ-approximate of521

CE(P,Q) with probability greater than 1− δ.522

The result of lemma 3 is obtained similarily as523

lemma 2 (see Appendix B.6).524

3.2 Norm-dependent bound for CE estimation525

In the previous segment, we proposed a model-526

agnostic estimator of the CE between two proba-527

bility distributions, where the test distribution is as-528

sumed to generate a smooth language. The conver-529

gence bound established in this segment gave rise530

to a logarithmic dependency on the inverse of the531

smoothness parameter γ of the test distribution. In532

this section, we shall build upon this result to derive533

convergence bounds tailored to the case of test dis-534

tributions modeled by LSTMs/GRUs. The conver-535

sion of model-agnostic bounds to model-dependent536

ones shall be obtained by proving a lower bound537

on the smoothness parameter of LSTMs/GRUs in538

terms of its parameters:539

Lemma 4. Let M =< n, T, F,W > be a540

LSTM/GRU generating a stochastic language. For541

any pair of integers (p, q) ∈ [1,∞]2 such that542
1
p + 1

q = 1, the stochastic language PM is γ(p,q)M -543

smooth for:544

γ
(p,q)
M =

1

1 + |Σ| · exp
(
2
T ||W ||∞,p · ||Bn||q

)
(10)545

where:
||Bn||q

def
= sup

x∈[−1,1]n
||x||q

Proof of lemma 4 can be found in appendix B.6. 546

The main theoretical result of the article is given 547

in the following theorem: 548

Theorem 1. The following statements are true: 549

1. Let P be an arbitrary ISL, and a LSTM/GRU 550

< n, T, F,W > generating an ISL Q. 551

For any (ϵ, δ) ∈ (0, 1)2. it requires 552

Õ

 1
ϵ2·T · inf

(p,q)∈[1,∞]2
1
p
+ 1

q
=1

||W ||∞,p · ||Bn||q

 553

samples from GEN(P,L) to obtain an ϵ- 554

approximate of CEL(P,Q) with probability 555

greater or equal to 1− δ. 556

2. Let P be a prefixial-bounded FSL, and a
LSTM/GRU < n, T, F,W > generating a
FSL Q and any (ϵ, δ) ∈ (0, 1)2. It requires

Õ

 ||P ||p
ϵ2 · T

· inf
(p,q)∈[1,∞]2

1
p
+ 1

q
=1

||W ||∞,p · ||Bn||q


samples drawn from PSO(P ) and P to obtain 557

an ϵ-approximate of CE(P,Q) with probabil- 558

ity greater or equal to 1− δ, 559

Theorem 1 is a direct corollary of lemmas 2 and 560

4. 561

We note that lemma 4 provides a collection of 562

smoothness parameters for a given LSTM/GRU 563

indexed by a pair of integers (p, q) ∈ [1,∞]2 such 564

that 1
p + 1

q = 1. A tight bound of the smooth- 565

ness parameter can be obtained by finding the 566

supremum of the quantity ||W ||∞,p · ||Bn||q for 567

pairs of integers satisfying this constraint. Due 568

to the complex structure of this objective func- 569

tion, solving this optimization problem is unlikely 570

to be tractable. Therefore, in our experiments, 571

we opted to compare this quantity for the pairs 572

(p, q) ∈ {(1,∞), (∞, 1), (2, 2)}. Empirically, we 573

found that ||W ||∞,∞ · ||Bn||1 yields tighter esti- 574

mates. 575

4 Variance-based convergence bounds for 576

CE estimation. 577

In the previous section, we proposed a theoretical 578

bound on the sample size complexity for CE esti- 579

mation when test distributions are assumed to be 580

7



Norm Bound VAR Bound
T = 0.5 1.78 M 200.6 K
T = 1 178.1 K 49.6 K
T = 100 17.8 K 3.3 K

Table 1: Evaluation of the average non-asymptotic con-
vergence bounds (in terms of the number of calls to the
GEN oracle) for LSTMs trained on corpora generated by
GPT− 2 for different values of the temperature. Parame-
ters: ϵ = 10−1 and δ = 0.1. Details of the experiment
can be found in Appendix A

generated by LSTM/GRUs. This bound was for-581

mally obtained due to the non-vacuous lower bound582

of the smoothness parameter of stochastic SLs gen-583

erated by these models (Lemma 4). However, the584

derived bound have two major drawbacks. First,585

they are highly conservative. Second, generalizing586

these bounds to other families of models, such as587

Transformer-based models, is not straightforward.588

Specifically, obtaining a non-vacuous upper bound589

for the smoothness parameter of Transformer-based590

language models is challenging.591

In this section, we investigate the prospect of de-592

riving non-vacuous bounds for CE estimation that593

can be generalized to a wider family of bounded594

NARLMs while maintaining theoretical guarantees.595

Due to space constraints, we shall focus on the case596

of ISLs. Analogous argument can be conducted597

to obtain similar results for the case of FSLs. Let598

P, Q be two ISLs and an integer L > 0. When Q599

is γ-smooth, the random function ZI(w, σ) defined600

in (5) is bounded which entails that its variance is601

finite. Consequently, by means of the Chebychev’s602

inequality (Vershynin, 2018), one can obtain a non-603

asymptotic convergence rate of the CE estimate604

which depends on the variance of the random vari-605

able ZI(w, σ):606

Proposition 4. Let P, Q be two ISLs such that
Q is a smooth SL. For any (ϵ, δ) ∈ (0, 1)2, For
N = O(V ar(ZI)

ϵ2·δ ), with probability greater than
1− δ, we have:∣∣∣∣CEL(P,Q)− 1

N
ZI(wi, σi)

∣∣∣∣ ≤ ϵ

where the set {(wi, σi)}i∈[N ] is drawn i.i.d from607

GEN(P,L).608

The variance-based bound in proposition 4609

doesn’t make any architectural assumptions about610

the test distribution besides being smooth. Con-611

sequently, since Decoder-only Transformer-based612

models and LSTMs/GRUs generate smooth SLs , 613

this bound is applicable to both families of models. 614

Table 1 provides a comparative empirical anal- 615

ysis of the obtained values of norm-based and 616

variance-based bounds for LSTMs trained on cor- 617

pora generated by GPT-2. It illustrates the sam- 618

ple efficiency of the Variance-based bound as op- 619

posed to the norm-based one (see Appendix A for 620

more details). of However, it’s worth noting that 621

the computation of the variance-based bound re- 622

quires a prior estimation of the variance via em- 623

pirical approximation, which marginally increases 624

the sample size complexity of the overall proce- 625

dure of the CE estimation. Nevertheless, given that 626

the quantity log(ZI(w, σ)) is bounded for bounded 627

NARLMs, the variance can be accurately estimated 628

with a relatively small sample size. Conducted ex- 629

periments show that a good estimate of the variance 630

can be obtained using few hundreds of samples 631

from test distributions, which doesn’t contribute 632

substantially in reducing the wide discrepancy be- 633

tween norm-based and variance-based bound val- 634

ues. (see Appendix A). 635

Conclusion 636

This article addresses the theoretical issue of study- 637

ing the convergence properties of CE estimation for 638

NARLMs. Non-asymptotic convergence bounds 639

for CE estimation in neural LMs are introduced, 640

covering both widely used configurations in prac- 641

tice: models with and without the eos token. 642

Our findings highlight the significance of these 643

structural properties in determining the rate of con- 644

vergence for CE estimates. By identifying and 645

leveraging these properties, we provide a theo- 646

retical framework that enhances the understand- 647

ing of cross-entropy behavior in neural language 648

models. This framework offers valuable insights 649

into the sample sizes required for accurate cross- 650

entropy estimation and its dependency on the tem- 651

perature parameter, addressing a theoretical gap in 652

the literature. Overall, the theoretical results pre- 653

sented in this article contribute to the development 654

a more rigorous evaluation methodology of the per- 655

formance and information-theoretic properties of 656

NARLMs. 657

Limitations. 658

Limitations of our work are summarized in the 659

following points: 660

a. On the implementation of the PSO oracle 661
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for Neural Language Models. A significant limi-662

tation of the norm-dependent bound presented in663

Theorem 1 lies in its dependency on the existence664

of an efficient implementation of the PSO oracle in665

order to be exploited in practice. When the target666

distribution is the empirical distribution, this oracle667

can be efficiently implemented (see Appendix C).668

Similarly, efficient implementations are feasible for669

distributions generated by Stochastic Weighted Au-670

tomata (Balle, 2013). However, for neural language671

models, the implementation of this oracle presents672

considerable challenges and remains unresolved at673

the conclusion of our study.674

b. On the case of Nucleus Sampling. An-675

other notable limitation of our work arises from676

the failure of our theoretical argument to capture677

the case of nucleus sampling (Holtzman et al.,678

2019). Indeed, by assigning zero probability to679

certain tokens during the next token generation680

procedure, the resulting stochastic language gener-681

ated by bounded NARLMS adopting this strategy682

becomes inherently non-smooth (Welleck et al.,683

2020). Indeed, the smoothness effect enforced by684

the softmax function was critical in our anaylsis.685

The question of estimating convergence bounds for686

cross-entropy estimation of language models using687

the nucleus sampling strategy is deferred to future688

research.689

c. On the obtention of norm-dependent690

bounds for Decoder-only Transformer-based691

LMs. Deriving a norm-based convergence692

bound for the CE estimator in the context of693

LSTMs/GRUs critically depends on establishing a694

lower bound for the smoothness parameter of the695

SLs generated by these models (Lemma 4). Ex-696

tending this analysis to Decoder-Only Transformer-697

based models necessitates obtaining comparable698

lower bounds for this category of models. How-699

ever, achieving this theoretical objective proves to700

be exceedingly challenging. Thus, this question701

remains open for future research.702

d. On the empirical difficulty of assessing the703

CE estimator on FSLs. Empirical observation704

arising from our experimental setup (see Appendix705

A) resides in the exclusion of FSLs from our ex-706

periments. The bound obtained for CE estimation707

in section 3 for FSLs relies on the prefixial norm708

of the target stochastic language. Although, as for-709

mally proven in proposition 3, this quantity is finite710

and directly linked to the expected length of gener-711

ated sequences, thus allowing for empirical estima-712

tion in principle, the occurrence of generating the713

end-of-sequence token arises quite often after the 714

generation of extremely long sequences. Given that 715

all the methods proposed in this work are Monte 716

Carlo-based, generating batches of sequences from 717

language models implementing FSLs proved to be 718

prohibitively expensive within the constraints of 719

our hardware capabilities. 720
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A Experimental Results799

The stated objectives of the conducted experiment800

are twofold. First, to evaluate the order of mag-801

nitude of non-asymptotic convergence bounds de-802

rived from our theoretical analysis to assess their803

non-vacuity, i.e. their empirical exploitability in804

case of applications where rigorous theoretical805

guarantees are required. Second, to establish a806

comparative analysis of both norm-based bound807

(theorem 1) and variance-based bound (theorem808

4). All experiments were conducted for the case809

of ISLs. Indeed, as raised in the limitations sec-810

tion, the event of generating the end-of-sequence811

token during the generation procedure often occurs812

after the generation of extremely long sequences.813

We note that all experiments were conducted on814

a Virtual Machine with 16GB in RAM memory 815

equipped with a Tesla T4 GPU. 816

Description of the experimental setup. Several 817

LSTMs with different hidden state sizes, specifi- 818

cally n = {128, 256, 1024}, were trained using 819

corpora generated by GPT-2. To mitigate the sta- 820

tistical bias due to the inherent randomness of the 821

experimental setup, we conduct five independent 822

training runs. Each training run consists of three 823

steps: first, the generation of a corpus from the 824

considered LLM. Second, the training phase of the 825

LSTM, and third, the computation of both norm- 826

based bound (Theorem 1) and the variance-based 827

bound (4). To estimate the variance of the log 828

probabilities required for the computation of the 829

variance-based bound, we observe that a sample of 830

approximately 500 sentences were sufficient for the 831

variance estimate to stabilize. The overall hyperpa- 832

rameters of the experimental setup are summarized 833

in table 2.

Hyperparameters Value
Number of epochs 120

Training corpus size 12.5M tokens
Corpus sentences length 500

Number of runs 5
Hidden state size [128, 256, 512]

Sample size (VAR Estimation) 500

Table 2: Hyperparameters of the experimental setup

834

The overall output of this experimental process is 835

a collection of 15 LSTMs, equally divided among 836

three different hidden state sizes. We report the 837

obtained results in figure 1. 838

B Technical Results. 839

B.1 Carrasco’s decomposition lemma. 840

The subsequent lemma was crucial for estab- 841

lishing the complexity results for approximating 842

the cross-entropy between families of SWAs and 843

LSTMs/GRUs in section 3. Originally introduced 844

by Carrasco (Carrasco, 1997) in the context of 845

stochastic regular grammars, we proceed to present 846

a restatement of this lemma applicable to the gen- 847

eral case of arbitrary SLs: : 848

Lemma 5. (Carrasco’s decomposition lemma 849

(Carrasco, 1997)) 850

1. The FSL case: Let P and Q be two FSLs, we

10
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Norm bound VAR bound
T = 0.5 973 K 160.1 K
T = 1 97.3 K 39.4 K
T = 10 9.73 K 2.7 K

(a) n = 128

Norm bound VAR bound
T = 0.5 1.78 M 200.6 K
T = 1 178.1 K 49.6 K
T = 10 17.8 K 3.3 K

(b) n = 256

Norm bound VAR bound
T = 0.5 2.2 M 191.3 K
T = 1 220 K 49.9 K
T = 10 22 K 2.36 K

(c) n = 512

Figure 1: Experimental results for the average non-asymptotic convergence bounds (in terms of the number of calls
to the GEN oracle on the LSTM) for CE estimation. Parameters: ϵ = 10−1 and δ = 0.95.

have

CE(P,Q) =
∑
w∈Σ∗

∑
σ∈Σ$

P (wσΣ∗) log(
1

Q(σ|w)
)

By convention, for any string w ∈ Σ∗, we851

have P (w$Σ∗) = P (w)852

2. The ISL case: Let P and Q be two ISLs. For853

any integer L > 0, we have:854

CEL(P,Q) =
1

L

L−1∑
i=0

∑
w∈Σi

∑
σ∈Σ

P (m)(w · σ)855

· log( 1

Q(m)(σ|w
))856

The key observation that enables the reformula-857

tion of the CE in the format of lemma 5 consists at858

noting that in the original expression of the cross-859

entropy, we have for any string w ∈ Σ∗ and a860

symbol σ ∈ Σ$ (resp. Σ) in the FSL (resp. ISL)861

setting, the term log( 1
Q(σ|w)) is multiplied by the862

set of quantities {P (wσw′)}w′∈Σ∗ . Summing over863

this set yields the quantity P (wσΣ∗)864

B.2 Proof of Proposition 1865

Proof. We have:866

||f ||p =
∑
w∈Σ∗

P (wΣ∗)867

=
∞∑

m=0

P (ΣmΣ∗)868

=

∞∑
m=0

P (Σ≥m)869

= 1 + Ew∼f [|w|]870

where the last equality is due to the relative 871

EX∼P [X] =
∞∑
n=1

P (X ≥ n) (see lemma 1.2.1, 872

(Vershynin, 2018)). 873

B.3 Proof of Lemma 1 874

Recall the statement of lemma 1: 875

Lemma 6. 1. Inclusion: Any smooth FSL P is 876

also prefixial-bounded. 877

2. Strict inclusion: There exists prefixial- 878

bounded FSLs that are not smooth. 879

The strict inclusion property can be obtained 880

straightforwardly by considering the family of 881

FSLs with finite support. A FSL with finite support 882

is clearly prefixial-bounded but is not smooth. We 883

shall focus next on the inclusion property. 884

Proof. Fix a smooth FSL P . We shall prove that 885

it’s also prefixial-bounded. 886

For an integer n > 0, the symbol pn will refer
refer to the probability of generating a sequence of
length greater or equal to n. We have:

||P ||p =
∑
n>0

pn

In light of this formula, a first step towards our 887

stated goal, we prove that pn decreases exponen- 888

tially as n increases. 889

pn+1 = P (Σn+1Σ∗) 890

=
∑

w∈Σn+1

P (wΣ∗) 891

=
∑
w∈Σn

∑
σ∈Σ

P (wσΣ∗) 892

=
∑
w∈Σn

∑
σ∈Σ∗

P (wΣ∗).P (σ|w) 893
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=
∑
w∈Σ∗

P (wΣ∗)
∑
σ∈Σ

P (σ|w)894

=
∑
w∈Σ∗

P (wΣ∗)[1− P ($|w)]895

≤ (1− γ)pn896

Consequently, applying the inequality (1 −
x)n ≤ e−n·x for x ∈ (0, 1) and p0 = 1, we have

pn ≤ (1− γ)np0 ≤ e−n.γ

Consequently,

||P ||p =
∑
n>0

pn ≤
∑
n

e−n·γ < ∞

which completes the proof.897

B.4 Proof of proposition 2898

The proposition 3 states that LSTMs/GRUs and899

Decoder-only Transformer-based LMs are bounded900

NARLMs.901

With regards to LSTMs/GRUs, this statement902

has already been proven in (Welleck et al., 2020).903

We shall prove next that it is also the case for904

Decoder-only Transformer-based LMs.905

The proof of the proposition will depend on a906

classical lemma from the field of calculus theory:907

Lemma 7. Let f : X → Y be a continuous map.908

The image of a compact set is also compact.909

Recall that a compact set can be characterized as910

follows (Rudin, 1976):911

X is a compact set if and only if for any se-912

quence {xn}n∈N in X , there exists a sub-sequence913

{xϕ(n)}n∈N, where ϕ is an increasing map from N914

to N, that converges to an element in X .915

Proof. (7) Let D ⊆ X a compact set. We shall916

prove that f(D) is also compact. Let {yn}n∈N be917

a sequence in f(D). Then, there exists a sequence918

{xn}n∈N of elements in D such that for any n ∈919

N : f(xn) = yn. Since D is compact, then there920

exists a sub-sequence {xϕ(n)}n∈N that converges921

to an element x∗ in D. Hence, by continuity of the922

function f , the sequence {yϕ(n)}n∈N converges to923

f(x∗).924

Now we are ready to prove point (b) of proposi-925

tion 2:926

Proof. Let M be a transformer-based LM with con-927

text size K ∈ N. First, we show that sup
w∈Σ≥K

||Φ ◦928

EK(w)|| < ∞ . Let w ∈ Σ≥K , we have929

||Φ ◦ EK(w)|| ≤ ||U ·We||+ ||Wp||930

≤ sup
p∈ΣK

||U ·We||+ CM 931

which is finite, due to the finiteness of the set ΣK . 932

Define the ball B(0; sup
w∈Σ≥K

||Φ ◦ EK(w)||). By 933

lemma 7, the image of this ball according to the 934

continuous map TWL
◦ .. ◦ TW1 (by assumption in 935

the proposition statement and by the closure prop- 936

erty of continuity under the composition operator) 937

is compact, hence bounded by Bolzano-Weierstrass 938

theorem. Consequently, transformer-based LMs be- 939

long to the bounded NARLM family. 940

B.5 Proof of proposition 3 941

In this subsection, we will prove that bounded 942

NARLMs generate smooth SLs. 943

For a matrix W ∈ Rn×m, we shall use the no- 944

tation Wi: (resp. W:j) to designate its i-th row 945

(resp. j-th column). When the columns of W are 946

indexed by elements of the alphabet Σ, the notation 947

W:σ will be employed to refer to the column of W 948

indexed by the symbol σ ∈ Σ. 949
Let M be a bounded NARLM that generates a 950

SL denoted P . Fix (w, σ) ∈ Σ∗ ×∆. We have: 951

PM (σ|w) =
exp(

WT
:σ·F (w)

T
)∑

σ′∈∆

exp(
WT

σ′,:·F (w)

T
)

952

=
1

1 +
∑

σ′∈∆\{σ}
exp

(
1
T
(W:σ −W:σ′)T · F (w)

) 953

≥ 1

1 + |Σ| · exp
(

2
T
max
σ∈∆

|WT
:σ · F (w)|

) 954

≥ 1

1 + |Σ| · exp
(

2
T
max
σ∈∆

||W:σ||2 · ||F (w)||2
) 955

≥ 1

1 + |Σ| · exp
(

2
T
||W ||∞,2 · ||Bn||2

) 956

where the second inequality is obtained by 957

Hölder’s inequality. 958

Since P is bounded, there exists a scalar B > 0 959

such that ||W ||∞,2 ≤ B. In addition, we have 960

||Bn||2 =
√
n. 961

Consequently, P is 1
1+|Σ|·B·

√
n

-smooth which 962

completes the proof. 963

B.6 Proofs of results in section 3 964

B.6.1 Proofs of lemma 2 and lemma 3. 965

We prove lemma 2 for the case of ISLs. A similar 966

proof can be obtained for the case of FSLs (lemma 967

3) by mimicking the argument herein. 968
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Fix (ϵ, δ) ∈ (0, 1)2. Define the random function:

ZI(w, σ)
def
= log(

1

Q(σ|w)
)

where (w, σ) ∈ Σ∗ ×Σ are generated according to969

GEN(P,L).970

Given that Q is γ-smooth and Q(σ|w) ≥ 1, the971

random function ZI(w, σ) is in [0, log( 1γ )] with972

probability equal to 1.973
By the application of Höeffding’s inequality974

(Theorem 2.8, (Boucheron et al., 2013)), for N ≥975

Õ
(
log( 1γ ) ·

1
ϵ2

)
, the event:976

∣∣∣∣∣E(w,σ)∈GEN(P,L)

[
log

(
1

Q(σ|w)

)]
− 1

N

N∑
i=1

ZI(wi, σi)

∣∣∣∣∣ ≤ ϵ

L
977

which is equivalent to978

∣∣∣∣∣CEL(P,Q)− L

N

N∑
i=1

ZI(wi, σi)

∣∣∣∣∣ ≤ ϵ979

holds with probability greater or equal to 1− δ.980

B.6.2 Proof of lemma 4981

The proof of lemma 4 will follow a similar structure982

of the proof of proposition 3.983
Let M =< n, T, F,W > be a LSTM/GRU, and984

p, q be two integers in [1,∞] such that 1
p + 1

q = 1.985

For any (w, σ) ∈ Σ∗ ×∆, we have:986

PM (σ|w) =
exp(

WT
:σ·F (w)

T
)∑

σ′∈∆

exp(
WT

σ′,:·F (w)

T
)

987

=
1

1 +
∑

σ′∈∆\{σ}
exp

(
1
T
(W:σ −W:σ′)T · F (w)

)988

≥ 1

1 + |Σ| · exp
(

2
T
max
σ∈∆

|WT
:σ · F (w)|

)989

≥ 1

1 + |Σ| · exp
(

2
T
max
σ∈Σ

||W:σ||p · ||F (w)||q
)990

≥ 1

1 + |Σ| · exp
(

2
T
||W ||∞,p · ||Bn||q

)991

where the first inequality is obtained from the fact992
that the exponential function is a monotonic in-993
creasing function and:994

WT
:σ · F (w)−WT

:σ′ · F (w) ≤ |WT
:σ · F (w)−WT

:σ′ · F (w)|995

≤ 2max
σ∈Σ

|WT
:σF (w)|996

The second inequality is obtained using Hölder’s997

inequality.998

B.6.3 Proof of theorem 1 999
Let P be an arbitrary probability distribution, and 1000
M =< n, T, F,W > be a LSTM/GRU. Fix 1001
(ϵ, δ) ∈ (0, 1)2. By lemma 2 and 4 and the fact that 1002
the log(.) function is a monotonic increasing func- 1003

tion, it requires Õ

 inf
(p,q)∈[1,∞]2

1
p
+ 1

q
=1

log

(
1

γ
(p,q)
M

)
· 1
ϵ2

 1004

samples from GEN(P,L) (where the expression 1005

of γ
(p,q)
M is given in equation (10)) to obtain an 1006

ϵ-approximate of CEL(P, PM ) with probability 1007
greater or equal to 1 − δ. On the other hand, For 1008

any (p, q) ∈ [1,∞] such that 1
p +

1
q = 1, we have: 1009

log(
1

γ
(p,q)
M

) = log

(
1 + |Σ| · exp( 2

T
||W ||∞,p · ||Bn||q)

)
1010

= O

(
log(Σ) +

2

T
· ||W ||∞,p · ||Bn||q

)
1011

= Õ

(
2

T
· ||W ||∞,p · ||Bn||q

)
1012

1013

C Implementation of the PSO(.) oracle for 1014

the empirical distribution. 1015

Fix an alphabet Σ. Let C = {w1, . . . , wN} be 1016

a corpus of size N >> 1. We denote by P emp 1017

the empirical distribution associated to C, and by 1018

len(C) the maximum length of sequences in C, i.e. 1019

len(C) = max
i∈[N ]

|wi|. 1020

We assume that during the pre-processing step,
the corpus C was arranged in the format:

C̃ = {(i, Si)}i∈[len(C)]

where for each i ∈ len(C):

Si = {w ∈ C : |w| = i}

Note that pre-processing a corpus to convert it into 1021

this format can be done simultaneously with the 1022

tokenization step, so as it doesn’t require perform- 1023

ing an additional pass on the corpus during the 1024

pre-preprocessing phase. 1025

For a sequence w ∈ Σ∗, define:

Nw
def
= |{w′ = w · p : w′ ∈ C}|

The distribution generated by PSO(P emp) is
given as:

P emp
p (w) =

Nw

len(C)∑
j=1

j · |Sj |
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We first present a sampling procedure for generat-1026

ing one sequence from the PSO(P emp) oracle. Af-1027

terwards, we shall present a batch sampling proce-1028

dure that enables an efficient generationg of a large1029

sample.1030

• Sampling a sequence. Define the following1031

generative procedure:1032

1. Generate an element from i∗ ∈1033

[len(C)] according to the Bino-1034

mial distribution parametrized by1035 [
|S1|

len(C)∑
i=1

i|Si|

2|S2|
len(C)i|Si|∑

i=1

. . .
|len(C)·|Slen(C)|

len(C)∑
i=1

i|Si|

]
1036

2. Generate uniformly at random a sequence w1037

from Si∗ ,1038

3. Output a sequence w1:k for k ∈ [i∗] where k1039

is drawn uniformly at random from [i∗],1040

The correctness of this procedure is given in the1041

following proposition:1042

Proposition 5. The distribution generated by the1043

sampling procedure outlined above is equal to the1044

prefixial distribution.1045

Proof. Let w ∈ Σ≤len(C). we need to show that1046

the probability of generating w using the sampling1047

procedure defined above is equal to Pp(w). We1048

denote by Nw,i the number of sequences in Si for1049

which w constitutes a prefix. The probability of1050

generating w is given as:1051

Q(w) =

len(C)∑
i=1

i · |Si|
len(C))∑
j=1

j|Sj |
· Nw,i

|Si|
· 1
i

1052

=

len(C)∑
i=1

Nw,i

len(C))∑
j=1

j · |Sj |
1053

=
Nw

len(C)j·|Sj |∑
j=1

= P emp
p (w)1054

1055

• Batch Sampling: We shall leverage the sam-1056

pling procedure provided above, we can provide a1057

batch version sampling procedure. The key ingre-1058

dient towards this goal is the multionomial distri-1059

bution:1060

Definition 6 (Multinomial Distribution). Let n be 1061

the number of trials, and p = [p1, p2, . . . , pk] be 1062

vector in [0, 1]n such that
∑k

i=1 pi = 1. 1063

The probability mass function of the multino- 1064

mial distribution parametrized by n and p, denoted 1065

Multinomial(n,p), is given as: 1066

P (X1 = x1,X2 = x2, . . . , Xk = xk) = 1067

n!

x1!x2! · · ·xk!
px1
1 px2

2 · · · pxk
k 1068

for non-negative integers x1, x2, . . . , xk such 1069

that
∑k

i=1 xi = n. 1070

The multinomial distribution is a generalization 1071

of the binomial distribution. It describes the prob- 1072

abilities of the outcomes of a multinomial experi- 1073

ment, which consists of n independent trials, each 1074

of which can result in one of k possible outcomes, 1075

where the probability of obtaining the outcome k 1076

is equal to pk. 1077

An equivalent sampling procedure to the one in- 1078

troduced for single sequences but more adapted to 1079

generating batches from the PSO oracle is outlined 1080

in the following. For a desired sample size M > 0: 1081

1. Generate a vector

 m1

. . .
mlen(C)

 according to the

probability distribution:

Multinomial

M,

 |S1|
len(C)∑
j=1

j · |Sj |
, . . . ,

len(C) · |Slen(C)|
len(C)∑
j=1

j · |Sj |




2. For each i ∈ [len(C)]: 1082

(a) Generate uniformly at random (without 1083

replacement) mi sequences from Si, de- 1084

noted Smi
i = {s1, . . . , smi}. 1085

(b) Draw uniformly at random a vector J̃ = l1
...

lmi

 according to the probability dis-

tribution:

Multinomial(mi,

[
1

mi
, . . . ,

1

mi

]
)

(c) Output the truncated prefixes of Smi
i ac- 1086

cording to the vector J̃ (regardless of the 1087

order of sequences in Smi
i ) 1088
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