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Abstract

Cross-entropy (CE) represents a central metric
in evaluating the performance and other charac-
teristics of Neural Auto-Regressive Language
Models (NARLMsSs). Despite its importance,
the convergence properties of its estimation
remain relatively underexplored from a theo-
retical perspective, primarily due to the com-
plex structure of modern language model ar-
chitectures. This article aims at investigating
this issue by providing a formal theoretical
analysis of the covergence properties of the
CE estimation between different families of
NARLMs. When the test distribution is mod-
eled by a LSTM/GRU, we will show that CE
estimation exhibits a non-vacuous convergence
rate, which depends linearly on the norm of the
output matrix of the test model and logarith-
mically on the alphabet size. Additionaly, we
provide a variance-based convergence bound
applicable to large families of NARLM, includ-
ing Decoder-only Transformer-based models
and LSTMs/GRUs.

1 Introduction

Language modeling has become a foundational task
in modern NLP. As such, having reliable tools to
analyze the performance and properties of language
models is of critical importance. The traditionally
used metric for training and performance evalu-
ation of LMs is the cross-entropy (CE). Beyond
these applications, CE, and other closely related
information-theoretic measures such the KL divere-
gence and the entropy rate, were instrumental for
other LM-related purposes, including Grammatical
Inference (Clark and Thollard, 2004), analyzing the
calibration properties of language models (Braver-
man et al., 2020; Wei et al., 2024), Knowledge
Distillation from larger "teacher" models to smaller
ones (Liu et al., 2023, 2024), and distinguishing
between human-generated and machine-generated
text (Varshney et al., 2020).

However, despite its importance, convergence
properties of CE estimators remains relatively un-
derexplored for Neural LMs. This gap can be partly
attributed to the highly complex structure of mod-
ern Neural LMs’ architectures, not easily amenable
to theoretical analysis through the lens of formal
statistical theory. As a result, current practices
for CE estimation remain predominantly empiri-
cal, lacking theoretical insights into the qualitative
properties of its approximation, and the sample size
required to obtain a reliable estimate of its exact
value.

In contrast to Neural models, complexity-
theoretic studies for comparing language models
(LMs) has been thoroughly conducted for vari-
ous classes of probabilistic automata, the prede-
cessors of neural LMs. Carrasco (1997) introduced
an iterative procedure to compute exactly the CE
between two deterministic probabilistic finite au-
tomata (DPFA). This work was extended by Cortes
et al. (2006), who provided a detailed complexity
analysis for computing this metric between unam-
biguous probabilistic automata, a class of mod-
els that strictly includes DPFAs. Other related
works have explored alternative metrics for compar-
ing probabilistic automata such as the Ly distance
(Murgue and de La Higuera, 2004), the total vari-
ation distance (Lyngsg and Pedersen, 2002), and
the general family of L,, distances (Cortes et al.,
2007).

This article aims to address a gap in the literature
concerning the complexity analysis of CE when ap-
plied to Neural Auto-Regressive LMs (NARLMs).
Due to the imtractability of exact CE computation
between stochastic languages generated by these
models, our investigation centers around two prin-
cipal inquiries, one theoretical and the other em-
pirical. Firstly, we aim to explore the feasibility
of establishing non-vacuous theoretical bounds on
the token sample size complexity required for CE
estimation in NARLMs. Secondly, should these



theoretical bounds be established, we seek to assess
their practical applicability, specifically evaluating
whether the token sample size complexity resulting
from the theoretical bounds is reasonably small for
practical use.

We shall focus on two widely used config-
urations of NARLMs: One that includes LMs
equipped with the end-of-sequence (eos) token and
one that doesn’t. The former (resp. the latter) gen-
erates probability distributions over finite (resp. in-
finite) sequences. Section 2.1 will provide a formal
definition of these families of stochastic languages,
referred to as finite (resp. infinite) stochastic lan-
guages respectively.

The two computational problems under study in
this article are formally defined as follows:

1. The end-of-sequence case: For two prob-
ability distributions P and () with the eos token.
Compute:

=
2w

2. The without end-of-sequence case: For two
probability distributions P, () without the eos to-
ken, and an integer L > 0. Compute:

CE(P.Q) = Euep [mg(

Q) (w)

where P(L) is a mapping that assigns to each se-
quence w of length L the probability of generating
w as a prefix using P. Note that when P = @,
CEL(P,Q) is reduced to the entropy rate of P
(Braverman et al., 2020).

In the sequel, we shall refer to languages P (resp.
Q) as the target (resp. the test) distributions.

In both settings, the target distribution may
be the empirical distribution that represents the
underlying (unknown) distribution, which is often
the case in practical applications. The (informal)
question that this article aims at addressing can be
framed as follows:

1
CEL(P,Q) = ZEwNP(L) log [ } (2

Question: Given a target approximation error €
and a confidence interval 6 € (0,1), what is the
number of tokens that needs to be generated from
the target P in order to obtain an e-approximate of
the CE(P, Q) (or, CEL(P,Q)) with probability
greater than'1 — §?

We answer this question by providing two
theoretically-backed convergence bounds: a Norm-
dependent (section 3), and a Variance-dependent

(section 4) bounds. While the former offers a non-
vacuous, efficiently computable bound when the
test distribution is generated by LSTMs/GRUs, the
latter has the advantage to be general enough to
cover also Decoder-only Transformer-based mod-
els (Radford et al., 2019).

2 Background

The symbol X is used to refer to a finite alphabet
(also known as a vocabulary for readers acquainted
with the NLP terminology), and the symbol $ de-
notes a special symbol that marks the end of se-
quence. We shall denote the set X | J{$} by the
symbol Xg. 3* (resp. 3°°) is the set of all finite
(resp. infinite) sequences formed by .. For a given
sequence w € X*, |w| refers to its length. For
an integer n € N, the symbol X" ! refers to the
subset of sequences in ¥* such that |w| = n. For
an integer N > 1, [NV] refers to the set of inte-
gers {1,..., N}, and By refers to the hypercube
[—1,1]Y ¢ RY. For e € (0,1), a quantity Q is
said to be e-approximate of Q if |Q — Q| < e.

For a vector v € R™ and an integer p € [1, o00],
the p-norm of v, denoted ||v||, is given as: ||v||, =
oy |v¢]p)%. For p = o0, ||[v]| is equal to
n%?o]( |vi|. A generalization of the p-norm of vec-
1< (n

tors to matrices is the (p, ¢) norm: For a matrix
A € R™™ and a pair of integers (p, q) € [1, 0],
the (p,q)-norm of A, denoted ||A]|, 4. is given

N
> q
a5 AL = (S0 (S0 14017) ") Ao
gous to vectors, when g = oo, we have ||A||, « =
Aillp-
maux || Azl
2.1 Stochastic Languages (SLs).

In general, a finite (resp. infinite) language refers to
any mapping from X* (resp. 3°°) to R. However,
the main focus on this article shall be on languages
describing probability distributions over sequences,
which we’ll refer as stochastic languages (SLs).
One can distinguish between two variants of SLs
in the literature:

1. Finite stochastic languages (FSLs). Also
known as SLs with end-of-sequence (Radford et al.,
2019): This class of stochastic languages includes
the set of languages that describes valid probability
distributions over >*. In practice, the implementa-
tion of FSLs by NARLMs is performed by intro-

By convention, X.° refers to the singleton set comprising
the empty string.



ducing a special symbol, denoted eos, which marks
the end of sequence generation.

2. Infinite stochastic languages (ISLs). An ISL
is a stochastic language that describes a probability
distributions over >*°. In the context of Neural
Auto-Regressive models, ISLs can be obtained by
ruling out the eos token from the generative pro-
cess. In the sequel, we shall favor an alternative
formalization of this class of languages as provided
in the following definition:

Definition 1. An ISL P is represented by a se-
quence {P(m)}mzl, where P\ is a probability
distribution over X for an integer m > 1.

For an integer m > 1, the probability distribu-
tion P("™) over X" in this definition can be inter-
preted as the probability of generating a prefix of
length m during a forward run on a LM P.

In the remainder of this article, stochastic lan-
guages (SLs) will implicitly refer to the union of
both FSLs and ISLs. The symbol A will denote
either Xg or 3, depending on the context.

The next two subsections are dedicated to pro-
vide two sub-families of SLs, namely smooth SLs
and prefixial-bounded FSLs, whose pertinence in
the context of this work will be highlighted in the
next section.

2.2 Smooth SLs.

A class of SLs that will hold a particular importance
in the theoretical analysis conducted in the next
section is the class of smooth stochastic languages
(smooth SLs). Formally, for vy € (0, 1), a stochastic
language P is said to be y-smooth if it satisfies the
following condition:

Vw e X : inf P(o|lw) >~ 3)

ocEA

A stochastic language P will be called smooth
if it is y-smooth for some v € (0,1).

Informally, a smooth language is a stochastic lan-
guage for which there exists a lower bound on the
next symbol probability distribution given that an
arbitrary prefix has been generated. In the context
of Neural language modeling, the softmax function
plays a role in generating this smoothing effect for
Neural LMs. However, as demonstrated in (Chen
et al., 2018), its incorporation in the output layer is
not a sufficient condition for the smoothness of the
stochastic language generated by a neural language
model. Later in this section, we shall introduce
a sufficient technical condition on the neural ar-
chitectures, satisfied by both LSTMs/GRUs and

Decoder-only Transformer-based models, which
imply the smoothness of the generated stochastic
language.

2.3 Prefixial-bounded FSLs.

For a finite stochastic language P, we define the
prefixial norm of P, denoted || P||,, as:

1Pll, = ) P(ws?)

weD*

FSLs with a finite prefixial norm will be referred
to as prefixial-bounded. Prefixial-bounded FSLs
admit an interesting characterization in terms of the
properties of the random variable corresponding to
the length of generated sequence, as highlighted by
the following proposition:

Proposition 1. Let P be a prefixial-bounded FSL.
We have:

1Pllp = Ew~p(lw] -1

An immediate corollary of Proposition 1 is that
the set of prefixial-norm finite state languages
(FSLs) coincides with the set of FSLs for which
the length of generated sequences admits a finite
first-order moment.

We wrap up this discussion about families of
stochastic languages by providing a lemma which
establishes the inclusion relationship between these
classes of languages. Specifically, smooth FSLs is
stricly included within prefixial-bounded FSLs:

Lemma 1. /. Inclusion: Any smooth FSL P is
also prefixial-bounded.

2. Strict Inclusion: There exists prefixial-
bounded FSLs that are not smooth.

The proof can be found in appendix B.

2.4 Neural Auto-regressive Language Models
(NARLMs).

In the following, we introduce a formal abstrac-
tion of Neural Auto-Regressive Language Models
(NARLMs) that is both sufficiently comprehensive
to encompass a wide range of NARLM variants,
including LSTMs/GRUs and Transformer-based
language models, and conducive to the theoretical
analyses sought in this article:

Definition 2. (NARLMs) A neural auto-regressive
language model (NARLM) is defined by a tuple
M =<n,F, T,W > wheren € NNT > 0, F :
Y* = R, and W € RIAX" For a given sequence



w € X*, the next token probability distribution
P(.|w) is computed as follows:

P(.|lw) = softmax (WT - F(w))

T
where, for a vector z = [21 zn] e R",
the softmax with temperature T0 is given by the

formula: softmaxy(v) = :Xpi

3 e(3)

By abstracting away the architectural specifics
inherent to various families of NARLMs, the pro-
posed abstraction in Definition 2 is agnostic to the
internal mechanisms governing the model’s opera-
tion. This renders it sufficiently generic to encom-
pass a wide array of classical neural auto-regressive
language models, including LSTMs/GRUs and
Transformer LMs, as illustrated in the following
examples:

e LSTMs/GRUs in NARLM format: As a Lan-
guage Model, an LSTM/GRU M can be conceptu-
alized by a tuple < n,m, zinit, { Fo }oes, T, W >,
where n and m represent the hidden and the
cell state space dimensions respectively, 2z =
[hinit  Cinit]” € R™™ the initial state vector
(formed by the concatenation of the initial hidden
state vector h;,;; and the cell state vector c;p;t),
F, : R x R™™ ig the transition state function
associated to the symbol o € A, T is the tem-
perature parameter and T € R4 is the output
matrix.

A forward run of a LSTM/GRU M =<
N, M, Zinit, { Fo }oes, Ty W > starting from a state

T . .
z= [h c] on the input o € X is given as:

o] :Fa([h C}T)
oo = [IWL onxm} [}CL

The next token probability distribution is then com-
puted by applying the linear transformation W on
the resulting vector h, followed by the Softmax
with temperature whose value is equal to 7.

A reparametrization of the LSTM/GRU M
into a NARLM format is given by the tuple <
n, F, T, W >, such that for a sequence w € X%,
we have:

F(w) = [Inxn OnXm] '(Fw‘w| o.. -OFw1)(Zmit)

¢ Decoder-only Transformer LMs in NARLM
format. Unlike RNNs, Transformer-based lan-

guage models process the input in a vertical man-
ner through a series of Transformer blocks. This
way of input processing imposes two architectural
constraints on Transformer-based models: First,
Transformer models can only process a bounded
context to produce the next token probability distri-
bution. As such, despite their apparent complexity,
their expressiveness power is strictly limited to the
class of n-gram models. Second, by contrast with
RNN:Ss, the order of the tokens in the sequence have
to be encoded explicity through a position encoding
scheme.

Next, we shall conduct an analogous treat-
ment for Decoder-only Transformer models to
LSTMs/GRUs developed earlier by reparametriz-
ing them into a NARLM format. To this aim, we
first introduce some notation: Denote by K > 1 the
context width of a Transformer LM. Also, Denote
the map Ex : ¥2K — SX x N as follows:

Ex(w) = (w)y|— kW), |w| — K)

for w € ¥2X. And the embedding map, ®, given
as

O 2K x N 5 RIXK
(w,1) = Uy - W+ W,

where U, is the one-hot representation of the con-
text sequence w, W is the embedding matrix, W),
is the positional matrix that encodes the positions
from [ to [+ K. The map ¢ encodes implicitly both
the input tokens and the positional information to
inject in the Transformer to produce the next token
probability distribution.

A conceptual representation in NARLM format
of the processing of a sequence by a Decoder-only
Transformer LMs can be given as follows []. Let
w be a sequence in 2K 2

F(w)
P(|w)
where  {Tw,}icn,) is a collection of

parametrized maps encompassing the Trans-
former’s block operations.

=Tw, o..0oTw, o ®o Exg(w)
= softmaxy (W7 - F(w))

2.4.1 Bounded NARLMs.

In this section, we build upon the NARLM ab-
straction by introducing one of its sub-families,

To simplify, we only consider the case where the context
width is equal to the full width, that is the first K tokens
are assumed to be already generated, where K refers to the
context window size.



namely bounded NARLMSs. This family of mod-
els is defined by enforcing an additional constraint
on NARLMs which will be crucial to establish the
smoothness of stochastic languages generated by
this latter. Formally, bounded NARLMs are defined
as follows:

Definition 3. (Bounded NARLMs) A NARLM

M =< n, F,T,W > is said to be bounded if there

exists Byr > 0 such that: sup ||F(w)|| < By
weX*

Informally, a bounded NARLM is a NARLM
whose embedding space is uniformly bounded. We
note that due to the equivalence of norms in finite-
dimensional vector spaces (Kreyszig, 1989), the
boundedness of a NARLM is independent of the
choice of the norm.

The pertinence of this family of NARLMs in the
context of our work is due to two facts.

First, LSTMs/GRUs and Decoder-only Trans-
former LMs models (under mild assumptions) are
bounded NARLMs:

Proposition 2. The following statements are true:

1. LSTMs/GRUs are bounded NARLMss,
2. Decoder-only Transfomer-based LMs such

that:

(a) There exists a constant Cyy such that for
any positional matrix, we have ||Wp|| <
Cum,

(b) The Transformer’s block mappings
{Tw, }Ef are continuous functions,

are bounded NARLMs.

Second, stochastic languages generated by
NARLMs are smooth as shown in the following
proposition:

Proposition 3. Bounded NARLMs generate smooth
SLs.

As an immediate corollary of Propositions 2 and
3, it follows that SLs generated by LSTMs/GRUs
and Decoder-only Transformer-based language
models are smooth. This fact will be crucial in sub-
sequent analysis. Additionally, these propositions
reveal an interesting property of finite stochastic
languages generated by LSTMs/GRUs and Trans-
former LMs concerning the characteristics of the
lengths of sequences produced by these models.

Corollary 1. The length of drawn sequences from
FSLs generated by bounded NARLMs admits a fi-
nite first-order moment.

Result of corollary 1 extends a finding estab-
lished in (Welleck et al., 2020), which settles for
demonstrating the consistency of FSLs generated
by LSTMs/GRUs.

3 Non-asymptotic convergence bounds of
CE approximation between NARLMs.

This section is dedicated to presenting the main
theoretical results of the article, namely non-
asymptotic convergence bounds for CE estimation
for both FSLs and ISLs cases. The formal exami-
nation of both these cases share a common theoret-
ical framework, which we shall examine simulta-
neously according to the following structure:

1. A model-agnostic bound assisted with an
oracle: The initial phase consists at establishing
model-agnostic convergence bounds of the CE be-
tween two arbitrary SLs, under the assumption of a
smooth test distribution. These bounds will exhibit
a dependency to the smoothness parameter -y of this
latter(Lemma 2 ). The theoretical estimators of CE
discussed in this section differ slightly from com-
monly used practical estimators and rely on two
fundamental oracles: the GEN and the POS oracles,
formally defined later in this segment.

2. A norm-dependent bound for CE estimation.
This phase extends upon the theoretical findings
established previously, focusing on deriving a non-
asymptotic convergence bound specifically tailored
to language models of interest. It particularly ad-
dresses the scenario where LSTMs/GRUs serve as
the test distribution in the computation of the Cross-
Entropy (CE). The token sample size complexity
for CE estimation is given explicitly in terms of
norms of the output matrix of the model and the
temperature parameter of its softmax layer.

3.1 A Model-Agnostic bound assisted with an
oracle.

Let P, @ be two finite or infinite stochastic lan-
guages, where () is assumed to be y-smooth for
some vy € (0,1). The objective of this section is
to design an estimator of the CE between P and ()
that exhibits non-asymptotic convergence bounds
which depend on the smoothness parameter of ().
We divide this section into two distinct parts: one
addressing ISLs, and the other examining FSLs.

3.1.1 Infinite Stochastic Languages.

In the remainder of this segment, we fix v € (0, 1),
two arbitrary ISLs P and () where (@ is y-smooth



(e.g. generated by a LSTM/GRUs or Decoder-only
Transformer-based LMs), and an integer L > 0.

As mentioned previously, a key building
block for the theoretical analysis of estimating
CEL (P, Q) is an oracle GEN to which the designed
approximation schema makes calls in order to ob-
tain an approximation of CEr, (P, Q). Formally the
GENC(.,.) is defined as follows:

Definition 4. The GEN oracle takes as input an
ISL P, an integer L > 0, and outputs a pair
(w,0) € ¥* x 3 drawn from the following gen-
erative procedure:

* Draw uniformly at random an integer i in [L—
1],

e Sample a string w = w' - o according to the
probability distribution POV where w' € ¥
and o € %,

In the sequel, the notation GEN(P, L) will be
used to refer to the probability distribution over
>* x ¥ induced by the generative procedure out-

lined in Definition 4.

The pertinence of this oracle in our context is
highlighted by the following reformulation of the
cross-entropy between two ISLs. Let P, () be two
such languages and an integer L > 0, we have:

CEL(P,Q) = %EmP(L’ [log (@%(w))]

‘LZI S X P o) o (g

weNt oEX

1
= E(w,o‘)NGEN(P,L) |:10g <W>:| 4)

where the second equality is a result of an adapted
version of Carrasco’s decomposition lemma (Car-
rasco, 1997) provided in Appendix B.1.

Define the random function Z; 3 such that:

o) O

where (w, o) are drawn according to GEN(P, L).

The reformulation of the CE in the expression
(4) suggests the following empirical estimate of
CEL(P, Q) given as:

Zr(w, o) £ log (

1 N
CEL(P,Q)~ « D Zi(wi,o1)  (6)

i=1

where {(w;,d;)}icn] is a sample drawn i.i.d
from GEN(P, L). The remaining question pertains

3The function Z; depends implicitly on P and L. To ease
exposition, we omit this dependency from the notation.

to the number of samples drawn from this oracle to
achieve a good approximation of CEy, (P, Q). The
next lemma provides an answer to this question:

€ (0,1)%,

the estimator (6) is an e-

Lemma 2. For any (¢, §)
N=0 <log : E%)
approximate of CEp (P,
than 1 — 6.

The proof of Lemma 2 can be found in appendix
B.6.

Lemma 2 provides a convergence bound of the
CE in terms of the smoothness parameter of the test
distribution. The obtention of a model-dependent
bound requires an estimate of a lower bound of this
parameter for the considered families of NARLM:s.
This will be the subject of subsection 3.2.

we have, for

Q) with probability greater

3.1.2 Finite Stochastic Languages.

The theoretical analysis of the CE estimation for
the case of FSLs will follow similar steps to the
ISL case, with a slight difference on the assumption
made on the target distribution and the structure of
the sampling oracle to be used for this case. More
precisely, a first step consists at a reformulation
of the CE using Carrasco’s decomposition giving
rise to a sampling oracle which will play an anal-
ogous role of the GEN oracle for the case of FSLs
introduced in the previous segment.

In the remainder of this segment, we fix v €
(0,1), P and @ two FSLs assumed to be prefixial-
bounded and y-smooth, respectively.

The counterpart of the GEN oracle for ISLs, is the
prefixial sampling oracle, denoted PSO, formally
defined as follows:

Definition 5. The prefixial sampling oracle PSO(.)
takes as input a prefixial-bounded stochastic lan-
guage P and draws a string w € ¥* according to

the FSL: P( 5 )

w0

Py(w) = —2 =)
»() = =5,

Analogous to the case of ISLs, we reformulate
the CE using Carrasco’s decomposition lemma:

CE(P,Q) = Eynp [bg(@)}

= ¥ 5 oz s (g )|

weEX* oY

1
+ 2 PO i oEw)

weD*

=Pl - Ewonpso(r) {1015 (@ﬂ

*The symbol O(.) hides poly-logarithmic factors



+ ]EwNP

1
log (Q($|w))] @

The expression (7) suggests the following empiri-
cal estimate of CE(P, Q):

crnQ= IPIIprg e
1 & 1
+E;1 &(GEm)) ®)

where the samples composing the first (resp. sec-
ond) term of the summation in (8) are drawn from
PSO(P) (resp. P).

Define the random function Z5 as follows:

1
Zr(w) =lo 9
plw) =log (Q(w|w|!wl:|w|1)> )

where w is drawn from PSO(P).

By leveraging the expression (8), one can pro-
vide a comparable sample size complexity to the
ISL case for the CE approximation between FSLs
using the PSO(.) oracle:

Lemma 3. For any (¢,0) € (0,1)% we have for
P ~

Ny = O(MELE yog(1)) and Ny = O( -log(L)),

the estimator (8) provides an e-approximate of

CE(P, Q) with probability greater than 1 — 0.

The result of lemma 3 is obtained similarily as
lemma 2 (see Appendix B.6).

3.2 Norm-dependent bound for CE estimation

In the previous segment, we proposed a model-
agnostic estimator of the CE between two proba-
bility distributions, where the test distribution is as-
sumed to generate a smooth language. The conver-
gence bound established in this segment gave rise
to a logarithmic dependency on the inverse of the
smoothness parameter ~y of the test distribution. In
this section, we shall build upon this result to derive
convergence bounds tailored to the case of test dis-
tributions modeled by LSTMs/GRUs. The conver-
sion of model-agnostic bounds to model-dependent
ones shall be obtained by proving a lower bound
on the smoothness parameter of LSTMs/GRUs in
terms of its parameters:

Lemma 4. Let M =< n,T,F;£W > be a
LSTM/GRU generating a stochastic language. For
any pair of integers (p,q) € [1,00)? such that

Zl? + % = 1, the stochastic language Py is 7](\Z,q)_
smooth for:
(p9) _ 1

’y =
M1+ 3] exp (7IW ko HBanzlo

where:

HBan = sup

x€[—-1,1]"

[1x[lq

Proof of lemma 4 can be found in appendix B.6.
The main theoretical result of the article is given
in the following theorem:

Theorem 1. The following statements are true:

1. Let P be an arbitrary ISL, and a LSTM/GRU
< n,T,F,W > generating an ISL Q.

For any (e,6) € (0,1)2 it requires
1
- inf w B
A 1 Wl Bl
Iyl

samples from GEN(P,L) to obtain an e-
approximate of CEr,(P, Q) with probability
greater or equal to 1 — 0.

2. Let P be a prefixial-bounded FSL, and a
LSTM/GRU < n,T,F,W > generating a

FSL Q and any (¢,8) € (0,1)2. It requires
5 | 1Py -
o : ||W|\oo, ||1Bn]|
e T (pvq)e[ g !

+7—1

samples drawn from PSO(P) and P to obtain
an e-approximate of C E( P, Q) with probabil-
ity greater or equal to 1 — §,

Theorem 1 is a direct corollary of lemmas 2 and
4.

We note that lemma 4 provides a collection of
smoothness parameters for a given LSTM/GRU
indexed by a pair of integers (p, q) € [1, o0]? such
that % + % = 1. A tight bound of the smooth-
ness parameter can be obtained by finding the
supremum of the quantity ||W||sp - ||Bnl|q for
pairs of integers satisfying this constraint. Due
to the complex structure of this objective func-
tion, solving this optimization problem is unlikely
to be tractable. Therefore, in our experiments,
we opted to compare this quantity for the pairs
(p,q) € {(1,00), (00,1),(2,2)}. Empirically, we
found that ||W||s,00 - ||Bnl||1 yields tighter esti-
mates.

4 Variance-based convergence bounds for
CE estimation.

In the previous section, we proposed a theoretical
bound on the sample size complexity for CE esti-
mation when test distributions are assumed to be



Norm Bound | VAR Bound
T=0.5 1.78 M 200.6 K
T=1 178.1 K 49.6 K
T =100 17.8 K 3.3K

Table 1: Evaluation of the average non-asymptotic con-
vergence bounds (in terms of the number of calls to the
GEN oracle) for LSTMs trained on corpora generated by
GPT — 2 for different values of the temperature. Parame-
ters: ¢ = 107! and § = 0.1. Details of the experiment
can be found in Appendix A

generated by LSTM/GRUs. This bound was for-
mally obtained due to the non-vacuous lower bound
of the smoothness parameter of stochastic SLs gen-
erated by these models (Lemma 4). However, the
derived bound have two major drawbacks. First,
they are highly conservative. Second, generalizing
these bounds to other families of models, such as
Transformer-based models, is not straightforward.
Specifically, obtaining a non-vacuous upper bound
for the smoothness parameter of Transformer-based
language models is challenging.

In this section, we investigate the prospect of de-

riving non-vacuous bounds for CE estimation that
can be generalized to a wider family of bounded
NARLMs while maintaining theoretical guarantees.
Due to space constraints, we shall focus on the case
of ISLs. Analogous argument can be conducted
to obtain similar results for the case of FSLs. Let
P, @ be two ISLs and an integer L > 0. When Q)
is y-smooth, the random function Z;(w, o) defined
in (5) is bounded which entails that its variance is
finite. Consequently, by means of the Chebychev’s
inequality (Vershynin, 2018), one can obtain a non-
asymptotic convergence rate of the CE estimate
which depends on the variance of the random vari-
able Z7(w,0):
Proposition 4. Let P, Q be two ISLs such that
Q is a smooth SL. For any (¢,6) € (0,1)%, For
N = O( Va!;(aZI ) ), with probability greater than
1 — 6, we have:

1
CEL(P,Q) — NZI(U%UZ') <e

where the set {(w;,0;)}ic[n) is drawn i.i.d from
GEN(P, L).

The variance-based bound in proposition 4
doesn’t make any architectural assumptions about

the test distribution besides being smooth. Con-
sequently, since Decoder-only Transformer-based

models and LSTMs/GRUs generate smooth SLs ,
this bound is applicable to both families of models.

Table 1 provides a comparative empirical anal-
ysis of the obtained values of norm-based and
variance-based bounds for LSTMs trained on cor-
pora generated by GPT-2. It illustrates the sam-
ple efficiency of the Variance-based bound as op-
posed to the norm-based one (see Appendix A for
more details). of However, it’s worth noting that
the computation of the variance-based bound re-
quires a prior estimation of the variance via em-
pirical approximation, which marginally increases
the sample size complexity of the overall proce-
dure of the CE estimation. Nevertheless, given that
the quantity log(Z;(w, o)) is bounded for bounded
NARLMs, the variance can be accurately estimated
with a relatively small sample size. Conducted ex-
periments show that a good estimate of the variance
can be obtained using few hundreds of samples
from test distributions, which doesn’t contribute
substantially in reducing the wide discrepancy be-
tween norm-based and variance-based bound val-
ues. (see Appendix A).

Conclusion

This article addresses the theoretical issue of study-
ing the convergence properties of CE estimation for
NARLMs. Non-asymptotic convergence bounds
for CE estimation in neural LMs are introduced,
covering both widely used configurations in prac-
tice: models with and without the eos token.

Our findings highlight the significance of these
structural properties in determining the rate of con-
vergence for CE estimates. By identifying and
leveraging these properties, we provide a theo-
retical framework that enhances the understand-
ing of cross-entropy behavior in neural language
models. This framework offers valuable insights
into the sample sizes required for accurate cross-
entropy estimation and its dependency on the tem-
perature parameter, addressing a theoretical gap in
the literature. Overall, the theoretical results pre-
sented in this article contribute to the development
a more rigorous evaluation methodology of the per-
formance and information-theoretic properties of
NARLMs.

Limitations.

Limitations of our work are summarized in the
following points:
a. On the implementation of the PSO oracle



for Neural Language Models. A significant limi-
tation of the norm-dependent bound presented in
Theorem 1 lies in its dependency on the existence
of an efficient implementation of the PSO oracle in
order to be exploited in practice. When the target
distribution is the empirical distribution, this oracle
can be efficiently implemented (see Appendix C).
Similarly, efficient implementations are feasible for
distributions generated by Stochastic Weighted Au-
tomata (Balle, 2013). However, for neural language
models, the implementation of this oracle presents
considerable challenges and remains unresolved at
the conclusion of our study.

b. On the case of Nucleus Sampling. An-
other notable limitation of our work arises from
the failure of our theoretical argument to capture
the case of nucleus sampling (Holtzman et al.,
2019). Indeed, by assigning zero probability to
certain tokens during the next token generation
procedure, the resulting stochastic language gener-
ated by bounded NARLMS adopting this strategy
becomes inherently non-smooth (Welleck et al.,
2020). Indeed, the smoothness effect enforced by
the softmax function was critical in our anaylsis.
The question of estimating convergence bounds for
cross-entropy estimation of language models using
the nucleus sampling strategy is deferred to future
research.

c. On the obtention of norm-dependent
bounds for Decoder-only Transformer-based
LMs. Deriving a norm-based convergence
bound for the CE estimator in the context of
LSTMs/GRUs critically depends on establishing a
lower bound for the smoothness parameter of the
SLs generated by these models (Lemma 4). Ex-
tending this analysis to Decoder-Only Transformer-
based models necessitates obtaining comparable
lower bounds for this category of models. How-
ever, achieving this theoretical objective proves to
be exceedingly challenging. Thus, this question
remains open for future research.

d. On the empirical difficulty of assessing the
CE estimator on FSLs. Empirical observation
arising from our experimental setup (see Appendix
A) resides in the exclusion of FSLs from our ex-
periments. The bound obtained for CE estimation
in section 3 for FSLs relies on the prefixial norm
of the target stochastic language. Although, as for-
mally proven in proposition 3, this quantity is finite
and directly linked to the expected length of gener-
ated sequences, thus allowing for empirical estima-
tion in principle, the occurrence of generating the

end-of-sequence token arises quite often after the
generation of extremely long sequences. Given that
all the methods proposed in this work are Monte
Carlo-based, generating batches of sequences from
language models implementing FSLs proved to be
prohibitively expensive within the constraints of
our hardware capabilities.
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A Experimental Results

The stated objectives of the conducted experiment
are twofold. First, to evaluate the order of mag-
nitude of non-asymptotic convergence bounds de-
rived from our theoretical analysis to assess their
non-vacuity, i.e. their empirical exploitability in
case of applications where rigorous theoretical
guarantees are required. Second, to establish a
comparative analysis of both norm-based bound
(theorem 1) and variance-based bound (theorem
4). All experiments were conducted for the case
of ISLs. Indeed, as raised in the limitations sec-
tion, the event of generating the end-of-sequence
token during the generation procedure often occurs
after the generation of extremely long sequences.
We note that all experiments were conducted on
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a Virtual Machine with 16GB in RAM memory
equipped with a Tesla T4 GPU.

Description of the experimental setup. Several
LSTMs with different hidden state sizes, specifi-
cally n = {128,256,1024}, were trained using
corpora generated by GPT-2. To mitigate the sta-
tistical bias due to the inherent randomness of the
experimental setup, we conduct five independent
training runs. Each training run consists of three
steps: first, the generation of a corpus from the
considered LLM. Second, the training phase of the
LSTM, and third, the computation of both norm-
based bound (Theorem 1) and the variance-based
bound (4). To estimate the variance of the log
probabilities required for the computation of the
variance-based bound, we observe that a sample of
approximately 500 sentences were sufficient for the
variance estimate to stabilize. The overall hyperpa-
rameters of the experimental setup are summarized
in table 2.

Hyperparameters Value
Number of epochs 120
Training corpus size 12.5M tokens
Corpus sentences length 500
Number of runs 5
Hidden state size [128,256,512]
Sample size (VAR Estimation) 500

Table 2: Hyperparameters of the experimental setup

The overall output of this experimental process is
a collection of 15 LSTMs, equally divided among
three different hidden state sizes. We report the
obtained results in figure 1.

B Technical Results.

B.1 Carrasco’s decomposition lemma.

The subsequent lemma was crucial for estab-
lishing the complexity results for approximating
the cross-entropy between families of SWAs and
LSTMs/GRUs in section 3. Originally introduced
by Carrasco (Carrasco, 1997) in the context of
stochastic regular grammars, we proceed to present
a restatement of this lemma applicable to the gen-
eral case of arbitrary SLs: :

Lemma 5. (Carrasco’s decomposition lemma
(Carrasco, 1997))

1. The FSL case: Let P and @ be two FSLs, we
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Norm bound VAR bound Norm bound VAR bound
T=05 973 K 160.1 K T=0.5 1.78 M 200.6 K
T= 97.3K 39.4 K T=1 178.1 K 49.6 K
T =10 9.73 K 2.7K T=10 17.8 K 3.3K
(a)n =128 (b) n = 256
Norm bound VAR bound

T=0.5 22M 191.3 K

T=1 220 K 499 K

T=10 22 K 2.36 K

(c)n =512

Figure 1: Experimental results for the average non-asymptotic convergence bounds (in terms of the number of calls
to the GEN oracle on the LSTM) for CE estimation. Parameters: ¢ = 10~! and § = 0.95.

have

(woX™)

=2 2 F

wWEX* o3¢

By convention, for any string w € X*, we
have P(w$¥*) = P(w)

The ISL case: Let P and Q) be two ISLs. For
any integer L > 0, we have:

L 3D 3 oLl

=0 weXi ceX

1
Qo

CEL(P,Q) =
~log(

The key observation that enables the reformula-
tion of the CE in the format of lemma 5 consists at
noting that in the original expression of the cross-
entropy, we have for any string w € ¥* and a
symbol o € Xg (resp. Z) in the FSL (resp. ISL)
setting, the term log( G ‘ )) is multiplied by the

set of quantities { P(wow’) },yrex+. Summing over
this set yields the quantity P(wo¥*)

B.2 Proof of Proposition 1
Proof. We have:

> Pws?)

wEeED*

i P(X™Y")

m=0

=Y P(x*™)
m=0

= 14 By g[[w]]

1711y

o8 GoTw)
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where the last equality is due to the relative
o0

Ex~p[X] = Y. P(X > n) (see lemma 1.2.1,
n=1

(Vershynin, 2018)). ]

B.3 Proof of Lemma 1
Recall the statement of lemma 1:

Lemma 6. [. Inclusion: Any smooth FSL P is
also prefixial-bounded.

2. Strict inclusion:  There exists prefixial-
bounded FSLs that are not smooth.

The strict inclusion property can be obtained
straightforwardly by considering the family of
FSLs with finite support. A FSL with finite support
is clearly prefixial-bounded but is not smooth. We
shall focus next on the inclusion property.

Proof. Fix a smooth FSL P. We shall prove that
it’s also prefixial-bounded.

For an integer n > 0, the symbol p,, will refer
refer to the probability of generating a sequence of
length greater or equal to n. We have:

1Pllp = pn

n>0

In light of this formula, a first step towards our
stated goal, we prove that p,, decreases exponen-
tially as n increases.

P(XHy*)

> Pws)

weyxntl

Z Z P(wo¥™)

weX™ gEX

2. 2 P

weXN geX*

Pn+1

P(ofw)



> Pws*)) | P(ofw)

weD* ocEY

= 3 PwE)[L - P(S|w)]
weX*

< (1 - 7)pn

Consequently, applying the inequality (1 —
x)" < e "™ forx € (0,1) and pg = 1, we have

Pn < (1—7)"pp <e ™7

Consequently,

1Pl =) pn <) e " < o0

n>0 n

which completes the proof.

B.4 Proof of proposition 2

The proposition 3 states that LSTMs/GRUs and
Decoder-only Transformer-based LMs are bounded
NARLMSs.

With regards to LSTMs/GRU s, this statement
has already been proven in (Welleck et al., 2020).
We shall prove next that it is also the case for
Decoder-only Transformer-based LMs.

The proof of the proposition will depend on a
classical lemma from the field of calculus theory:

Lemma 7. Let f : X — Y be a continuous map.
The image of a compact set is also compact.

Recall that a compact set can be characterized as
follows (Rudin, 1976):
X is a compact set if and only if for any se-
quence {z, },en in X, there exists a sub-sequence
{T(n) }nen, where ¢ is an increasing map from N
to N, that converges to an element in X.

Proof. (7) Let D C X a compact set. We shall
prove that f(D) is also compact. Let {yy, }nen be
a sequence in f(D). Then, there exists a sequence
{2 }nen of elements in D such that for any n €
N : f(z,) = yn. Since D is compact, then there
exists a sub-sequence {Z () fnen that converges
to an element x* in D. Hence, by continuity of the
function f, the sequence {y4(y) }nen converges to

f(@®). 0

Now we are ready to prove point (b) of proposi-
tion 2:

Proof. Let M be a transformer-based LM with con-

text size K’ € N. First, we show that sup |[|®o
wexzk

Ex(w)|| < oo. Letw € X=X, we have

@ 0 Ex(w)|] < ||U - Wel| + [[Wp]]
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< sup |[U-Wel|+ Cu
peLK

which is finite, due to the finiteness of the set 2.
Define the ball B(0; sup [|® o Ex(w)||). By

wexzk
lemma 7, the image of this ball according to the

continuous map 7Ty, o .. o Ty, (by assumption in
the proposition statement and by the closure prop-
erty of continuity under the composition operator)
is compact, hence bounded by Bolzano-Weierstrass
theorem. Consequently, transformer-based LMs be-
long to the bounded NARLM family. O

B.5 Proof of proposition 3

In this subsection, we will prove that bounded
NARLMs generate smooth SLs.

For a matrix W € R™ ™ we shall use the no-
tation W;. (resp. W.;) to designate its i-th row
(resp. j-th column). When the columns of W are
indexed by elements of the alphabet 3, the notation
W.» will be employed to refer to the column of W/

indexed by the symbol o € ..
Let M be a bounded NARLM that generates a
SL denoted P. Fix (w, o) € ¥* x A. We have:

T
exp( W:ﬁf(w))
PM(U‘w) = wT . F(w)
> exp(—=r—)
o’eA
. 1
1+ > exp(F (W — Wor)T - F(w))
o’eA\{o}
> 1
L4121 exp (3 mag W2 - F(w)])
> 1

1 + |E| - exp (% I{}leaZ(HW:UHQ : HF('LU)H2>

1
1+ (2] exp (FWlloo 2 - [1Bnll2)

where the second inequality is obtained by
Holder’s inequality.
Since P is bounded, there exists a scalar B > 0
such that ||W||,2 < B. In addition, we have
[1Bnll2 = v/n.

Consequently, P is -smooth which

1
1+ Bvn
completes the proof.
B.6 Proofs of results in section 3
B.6.1 Proofs of lemma 2 and lemma 3.

We prove lemma 2 for the case of ISLs. A similar
proof can be obtained for the case of FSLs (lemma
3) by mimicking the argument herein.



Fix (¢,8) € (0,1)2. Define the random function:

Zr(w, o) = log(

Q(o|w)

where (w, o) € ¥* x ¥ are generated according to
GEN(P, L).

Given that @ is y-smooth and Q(o|w) > 1, the
random function Z;(w, o) is in [0,10g(%)] with
probability equal to 1.

By the application of Hoeffding’s inequality
(Theorem 2.8, (Boucheron et al., 2013)), for N >

O <log(%) . E%), the event:

1
]E(w,U)EGEN(P,L) [log (m)}

which is equivalent to

N
Z w’ua'z)

N

Z

CEL(P,Q) —

wl,az

holds with probability greater or equal to 1 — 4.

B.6.2 Proof of lemma 4

The proof of lemma 4 will follow a similar structure

of the proof of proposition 3.
Let M =< n, T, F,W > be a LSTM/GRU, and

p, q be two integers in [1, co] such that % + é =1.
For any (w, o) € ¥* x A, we have:

wT.F(w
exp( .aT( ))

> exp(

o/ €A

PM (a|w)

wT F(w)

o",:T )

1
exp ( W.g = We)T - F(w))

1+ X

o’eA\{o}
1

. 2 T.
1+ [X]-exp (Tglgglwo F(w)\)
1
1412 exp (%maxnw [ )|\q)

1
1+ 3] exp (F1Wlloop - [1Bnlla)

Y

AV

where the first inequality is obtained from the fact
that the exponential function is a monotonic in-
creasing function and:

WL Flw) — Wk - F(w) < |WE - F(w) — WL - F(w)|

< 2max |[W.EF(w)|
oeX

The second inequality is obtained using Holder’s
inequality.
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B.6.3 Proof of theorem 1

Let P be an arbitrary probability distribution, and
M =< n,T,F,W > be a LSTM/GRU. Fix

(¢,6) € (0,1)2. By lemma 2 and 4 and the fact that
the log(.) function is a monotonic increasing func-
,+E:1

log | A= | &
71(5 ) €2
P

samples from GEN(P, L) (where the expression

of fy](@’q) is given in equation (10)) to obtain an

e-approximate of CEL (P, Pys) with probability
greater or equal to 1 — §. On the other hand, For
any (p,q) € [1, o] such that % + % = 1, we have:

inf

tion, it requires O
(P.g)€[1,00]2

€ 1 2
< 1or(—g5) =108 (1 151 expCHIW 115210 )
’YM

2
=0 (log(Z) + f . HWHoo,p ! HB"HQ>

- /2
0 (% 1Wlles - 1511 )

C Implementation of the PSO(.) oracle for
the empirical distribution.

Fix an alphabet . Let C = {wi,...,wy} be
a corpus of size N >> 1. We denote by PP
the empirical distribution associated to C, and by
len(C) the maximum length of sequences in C, i.e.
len(C) = max |w;|.

(©) = ma s

We assume that during the pre-processing step,
the corpus C was arranged in the format:

C = {(5,5)}ieqtente)]
where for each i € len(C):

Si={welC: |wl =i}
Note that pre-processing a corpus to convert it into
this format can be done simultaneously with the
tokenization step, so as it doesn’t require perform-
ing an additional pass on the corpus during the
pre-preprocessing phase.

For a sequence w € ¥*, define:

NoZ|{w' =w-p: w e€C}

The distribution generated by PSO(P"P) is
given as:

Ny
len(C)

> 715l

Jj=1

Ppemp(w)



We first present a sampling procedure for generat-
ing one sequence from the PSO(P¢™P) oracle. Af-
terwards, we shall present a batch sampling proce-
dure that enables an efficient generationg of a large
sample.

e Sampling a sequence. Define the following
generative procedure:

»k

1. Generate an element from ¢ IS
[len(C)] according to the Bino-
mial distribution  parametrized by

151] 2|52 | 11en(C)-|Sten(e) |
len(C) ) len(C)il|S;| len(C) ]
> i8] > 4|Sql

=1 i=1 =1

2. Generate uniformly at random a sequence w
from S;+,

3. Output a sequence wy i, for k € [i*] where k
is drawn uniformly at random from [*],

The correctness of this procedure is given in the
following proposition:

Proposition 5. The distribution generated by the
sampling procedure outlined above is equal to the
prefixial distribution.

Proof. Let w € $=1"(C)_ we need to show that
the probability of generating w using the sampling
procedure defined above is equal to P,(w). We
denote by N,,; the number of sequences in .S; for
which w constitutes a prefix. The probability of
generating w is given as:

len(C)

D

i=1

i |Sil
len(C))

> ISyl

Nw,i
|S;

1

Q(w)

O

e Batch Sampling: We shall leverage the sam-
pling procedure provided above, we can provide a
batch version sampling procedure. The key ingre-
dient towards this goal is the multionomial distri-
bution:
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Definition 6 (Multinomial Distribution). Let n be
the number of trials, and p = [p1,Dp2, ..., pk] be
vector in [0, 1]™ such that Zle pi = L

The probability mass function of the multino-
mial distribution parametrized by n and p, denoted
Multinomial(n, p), is given as:

P(X1 = xl,Xg =T2,...
n!

, X = xp)

T1,,T2 Lk
p p .. .p
x1!$2!--~xk! 172 B

for non-negative integers xi,x2,...,x Such

that Z;g:l xT; =M.

The multinomial distribution is a generalization
of the binomial distribution. It describes the prob-
abilities of the outcomes of a multinomial experi-
ment, which consists of n independent trials, each
of which can result in one of k possible outcomes,
where the probability of obtaining the outcome &
is equal to py.

An equivalent sampling procedure to the one in-
troduced for single sequences but more adapted to
generating batches from the PSO oracle is outlined
in the following. For a desired sample size M > 0:

mq

1. Generate a vector according to the

M1en(C)
probability distribution:

‘Sll len(C) - |Slen(C)‘

Multinomial

M,

len(C)

> 715l
j=1

len(C)
7155l
1

Jj=

2. For eachi € [len(C)]:

(a) Generate uniformly at random (without
replacement) m; sequences from S;, de-
noted S;""" = {s1,..., Sm, }-

(b) Draw uniformly at random a vector J=

ly
according to the probability dis-
i,
tribution:

1
Multinomial(m;, [, .
m;

1
) :| )
m;
(c) Output the truncated Preﬁxes of Sz-m ac-
cording to the vector J (regardless of the
order of sequences in S;"")
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