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Abstract: Given samples from two distributions, a nonparametric two-sample test aims at
determining whether the two distributions are equal or not, based on a test statistic. This statistic
may be computed on the whole dataset, or may be computed on a subset of the dataset by a function
trained on its complement. We propose a third tier, consisting of functions exploiting a sequential
framework to learn the differences while incrementally processing the data. Sequential processing
naturally allows optional stopping, which makes our test the first truly sequential nonparametric
two-sample test.
We show that any sequential predictor can be turned into a sequential two-sample test for which
a valid p-value can be computed, yielding controlled type I error. We also show that pointwise
universal predictors yield consistent tests, which can be built with a nonparametric regressor based
on k-nearest neighbors in particular. We also show that mixtures and switch distributions can be
used to increase power, while keeping consistency.

Key-words: Hypothesis testing, Nonparametric two-sample test, Bayes factor, Sequential
prediction, Regression, Bayesian mixtures, Switch distributions.



Un Test Non-paramétrique d’Homogénéité Séquentiel
Résumé : Étant données deux populations d’échantillons issues de deux distributions, un
test non-paramétrique d’homogénéité a pour objectif de déterminer, à partir d’une statistique, si
les deux distributions sont identiques ou non. Cette statistique peut-être calculée sur l’ensemble
de tous les échantillons, ou elle peut être calculée sur un sous-ensemble à l’aide d’une fonction
entraînée sur son complément. Nous proposons une troisième façon de procéder qui consiste
en des fonctions qui exploitent un cadre séquentiel pour apprendre les différences au fur et à
mesure que les données sont traitées de façon incrémentale. Le traitement séquentiel permet
naturellement un arrêt optionnel, ce qui fait de notre test le premier test non-paramétrique
d’homogénéité vraiment séquentiel. Nous démontrons que n’importe quel prédicteur séquentiel
peut être transformé en un test d’homogénéité séquentiel pour lequel une p-value peut être
calculée, en obtenant donc une erreur de type I contrôlée. Nous démontrons aussi que les tests
obtenus à partir de prédicteurs ponctuellement universels sont consistants, ce qui est le cas de
ceux obtenus à partir de régresseurs non-paramétriques basés sur les k plus proches voisins.
Nos montrons aussi que les mélanges et le changement de distributions au cours de la séquence
permettent d’augmenter la puissance en maintenant la consistance.

Mots-clés : Test d’hypothèse, Test non-paramétrique d’homogénéité, Facteur de Bayes, Pré-
diction séquentielle, Régression, Mélanges bayésiens, switch distribution
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4 Lhéritier and Cazals

1 Introduction

1.1 Background

Given two sets of samples x1, . . . , xn0
and y1, . . . , yn1

whose corresponding random variables
Xi ∈ Rd and Yi ∈ Rd are i.i.d. with densities fX and fY respectively, a nonparametric two-
sample test ambitions to determine whether fX = fY . To this end, a statistic, i.e., a function
aiming at revealing discrepancies of the data is defined. This function typically quantifies in a
global way the local homogeneity of the mixture of the populations, this local homogeneity being
assessed by methods as diverse as nearest-neighbors (e.g. [18, 14, 16, 15], spatial partitions (e.g.
[2]) or kernels (e.g. [10]). The way the data are processed allows classifying two-sample tests into
two tiers. Tests of the first tier compute a statistic on the whole dataset, to reveal the discrepancy
if any (e.g. classical tests like [3, 9, 18, 14] and also more recent ones like [13, 16, 10]). Tests
from the second tier use a learning perspective by splitting the data into a training and a test
sets (e.g. [8, 6, 11, 24]). In the training phase, the function aiming at revealing the discrepancies
is learned and optimized (in the sense of its discrimination power). In the second phase, this
function is evaluated on the complement of the training set to obtain the statistic.

An appealing extension to this second tier is to use a sequential framework in which the
function is optimized at each sample and then immediately used to test the next sample. In this
sequential framework, it is natural and desirable to be able to stop at any time, i.e., as soon
as a difference has been perceived. Whereas classical Neyman-Pearson null hypothesis testing
requires the sampling plan or equivalently the stopping rule to be defined in advance to ensure
the validity of the procedure (see, e.g., [22]), Bayes factor model comparison makes this optional
stopping possible (see, e.g., [19]). Note that selected tests, such as MMDl [10], process samples
sequentially, yet require a predefined sampling plan.

1.2 Contributions

We make three contributions. First, we design a framework for sequential nonparametric two-
sample tests. The framework is based on sequential prediction of labels defining the two popula-
tions (or equivalently distributions on length-n sequences), and enjoys optional stopping. Second,
under suitable conditions qualifying the difference between the tested distributions, consistency
of the two-sample test is guaranteed when the sequential predictor is built from strongly point-
wise consistent regressors, obtained in our case from kn-nearest neighbors (KNN) regressors.
Third, we show that combing mixtures and switch distributions is effective in increasing power,
as our tests outperform state-of-the-art ones on selected challenging datasets.

We note in passing that our contribution bears two main differences with Wald’s sequential
test [23]. First of all, this classical procedure works only for simple alternative hypotheses, since
the probability of type II error must be kept under control. Although some extensions have been
proposed (e.g., [17]), they are not applicable to the nonparametric case. Another important
difference is that in Wald’s procedure the stopping rule must be fixed in advance in order to
obtain a valid p-value for the whole procedure, while in our procedure optional stop is allowed.

2 Two-Sample Test based on Sequential Prediction

2.1 Problem statement

We state the problem as follows:

Inria



A Sequential Nonparametric Two-Sample Test 5

Problem. 1. Given a set of samples x1 . . . xn0 and y1 . . . yn1 whose corresponding random
variables Xi and Yi are i.i.d. with densities fX and fY respectively, select one of the following
hypotheses {

H0 : fX = fY a.e.
H1 : ¬H0

. (1)

In order to assess the strength of the evidence against H0, a random variable p is used, which
is called a valid p-value (see, e.g., [5, Def. 8.3.26]) if 0 ≤ p ≤ 1 and

PH0 (p ≤ α) ≤ α, ∀α.

Then, the lower is p the stronger is the evidence against H0. It is also possible, to set a
threshold called significance level α, so that H0 is rejected when p ≤ α.

Then, two types of errors must be considered. One faces a type I error when H0 is rejected
while it is actually true. One faces a type II error when H0 is not rejected while it is actually
false. The probability of Type I error is controlled by design and is upper bounded by α. Then,
one usually considers the power of the test for a significance level α, which is

PH1 (p ≤ α) .

The test is termed consistent for a given level α when PH1 (p ≤ α)
n0+n1→∞−−−−−−−→ 1.

2.2 Random Labels Framework

A sequential probability predictor (or predictor for short) processes sequentially input symbols
belonging to some alphabet A. Before observing the next symbol in the sequence, it predicts it
by estimating the probability of observing each symbol of the alphabet. Then, it observes the
symbol and some loss is incurred depending on the estimated probability of the current symbol.
Subsequently, it refines its model in order to better predict future symbols. The predictor can
also be allowed to observe side-information to make better predictions.

Intuitively, if we shuffle the samples from both populations, and yet manage to predict the
population each sample belongs to, then it natural to think that there is some difference in the
features, so that H0 should be rejected.

In order to do this shuffling, we use a random device receiving samples from each of the
populations . The output corresponds to the input X with probability θ0 or to Y with probability
1 − θ0, where 0 < θ0 < 1 is a parameter that must be set. Formally, considering the alphabet
A = {0, 1}, we define the following pair of random variables:

(L,Z) =

{
(0, X) with probability θ0
(1, Y ) with probability 1− θ0

In a classical two-sample test setting, the inputs of the random device uniformly draws from
each of the given finite populations until the selected input has no more samples available,
in which case the paired sequence generated (L,Z)

N ends. Notice, that it can happen that
N < n0 + n1. In order to minimize the expected number of unused samples N − (n0 + n1), one
should set θ0 = n0/(n0 + n1).

RR n° 8704



6 Lhéritier and Cazals

2.3 Notations and Problem Reformulation
Our framework is based on considering two random variables Z (positions) and L (labels) repre-
senting, respectively, the pooled original samples, and the two populations these samples belong
to. The following notations are used to describe the probabilistic properties of these random vari-
ables. The unconditional and conditional label probabilities are denoted Pθ0 (l) and Pθ(z) (l|z).
One has: {

Pθ0 (l) ≡ P (L = l) , with θ0 = P (L = 0) ,

Pθ(z) (l|z) ≡ P (L = l|Z = z) with θ(z) = P (L = 0|Z = z) .
(2)

The joint density and the joint density assuming independence are respectively denoted fθ(z)(z, l)
and fθ0(z, l). The mixture density for position is denoted f(z) =

∑
l fθ(z)(z, l).

The entropy of random variables is denoted H (·), while the entropy of L conditioned on Z is
denoted H (L|Z); finally, the mutual information between Z and L is denoted I (Z;L).

In the setting of random labels, let us consider the following two-sample problem:

Problem. 2. Given a sequence of samples (l, z)
n whose corresponding random variables (Li, Zi)

are i.i.d. with joint density fθ(z)(·, ·), select one of the following hypotheses{
H0 : fθ(z)(z, l) = fθ0(z, l) a.e. ∀l ∈ {0, 1}
H1 : ¬H0

. (3)

The following lemma is a simple consequence of Bayes’ formula applied to the joint densities.

Lemma. 1. The null hypotheses of Problems 1 and 2 are equivalent.

2.4 Robust Sequential p-value
Using the statement of Problem 2, we phrase our two-sample problem as a model selection prob-
lem and use a likelihood ratio test to obtain a p-value. The models we consider are distributions
on length-n sequences, which can be obtained from sequential probability predictors. This ap-
proach has the advantage of providing a hypothesis test in which the sample size need not be
fixed in advance as classical Neyman-Pearson does (see, e.g., [20, 19]). More formally:

Theorem. 1. Given some arbitrary distribution Q on length-n sequences, a test that rejects H0
at any index n when the likelihood ratio

Pθ0 (ln)

Q (ln)
≤ α (4)

has a Type I error probability less or equal than α for problem 2, i.e.,

Pθ0
(
∃n :

Pθ0 (Ln)

Q (Ln)
≤ α

)
≤ α. (5)

Proof. We consider the i.i.d. sequence Ln, Zn and the class of models fθ(z)(·, ·) to which fθ0(·, ·)
belongs. Let us define p1(ln, zn) ≡ Q (ln) f(zn), which is a function from Rd ×An to R+

0 . Note
that

p1(ln, zn)

fθ0(ln, zn)
=

Q (ln) f(zn)

Pθ0 (ln) f(zn)
=

Q (ln)

Pθ0 (ln)
.

Then, one has

Eθ0
[
p1(Ln, Zn)

fθ0(Ln, Zn)

]
= Eθ0

[
Q (Ln)

Pθ0 (Ln)

]
=

∑
Ln∈An

Pθ0 (Ln)
Q (Ln)

Pθ0 (Ln)
= 1

Inria



A Sequential Nonparametric Two-Sample Test 7

where the last inequality stems from Q being a distribution. Equation 5 follows from [20, Thm.
3.1], which is a special case of [19].

The following lemma shows that any sequential predictor assigning a probability to li using
past label data li−1, and possibly all the available position data z∞, complies with Thm. 1:

Lemma. 2. Given a sequential probability predictor Q
(
li|li−1

)
(i.e.

∑
l∈AQ (l|·) = 1), one can

build the following function of sequences ln ∈ An

Q (ln) ≡
n∏
i=1

Q
(
li|li−1

)
, (6)

which is a distribution.

Proof. Let us prove by induction that it is a distribution using the distributive law to obtain the
following expression∑

ln∈An
Q (ln) ≡

∑
l1∈A

Q
(
l1|l0

) ∑
l2∈A

Q
(
l2|l1

)
· · ·
∑
ln∈A

Q
(
ln|ln−1

)
where l0 is the empty sequence. The base case corresponds to right-most sum and, since Q is a
sequential probability predictor, we have∑

ln∈A

Q
(
ln|ln−1

)
= 1.

Observing that each sum is a convex combination of an expression that is equal to one proves
the claim.

2.5 Consistency via λ-Pointwise Universal Distributions (λ-PUD)
We now define the requirements imposed on the distributions to obtain consistent tests, in a
weaker sense that we call λ-consistency. To this end, we consider distributions depending on the
position sequence zn, whence the notation Q (ln|zn).

Definition. 1. Given 0 < λ ≤ 1, a distribution Q is λ-pointwise universal (λ-PUD) if

− lim
1

n
logQ (Ln|Zn) ≤ H (L|Z)− log λ a.s..

The following theorem introduces the λ-consistency property – from which one recovers the
usual notion of consistency for λ = 1, and shows that this property is obtained from λ-PUD.

Theorem. 2 (λ-consistency). Under the alternative hypothesis, I (Z;L) = ε > 0. Consider
a λ-PUD Q such that λ > 2−ε. Then, the test described in theorem 1 using that λ-PUD is
consistent.

Proof. The probability of rejecting H0 is

PZ,L
(
∃n :

Pθ0 (Ln)

Q (Ln|Zn)
≤ α

)
(7)

= PZ,L
(
∃n : − 1

n
logPθ0 (Ln) +

1

n
logQ (Ln|Zn) ≥ − logα

n

)
. (8)

RR n° 8704



8 Lhéritier and Cazals

Since Q is λ-PUD and, by the Asymptotic Equipartition Property (see, e.g., [7]), we have

lim− 1

n
logPθ0 (Ln) +

1

n
logQ (Ln|Zn) ≥ H (L)−H (L|Z) + log λ a.s.

= I (Z;L) + log λ > 0

where the last inequality stems from I (Z;L) > − log λ, which is a direct consequence of the
assumptions.

Therefore, there exist δ > 0 and n′(δ) and such that ∀n ≥ n′(δ), the left-hand size of the
inequality in Eq. (8) is greater than δ almost surely. For the right-hand side of the inequality,
there exists n′′(δ) such that ∀n ≥ n′′(δ), − logα

n < δ.
Thus, for any n ≥ max(n′, n′′), the inequality holds, and thus the probability of rejecting is

1.

3 λ-Pointwise Universal Distributions via Strongly Point-
wise Consistent Regressors

In this section, we construct λ-PUD thus yielding λ-consistent tests. The construction uses
sequential predictors based upon strongly pointwise consistent regressors. These sequential pre-
dictors define a distribution via lemma 2, and therefore a robust sequential p-value, and yield a
λ-PUD.

Sequential probability estimation from nonparametric regression. We first build a
sequential predictor using nonparametric regression (see, e.g., [12]). Given a random vector
(Z,R), where Z ∈ Rd and the response variable R ∈ R, the regression function is defined as

m(z) = E [R|Z = z] . (9)

To obtain a sequential predictor, we consider the mapping R = L. This yields

m(z) = P (L = 1|Z = z) . (10)

Let mn(z) be an estimate of m(z) based on n i.i.d. realizations of (Z,R). Given some sequence
of regression function predicts {mn}, let us define the following sequential predictor:

P̂i
(
li|li−1, zi

)
≡ mi−1(zi)1li=1 + (1−mi−1(zi))1li=0. (11)

Notice that in this case, P̂i predicts li based on li−1 and zi and ignores future z samples, and
thus is compliant with lemma 2.

We are interested in following sense of consistency since it allows to build λ-PUD.

Definition. 2. A sequence of regression function estimates {mn} is strongly pointwise consis-
tent (s.p.c.) if

mn(z)
n→∞−−−−→ m(z) a.s. (12)

for µ-almost all z ∈ Rd, µ denoting the distribution of Z.

We call an s.p.c. sequence of regression estimates and s.p.c regressor. In [12, Sec. 25.6],
some s.p.c. regressors are presented. For example, regressors based on partitioning, kernel and
nearest neighbors are s.p.c under certain conditions for their parameters, when the absolute value
|R| < M , for someM . Note that is our case since R ∈ {0, 1}. In our experiments, we use nearest
neighbors regressors, which are described in Appendix A.

Inria



A Sequential Nonparametric Two-Sample Test 9

Type I error and robust sequential p-value. We follow the construction of [1][Sec. 2] in
order to build a λ-PUD. For any distribution Q (l|z) and 0 ≤ λ < 1, let us define

Qλ(l|z) ≡ (1− λ)
1

|A|
+ λQ (l|z) . (13)

Plugging P̂n into the previous equation yields P̂λn , which, by lemma 2, can be turned into a
distribution on length-n sequences and, thus, we have the following corollary.

Corollary. 1. The test obtained with P̂λn yields a robust p-value.

Type II error and λ-consistency. Note that the constant term in Eq. (13) guarantees that
the logarithm of Qλ is bounded. This allows applying Breiman’s Extended Ergodic Theorem [4]
to obtain the following theorem.

Theorem. 3. P̂λn based on a s.p.c. regressor yields a λ-PUD, thus a λ-consistent test. That is,

lim
n

1

n
log P̂λn (Ln|Zn) = E

[
− logPλ (L|Z)

]
a.s. (14)

≤ H (L|Z)− log λ (15)

Proof. Let us define the doubly infinite i.i.d. process (L,Z)
∞
−∞ ≡ . . . , (L−1, Z−1), (L0, Z0), (L1, Z1), . . .

The claim
lim
n

1

n
log P̂λn (Ln|Zn) = E

[
− logPλ (L|Z)

]
a.s. (16)

is equivalent, by Lemma 2, to

lim
n

1

n

n∑
i=1

log P̂λi
(
Li|Zi, Li−1

)
= E

[
− logPλ (L|Z)

]
a.s.. (17)

Let us consider the operator T i that shifts any sequence {. . . , s−1, s0, s1, . . . } by i positions to
the left and let us denote

ĝλi ((L,Z)
∞
−∞) ≡ − log P̂λ−i

(
L1|Z1, (L,Z)

0
−i+1

)
(18)

where
P̂−i

(
L1|Z1, (L,Z)

0
−i+1

)
≡ m−i(Z1)1li=1 + (1−m−i(Z1))1li=0 (19)

where m−i(z) is an estimate of m(z) based on (L,Z)
0
−i+1. Then the claim is equivalent to

lim
n

1

n

n−1∑
i=0

ĝλi (T i(L,Z)
∞
−∞) = E

[
− logPλ (L|Z)

]
a.s.. (20)

Since P̂λn is based on an s.p.c. regressor, we have that

P̂−i

(
l|z, (L,Z)

0
−i+1

)
i→∞−−−→ P (l|z) a.s. (21)

for all l ∈ A and f -almost all z ∈ Rd. Since the measure of z values failing the previous
convergence is null, one has

P
(
P̂−i

(
L1|Z1, (L,Z)

0
−i+1

)
i→∞−−−→ P (L1|Z1)

)
= 1. (22)

RR n° 8704



10 Lhéritier and Cazals

and thus
P
(
P̂λ−i

(
L1|Z1, (L,Z)

0
−i+1

)
i→∞−−−→ Pλ (L1|Z1)

)
= 1. (23)

Therefore, if we define
gλ((L,Z)

∞
−∞) ≡ − logPλ (L1|Z1) , (24)

we have that
ĝλi ((L,Z)

∞
−∞)

i→∞−−−→ gλ((L,Z)
∞
−∞) a.s.. (25)

We also have that ĝλi is bounded between 0 and log 2
1−λ , so that the claim follows from

Breiman’s extended ergodic theorem.
The inequality 15 stems from Pλ (L|Z) ≥ λP (L|Z).

As shown in [1, Thm. 2], the following mixture is a pointwise universal distribution

P̂∞n (ln|zn) =

∞∑
k=0

µkP̂
λk
n (ln|zn) (26)

where 0 ≤ λk ↗ 1 and
∑∞
k=0 µk = 1. Yet, this mixture requires an infinite sum, which motivates

our use of λ-PUD – which yield λ-consistent tests.

4 Increasing Power using Mixtures and Switch Distribu-
tions

Let us first consider Bayesian Model Averaging (BMA). Given a set of distributions {Qk}k and
weights µk such that

∑
k µk = 1, BMA produces the following mixture:

BMA{Qk} (ln|zn) ≡
∑
k

µkQk (ln|zn) . (27)

Pointwise universal mixtures. We first prove a lemma that allows building λ-consistent
two-sample tests by mixing one λ-PUD with arbitrary distributions:

Lemma. 3. A mixture of distributions containing at least one λ-PUD Q0 with weight µ0(n)
such that logµ0(n) = o(n) yields a λ-PUD.

Proof. Consider a λ-PUD Q0 and the arbitrary distributions Qk (ln|zn) , k > 0. Assuming that∑
k µk = 1, we define the mixture:

Q (ln|zn) ≡
∑
k

µkQk (ln|zn)

Since Q (ln|zn) ≥ µ0(n)Q0 (ln|zn), one has

− lim
1

n
logQ (Ln|Zn) ≤ − lim

1

n
logµ0(n)Q0 (Ln|Zn)

= − lim
1

n
logQ0 (Ln|Zn) +

logµ0(n)

n
≤ H (L|Z)− log λ a.s..

Inria



A Sequential Nonparametric Two-Sample Test 11

An interesting application of mixtures is the following one. Since it is not clear which neigh-
borhood size function kn is best for a KNN regressor, we consider a set of functions kn = np,
where p takes values in some set – finite for practical purposes. All these predictors yield λ-PUD
if p < 1 (see Appendix A). But using a mixture allows one to favor the best size function by
updating the a posteriori weights according to past performance.

Model switching. The mixture of lemma 3 also allows model switching to avoid the catch-up
phenomenon (see [21]). That is, even if we are under H1, when few samples are available it can
be better to predict using Pθ0 and then switch to P̂n when more samples are available.

Let us define the following distribution that switches before time s from Pθ0 to any predictor
P̂n:

P̂Sw{Pθ0 ,P̂n}
(ln|s, zn) ≡ Pθ0

(
ls−1

)
P̂n
(
lns |ls−1, zn

)
(28)

where l0 is the empty sequence and Pθ0
(
l0
)
≡ 1. Given a prior π(s) on the switching time s, we

define the following switch distribution

P̂
Sw(π)

{Pθ0 ,P̂n}
(ln|zn) ≡

∑
s

π(s)P̂Sw{Pθ0 ,P̂n}
(ln|s, zn) . (29)

The following lemma follows from lemma 3.

Lemma. 4. Given a λ-PUD P̂n, the switch distribution defined by Eq.29 with a prior π such
that log π(0) = o(n) is λ-PUD.

A first option for the switch time prior is the horizon-free prior defined in [21]

πS(s) ≡ 1

s(s+ 1)
. (30)

Another option, when the horizon n is known, is the uniform prior

πU (s) ≡ 1

n
. (31)

Note that Eq. (28) can be interpreted as a training phase (until s) followed by a test phase that
keeps learning. Eq. (29) replaces the choice of s by a mixture of all possible values, weighted by
a prior.

5 Experiments

5.1 Instantiations and Contenders

Our constructions allow defining two-sample tests from λ-PUD in general (section 2), and s.p.c.
regressors in particular (section 3). More precisely, we define the following λ-consistent two-
sample tests:

1. KNNp≡ P̂λn obtained via KNN with kn = dnpe and λ = 0.9999

2. BMA≡ BMA{KNNp}, p ∈ {.3, .5, .7, .9} with uniform prior µ

3. SWπU ≡ P̂
Sw(πU )
{Pθ0 ,BMA}

RR n° 8704



12 Lhéritier and Cazals

4. SWπS ≡ P̂
Sw(πS)
{Pθ0 ,BMA}

For tests 3. and 4., we consider two versions: the first one computes the likelihood ratio on
the full sequence generated by the random device discussed in section 2.2 (whence the letter F
for Full); the second one exploits the ∃ quantifier of Eq. (5), i.e., stops at the first index such
that the likelihood ratio is below α (whence the letters OS for Optional Stop). Note that for
tests 1. and 2., we only report results for the full version.

We compare their performance against the following methods:

• MMDb: the Maximum Mean Discrepancy two-sample test presented in [10] using the boot-
strap approach to compute the rejection region. We used the MATLAB code available at
http://www.gatsby.ucl.ac.uk/~gretton/mmd/mmd.htm. 500 shuffles were used for the
bootstrap.

• TRank: the AUC optimization based two-sample test presented in [6]. We used the R imple-
mentation available from CRAN Archive at http://cran.r-project.org/src/contrib/
Archive/TreeRank with the default parameters. Since we test our methods on the same
distributions and sample sizes as in [6] we also include the performance stated in that pa-
per, which we denote as TRankref. In those cases, we ran TRank with same split value as
TRankref.

• Kernel optimized MMD ( OPT, MxRt, MxMMD, L2, xvalc and med): these are the meth-
ods proposed in [11]. They are all based on splitting the data in train/test sets, performing
some kernel optimization on the train set then testing on the test set. The kernels consid-
ered are Gaussian ones with width σ ∈ {2i}i=−15...10.

5.2 Results
Setup. We set α = 0.05. Experiments were run with n0 = n1 since the implementations of
selected contenders (MMDb) require this balance. Therefore, we set θ0 = 1/2 in order to match
these proportions (see discussion in section 2.2).

Following [6, 11], our experiments assess the type I and type II errors of our tests and their
contenders, under various conditions: Gaussian data in low and medium dimension, mixture of
Gaussian data aiming at assessing the incidence of scale.

Gaussian data in dimension d = 4. Table 1 presents the results on data generated using the
specification of [6, Fig. 1], corresponding to different 4-dimensional Gaussians:
– Ex1: two populations drawn from the same distribution, so that Type I error is assessed.
Sample sizes: n0 = n1 = 1000.
– Ex2: two populations drawn from two shifted Gaussians, so that Type II error is assessed.
Sample sizes: n0 = n1 = 1000.
– Ex3: corresponds to two subtly shifted Gaussians. Sample sizes: Ex3a: n0 = n1 = 3000;
Ex3b: n0 = n1 = 5000.

Regarding Ex1 (Table 1, line 1), our tests using the full sequence are conservative – no
type I error, an observation also valid in the other experiments. For the remaining experiments
(Table 1, lines 2-4), we observe that the switching distribution with a uniform prior is the best
amongst our predictors. Also, its power is comparable to that of TRank, yet worse than that of
MMDb(Ex3b).

Gaussian data in dimension d = 10, 30. Table 2 presents the results on data generated
using the same specifications of [6][Fig. 2], which correspond to 10 and 30-dimensional gaussians
shifted by ∆µ = 0.2 with n0 = n1 = 2000. Here we estimate Type II error probability.
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Table 1 Gaussian data in dimension d = 4. The symbol H0 or H1 at the beginning of each
line indicates whether the null is true or false. Numbers indicate the percentage of trials for
which the null hypothesis was rejected, given α = 0.05. A total of 150 trials were done.
Case KNN.3 KNN.5 KNN.7 KNN.9 BMA SW(F )

πU SW(F )
πS SW(OS)

πU SW(OS)
πS TRank TRankref MMDb

H0, Ex1 0 0 0 0 0 0 0 2 6 4.7 1 3.3
H1, Ex2 5.3 100 100 100 100 100 100 100 100 100 99 100
H1, Ex3a 0 0 0 0 0 18.7 5.3 20 9.3 40.7 45 90
H1, Ex3b 0 0 1.3 0 0.7 48.7 16 65.3 21.3 76 73 98.7

Table 2 Gaussian data in dimension d = 10, 30. For conventions, see the caption of Table
1. In this experiment, the data under H0 was generated by sampling from the mixture of both
distributions. 100 trials were done. (NB: the conditions associated with TRankref are specified
in M. Depecker’s PhD Thesis).
Case KNN.3 KNN.5 KNN.7 KNN.9 BMA SW(F )

πU SW(F )
πS SW(OS)

πU SW(OS)
πS TRank TRankref MMDb

H0, d = 10 0 0 0 0 0 1 0 1 5 5 6
H0, d = 30 0 0 0 0 0 0 0 0 3 6 6
H1, d = 10 0 0 0 0 0 69 20 68 35 36 90 99
H1, d = 30 0 0 0 0 0 22 5 29.5 10 25 85 95

Although individual predictors KNNi yield the worst performance, SWπU shows good per-
formances, even outperforming TRank in dimension 10 – in our replica, which use default pa-
rameters. We notice, though, that performances degrade upon increasing the dimension, a likely
consequence of distance concentration phenomena perturbing the choice of neighbors by KNN.

Lattice data and incidence of the scale. Table 3 presents the results on data corresponding
to the specification of [11]: two 5×5 grids of two-dimensional Gaussians (a.k.a. blobs) that differ
in covariance (parameters: stretch=10, rotation_angle=π/4, blob_distance=15). We consider
three cases:
– B1: two populations drawn from the mixture of both blobs, so that Type I error is assessed.
Sample sizes: n0 = n1 = 200.
– B2: two populations drawn from each of the blobs, so that Type II error is assessed. Sample
sizes: n0 = n1 = 1500.
– B3: Same as B2 but with larger sample sizes: n0 = n1 = 2000.

As noted in [11], it is a prototypical example where MMDbfails and kernel width optimization
is important, since differences occur at a smaller scale. For our predictors, this scale is captured
by slower kn. It is important to emphasize, that predictors with larger kn are also consistent
and, therefore, they would also detect the differences with more samples. Remarkably, when
n0 = n1 ≥ 1500, SWπU (F or OS) outperforms all the MMD contenders.

Table 3 Lattice of Gaussians in dimension d = 2. For conventions, see the caption of
Table 1. The data under H0 was generated by from the mixture of both distributions. A total of
200 trials were done.
Case KNN.3 KNN.5 KNN.7 KNN.9 BMA SW(F )

πU SW(F )
πS SW(OS)

πU SW(OS)
πS TRank MMDb OPT MxRt MxMMD L2 xvalc med

H0, B1 0 0 0 0 0 0 0 0.5 5.5 6 5 4 2.5 2.5 4 7 7
H1, B2 11 0.5 0 0 11 21.5 14 27.5 16.5 100 6 18.5 15.5 15 14.5 15.5 5
H1, B3 78.5 62.5 0 0 85 93 89.5 96.5 91.5 100 6.5 21 18.5 15 15 21 7.5
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14 Lhéritier and Cazals

6 Conclusion
This work introduces the first sequential nonparametric two-sample test, based on sequential
prediction of labels defining the two populations. Our test is shown to be consistent when
prediction is carried out by strongly pointwise consistent regressors. We show that mixtures
of distributions based on KNN regressors are effective in favoring the best neighborhood size
function. This update being carried out along the sequential process is more flexible than classical
approaches splitting the data into a training and test sets. We also show that model switching
increases the power, a fact related to the ability of automatically selecting the best splitting point
in a train/test paradigm. Experimentally, while no test is expected to be the most powerful for
all kinds of data, our best constructs outperform state-of-the-art ones on selected challenging
datasets.

We foresee two outstanding questions. Complexity-wise, the regressors used rely on ex-
act nearest neighbor queries, exhibiting linear complexity in the worst-case. Inferring whether
our tests remain consist when information of lower quality is used (e.g. approximate nearest
neighbors) would allow using more efficient data structures. In addition, obtaining consistency
guarantees under constant size memory requirements would be of special interest in a streaming
context,
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A Nonparametric regression based on kn-nearest neighbors
Here we describe the s.p.c. kn-nearest neighbor regression function estimate (see [12, Ch.6&25] for
further details). Given the training data {Zi, Ri}i=1,...,n, let us denote as R(i,n)(z) the response
value corresponding to i-th nearest neighbor (with some tie-breaking rule) of z in Zn. Then, the
kn-nearest neighbor (kn-NN) regression function estimate is defined by

mn(z) =
1

kn

kn∑
i=1

R(i,n)(z). (32)

Then we have the following theorem [12, Thm. 25.17]:

Theorem. 4 (Strong pointwise consistency of k-NN). If |R| < C for some C <∞,

kn
log n

→∞ and
kn
n
→ 0,

then the kn-NN estimate using Euclidean distance is strongly pointwise consistent.
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