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ABSTRACT

Foundation models update slowly due to resource-intensive training, whereas
domain-specific models evolve rapidly between releases. Model merging seeks
to combine multiple expert models into a single, more capable model, reducing
storage and serving costs while supporting decentralized development. Despite its
potential, previous studies have primarily focused on merging visual classification
models or Large Language Models (LLMs) for code and math tasks. Recently,
Multimodal LLMs (MLLMs) that extend LLMs through large-scale multimodal
training have gained traction. However, no benchmark exists for model merging
research that clearly divides the tasks of MLLM training and evaluation. In this
paper, (i) we introduce a model merging benchmark for MLLMs, which includes
multiple tasks such as VQA, Geometry, Chart, OCR, and Grounding, studying both
LoRA and full fine-tuning models. Moreover, we explore how model merging can
combine different modalities (e.g., vision-language, audio-language, and video-
language models), moving toward the Omni-language model. (ii) We implement
10 model merging algorithms on the benchmark. Furthermore, we propose a novel
method that removes noise from task vectors and robustly optimizes the merged
vector based on a loss defined over task vector interactions, achieving an average
performance gain of 2.48%. (iii) We find that model merging offers a promising
way for building improved MLLMs without requiring training data. Our results
also demonstrate that the complementarity among multiple modalities outperforms
individual modalities. All code and checkpoints are made publicly available.

1 INTRODUCTION
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Figure 1: Unifying the capabilities or modali-
ties of MLLMs from open-source communities via
model merging, which is a data-free, cost-effective
post-hoc method.

Foundation models experience slow develop-
ment cycles due to resource-intensive training re-
quirements, while domain-specific models con-
tinuously improve during interim periods (Fang
et al., 2025). Various developers release their
fine-tuned models on open-source communities
such as Hugging Face. Model merging (Yadav
et al., 2024) aims to combine multiple expert
models into a unified model with multiple ca-
pabilities. This approach reduces storage and
serving costs through model reuse, while sup-
porting decentralized development by enabling
independent contributors to build models that
can later be merged. Despite its potential, pre-
vious studies (Akiba et al., 2025; Ilharco et al.,
2023; Yang et al., 2024b) have primarily focused
on merging visual classification models across
multiple datasets to extract representations, or merging Large Language Models (LLMs) specifically
for code and math tasks.

Recently, Multimodal Large Language Models (MLLMs) that extend LLMs with broader capabilities
through large-scale multimodal training have gained traction. Model merging offers a cost-effective
way to combine fine-tuned MLLMs with task-specific skills into a unified model (see Fig. 1).
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However, no benchmark exists for model merging research that clearly divides the tasks of MLLM
training and evaluation. Specifically, AdaMMS (Du et al., 2025) proposes an unsupervised hyper-
parameter selection method, but can only merge two MLLMs at a time. For example, merging
LLaVA-OneVision-Qwen (Li et al., 2025a) into Qwen2-VL (Wang et al., 2024b) on the Qwen2
architecture. UQ-Merge (Qu et al., 2025) treats each fine-tuning dataset in LLaVA-v1.5 (Liu et al.,
2024a) as a separate task without categorization of MLLM capabilities, fine-tuning the base model
for each dataset, and using LLaVA-v1.5 as the mixture training baseline.

In this paper, we introduce a model merging benchmark for MLLMs, which includes diverse spe-
cialized models such as VQA, Geometry, Chart, OCR, and Grounding. For each corresponding task,
we collect comprehensive public datasets with at least 100k samples to ensure effective supervised
fine-tuning, and select corresponding benchmarks to evaluate distinct capabilities. We derive an upper
bound on the error between the merged model and expert models, proving that merging performance
is influenced by the learning rate and iterations, which control the extent of parameter drift. Smaller
parameter changes sacrifice task performance but lead to more effortless merging. We choose two
types of vision-language models: InternVL2.5 and Qwen2-VL, providing both LoRA and full fine-
tuning checkpoints. Moreover, most existing MLLMs specialize in dual modalities, and incorporating
new modality encoders requires re-training on new modality-text data. Generating high-quality
multimodal instruction data is resource-consuming (Jiang et al., 2024). Therefore, we explore how
model merging can efficiently combine different modalities (e.g., vision-language, audio-language,
and video-language models), moving toward the Omni-language model. This offers a data-free way
to reuse and integrate modality-specific encoders into a unified LLM.

Based on our benchmark, we conduct an in-depth comparison and analysis of state-of-the-art merging
methods in capability and modality merging settings. Furthermore, we propose a novel merging
method that improves the task vector (i.e., the parameter change between fine-tuned and base models)
optimization. OptMerge optimizes the merged model based on a loss defined over task vector
interactions and applies low-rank approximations to reduce redundant noise, achieving the best
results. Combining multiple MLLMs without requiring data, the merged model can even outperform
expert MLLMs in their respective capabilities and mixture data training. We also find that merging
methods effectively integrate inputs from multiple modalities, outperforming models trained on
individual modalities, thus emphasizing the complementary nature of modal information.

In summary, our main contributions are threefold:

• Benchmark: We introduce the first model merging benchmark that provides a fine-grained
categorization of MLLM capabilities, and evaluates how merging integrates multiple modal-
ities. We train expert models for each task and publicly release their weights and code.
This benchmark is designed to help the model merging community better evaluate the
generalizability of their methods.

• Methodology: We further propose a simple yet effective method, OptMerge, which removes
noise from task vectors and enhances the robustness of merged vector optimization. Ablation
studies show an average performance improvement of 2.48%.

• Experiments: We conduct comprehensive experiments and analyses on our benchmark.
Our empirical results suggest that model merging can outperform mixture training, offering
a viable path to omni-model alignment and a scalable approach to developing MLLMs with
reduced computational cost and training time.

2 RELATED WORK

Model merging. Model merging has emerged as a cost-effective approach to developing improved
models by combining multiple expert models to leverage their complementary capabilities (Yadav
et al., 2024; Ahmadian et al., 2024). These expert models typically share a common base model,
with specialization achieved through fine-tuning on distinct datasets. This approach offers a flexible
and modular method for post-training MLLMs and facilitates the integration of new capabilities into
top-performing models. Current research on model merging falls into two primary categories: static
merging and dynamic merging. Static merging compresses multiple models into a single standard-
sized model without adding additional computation or memory overhead. Dynamic merging (aka
MoE-like methods) (Tang et al., 2024b; Huang et al., 2024; Lu et al., 2024b) requires the dynamic
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loading of task-specific modules based on test inputs, involving training routers or prior knowledge.
The storage parameters for dynamic merging are larger.

Static merging can be further divided into data-free methods and test-time adaptation methods.
Data-free methods merge fine-tuned models without requiring additional data. We categorize these
methods into four groups: (i) Linear interpolation methods that perform arithmetic operations on
task vectors (Wortsman et al., 2022; Ilharco et al., 2023; Goddard et al., 2024; Chen et al., 2025); (ii)
Sparsification-based methods that reduce redundancy in task vectors (Yadav et al., 2023; Yu et al.,
2024; He et al., 2025); (iii) SVD-based methods that identify and exploit the low-rank features of
task vectors (Gargiulo et al., 2025; Marczak et al., 2025; Choi et al., 2024; Stoica et al., 2025); and
(iv) Optimization-based methods that optimize task vectors via gradient descent (Wei et al., 2025b;
Cheng et al., 2025). Test-time adaptation (Yang et al., 2024d;c; Daheim et al., 2024) assumes access
to unlabeled test datasets, which can be considered a form of transductive learning.

Although test-time adaptation and dynamic merging achieve remarkable results, their practical appli-
cability is limited due to challenges including data privacy concerns, additional storage requirements,
and insufficient parallelism in merged models. Therefore, we focus on data-free static merging.

Model merging in MLLMs. Recently, several works have attempted model merging for MLLMs,
but with different objectives. VL-merging (Sung et al., 2023) merges modality-specific models to
create modality-agnostic models, evaluating their effectiveness through fine-tuning on downstream
tasks (e.g., image classification). VisionFuse (Chen et al., 2024d) employs task arithmetic to merge
LLMs with concatenated visual encoder outputs, primarily focusing on enhancing MLLMs’ visual
capabilities. Firstly, UnIVAL (Shukor et al., 2023) proposes a study on multimodal model merging
via weight interpolation of models trained on different multimodal tasks, showing their benefits in
particular for generalization. DAMC (Chen et al., 2024a) composes MLLMs across image, audio,
video, and point cloud modalities while reducing modal interference through parameter decoupling.

Several approaches similar to ours aim to merge multiple MLLMs to improve multi-task performance.
AdaMMS (Du et al., 2025) proposes an unsupervised hyperparameter selection method for model
merging. However, it requires generating responses for each candidate hyperparameter, making
it time-consuming and assuming test set availability during merging. Furthermore, it can only
merge two models at a time. For example, merging LLaVA-OneVision-Qwen into Qwen2-VL on
the Qwen2 architecture, or merging LLaVA-v1.5 into CogVLM-Chat on the LLaMA architecture.
UQ-Merge (Qu et al., 2025) considers uncertainty quantification on text and vision inputs to examine
MLLM prediction confidence, requiring unlabeled test sets to calculate prediction and determine
merging sequence. This approach measures uncertainty across all candidate models and repeatedly
evaluates merged models to find optimal combinations. UQ-Merge treats each fine-tuning dataset
in LLaVA-v1.5 (Liu et al., 2024a) as a separate task without categorization of MLLM capabilities,
fine-tuning the base model for each dataset and using LLaVA-v1.5 as the mixture training baseline.
In contrast, our benchmark collects more comprehensive data with clearer MLLM task divisions for
fine-tuning, and we propose a data-free method that requires no hyperparameter search.

3 RETHINKING MODEL MERGING

In Sec. 3.1, we begin by introducing common model merging algorithms. In Sec. 3.2, we revisit
empirical findings from prior work, and provide a theoretical explanation of the relationship between
model fine-tuning and merging performance. Building on this, we analyze the statistical properties of
our benchmark, demonstrating both its validity and the challenges it presents.

3.1 MERGING BASELINES

Model merging aims to integrate multiple fine-tuned models, all derived from a base model θ0, into a
unified model that consolidates knowledge from diverse sources. Given n fine-tuned models denoted
as θ1, · · · ,θn, the objective is to produce a single merged model θm that effectively inherits the
capabilities of all individual models. We categorize merging methods into four groups.

Linear interpolation methods: Weight Averaging (Wortsman et al., 2022) averages the weights of
models fine-tuned on different tasks. Task Arithmetic (Ilharco et al., 2023) computes task vectors

3
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τi = θi − θ0 for individual tasks and sums them to form a multi-task vector τm =
∑n

i=1 τi. This
vector is scaled by a coefficient λ and added to the base model θ0 to obtain the merged model.

Sparsification-based methods: Ties-Merging (Yadav et al., 2023) combines steps like trimming,
parameter sign determination, and disjoint merging to produce the τm. The final model is defined as
θm = θ0 + λτm, where λ is tuned using the validation set. DARE (Yu et al., 2024) randomly drops
redundant task vectors and rescales the remaining ones to mitigate parameter interference.

SVD-based methods: TSV Merging (Gargiulo et al., 2025) quantifies task-specific feature overlap
in weight space by measuring the singular task interference of τi. It then reduces task interference
through decorrelation. The method seeks orthogonal matrices V⊥ and U⊥ to reconstruct the parame-
ters of the merged model. Iso-C (Marczak et al., 2025) proposes an isotropic merging framework
that flattens the singular value spectrum of task matrices, and enhances alignment between singular
components of task-specific and merged matrices.

Optimization-based methods: WUDI Merging Cheng et al. (2025) proves that task vectors τ form
an approximate linear subspace of the fine-tuning data x. This property allows the implicit utilization
of training data information through task vectors alone. They define layer-wise interference between
the merged vector and task vector as τm,l − τi,l for task i at layer l. To optimize the merged vector
τm,l, they minimize this interference (τm,l − τi,l)xi,l with respect to data xi,l. Leveraging the linear
subspace relationship, they substitute the transpose of τi,l for xi,l:

min
τm,l

Ll =

n∑
i=1

1

∥τi,l∥2F

∥∥(τm,l − τi,l)(τi,l)
⊤∥∥2

F
. (1)

This formulates model merging as a data-free optimization problem over parameters. Using the
Adam optimizer, we obtain the merged vector τm,l, which minimizes interference with task vectors
on multiple tasks, i.e., the hidden activation satisfies (θ0,l + τm,l)xi,l ≈ (θ0,l + τi,l)xi,l.

3.2 PARAMETER CHANGES DURING FINE-TUNING MATTER

Model merging exhibits sensitivity to task vectors τi (i.e., parameter changes between fine-tuned
models and the base model). Several studies (Yu et al., 2024; Li et al., 2025b) demonstrate that
less intensive fine-tuning can yield superior merging performance, even when these models achieve
lower accuracy on their respective tasks. In App. B.1, we conduct experiments on the impact
of fine-tuning steps on merging performance, and observe that performance tends to rise initially
and then decline. This counterintuitive finding suggests that higher-performing expert models do
not necessarily produce better merging outcomes. Fine-tuned models tend to converge around
the base model in parameter space (Merlin et al., 2023; Chung et al., 2024). When constructing
our benchmark, we minimize parameter changes by adjusting the learning rate while maintaining
performance improvements on specific tasks. We analyze the upper bound of the loss incurred by
model merging:

Theorem 3.1. Consider task i trained for T iterations of gradient descent with a fixed step size
η ∈ (0, 1/L], where L is the Lipschitz constant. Let γ := 1− ηµ ∈ (0, 1) denote the PL convergence
factor. Then the merged update τm :=

∑m
j=1 αjτj satisfies

Li(Θ+ τm) ≤ Ci +O(γT ) +O(δ ηT ) +O(η2T 2),

where O(γT ) is the residual error from incomplete convergence on task i, O(δ ηT ) is the cross-task
interference term, and O(η2T 2) is the curvature term from L-smoothness. This indicates that both
the learning rate and iterations influence model merging results. Please refer to App. A for detailed
assumptions and proofs.

Remark. Theorem 3.1 provides the first theoretical explanation of how model fine-tuning affects
merging performance. The target task’s gains dominate in the early training stage, but as convergence
approaches, cross-task interference and curvature errors (growing with ηT and η2T 2) can undermine
merging performance. Thus, in the convergence phase, it is essential to control directional leakage
(small δ) and limit ηT to ensure high-quality merging. It supports previous empirical observations:
fine-tuned models in current benchmarks typically remain within the same basin near the base model.
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(b) Task vector magnitude distribution (Qwen2-VL)
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Figure 2: Visualization of task vectors from the benchmark, revealing the small extent of parameter
changes during fine-tuning. InternVL2.5 (full fine-tuning) and Qwen2-VL (low-rank adaptation)
exhibit distinct distribution patterns across different tasks.

For example, merging Qwen2.5-Math (Yang et al., 2024a) and Qwen2.5-Coder (Hui et al., 2024)
yields poor performance. This is likely due to excessive post-training, which causes significant
parameter drift. This insight suggests that poor merging results may not reflect algorithmic flaws, but
rather issues with the fine-tuned models. When selecting models from Hugging Face, it’s helpful to
choose fine-tuned models that are better suited for merging to minimize multi-task degradation.

We examine the weight magnitude distribution of task vectors across our benchmark (see Fig. 2 (a-b)).
Our analysis reveals that InternVL2.5, which undergoes full fine-tuning, exhibits a right-skewed
distribution. In contrast, Qwen2-VL, fine-tuned using LoRA, displays a multi-modal distribution.
This is due to the low-rank nature and scaling factors of LoRA, which constrain the task vectors to be
linear combinations in a reduced subspace, causing them to cluster along a few dominant magnitudes.
Both models demonstrate distinct magnitude distribution patterns across different tasks. We also
compute the normalized Frobenius norm of parameters (i.e., divided by the number of parameters).
As shown in Fig. 2 (c-d), the Frobenius norm varies significantly across tasks and layers, which
presents challenges that we will address in our approach. The small task vector magnitudes suggest
that fine-tuned models and base models exist in adjacent regions of the loss landscape with linear
connectivity (Wu et al., 2023), facilitating effective model merging.

4 METHODOLOGY

Eq. (1) defines a loss between the merged vector and the task vectors. However, data-free optimization
often suffers from instability and convergence issues. To address this, we propose OptMerge, a novel
method that improves task vector optimization. Specifically, our approach accommodates both full
fine-tuning and LoRA fine-tuning scenarios, as they yield model parameters with distinct properties
(e.g., low-rank sparsity and varying optimization difficulty). These differences naturally necessitate
tailored merging strategies, as detailed in Sec. 4.1 and Sec. 4.2.

4.1 MERGING FULL FINE-TUNING MODELS

Task vectors contain significant redundancy and noise, leading to mutual interference during merging.
Redundancy stems from different tasks re-learning shared foundational skills, while noise reflects non-
essential parameter updates. Directly adding task vectors amplifies these issues, hindering effective
merge vector optimization. To address this issue, we propose reducing inter-task interference through
low-rank approximation. First, we calculate the average task vector τ̄l = 1

n

∑n
i=1 τi,l and use it to

center task vectors (Choi et al., 2024). Next, we perform SVD to isolate core task-specific knowledge
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Figure 3: When optimizing Eq. (1), τm tends
to take shortcuts by increasing its magnitude to
achieve orthogonality.
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Figure 4: We plot the progression of the Frobe-
nius norm of the merged vector during optimiza-
tion (average by layers).

from noise present in the top and lower singular vectors1.

SVD(τi,l − τ̄l) = UΣV ⊤, where U ∈ Rm×r,Σ ∈ Rr×r, V ∈ Rn×r. (2)

We then apply low-rank approximations to eliminate redundant noise, where U1:k,Σ1:k, V
⊤
1:k represent

the top-k singular components. Moreover, we find that substituting Σ1:kV
⊤
1:k for the task vector τi,l

as the input subspace xi,l allows us to discard secondary row space information, focusing only on the
column feature space. Thus, we can optimize τm,l via gradient descent on the loss:

min
τm,l

Ll =

n∑
i=1

1

∥τi,l∥2F

∥∥(τm,l − U1:kΣ1:kV
⊤
1:k − τ̄l)(Σ1:kV

⊤
1:k)

⊤∥∥2
F
. (3)

By truncating singular values, we preserve critical features V ⊤
1:k, which is similar to selecting principal

components in Principal Components Analysis (PCA) (Abdi & Williams, 2010). This yields more
accurate estimates of xi,l than using (τi,l)

⊤.

4.2 MERGING LORA FINE-TUNED MODELS

The inherent low-rank nature of LoRA fine-tuning presents unique optimization challenges for the
merge vector. When optimizing τm,l, gradients become effective only in directions corresponding
to non-zero singular values of τi,l, while approaching zero in other directions (null space). This
constraint limits parameter update freedom, preventing τm,l from properly exploring the parameter
space. We observe that τm,l tends to take shortcuts by increasing its magnitude to minimize loss.
This occurs because the merge vector must simultaneously accommodate multiple task vectors in
different directions. Without constraints, Eq. (1) achieves orthogonality by increasing the length of
the merge vector (see Fig. 3). When added to the base model, such large-norm task vectors cause
deviation from the original distribution, resulting in collapsed language ability.

To address these challenges, we introduce a set of practical techniques: (1) We replace Adam with
SGD, which better escapes flat local optima and offers greater stability under sparse gradients.
Notably, SGD provides implicit regularization (Smith et al., 2021; Wang et al., 2022), constraining
task vector optimization and navigating flat regions induced by null spaces. (2) We apply a direct
low-rank approximation to τi,l using truncated SVD(τi,l) ≈ U1:kΣ1:kV

⊤
1:k without centering. The

Frobenius norm equals the sum of squared singular values ∥τi,l∥2F =
∑r

j=1 σ
2
j . After truncation, we

drop the tail energy
∑

j>k σ
2
j and thus reduce the norm. (3) We also introduce initializing the merged

vector with the mean of task vectors to mitigate the issue of excessive merge vector magnitude. As
shown in Fig. 4, our approach maintains a relatively consistent norm throughout the optimization
process while minimizing loss successfully.

5 MLLMS MERGING BENCHMARK

We begin by detailing the benchmark, including its checkpoints, datasets, and evaluation protocols,
as well as the implementation of merging algorithms (Sec. 5.1). Next, Sec. 5.2 presents extensive
experiments that empirically validate the benchmark, and summarizes the key findings.

1We optimize only the model’s linear layers, representing each task vector τi,l as an m × n matrix. The
remaining layers are merged by simple parameter averaging.
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Table 1: Summary of collected training datasets, with their corresponding sizes and languages.

Task Category Size Datasets (Language)
VQA 588K GQA (en) (Hudson & Manning, 2019), VQAv2 (en) (Goyal et al., 2017), OKVQA (en) (Marino et al.,

2019), LLaVA-Instruct (zh) (Liu et al., 2024a), CogVLM-Singleround (en&zh) (Wang et al., 2024c),
CogVLM-Multiround (en&zh) (Wang et al., 2024c)

Geometry 190K GeoQA+ (zh) (Cao & Xiao, 2022), G-LLaVA (en) (Gao et al., 2023)
Chart 218K ChartQA (en) (Masry et al., 2022), DVQA (en) (Kafle et al., 2018)
OCR 238K OCRVQA (en) (Mishra et al., 2019), TextCaps (en) (Sidorov et al., 2020), SynthDoG (en) (Kim et al.,

2022), LLaVAR (en) (Zhang et al., 2023), ST-VQA (en) (Biten et al., 2019), TextVQA (en) (Singh
et al., 2019), DocVQA (en) (Mathew et al., 2021), DeepForm (en) (Svetlichnaya, 2020), KLC
(en) (Stanisławek et al., 2021), TabFact (en) (Chen et al., 2019)

Grounding 135K RefCOCO (en) (Yu et al., 2016; Mao et al., 2016), VG (en) (Krishna et al., 2017)

5.1 BENCHMARK DETAILS

Checkpoint construction. To cover two practical scenarios, namely fine-tuning base models and
fine-tuning instruction-tuned models, we select two models that differ in intended use: InternVL2.5-
1B-Instruct (Chen et al., 2024c), a lightweight model aligned for instruction following, and Qwen2-
VL-7B-Base (Wang et al., 2024b), a general foundation model. Qwen2-VL-7B-Base is among the
few publicly available pretrained models, so we use it for the base-model scenario. These choices
span different training strategies and scales, enabling a broad assessment of merging methods.

For modality merging, we select Vicuna-7B-v1.5 (Zheng et al., 2023) as the shared LLM. The
vision-language model uses CLIP-ViT-L-336px (Radford et al., 2021) as the image encoder, paired
with an MLP projection as the connector. The audio-language model adopts BEATs-Iter3+ (Chen
et al., 2023) as the audio encoder, with a Q-Former as the connector. The video-language model
employs LanguageBind (Zhu et al., 2023) as the video encoder. See App. C for details.

Training data. We collect a broader range of domain-specific data, divided into VQA, Geometry,
Chart, OCR, and Grounding tasks. The datasets used are summarized in Table 1. For effective
supervised fine-tuning, we gather at least 100k public dataset samples for each task, ensuring
maximum diversity wherever possible. We process all data into the instruction tuning format.

Evaluation benchmark. Current benchmarks (Liu et al., 2024b; Li et al., 2024; Chen et al., 2024b;
Fu et al., 2024) predominantly evaluate a model’s overall performance but provide limited insights
into specific capabilities. Therefore, we curate a carefully selected suite of specialized datasets to
evaluate five capabilities: VQA, geometric reasoning, chart understanding, OCR-based VQA, and
referring expression grounding. See App. C for details. All evaluation results are obtained using
the VLMEvalKit (Duan et al., 2024) and LMMs-Eval (Zhang et al., 2024) libraries under the same
settings to ensure fair comparison. All experiments are conducted using 8× NVIDIA V100 GPUs.

For Omni-language models, we assess Audio-VQA, which requires multimodal understanding and
spatiotemporal reasoning about visual objects, sounds, and their relationships in videos.

Merging details. Following Task Arithmetic (Ilharco et al., 2023), we employ a single coefficient λ
to scale the merged vector before adding it to the base model. For all model merging methods, we
determine the optimal merging coefficient λ by searching within the range [0.1, 0.3, 0.5, 0.7, 1.0, 1.5].
In our implementation, the rank size k in Eq. (3) is simply defined as the rank of each task vector
divided by the number of tasks (i.e., 5). We use the Adam optimizer with a learning rate of 1e-5 for
InternVL while applying the SGD optimizer with a learning rate of 1e-4 for QwenVL. The number of
optimization iterations is set to 300. We apply our method exclusively to the linear layer in the model.

5.2 EXPERIMENTAL RESULTS

Capability merging. As shown in Tables 2 and 3, merging individually specialized models outper-
forms expert MLLMs on their target tasks. For example, the merged Qwen2-VL achieves 51.05 and
40.79 on Geometry (vs. 42.50 and 28.95 for individual models) and 79.76 on Chart (vs. 61.08). We
observe similar gains for OCR and Grounding, with complementary benefits between these tasks.
For InternVL2.5-Instruct, we conduct mixture training by combining all task-specific training data
for SFT. For Qwen2-VL-Base, we directly use Qwen2-VL-Instruct as the upper bound for mixture
training, given its extensive prior SFT with diverse datasets. Notably, our best model merging methods
closely match or even surpass mixture training and instruct versions. These results demonstrate that
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Table 2: Capability merging results on InternVL2.5 (full fine-tuning) across multiple tasks. For
the merging methods, we highlight the best score in bold and the second-best score in underlining.

Methods VQA Geometry Chart OCR Grounding Avg.
VizWiz GQA (test) MathVista (mini) MATH-Vision (mini) ChartQA (test) TextVQA (val) OCRVQA (test) RefCOCO RefCOCO+ RefCOCOg

InternVL2.5-Instruct 29.15 54.62 46.80 18.42 69.48 72.51 41.08 71.69 65.41 67.40 53.66

Individual VQA 30.58 60.91 35.50 17.11 48.76 63.68 36.04 - - - 41.80
Individual Geometry 13.45 32.80 55.20 25.00 51.76 56.91 35.35 24.73 19.61 23.84 33.86
Individual Chart 20.16 40.39 23.84 10.53 69.52 54.36 34.83 - - - 36.23
Individual OCR 12.40 22.22 23.31 10.53 36.88 73.00 54.79 73.65 68.01 69.10 44.39
Individual Grounding 19.09 25.88 28.91 14.47 41.32 58.39 74.87 76.67 71.35 70.09 48.10

Weight Average 29.96 54.89 49.60 18.42 71.64 74.54 41.86 52.62 45.29 52.39 49.12
Task Arithmetic 30.67 56.34 45.36 21.05 72.88 76.26 43.39 74.90 68.15 72.75 56.18
TIES Merging 30.63 56.48 44.50 23.68 72.28 76.29 44.01 76.01 68.45 73.65 56.70
TA w/ DARE 30.61 56.48 48.45 21.05 73.08 76.30 43.03 74.94 68.07 73.02 56.50
TIES w/ DARE 30.65 56.11 43.85 27.63 72.72 76.19 43.33 75.10 68.48 73.55 56.76
TSV Merging 31.15 56.67 52.45 28.95 70.56 75.66 45.38 65.19 58.51 59.17 54.37
Iso-C 28.21 55.36 48.96 21.05 70.56 69.34 46.51 72.72 66.56 68.50 54.78
WUDI Merging 31.02 56.96 53.03 17.11 69.19 75.95 46.12 76.06 70.14 74.48 57.00
OptMerge (Ours) 30.97 57.13 54.48 21.05 68.72 76.01 46.35 75.97 69.72 73.94 57.44
Mixture Training 29.79 61.33 52.83 23.68 70.32 72.96 60.25 72.06 65.93 67.46 57.66

Table 3: Capability merging results on Qwen2-VL (LoRA fine-tuning) across multiple tasks. For
the merging methods, we highlight the best score in bold and the second-best score in underlining.

Methods VQA Geometry Chart OCR Grounding Avg.
VizWiz GQA (test) MathVista (mini) MATH-Vision (mini) ChartQA (test) TextVQA (val) OCRVQA (test) RefCOCO RefCOCO+ RefCOCOg

Qwen2-VL-Base 5.52 5.39 47.85 23.68 0.36 20.22 1.07 45.32 37.55 31.26 21.82

Individual VQA 41.38 62.60 33.71 28.94 66.56 80.21 55.33 39.31 32.71 38.01 47.88
Individual Geometry 35.57 44.63 42.50 28.95 14.56 73.95 45.96 5.57 2.31 3.90 29.79
Individual Chart 38.58 24.24 49.28 32.89 61.08 79.75 63.67 46.28 36.67 34.06 46.65
Individual OCR 28.38 37.53 31.81 13.16 57.40 70.50 64.68 0.59 0.46 0.26 30.48
Individual Grounding 38.60 32.92 36.17 19.74 18.08 75.05 48.27 72.14 65.33 66.48 47.28

Weight Average 41.47 57.33 50.21 34.21 59.56 81.09 57.85 80.72 65.37 77.68 60.55
Task Arithmetic 40.52 62.31 40.36 26.31 79.67 81.09 59.50 75.96 61.33 75.85 60.29
TIES Merging 41.38 59.08 46.87 34.21 67.24 81.42 58.53 80.63 65.36 77.65 61.24
TA w/ DARE 40.64 62.38 40.67 26.31 79.76 81.04 59.34 75.83 61.41 75.80 60.32
TIES w/ DARE 41.63 59.96 45.72 35.53 70.68 81.53 59.63 80.73 65.65 77.77 61.88
TSV Merging 41.43 57.31 51.05 34.21 59.44 81.25 57.81 80.71 65.34 77.76 60.63
Iso-C 12.31 13.44 39.96 27.63 2.80 30.05 6.12 53.68 38.96 41.90 26.69
WUDI Merging 37.19 56.45 42.96 27.63 67.84 79.92 65.56 76.25 60.72 71.99 58.65
OptMerge (Ours) 41.61 61.16 48.66 40.79 74.08 81.54 60.06 80.92 65.90 78.24 63.30
Qwen2-VL-Instruct 44.09 62.18 46.02 19.73 70.04 78.38 65.42 82.89 77.87 75.63 62.23

model merging potentially surpasses multi-task learning, while providing a scalable solution for
creating high-performing MLLMs with reduced computational cost.

Categorization of merging methods. Different merging methods exhibit distinct behaviors. Linear
interpolation of task vectors, while ignoring parameter conflicts, is robust but only moderately effec-
tive. Sparsification-based methods such as TIES struggle to control sparsity and often underperform
relative to task arithmetic. DARE reliably provides plug-and-play gains through simple rescaling.
SVD-based methods are sensitive to the spectral structure of task vectors. For example, Iso-C fails
on Qwen2-VL because the LoRA-tuned task vectors are already low-rank, and averaging singular
values further reduces their Frobenius norm, creating instability in LLMs. Even increasing λ, as
recommended in their paper, only marginally improves results. TSV merging excels in modality
merging because its orthogonalization mitigates modal conflicts, but delivers ordinary performance
in multi-task settings. In contrast, our approach achieves superior average results across various
scenarios, benefiting from stable task vector optimization.

Table 4: The ablation study.

Qwen2-VL Vicuna-7B

WUDI Merging 58.65 64.65
+ SGD 48.88 (-9.77%) 66.91 (+2.26%)
+ Initialization 63.08 (+4.43%) 67.07 (+2.42%)
+ Low-rank 63.30 (+4.65%) 67.00 (+2.35%)

Improved task vector optimization. Our method en-
hances task vector optimization stability, achieving optimal
results. In Table 4, we evaluate each component’s contribu-
tion to overall performance. Starting with WUDI Merging,
we incrementally add one component at a time, reporting
performance for both LoRA model merging (Qwen2-VL)
and modality merging (Vicuna-7B). Replacing Adam with
SGD alone does not necessarily improve performance; however, when combined with initializing
the merged vector using the mean of task vectors, we observe a significant 4.43% improvement.
Low-rank approximation further enhances performance, demonstrating its effectiveness in preserving
critical knowledge from task vectors while maintaining the stability of the Frobenius norm. For full
fine-tuned models, Tables 2 and 6 show average improvements of 0.44% and 1.9% for OptMerge
over WUDI Merging, respectively. This highlights the necessity of Eq. (3) over Eq. (1) for denoising
task vectors and achieving robust merged-vector optimization.
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Table 5: Modality merging results on zero-shot image-audio-video question answering tasks by
merging vision-language, audio-language, and video-language models. The “Individual Modalities”
columns show baseline performance for each single-modality model.

Individual Modalities Merging Methods Online Composing

Datasets Vision Audio Video Weight
Average

Task
Arithmetic

Ties
Merging

TSV
Merging Iso-C WUDI

Merging
OptMerge

(Ours) NaiveMC DAMC

MUSIC-AVQA 50.77 27.93 49.02 47.75 52.14 50.35 53.78 52.77 52.43 53.17 53.50 52.80
AVQA 75.55 47.57 79.20 69.39 78.62 75.84 80.90 77.51 76.86 80.82 80.26 80.78
Avg. 63.16 37.75 64.11 58.57 65.38 63.10 67.34 65.14 64.65 67.00 66.88 66.79

Table 6: Merging results on actual fine-tuned checkpoints collected from Hugging Face.

Methods VQA Geometry Chart OCR Grounding Avg.
VizWiz GQA (test) MathVista (mini) MATH-Vision (mini) ChartQA (test) TextVQA (val) OCRVQA (test) RefCOCO RefCOCO+ RefCOCOg

Qwen2-VL-7B-GRPO-8k 44.13 62.04 46.74 22.37 69.20 78.58 68.85 84.13 79.12 76.54 63.17
Qwen2-VL-7B-Pokemon 42.51 60.96 43.69 19.74 63.20 76.75 67.64 70.11 68.80 68.64 58.20
olmOCR-7B-0225-preview 43.76 61.48 38.91 18.42 67.48 77.24 68.29 75.17 71.55 69.64 59.19
EraX-VL-7B-V1.0 36.09 54.36 38.58 25.00 56.00 70.70 65.59 41.89 40.99 43.26 47.25

Task Arithmetic 41.57 60.95 42.99 23.68 75.28 81.95 71.78 87.72 81.60 85.63 65.32
TIES Merging 44.17 60.54 42.52 27.95 75.48 82.40 71.09 90.06 83.52 86.44 66.42
TA w/ DARE 43.33 61.15 44.37 26.95 76.48 82.93 72.00 88.93 82.79 86.07 66.50
TIES w/ DARE 44.37 60.78 44.37 27.63 76.04 82.61 70.93 89.40 82.93 86.77 66.58
TSV Merging 43.73 61.40 43.54 27.94 76.44 83.15 71.65 88.53 82.25 86.41 66.50
Iso-C 43.99 61.34 40.91 22.37 76.96 83.33 71.55 87.74 82.10 85.27 65.56
WUDI Merging 41.39 60.11 44.20 21.05 74.36 80.78 71.12 87.96 81.50 85.48 64.80
OptMerge (Ours) 43.76 61.29 44.68 27.63 76.24 82.97 71.48 89.56 82.97 86.42 66.70
Qwen2-VL-Instruct 44.09 62.18 46.02 19.73 70.04 78.38 65.42 82.89 77.87 75.63 62.23

Modality merging. As shown in Table 5, merging methods effectively integrate information from
three modalities, outperforming models trained on individual vision, audio, or video inputs. This
highlights the complementary nature of modal information and its potential for merging. Online
composing dynamically merges activations in the LLM from different modalities during inference,
requiring separate parameter storage for each modality (i.e., 3× static merging). NaiveMC (Chen
et al., 2024a) performs simple activation averaging, while DAMC (Chen et al., 2024a) decouples
parameters during training to reduce modal interference. Notably, the best merging method even
outperforms these online composition methods. Advancing Omni models through model merging
offers a promising direction for future research.

Table 7: Model merging vs. Data mixing.

Methods Solving Time GPU Memory
InternVL2.5-1B (Ours) 0.22h 2.62GB
InternVL2.5-1B (Mixed) 25.38h 240GB
Qwen2-VL-7B (Ours) 3.78h 21.97GB
Qwen2-VL-7B (Mixed) 24.56h 256GB

Computational requirements. As illustrated in Ta-
ble 7, we compare the solving time and GPU mem-
ory usage of our approach against mixture train-
ing. Our approach optimizes the merged vector
over 300 iterations while incurring minimal com-
putational overhead and requiring significantly less
GPU memory than data-based training. This effi-
ciency is achieved through layer-by-layer optimization without requiring training data. Our results
confirm that the proposed method is computationally efficient and highly scalable on devices with
modern GPUs, facilitating the rapid development of new models based on existing ones.

Actual checkpoints from Hugging Face. To evaluate the practicality of model merging in com-
munities, we collect fine-tuned models released by different developers on Hugging Face. Our
collection includes a model specialized in math reasoning via multimodal reinforcement learning2, a
personalized model for the Pokemon domain3, a model focused on converting PDF documents into
text4, and a model with OCR and VQA capabilities in Vietnamese5. As shown in Table 6, OptMerge
achieves performance that surpasses that of the individual models, effectively integrating knowledge
from diverse models to construct a more robust system.

Rank size k. To further investigate the impact of rank size, we conduct additional ablation studies
by setting k to 10%, 20%, 30%, 40%, and 50% of the rank of each task vector. The results are
summarized in Table 8. As shown, the performance remains relatively stable for k ratios between
10% and 30%, indicating that OptMerge is robust to moderate changes in rank size.

2https://huggingface.co/lmms-lab/Qwen2-VL-7B-GRPO-8k
3https://huggingface.co/hiyouga/Qwen2-VL-7B-Pokemon
4https://huggingface.co/allenai/olmOCR-7B-0225-preview
5https://huggingface.co/erax-ai/EraX-VL-7B-V1.0
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Table 8: Ablation study on rank size k ratio for OptMerge. The rank size k is set to 10%, 20%,
30%, 40%, and 50% of the rank of each task vector.

k ratio VQA Geometry Chart OCR Grounding Avg.
VizWiz GQA (test) MathVista (mini) MATH-Vision (mini) ChartQA (test) TextVQA (val) OCRVQA (test) RefCOCO RefCOCO+ RefCOCOg

10% 30.90 57.26 51.49 18.42 68.40 76.10 46.39 76.36 69.99 73.96 56.93
20% 30.97 57.13 54.48 21.05 68.72 76.01 46.35 75.97 69.72 73.94 57.43
30% 31.55 57.15 54.50 21.05 68.72 76.27 45.67 73.63 66.84 70.92 56.63
40% 31.49 56.92 55.77 25.00 67.36 76.06 45.96 65.55 58.40 59.64 54.22
50% 31.37 56.68 56.75 23.68 68.08 75.81 45.02 61.45 54.80 56.19 52.98

Table 9: Capability merging results on Qwen2.5-VL-32B-Instruct across multiple tasks. For the
merging methods, we highlight the best score in bold.

Methods VQA Geometry Chart OCR Grounding Avg.
VizWiz GQA (test) MathVista (mini) MATH-Vision (mini) ChartQA (test) TextVQA (val) OCRVQA (test) RefCOCO RefCOCO+ RefCOCOg

Qwen2.5-VL-32B-Instruct 41.39 59.34 79.21 47.36 83.64 79.62 64.58 88.01 82.41 84.06 70.96

Individual Geometry 42.67 60.25 80.34 43.42 86.76 80.83 66.54 89.58 83.72 84.56 71.87
Individual Grounding 41.60 59.61 78.86 42.10 85.88 79.65 64.19 88.32 82.95 84.04 70.72
Individual Chart 43.01 61.69 74.38 43.42 86.96 81.73 67.90 89.72 83.92 84.33 71.71
Individual VQA 42.24 62.75 78.40 42.11 86.68 81.04 67.06 89.74 83.90 84.72 71.86
Individual OCR 42.65 61.04 75.28 34.21 87.00 81.42 67.32 89.63 83.76 84.62 70.69

OptMerge (Ours) 43.52 62.50 80.01 43.42 88.92 81.91 66.37 89.94 83.97 84.68 72.52

Model scales. We extend our evaluation to the larger Qwen2.5-VL-32B-Instruct model and augment
training with additional high-quality fine-tuning data. As shown in Table 9, OptMerge effectively
combines multiple fine-tuned models while mitigating cross-task interference, achieving the best
overall performance and surpassing the base Qwen2.5-VL-32B-Instruct. These results indicate that
OptMerge remains effective and beneficial at larger model scales.

Table 10: Evaluation of the merged model on general multimodal QA benchmarks.

MMMU DocVQA ScienceQA AI2D InfographicVQA

Individual Geometry 33.67 64.29 73.25 62.27 29.79
Individual Grounding 34.22 65.64 76.54 63.24 33.82
Individual Chart 30.33 57.13 40.01 29.86 26.02
Individual VQA 26.00 62.93 50.83 44.59 39.07
Individual OCR 38.00 77.67 63.66 54.39 41.97

OptMerge (Ours) 39.33 84.18 91.89 79.44 56.84

General tasks. We further evaluate the merged model (based on InternVL2.5-VL-1B) on a set of
general multimodal QA benchmarks that require combinations of multiple abilities. The results
are shown in Table 10. On these integrated benchmarks that require multiple abilities, single-
ability models cannot solve the tasks effectively. In contrast, our OptMerge, which merges all
specialized models, demonstrates emergent integrated capabilities and consistently outperforms the
best individual model for each task, with an average improvement of 10.85% across benchmarks.

6 CONCLUSION

Model merging aims to combine multiple expert models into a single model without requiring data.
In this paper, we introduce the model merging benchmark with detailed categorization of MLLM
capabilities, and explore how model merging can effectively combine different modalities of MLLMs.
We further propose a novel merging method that effectively removes noise from task vectors and
improves the robustness of merged vector optimization. Our results demonstrate that model merging
potentially surpasses mixture training, serving as a way for omni-model alignment, while offering a
scalable solution for developing MLLMs with reduced computational cost and time.
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A THEORETICAL PROOFS

NOTATION AND SETTING

Tasks and losses. For tasks i, let the loss be Li : Rd → R evaluated at parameters Θ ∈ Rd.

Task vectors. For task i, after T steps of (deterministic) gradient descent (GD) with fixed step size
η > 0 starting from a common initialization Θ, the task vector is

τi := −η

T−1∑
t=0

∇Li(Θ
(i)
t ).

Merged update. Let the merged vector be

τm :=
m∑
j=1

αjτj ,

with nonnegative weights αj ≥ 0. We study the loss of task i at the merged point Θ+ τm.

Norm and inner product. ∥·∥ is the Euclidean norm and ⟨·, ·⟩ the Euclidean inner product. For
nonzero vectors u, v, cos(u, v) := ⟨u, v⟩ /(∥u∥ ∥v∥).

Assumption A.1 (L-smoothness). Each Li has L-Lipschitz continuous gradients; that is, for
all Θ,Θ′:

∥∇Li(Θ)−∇Li(Θ
′)∥ ≤ L ∥Θ−Θ′∥ .

Equivalently, for any ∆:

Li(Θ+∆) ≤ Li(Θ) + ⟨∇Li(Θ),∆⟩+ L

2
∥∆∥2 .

Assumption A.2 (Polyak–Łojasiewicz (PL) condition). Each Li satisfies, for some µ > 0:

1

2
∥∇Li(Θ)∥2 ≥ µ

(
Li(Θ)− L∗

i

)
,

where L∗
i := infΘ Li(Θ).

Assumption A.3 (Directional similarity). For each i:

cos
(
−∇Li(Θ), τi

)
≥ κ, κ ∈ (0, 1],

equivalently:
⟨∇Li(Θ), τi⟩ ≤ −κ ∥∇Li(Θ)∥ ∥τi∥ .

This ensures that the update is indeed a descent direction for task i, with alignment quantified by κ.

Assumption A.4 (Approximate orthogonality). For all i ̸= j:

cos(τi, τj) ≤ ε, ε ∈ [0, 1).

Prior works (Ilharco et al., 2023; Ortiz-Jimenez et al., 2023) show that task vectors are nearly
orthogonal, which helps explain the success of model merging. This likely reflects a general property
of high-dimensional spaces: independent directions tend to be almost orthogonal. A small ε means
that tasks are nearly orthogonal in update space, reducing negative transfer effects.
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Assumption A.5 (Bounded gradients). There exists G > 0 such that for all i and all Θ
considered:

∥∇Li(Θ)∥ ≤ G.

This assumption is widely adopted in the optimization literature (Gower et al., 2019; Khaled &
Richtárik, 2023), where similar boundedness conditions are imposed to control the variance of
stochastic gradients and to derive finite-step convergence rates.

Lemma A.6 (Cross-task cosine leakage). Under Assumptions A.3–A.4, with ∇Li(Θ) ̸= 0
and τj ̸= 0 to ensure the cosine is well-defined, for i ̸= j we have∣∣ cos (∇Li(Θ), τj

)∣∣ ≤ δ, δ := κε+
√

1− κ2
√
1− ε2.

Proof sketch. Normalize u = −∇Li/ ∥∇Li∥, vi = τi/ ∥τi∥, vj = τj/ ∥τj∥. Use Assumption A.3
to get ⟨u, vi⟩ ≥ κ and Assumption A.4 to get ⟨vi, vj⟩ ≤ ε, then decompose u and vj along vi and its
orthogonal complement and apply Cauchy–Schwarz.

Lemma A.7 (PL convergence under GD). Under Assumptions A.1–A.2 and η ∈ (0, 1/L],
the GD iterates for task i satisfy

Li(ΘT )− L∗
i ≤ (1− ηµ)T

(
Li(Θ0)− L∗

i

)
.

Proof. Let one step of GD be Θt+1 = Θt − η∇Li(Θt). By L-smoothness, for any x, y,

Li(y) ≤ Li(x) + ⟨∇Li(x), y − x⟩+ L

2
∥y − x∥2 .

Plug x = Θt, y = Θt+1:

Li(Θt+1) ≤ Li(Θt)− η

(
1− Lη

2

)
∥∇Li(Θt)∥2 .

Since η ≤ 1/L, we have 1− Lη
2 ≥ 1

2 , thus

Li(Θt+1) ≤ Li(Θt)−
η

2
∥∇Li(Θt)∥2 .

Apply the PL inequality:
1

2
∥∇Li(Θt)∥2 ≥ µ

(
Li(Θt)− L∗

i

)
,

to get
Li(Θt+1)− L∗

i ≤ (1− ηµ)
(
Li(Θt)− L∗

i

)
.

Unrolling the recursion yields the claim.

Lemma A.8 (Task vector norm). If τj = −η
∑T−1

t=0 ∇Lj(Θ
(j)
t ) and

∥∥∥∇Lj(Θ
(j)
t )

∥∥∥ ≤ G for
all t, then

∥τj∥ ≤ ηTG.

Proof. By the triangle inequality,

∥τj∥ ≤ η

T−1∑
t=0

∥∥∥∇Lj(Θ
(j)
t )

∥∥∥ ≤ η

T−1∑
t=0

G = ηTG.
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Lemma A.9 (Inner-product lower bound). Under Assumptions A.1–A.2 and η ∈ (0, 1/L],

⟨∇Li(Θ), τi⟩ ≥ −
(
1− (1− ηµ)T

)(
Li(Θ)− L∗

i

)
− L

2
∥τi∥2 .

Proof. Apply the L-smooth upper bound with ∆ = τi and rearrange; then use Lemma A.7 to bound
Li(Θ+ τi)− Li(Θ).

Theorem A.10 (Finite-step bound). Consider task i trained for T iterations of gradient
descent with a fixed step size η ∈ (0, 1/L]. Let γ := 1 − ηµ ∈ (0, 1) denote the PL
convergence factor. Then the merged update τm :=

∑m
j=1 αjτj satisfies

Li(Θ+ τm) ≤ Ci +O(γT ) +O(δ ηT ) +O(η2T 2),

where O(γT ) is the residual error from incomplete convergence on task i, O(δ ηT ) is the
cross-task interference term, and O(η2T 2) is the curvature term from L-smoothness.

Proof. Define the η, T -independent constant

Ci := Li(Θ)− αi

(
Li(Θ)− L∗

i

)
.

By L-smoothness,

Li(Θ+ τm) ≤ Li(Θ) + ⟨∇Li(Θ), τm⟩+ L

2
∥τm∥2 .

Decomposing the inner product yields

⟨∇Li, τm⟩ = αi ⟨∇Li, τi⟩+
∑
j ̸=i

αj ⟨∇Li, τj⟩ .

For the self term, Lemma A.9 implies a constant part absorbed into Ci and a residual term of order
O(γT ), plus a curvature correction O(η2T 2) via Lemma A.8. For the cross terms, Lemma A.6 and
Assumption A.5 give ∣∣ ⟨∇Li, τj⟩

∣∣ ≤ δ ηT G2,

so the sum over j ̸= i is O(δ ηT ). Finally, ∥τm∥ ≤ ηTG
∑

j αj implies the smoothness term is
O(η2T 2). Combining all contributions yields the stated bound.

Theorem A.11 (Bound in the near-convergence regime). Suppose the residual PL error after
T steps is below a given tolerance ζ > 0:

(1− ηµ)T
(
Li(Θ)− L∗

i

)
≤ ζ.

Equivalently,

T ≥
ln
(
(Li(Θ)− L∗

i )/ζ
)

− ln(1− ηµ)
.

Then the merged loss satisfies

Li(Θ+ τm) ≤ Ci +O(ζ) +O(δ ηT ) +O(η2T 2),

with the same Ci as in Theorem A.10.

Proof. Starting from Theorem A.10, replace the residual term O(γT ) by O(ζ) using the near-
convergence assumption. The cross-task and curvature terms remain unchanged.
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Remark: When the learning rate is fixed and the model has not yet converged, the improvement
from finetuning on the target task (captured by 1− γT ) typically outweighs the influence of other
task vectors, especially when these vectors are close to orthogonal (small ε, hence small δ). In this
stage, merging different task updates remains stable and can be beneficial.

However, as training approaches convergence, the potential negative impact from other task vectors
becomes more significant. Even if each single-task loss continues to decrease, the merged model’s
loss can worsen due to accumulated cross-task interference, which grows linearly in T as O(δ ηT ),
and curvature effects from L-smoothness, which grow quadratically as O(η2T 2). This means that
over-training on individual tasks can harm the quality of the merged model.

In the convergence regime, a fixed learning rate can lead to increased norms of task vectors. While
the single-task losses may remain similar, the larger norms amplify interference and curvature errors,
further degrading merged performance. Once the PL error (1−ηµ)T (Li−L∗

i ) falls below a tolerance
ζ, the main residual terms are the interference and curvature contributions. Reducing directional
leakage (small δ) and controlling the product ηT are therefore essential for high-quality merging.

B MODEL MERGING BENCHMARKS

B.1 FINE-TUNING INFLUENCE ON MODEL MERGING

To demonstrate the sensitivity of model merging to task vectors τi (i.e., parameter changes between
fine-tuned models and the base), we conduct experiments using the standard CLIP-ViT merging
benchmark, following the fine-tuning setup of FusionBench (Tang et al., 2024a). We train with Adam
(learning rate 1e-5) for 4,000 steps with a batch size of 32. Models are saved every 500 iterations and
evaluated for accuracy on the test dataset, as illustrated in Fig. 5. Across eight tasks, convergence
typically occurs around 3,000 steps.

Additionally, we evaluate four classical merging methods at various fine-tuning stages, reporting their
average accuracy in Fig. 6. The results indicate that increasing the number of fine-tuning steps does
not consistently enhance merging performance. Instead, performance typically improves initially
before declining. This finding motivates our derivation of Theorem 3.1, which demonstrates that
both the learning rate and the number of iterations affect model merging performance. MLLM
training is typically organized by full passes over the data (epochs), rather than discrete iteration
steps. Accordingly, we set the number of epochs to 1 and reduce the learning rate to limit parameter
changes. This keeps the fine-tuned models close to the base model in parameter space while still
yielding improvements on specific tasks.
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Figure 5: Accuracy of CLIP pre-trained ViT-B/32 fine-tuned separately on eight downstream datasets.
As training steps increase, performance on each dataset gradually converges.
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Figure 6: Average accuracy of different model merging methods across eight datasets. Increasing
fine-tuning steps does not consistently improve merging performance; instead, performance tends to
rise initially and then decline.

B.2 CHALLENGES OF MLLMS MERGING BENCHMARK

Disconnection between training and evaluation of MLLMs. Training and evaluation of MLLMs
are developed independently rather than being split from the same dataset. (i) Recent benchmarks (Liu
et al., 2024b; Li et al., 2024; Fu et al., 2024) often assess models’ comprehensive abilities through
pre-defined choice questions, with each benchmark emphasizing different nuanced aspects. (ii)
Domain-specific training data is also proprietary and confidential. Consequently, models demonstrate
varied capabilities based on their training foundations. For example, LLaVA (Liu et al., 2023) excels
in conversational visual reasoning, while InstructBLIP (Dai et al., 2023) performs better on traditional
short-answer VQA tasks. These differences present challenges for developing a unified benchmark
suitable for multi-task model merging.

Trade-off between instruction-following and task-specific capabilities. Public vision datasets
provide strong task-specific supervision but rarely use instruction-following formats. Conversely,
instruction data generated by models such as GPT-4 (Achiam et al., 2023) often lacks task-specific
grounding. This mismatch creates a trade-off between instruction adherence and task expertise.

Further SFT may lead to overfitting. Many publicly released models are already instruction-tuned
on diverse sources, including open-source, licensed, and private datasets. Additional supervised
fine-tuning (SFT) therefore yields diminishing returns and can further overfit models to widely used
training distributions (Huang et al., 2025).

C IMPLEMENTATION DETAILS

Checkpoint construction. For InternVL2.5-1B-Instruct, we perform full fine-tuning with a learning
rate of 4e-5 and a warmup ratio of 3e-2. For Qwen2-VL-7B-Base, we apply LoRA fine-tuning with
a rank of 8, a learning rate of 1e-5, and a warmup ratio of 1e-1. Both models are trained for one
epoch using a cosine learning rate scheduler. Different training strategies and scales help evaluate the
generalizability of merging methods.
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We follow prior work (Chen et al., 2024a) by pairing Vicuna-7B-v1.5 with modality-specific encoders
and connectors. Separate models are trained using bi-modal data across three modalities: vision,
audio, and video. Additional details are presented in Table 11. The training approach consists of two
phases: an alignment stage where only connector parameters are trainable, and a fine-tuning stage
where we tune all connector and language model parameters. During fine-tuning, we apply LoRA
with a rank of 128 across all linear modules within the LLM. For our merging strategy, we preserve
each modality’s unique encoder and connector components while merging only the language model
parameters, enabling the model to process inputs from all three modalities simultaneously.

Table 11: Overview of modality components and training data.

Modality Modality Encoder Connector Alignment Data Fine-tuning Data Referenced Work

Vision CLIP-ViT-L-
336px (Radford et al.,

2021)

MLP LCS 558K (Liu et al.,
2023)

LLaVA-mixed 665K (Liu et al.,
2024a)

LLaVA-1.5 (Liu
et al., 2024a)

Audio BEATs-Iter3+ (Chen
et al., 2023)

Q-Former WaveCaps
400K (Mei et al.,

2024)

OpenAQA filtered 350K (Gong
et al., 2024)

X-
InstructBLIP (Panagopoulou

et al., 2023)

Video LanguageBind (Zhu
et al., 2023)

MLP LCS 558K (Liu et al.,
2023), Valley

702K (Luo et al.,
2023)

Video-ChatGPT 100K (Maaz
et al., 2024), LLaVA-mixed

subset 140K (Liu et al., 2024a)

Video-LLaVA (Lin
et al., 2024)

Training data. Following (Chen et al., 2024c), we collect a broader range of domain-specific
data, divided into VQA, Geometry, Chart, OCR, and Grounding tasks. For each dataset, we use
only the training split, containing question, answer, and image. Samples exceeding 8192 tokens
in combined question–answer length or with corrupted images are removed. The remaining data
are converted into the ShareGPT instruction-tuning format. Tasks (e.g., VQA, OCR) are trained
separately, so cross-task balancing is unnecessary. We collect at least 100k public samples per task to
ensure diversity, following common practice for fine-tuning models in the 1B–7B parameter range.
Specifically, for grounding tasks, we map coordinates to the [0,1000) range and add the special token
notation <|box_start|><|box_end|> (Wang et al., 2024b). During Qwen2-VL-Base fine-tuning,
we observe that Chinese datasets consistently degraded performance, possibly due to lower data
quality or because evaluation benchmarks are primarily in English. Consequently, we use only
English datasets for instruction tuning of Qwen2-VL-Base. InternVL2.5-Instruct, already possessing
multilingual instruction-following capabilities, is fine-tuned using all available data.

Evaluation benchmark. We carefully select specialized datasets to evaluate distinct abilities across
tasks. (i) For VQA, we utilize VizWiz (Gurari et al., 2018) and GQA (Hudson & Manning, 2019) to
assess general visual question answering proficiency. (ii) For Geometry, we incorporate multiple
challenging subsets: “geometry reasoning”, “algebraic reasoning” and “geometry problem solving”
from MathVista (Lu et al., 2024a), complemented by “metric geometry - angle”, “metric geometry -
area”, “metric geometry - length” and “solid geometry” from MATH-Vision (Wang et al., 2024a).
(iii) For Chart, we employ ChartQA (Masry et al., 2022), which tests reasoning and interpretation
ability with charts and graphs. (iv) For OCR, our evaluation suite includes TextVQA (Singh et al.,
2019) and OCRVQA (Mishra et al., 2019). (v) For Grounding, we implement referring expression
comprehension using RefCOCO (Kazemzadeh et al., 2014), RefCOCO+ (Kazemzadeh et al., 2014),
and RefCOCOg (Mao et al., 2016), which require models to identify specific objects in images based
on natural language descriptions. All evaluation results are obtained using the VLMEvalKit (Duan
et al., 2024) and LMMs-Eval (Zhang et al., 2024) libraries under the same settings to ensure fair
comparison. When evaluating MathVista and MATH-Vision benchmarks, we utilize the GPT-4o-mini
API to extract answers from the output. The following prompt is used, where {question} denotes
the question text and {prediction} denotes the original output from the evaluated model.

Please read the following examples. Then extract the answer from the
model response and type it at the end of the prompt.

Hint: Please answer the question requiring an integer answer and provide
the final value ,

e.g., 1, 2, 3, at the end.
Question: Which number is missing?
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Model response: The number missing in the sequence is 14.
Extracted answer: 14

Hint: Please answer the question requiring a floating -point number with
one decimal place and provide the final value ,

e.g., 1.2, 1.3, 1.4, at the end.
Question: What is the fraction of females facing the camera?
Model response: The fraction of females facing the camera is 0.6,
which means that six out of ten females in the group are facing the

camera.
Extracted answer: 0.6

Hint: Please answer the question requiring a floating -point number with
two decimal places and provide the final value ,

e.g., 1.23, 1.34, 1.45, at the end.
Question: How much money does Luca need to buy a sour apple candy and a

butter -scotch candy? (Unit: $)
Model response: Luca needs $1.45 to buy a sour apple candy and a

butterscotch candy.
Extracted answer: 1.45

Hint: Please answer the question requiring a Python list as an answer and
provide the final list ,

e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end.
Question: Between which two years does the line graph saw its maximum

peak?
Model response: The line graph saw its maximum peak between 2007 and

2008.
Extracted answer: [2007, 2008]

Hint: Please answer the question and provide the correct option letter , e
.g., A, B, C, D, at the end.

Question: What fraction of the shape is blue?
Choices: (A) 3/11 (B) 8/11 (C) 6/11 (D) 3/5
Model response: The correct answer is (B) 8/11.
Extracted answer: B

{question}
Model response: {prediction}
Extracted answer:

For Omni-language models, we select audio-visual question answering task. This task requires
multimodal understanding and spatio-temporal reasoning over audio-visual scenes. AVQA (Yang
et al., 2022) targets real-world objects and activities. MUSIC-AVQA (Li et al., 2022) specifically
focuses on musical performances.

D DISCUSSIONS

D.1 UNDERSTANDING THE TASK VECTOR

WUDI Merging (Cheng et al., 2025) substitutes the transpose of the task vector τ for the input x. We
reconsider the update process of the task vector, which can be formulated as follows:

τi,l =
∑T

t=1 −η · ∂L(θt−1
i )

∂θt−1
i,l

(4)

=
∑T

t=1 −η
∑N

n=1
∂L(θt−1

i )

∂(θt−1
i,l xn−1

i,l )
· ∂(θt−1

i,l xn−1
i,l )

∂θt−1
i,l

(5)

=
∑T

t=1 −η
∑N

n=1
∂L(θt−1

i )

∂(θt−1
i,l xn−1

i,l )︸ ︷︷ ︸
coefficient

·(xn−1
i,l )⊤, (6)
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where τi,l denotes the task vector of task i in linear layer l, and θt−1
i,l represents the parameters of task

i in linear layer l at time t− 1. Each parameter in the linear layer can be interpreted as a weighted
sum of input vectors across training iterations, with gradients serving as coefficients.

D.2 LIMITATION AND FUTURE WORK

Due to resource constraints, our experiments were limited to models of 7B parameters. The public
datasets we collected may contain lower-quality data. Future work will explore multilingual or
reasoning-focused MLLM merging, incorporating visual chain-of-thought datasets (Yang et al.,
2025; Li et al., 2025c) to support expert reasoning models. For evaluation, we plan to develop new
benchmarks specifically designed to assess the reasoning capabilities of MLLMs.

D.3 BROADER IMPACTS

Various developers release fine-tuned models on open-source platforms such as Hugging Face (Wolf
et al., 2019; Wei et al., 2025a). Model merging reduces storage and serving costs through model reuse
and helps preserve data privacy. It also supports decentralized development by enabling independent
contributors to train models that can later be merged. We hope this benchmark will help the model
merging community better evaluate the generalizability of their methods and accelerate progress in
MLLM development.

E LLM USAGE

This study utilizes large language models to correct grammatical errors.

F REPRODUCIBILITY STATEMENT

We have open-sourced all the code and checkpoints, and provided a detailed description of the
implementation details.
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