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Abstract—Data-driven artificial intelligence (AI) techniques
are becoming prominent for learning in support of data com-
pression, but are focused on standard problems such as text com-
pression. To instead address the emerging problem of semantic
compression, we argue that the lattice theory of information is
particularly expressive and mathematically precise in capturing
notions of abstraction as a form of lossy semantic compression.
As such, we demonstrate that a novel AI technique called
information lattice learning, originally developed for knowledge
discovery and creativity, is powerful for learning to compress in
a semantically-meaningful way. The lattice structure further im-
plies the optimality of group codes and the successive refinement
property for progressive transmission.

I. INTRODUCTION

There has been growing interest in using large language
models (LLMs) and similar large artificial intelligence (AI)
models in data compression [1]. Such work has focused on
standard compression problems, but there is also growing
interest in semantic communication and information represen-
tation [2] especially motivated by 6G wireless communication
systems [3]. In this work, we take up the challenge of learning
to compress in a semantically meaningful way and particularly
argue that abstraction is a very natural approach to lossy se-
mantic compression. In fact, abstractions are core to language
and cognition of meaning [4], [5], and communicative needs
are often why abstractions are learned in the first place [6].
Rather than LLMs, we will see that an alternative approach to
large-scale Al called information lattice learning [7] is well-
matched to semantic compression.

A recent textbook on the linguistics of meaning notes
that the unit of meaning in semantics is the proposition, but
propositions are “probably the most recalcitrant constructs to
define” [8, p. 6]. Propositions can be thought of as descriptions
of situations or contents of beliefs. As indicated in [8], (1) and
(2) express the same proposition:

The dog has eaten the roti. @))
The roti has been eaten by the dog. 2)

even though a sentence in active voice and its passive voice
equivalent do not contain identical information (since voice
impacting semantic role of words is also a piece of informa-
tion contained in the sentence). Further, (3) and its French
translation (4):

I am happy. 3)

Je suis content. 4)

express the same proposition if they are accurate translations.

In a fairly obscure work entitled “The Lattice Theory of
Information,” Claude Shannon aimed to study the nature of
information rather than just its amount (as in his famous
1948 paper [9]), and arrived at the same concept [10]. As
he said, “Suppose a source is producing, say, English text.
This may be translated or encoded into many other forms (e.g.
Morse code) in such a way that it is possible to decode and
recover the original. For most purposes of communication,
any of these forms is equally good and may be considered
to contain the same information....Each coded version of the
original process may be called a translation of the original
language. These translations may be viewed as different ways
of describing the same information, in about the same way
that a vector may be described by its components in various
coordinate systems. The information itself may be regarded as
the equivalence class of all translations or ways of describing
the same information.”

He basically defined an information element as the equiv-
alence class of random variables that induce the same o-
algebra. For further explication, see [11], [12]. The notion
of an information element is more abstract than that of a
random variable: an information element can be realized by
different random variables. With this mathematization, numer-
ous algebraic and topological properties follow. Further, the
notion of a partial order among information elements and the
resultant information lattices arise naturally from the definition
of information element, providing a hierarchical depiction of
information elements at different abstraction levels. Notably,
the fact every o-algebra of a countable sample space can be
uniquely determined by its generating sample-space-partition
implies that every information lattice is isomorphic to its
underlying partition lattice. Since a partition of a sample
space is essentially an equivalence relation, the abstraction
hierarchy depicted by an information lattice can naturally
yield semantic abstractions and hierarchies (induced by various
equivalence relations, e.g., by a subgroup lattice)—both in a
human-interpretable manner.

In this paper, we argue that the concept of information
elements in the lattice theory of information is a natural
mathematical formulation of propositions in semantics, and
accordingly, information lattices are natural for foundational
work in the emerging area of semantic communication. Al-
though going back in some ways to the work of Bar-Hillel
and Carnap [13], there has been renewed interest in semantic
communication and its formal foundations in recent years [2],



[14].

While a simple extension of information theory to semantic
communication based on synonym mappings has recently
been proposed [15], the information lattice approach enables
a significant rethinking of lossless and lossy information
representation when taking semantics into account.

Shannon’s original conception of information lattices as-
sumes the probability measure is given. Yet, learning statis-
tics from data enables matching of compression schemes to
complicated source statistics for improved performance in
many modern compression applications [16]. As such, we
further argue that information lattice learning—as we have
developed in a sequence of recent papers for knowledge
discovery and creativity [7], [17]-[23]—is well-suited to learn
information lattices (essentially, hierarchical semantic abstrac-
tions) for given sources and then to compress in semantically-
meaningful ways with human-understandable and mathemati-
cally precise fidelity criteria.

The implications of information lattice learning for semantic
compression can be significant. Given the group-theoretic
foundations of information lattices, one can remember the
exponential rate savings that are possible in lossless and
lossy data compression under permutation group invariance
(corresponding to the semantics of scientific data and other
similar sources) [24]. (Group-theoretic ideas have also become
prominent in Al to reduce societal bias and sample complexity,
e.g. [25].) Further, one can remember that group lattice struc-
tures enable perfect progressive transmission, with no rate loss
in the multiple descriptions and successive refinement prob-
lems [26]. Formalizing distortion using a lattice-based distance
measure for partitions, we show the same kind of results for
more general semantic compression with information lattice
learning.

The remainder of the paper is organized as follows. Sec. II
gives a discursive review/intuition of Shannon’s information
lattices and our information lattice learning, so as to demon-
strate why the information lattice framework is natural for
semantic compression; it also presents natural fidelity criteria
from within this framework. Sec. III shows examples to
help clarify lossy semantic compression as an abstraction
process. Sec. IV considers the successive refinement problem
for semantic compression in the information lattice framework,
showing there is no rate loss using group codes due to the
lattice structure. Sec. V concludes the paper.

II. INFORMATION LATTICES AND INFORMATION LATTICE
LEARNING

Starting from a standard setup in probability theory, let
(Q, F, P) be a probability space, where ) is called a sample
space consisting of all possible outcomes and F is a o-algebra
(on Q) consisting of all measurable events. A random variable
is a measurable function X : (2, F) — (X, X).

Intuitively, one can view (2, F) as some topic space, where
the o-algebra F defines the full information about this topic.
One can then view a random variable X as a language (e.g.,
English) and attempt to describe the topic in that language.

In particular, X’s codomain X can be thought of as the full
vocabulary of the language (with X (2) being the part of the
vocabulary that is related to the topic) and its o-algebra X as
everything describable by that language.

Related to a particular topic, a language may not be expres-
sive enough in describing the topic. We see scenarios where we
have “lack of words” when attempting to clearly and precisely
describe a topic, e.g., attempting to describe music imagined in
the mind or a bodily feeling to a doctor. Moreover, not all lan-
guages are equally expressive in describing the topic. A novel
originally written in one language may lose information when
translated to another. Similarly, the Sapir—Whorf hypothesis
states that “individuals’ languages determine or shape their
perceptions of the world” [27].

The above intuition can be naturally formalized via induced
o-algebras. Given a topic (€2, F), we define the descriptive
power of a language X with respect to the topic to be o(X),
i.e., the o-algebra on (2 induced by X. Since a random variable
is a measurable function, o(X) C F. This includes two cases:

e 0(X) = F: the language X describes the topic losslessly;
e 0(X) C F: lossy description.

Given two languages as two distinct random variables X :

(QF) - (X,X)and Y : (O, F) — (Y,Y), we can check

their respective descriptive power o(X) and o(Y) for the

given topic (€2, F). To name a few possibilities,

(a) 0(X) =o(Y): informationally equivalent;

(b) o(X) C o(Y) C F: X is more informationally lossy
compared to Y. More precisely, Y is informationally
lossy when describing the whole topic ({2, F) but can
describe all X can describe.

(©) o(X)Zo(Y) and 0(Y) € 0(X): non-comparable.

The above suggests that the nature of information conveyed
by a random variable is not really the random variable per se,
but its induced o-algebra. This leads to Shannon’s introduced
information element capturing such nature of information.

Hence, one does not need to rely on a particular language or

random variable, but can instead, directly use an information

element to faithfully refer to a piece of information.

A. Information Element and Information Lattice

Formally, an information element is an equivalence class
of random variables (on a common sample space), where the
equivalence relation (~) is defined as follows: two random
variables X ~ Y if and only if 0(X) = o(Y).

The relationship in (b) and (c) above naturally leads to
a partial order among information elements (based on the
C relation among o-algebras), and this partial order can be
further proven to form a lattice of information elements, or
information lattice in short.

Unlike in, but equivalent to Shannon’s original definition,
the above definition of information element and lattice is stated
more generally using just o-algebras, which in particular does
not require probability or entropy to be predefined. This sug-
gests a breakdown of an information element into two parts: o-
algebra and probability measure, and accordingly, a breakdown



of an information lattice into a o-algebra lattice and probability
measures, where the o-algebra lattice is isomorphic to the
information lattice. Note that in cases where the sample space
) is countable, every o-algebra on 2 bijectively corresponds
to its generating partition of €2, so, an information lattice is
also isomorphic to its underlying partition lattice (equipped
with the usual “coarser/finer than” partial order).

B. Information Lattice Learning (ILL)

The separation of probability measures from a o-algebra
lattice, or equivalently a partition lattice in the countable
case, brings learning into the information lattice, yielding the
general framework called information lattice learning. In this
framework, learning can happen in two directions, following
the forward and backward direction of the partial order. From
the top of a lattice (corresponding to the original o-algebra F),
one can project a probability measure, or any signal, down to
the lower parts of the lattice to learn coarser-grained sum-
marizing signals (also known as rules in information lattice
learning)—a lossy compression process. Conversely, one can
lift coarser-grained summarizing signals (or rules) up to learn
a finer-grained realization signal, e.g., learning a probability
distribution that satisfies the rules—a reconstruction or decom-
pression process. The transparency of information lattices and
lattice learning allows semantic compression/decompression to
be done in a human-interpretable manner.

C. Semantic Fidelity Criteria

As detailed in [22], Shannon originally defined an entropy-
based distance measure within information lattices (with prob-
abilities already attached): for any two information elements x
and y, the distance between them p(z,y) is defined to be the
sum of two conditional entropies: p(z,y) := H (z|y)+H (y|z).
Also note that many information theory textbooks, e.g. [28],
[29], give Venn diagrams called i-diagrams that show condi-
tional entropy as a symmetric difference.

Here we consider more generic settings of ILL where statis-
tics may not be attached to a o-algebra lattice or a partition
lattice yet. In particular, we consider a lattice-based distance
measure for partitions [30], which is suitable for establishing
semantic fidelity criteria. More specifically, given a probability
space (2, F, P), consider the lattice of all partitions of the
sample space 2. One can define a partition distance as follows:
for any partitions P, Q of €,

where P AQ is the coarsest common refinement of P, @) (also
known as the meer) and PV (@ is the finest common coarsening
of P, (also known as the join).

III. EXAMPLES

We provide two examples to explicate the notion of ab-
straction as a form of lossy semantic compression. The reader
is encouraged to think through the relevance of the partition
distance as an appropriate fidelity criterion in these examples.
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Fig. 1. A lattice of partitions of a set of polygons.

First, consider the representation of shapes, which arises in
6G wireless applications such as virtual reality and augmented
reality [31]. In Fig. 1, we see data that corresponds to shapes
of various kinds, and the partition lattice that is constructed
according to the concepts of color, convexity, and number of
sides. Notice that going down the lattice from, say, convex
pentagons, can lead to a coarsened lossy representation into
either pentagons or into convex shapes. Such abstraction
operates directly in the semantic space of meaning.

A more detailed example of using ILL in lossy semantic
compression is to learn hierarchical semantic abstractions of
raw music information, e.g., encoded in sheet music. We
explicitly constructed partition lattices from symmetries like
isometries (rigid body transformations such as translation and
rotation) and then trained the information lattice for music on
the basis of a fairly small amount of data, just 370 chorales
by Johann Sebastian Bach. This procedure recovers a large
fraction of the laws of music theory in the same human-
interpretable form as an undergraduate textbook and further
discovers new principles of interest to music theorists [7], [20].

To illustrate lossy semantic compression for this example,
consider the slightly modified excerpt from Mozart’s Piano
Sonata No. 16 (K 545) at the top of Fig. 2. One can inject
the excerpt at the top of an information lattice trained for
music; then projecting it down along the lattice yields hier-
archical lossy compressions corresponding to several human-
interpretable music concepts at different levels of semantic
abstractions. From top down in Fig. 2, sampling is a fairly
direct lossy semantic compression which directly drops un-
wanted parts and is commonly seen in music production and
mixing (e.g., among DJs). One can further go down through
different compression paths to yield different types of music
semantic abstractions that are not directly comparable to each
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Fig. 2. Lossy semantic music compression along an information lattice (the
complete lattice is not shown for brevity).

other. For example, dropping pitch information allows lossy
compression of music to contain just its rhythm information,
while dropping arpeggiation information allows a different
type of lossy compression of music to contain just its harmony
information. Along each compression path in an information
lattice, one can continuously drop information to yield more
and more lossy compressions, corresponding to deeper and
deeper levels of music concepts, such as harmonic progression
related to a particular key, roman numerals (with and without
figures), harmonic functions, and so on.

IV. GROUP CODES AND PROGRESSIVE TRANSMISSION

In addition to single descriptions in semantic compression,
there may also be interest in progressive transmission [32],
e.g. in 6G wireless systems, so each received packet provides
semantic insight and further packets build up towards more
and more semantic information. There is some nascent work
on semantic multiresolution representation [33], but this topic
largely remains unexplored. In particular, we consider the
successive refinement framework in rate-distortion theory [34],
[35]. Note that the fact there is no rate loss in successive
refinement for lossless representation is direct, cf. [36].

Besides the motivation from wireless networks, the suc-
cessive refinement setting also models the incorporation of
new information into already learned representations, as in
developmental learning, lifelong learning, or indeed in any
kind of learning process that progresses through identifiable
successive steps [37] such as epoch-based training and ILL’s
rule learning itself. As such, it is of interest to know whether
semantic information can be decomposed into chunks without
needing extra rate.

As noted in Sec. II, any information lattice is isomorphic
to its underlying c-algebra lattice, or partition lattice in the
countable case. Moreover, any partition lattice is isomorphic
to a subgroup lattice in group theory [11]. In a subgroup lattice,
the join of two subgroups is the subgroup generated by their
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Fig. 3. A partition lattice for a four-item set corresponding to a subgroup
lattice of a permutation group.

union, and the meet of two subgroups is their intersection.
Cayley’s Theorem states that every group is isomorphic to
a permutation group, and so in a sense, permutation groups
play a special role in group theory. For brevity and ease
of explanation, here we restrict our attention to permutation
groups and ask whether lossy semantic compression codes for
the subgroup lattice of a permutation group (see Fig. 3 for its
depiction as a partition lattice for a source set of four items
Q = {a, 5,7,(}) have the successive refinement property in
rate-distortion theory.

These codes will be permutation source codes [38], [39]: the
basic idea of these group source codes is to represent partial
orders for source sequences.

A. Distortion Measure

Let us first introduce notation and concepts specifically for
orders and permutations, based on [26]. Then we will connect
to more general notions for ILL, such as the distance-based
notion of distortion within partition lattices.

Recall that a binary relation < on a set € is a partial order
if it satisfies the reflexive (x < x for all x € (), transitive
(r < 2/ and 2/ < 2" implies z < z” for all z,2", 2" € Q),
and antisymmetric (z < 2’ and 2’ < x implies x = 2’ for all
x,a’ € Q) properties. A partial order satisfying comparability
(for any z,z’ in Q, either x < z’ or ' < x) is a total order.

As an example for n = 4, let Q = {«, 3,7, (} equipped
with the total order k = {a < 8 < v < (}. Let O be the set of
all partial orders on {2 that is consistent with k. A partial order
j is consistent with k if all comparable pairs in j exist in k.
For any partial order 5 € O, we encode j as a binary compa-
rability vector of length n — 1: j = (Lja<p)s Lig<rs Liy<q))s
representing knowledge of comparability. This allows us to
define a distortion measure J,, between any partial order j on
2 and the total order k as follows:

ﬁd}[(},iﬂ)? je @

6(3) = o

(&)

o,

where dg (-, -) is Hamming distance.



TABLE I
PERMUTATION CODES AND COMPARABILITY RELATIONSHIPS
DETERMINED BY CORRESPONDING PARTIAL ORDERS
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For example, the distortion between a partial order in the
following

i=1{}

j'={a<p}
J"={a<B <y B<EG
i"={a<B<(<A}

and the total order k satisfies J4(j) = 1, d4(j) = 2/3,
34(3") = 1/3, 64(3”"") = o0; note d4(k) = 0. Erasure
of comparability knowledge incurs finite distortion, but error
incurs infinite distortion. Without loss of optimality, a source
code never uses inconsistent reproductions, since the order
with no defined comparability relations is consistent with all
total orders and has maximum distortion 1.

Assuming no inconsistent reproductions, one may check that
(5) is equivalent to the partition distance defined in Sec. II-C
(such equivalence can be seen from the partition generated
by a comparability vector, e.g., (0,1,0) — {{a, 8}, {7, (}D.
Within a connected path up the partition lattice for a per-
mutation group, this is governed by counting the number of
comparability relations that need to be established.

B. Permutation Codes

We represent partial orders for semantic compression in the
setting of the permutation group, exactly what is accomplished
by permutation source codes [38], [39]. If one uses a permu-
tation code with block size n and pool sizes (ni,...,ng),
then the members within each pool are incomparable, whereas
the pools themselves are comparable. Due to the intimate
relationship between the pool sizes for a permutation code
and the number of comparability relations established, clearly
permutation codes achieve the rate-distortion limit for single
descriptions.

Table I gives the possible permutation codes (for the n = 4
case) from the power set of possible comparability relations:

a b c
a<pB<y<C(

This may also be drawn as a lattice of codes as in Fig. 4a,
corresponding to the partition lattice in Fig. 4b. Nodes on the
same level of the lattice of codes have the same distortion.
Since reaching different lattice nodes requires different rates,
source coding simply involves choosing the low-rate node on
the desired distortion level. This is optimal.

o) T
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Fig. 4. Lattice of codes and its corresponding partition lattice based on
comparability relations to be determined, where 0 = 0, A = {a}, B = {b},
Cc={c},D={a,b}, E={a,c}, F={b,c}, and U = {a, b, c}.

The lattice of codes implies that successive refinement
involves choosing paths. That is, sub-permutation codes may
be used to define ordering among pool elements. The sub-
permutation code for the members of the first pool would
be of blocklength ny and pool sizes (mg,...,myr). When
this refinement information is used to supplement the original
permutation code, the distortion is exactly equivalent to a
blocklength n, pool size (mq,...,mr,na,...,ng) permuta-
tion code. The total rate for the two-step procedure is

|

R, = 10g K : + log Lnil
I1 ! [T mi!
i=1 j=1
~ log nln,! ~ log n! )
3 K L K
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The total rate for a single description permutation code of
the same performance would be identical to (6). By repeated
application of this property, there is no rate loss in successively
refining a permutation code with a sub-permutation code,
which achieves optimal rate-distortion.

One can extend this argument from successive refinement
to multiple descriptions, following [26]. Future work aims to
show successive refinability and multiple descriptions optimal-
ity of general ILL-based semantic compression using group
source codes [40].

V. CONCLUSION

With strong information-theoretic and group-theoretic foun-
dations, ILL is a novel non-neural approach to machine learn-
ing, emphasizing transparency of the model (non-blackbox)
and human-interpretability of what has been learned by the
model rather than just model performance on specific end
tasks. In this paper, we have argued that it is a natural approach
to semantic data compression and also readily implemented
using group source codes applied on top of lattices learned
from data. Going forward, it is of interest to develop this
approach for representing semantic meaning in a variety of
application areas [41], [42] and to demonstrate superior rate-
distortion performance.
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