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Abstract

Conditional independence tests are crucial across various disciplines in determining1

the independence of an outcome variable Y from a treatment variable X , condition-2

ing on a set of confounders Z. The Conditional Randomization Test (CRT) offers3

a powerful framework for such testing by assuming known distributions of X | Z;4

it controls the Type-I error exactly, allowing for the use of flexible, black-box5

test statistics. In practice, testing for conditional independence often involves6

using data from a source population to draw conclusions about a target population.7

This can be challenging due to covariate shift—differences in the distribution of8

X , Z, and surrogate variables, which can affect the conditional distribution of9

Y | X,Z—rendering traditional CRT approaches invalid. To address this issue,10

we propose a novel Covariate Shift Corrected Pearson Chi-squared Conditional11

Randomization (csPCR) test. This test adapts to covariate shifts by integrating12

importance weights and employing the control variates method to reduce variance13

in the test statistics and thus enhance power. Theoretically, we establish that the14

csPCR test controls the Type-I error asymptotically. Empirically, through simu-15

lation studies, we demonstrate that our method not only maintains control over16

Type-I errors but also exhibits superior power, confirming its efficacy and practical17

utility in real-world scenarios where covariate shifts are prevalent. Finally, we18

apply our methodology to a real-world dataset to assess the impact of a COVID-1919

treatment on the 90-day mortality rate among patients.20

1 Introduction21

Conditional independence tests are important across diverse fields for determining whether an22

outcome variable Y is independent of a treatment variable X , conditioning on a potentially high-23
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dimensional vector of confounding variables Z. This type of testing is critical for understanding the24

complex relationships among variables. For instance, scientists may hope to understand whether25

a specific genetic feature influences disease outcomes, whether a particular treatment effectively26

extends life expectancy, or whether certain demographic factors impact college admissions.27

Traditionally, these conditional testing problems are approached by modeling Y against X and Z28

through some parametric or semiparametric model. However, this strategy has been criticized due29

to potential model misspecification and limited observations of Y . As an alternative strategy, the30

model-X framework and Conditional Randomization Test (CRT) propose testing for the general31

conditional independence hypothesis H0 : X KK Y | Z, free of any specific effect parameters [2].32

The CRT assumes the distribution of X | Z to be known and can control the type-I error exactly,33

allowing for the choice of any flexible, black-box test statistic. This strategy is particularly useful34

when there is either strong and reliable scientific knowledge of the distribution of X | Z or an35

auxiliary dataset of pX,Zq of large sample size, known as the semi-supervised setting.36

Figure 1: Type-I Error rates of our pro-
posed csPCR and the source-only PCR
on a simulated example. The Type-I er-
ror inflation of PCR demonstrates that
source analysis is not valid or generaliz-
able on the target due to covariate shift.

In practice, testing for conditional independence frequently in-37

volves using data from a source population to draw conclusions38

about a target population. This situation presents challenges39

due to potential differences in the distribution of variables be-40

tween the two populations. For example, economists may be41

interested in whether college admission (Y ) is independent of42

family income (X), conditioning on variables such as GPA,43

extracurricular activities, geographic location, and other demo-44

graphics (Z). In the source population, the relationship might45

be influenced by factors like wealthy parents investing in SAT46

preparation, which boosts admission rates—a relationship that47

may not exist in a target population where such preparation is48

less common. Although Y may not appear independent of X49

given Z in the source population, the conclusion could vary50

significantly in the target population. This discrepancy under-51

scores the need for a robust and flexible testing procedure that52

can adapt to shifts in distributions.53

More specifically, we address the covariate shift scenario, where the distributions of the treatment54

variables X , the confounding variables Z, and some surrogate or auxiliary variables V (e.g., SAT55

scores) may differ between the source and target populations. However, the conditional distribution56

of Y given X,Z, and V remains the same between them. In such scenarios, our goal is to leverage57

information from the source to accurately test for conditional independence in the target population58

without the observation of Y on target. In the scenario we consider, the presence of V and potential59

differences in P pV | X,Zq between the source and target populations may lead to the conditional60

independence X KK Y | Z not holding simultaneously in the two populations. Specifically, because61

P pY | X,Zq “

ż

P pY | X,Z, V qP pV | X,Zq dV,

the conditional distribution of Y given X and Z can vary between populations. This underscores62

why the problem is non-trivial.63

See Figure 1 for an example of the consequences of such covariate shift.64

In this paper, we propose a novel conditional independence test suitable for covariate shift scenarios.65

Our method builds upon the Pearson Chi-Squared Conditional Randomization (PCR) test, a powerful66

model-X testing procedure that effectively addresses a broader range of alternative p-value distri-67

butions than the vanilla CRT [5]. Methodologically, we make two major contributions. First, we68

introduce importance weights into the label counting steps of the original PCR test, making the new69

test valid under covariate shift. These weights adjust the importance of each sample according to70

its density ratio, effectively rebalancing the source data to match the target population’s distribution.71

Second, we introduce a power enhancement method that employs the control variates method to72

reduce variance in the test statistics. Although importance weights can increase the variance in test73

statistics, especially when the density ratio can become extremely high, potentially reducing power,74

our power enhancement method effectively addresses this issue. Together, these innovations enable75

us to develop a PCR test that is both powerful and valid under covariate shifts.76
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The rest of the paper is organized as follows: In Section 2, we provide a formal introduction to77

the problem setup. In Section 3, we introduce the proposed Covariate Shift Corrected Pearson78

Chi-squared Conditional Randomization (csPCR) test and establish that the proposed csPCR test79

controls the Type-I error asymptotically. In Section 4, we demonstrate the empirical performance80

of the csPCR test through simulation studies. In Section 5, we apply the proposed csPCR test to a81

real-world dataset to assess the impact of a COVID-19 treatment on the 90-day mortality rate among82

patients.83

1.1 Related Work84

Our work builds upon the model-X framework and the conditional randomization test proposed by85

Candes et al. [2]. The particular method we develop is based on a variant of the vanilla CRT, the86

Pearson Conditional Randomization (PCR) test [5]. Recent advances in the CRT include improving87

computation time [7, 10], studying robustness [6, 11], and examining statistical power [19]. The88

focus of this paper, different from the above, is on how to build a valid CRT procedure when there89

is covariate shift. The paper is also complementary to the above literature: for example, we hope90

that future work can conduct theoretical power analysis for our procedure or develop a double robust91

version of the procedure just like in [6]. Finally, we note that surrogate variables play a crucial role in92

this paper: because the distribution of the surrogate variables is different in the source and the target93

population, naively testing the conditional independence hypothesis in the source population can94

yield invalid conclusions for the target population. A surrogate or silver standard label is a variable95

that is more feasible and accessible than Y in data collection and can be viewed as a noisy measure96

of Y . For example, tumor response rate is often used as an early endpoint surrogate for the long-term97

survival outcome [3], and blood pressure is commonly used as a surrogate for heart attacks. Surrogate98

variables are also commonly used in environmental studies and economics. Surrogate variables also99

play an important role in the paper by [6], albeit in a different way, where the surrogate variables are100

used to learn the distribution of Y | X,Z and to further improve the robustness of the CRT procedure.101

Statistical learning and inference under covariate shift has been extensively studied over the past years.102

As a seminal work in addressing covariate shift bias, [4] proposed a density ratio weighting approach103

using kernel mean matching to characterize the adjusting weights. Their key idea of importance104

(re)weighting is intrinsically connected with early work in broader contexts like importance sampling105

[15, e.g.] and semiparametric inference [13, e.g.]. [8] extended this idea to a doubly robust framework106

accommodating surrogate variables like V and being more robust to the misspecification or poor107

quality of the density ratio models. [18] handled a more challenging scenario with severe shift and108

poor overlap between the source and target populations. Among this track of literature, [17] is the109

most closely related to our work as they also considered conditional independence testing under110

distributional shifts and proposed a general testing procedure base on importance sampling (IS)111

allowing for the use of CRT. Different from us, their work does not accommodate the covariate shifts112

of some surrogate or auxiliary V . Moreover, as will be shown in our numerical studies, their general113

IS testing strategy can encounter the loss of effective sample sizes and be less powerful than ours.114

2 Problem Setup115

2.1 Conditional Independence Testing under Covariate Shift116

Let Y P R denote the outcome variable, X P R the treatment variable, Z P Rp a vector of117

confounding variables, and V P Rd a vector of surrogate variables. To make the problem more118

concrete, consider the following two examples:119

Example 1 (College Admission). Y is college admission, X is family income, Z includes a number120

of factors such as GPA, extracurricular activities, geographic location, and demographic information,121

V is the SAT score. In this case, V is easier to collect compared to Y as the college admission122

requires individual-level surveys.123

Example 2 (Health Outcome). Y is a long-term health outcome, X is a medical treatment, Z124

includes factors such as age, gender, and health history, V includes surrogate variables like blood125

pressure, BMI, and duration of hospital stays post the treatment, which can be measured within a126

much shorter term than Y .127

3



(a) Source population. (b) Target population.

Figure 2: Direct acyclic graphs illustrating possible differences between the source and the target
populations.

Consider a scenario involving two distinct populations: the source population S and the target128

population T . We collect data from the source population with the goal of making inferences about129

the target population. The source data contains n independent and identically distributed samples of130

pYi, Xi, Zi¨, Vi¨q for i “ 1, . . . , n. Let y “ pY1, Y2, . . . , YnqJ P Rn, x “ pX1, X2, . . . , XnqJ P Rn,131

Z “ pZ1¨, Z2¨, . . . , Zn¨q
J P Rnˆp, and V “ pV1¨, V2¨, . . . , Vn¨q

J P Rnˆd. We are interested in132

testing the following conditional independence hypothesis in the target population:133

H0 : X KK Y | Z. (1)

We assume that the conditional distribution of Y | X,Z, V is the same in both populations; however,134

the distribution of pX,Z, V q varies between S and T . More precisely, the joint distribution of135

Y,X,Z, V can be described as follows:136

PSpY,X,Z, V q “ PSpX,Z, V qP pY |X,Z, V q on S,
PT pY,X,Z, V q “ PT pX,Z, V qP pY |X,Z, V q on T .

(2)

This situation is referred to as the covariate shift scenario because the distribution of the covariates137

X , Z, and V in the source population S does not match that in the target population T .138

Let’s understand the above assumption and its implications through the two examples above. In the139

college admissions example, it is plausible to assume that the rate of college admissions remains140

consistent across the two populations when conditioned on the SAT score, family income, and other141

confounding variables. However, the joint distribution of X,V and Z can differ: in the source142

population, if wealthy parents frequently invest in SAT preparation, boosting admission rates, this143

relationship may not hold in a target population where such preparation is uncommon. In such cases,144

it is thus possible that X��KKY | Z in the source population but X KK Y | Z in the target population145

(see Figure 2 for such an example). In the health outcomes example, it is again plausible that the146

conditional distribution of long-term health outcomes given the treatment variable, confounding147

variables, and surrogates remains the same across the two populations. However, the assignment of148

the treatment may depend differently on the surrogate variables across the two populations. Therefore,149

it’s possible that X KK Y | Z in one population, but not in the other.150

In both examples, we can see that the result of naively applying a valid conditional independence test151

on the source population cannot guarantee a valid conclusion for testing H0 in the target population.152

Therefore, we need to develop new tools for addressing covariate shifts in conditional independence153

tests.154

2.2 Model-X Framework155

In this paper, we operate within the model-X framework, as described by Candes et al. [2], which156

assumes that the joint distributions of covariates X,V, Z are perfectly known in both the source and157

target populations. This framework is particularly suited for scenarios where: (1) there is substantial158

prior domain knowledge about the covariates X,V, and Z, or (2) there is a significant amount of159

unsupervised data for these covariates in both populations, in addition to n labeled observations in160

the source population, characterizing a semi-supervised setting.161

An example of the first scenario can be seen in genetics, where researchers have well-established162

models for the joint distributions of single nucleotide polymorphisms (SNPs). For the second scenario,163

consider our earlier example involving health outcomes. Here, the outcome variable Y represents a164

long-term health outcome that is more costly or sensitive to measure compared to the shorter-term165
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variables X,V, and Z. In such cases, the variables X,V, and Z are typically easier and less costly to166

collect, frequently resulting in a semi-supervised setting in these health-related studies.167

3 Method: Covariate Shift Corrected PCR Test168

3.1 Incorporating the Density Ratio into the PCR Test169

In Section 2.1, we discussed how naively applying conditional independence tests to the source170

data cannot guarantee valid conclusions for the target population. To address this issue, we must171

incorporate information about the differences between the two populations into our testing procedure.172

In particular, we will make use of the density ratio defined as:173

epX,Z, V q “
PT pX,Z, V q

PSpX,Z, V q
. (3)

This ratio measures the relative likelihood of observing each combination of variables pX,Z, V q174

in the target population compared to the source population. By reweighting the data points in the175

source population using this density ratio, we effectively transform the source distribution to match176

the distribution of the target population, thereby addressing the covariate shift problem.177

More specifically, we build our method upon the recently proposed Pearson Chi-Squared Conditional178

Randomization (PCR) test [5]. Compared to the vanilla CRT, the PCR test is designed to be more179

powerful across a broader range of alternative p-value distributions. At a high level, the PCR test180

assigns a label to each data point following a counterfeit sampling step and a subsequent score181

computation step. Under the null hypothesis that X KK Y | Z, the distribution of these labels182

should be uniform across all possible labels. The PCR test then rejects the null hypothesis if183

the empirical distribution of the labels deviates significantly from uniformity, as determined by a184

Pearson’s chi-squared test.185

Under distributional shift, if the data points were sampled from the target population, then the186

distribution of the labels would be uniform. However, since the data points are actually sampled from187

the source population, they must be reweighted using the density ratio. More specifically, in the final188

step of the PCR test, where the Pearson’s chi-squared test is applied, we consider not the count of189

data points for each label, but the sum of the density ratios of the data points for each label instead.190

Under the null hypothesis, each sum should approximate n{L, where L is the total number of labels.191

Consequently, we modify the Pearson’s chi-squared test to determine whether these weighted sums192

deviate significantly from n{L.193

Based on the above intuition, we propose the Covariate Shift Corrected PCR (csPCR) Test, as outlined194

in Algorithm 1.195

In Algorithm 1, lines 1-7 correspond to those in the original PCR test. These lines initiate the test by196

generating counterfeit samples X̃pmq

j . Assuming the source and target populations were identical, un-197

der the null hypothesis, the random variables pXj , Yj , Zjq, pX̃
p1q

j , Yj , Zjq, . . . , pX̃
pMq

j , Yj , Zjq would198

be exchangeable. Consequently, the rank Rj would be uniformly distributed over t1, . . . ,M ` 1u in199

the absence of ties, leading to a uniform distribution of the labels as well.200

Lines 8-10 in Algorithm 1 address the covariate shift by incorporating density ratios as importance201

weights into Wj . Due to this redefinition of Wℓ, the null distribution of the final test statistic202

Un,L is also different. Therefore, we also adjust the rejection threshold from the quantile of a chi-203

squared distribution, as in the original PCR test, to the quantile of the weighted sum of chi-squared204

distributions.205

3.2 Power Enhancement206

To effectively address covariate shift, incorporating density ratios as importance weights into the207

PCR test is essential. However, when these ratios become large, they can increase the variance of the208

statistics Wl. This elevated variance can diminish the test’s power. Therefore, developing methods to209

reduce this variance is crucial for maintaining the power of the test.210
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Algorithm 1 Covariate Shift Corrected PCR (csPCR) Test.

Input: Data DT “ py,x,Z,Vq, the density ratio e, the test statistics T , integers K,L ě 1, and the
significance level α.

1: Take M “ KL ´ 1.
2: for each data point j “ 1 to n do
3: Draw M i.i.d samples rX

p1q

j , . . . , rX
pMq

j from PT pX | Zq.

4: Use T to score the initial data point pXj , Yj , Zjq and its M counterfeits p rX
p1:Mq

j , Yj , Zjq

Tj “ T pXj , Yj , Zjq

rT
piq
j “ T p rX

piq
j , Yj , Zjq, for i P t1, . . . ,Mu .

(4)

5: Let Rj denote the rank of Tj among tTj , rT
p1q

j , . . . , rT
pMq

j u, with ties broken randomly.
6: Partition t1, . . . ,M ` 1u “ S1

Ť

. . .
Ť

SL with Sℓ :“ tpℓ´1qK `1, . . . , ℓKu. Assign label
ℓj P t1, 2, . . . , Lu to sample j if Rj P Sℓj .

7: end for
8: Let wj “ epXj , Zj , Vjq for each j P t1, 2, . . . , nu.
9: for each label ℓ P t1, 2, . . . , Lu: do

10: Let Wℓ be the sum of ℓ-labeled importance weights: Wℓ “
n
ř

j“1

wj ¨ 1tℓj “ ℓu.

11: Let Dℓ be the sum of ℓ-labeled squared importance weights: Dℓ “
n
ř

j“1

w2
j ¨ 1tℓj “ ℓu.

12: end for
13: Let Ω̂n “ L

ndiagpD1, D2, ¨ ¨ ¨ , DLq ´ 1
L ¨ 1LˆL.

14: Calculate the test statistic Un,L as follows Un,L “ L
n

L
ř

ℓ“1

`

Wℓ ´ n
L

˘2
.

Output: Reject the null hypothesis if Un,L ě θΩ̂n,α
; otherwise, accept the null hypothesis. Here,

θΩ̂n,α
is the 1 ´ α quantile of the distribution χ2

Ω̂n
, where A „ χ2

Ω denotes that A “ xTx for
x „ N p0,Ωq.

To this end, we introduce a control variate function a, allowing apX,Z, V q to serve as a control211

variate in reducing variance in Wl [14]. Specifically, for a chosen γℓ, we define212

ĂWℓ “

n
ÿ

j“1

wj ¨ r1tℓj “ ℓu ´ γℓapXj , Zj , Vjqs ` nγℓET
“

apX,Z, V q
‰

. (5)

We can then use ĂWℓ instead of Wℓ in our algorithm.213

We note that for any arbitrary choice of the function a and the parameter γℓ, the expectation of ĂWℓ214

would be the same as that of Wℓ:215

E
”

ĂWℓ

ı

“

n
ÿ

j“1

E
“

wj1tℓj “ ℓu
‰

´

n
ÿ

j“1

γℓE
“

wjapXj , Zj , Vjq
‰

` nγℓET
“

apX,Z, V q
‰

“ E rWℓs ´ nγℓ

´

ES
“

epX,Z, V qapX,Z, V q
‰

´ ET
“

apX,Z, V q
‰

¯

“ E rWℓs .

(6)

Therefore, even if we make a sub-optimal choice of the function a and the parameter γℓ in practice,216

the resulting test (under certain assumptions) will still remain asymptotically valid (see Section 3.3217

for more details).218

However, for effective variance reduction, it is preferable to have the control covariates apX,Z, V q219

well-correlated with the outcome (See Section 4 for practical discussions on choices of the function220

a). This is quite feasible, especially since the surrogate variable V is likely to be predictive of Y .221
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Algorithm 2 Covariate Shift Corrected PCR Test with Power Enhancement.

Input: Data DT “ py,x,Z,Vq, the density ratio e, the test statistics T , the control variate function
a, integers K,L ě 1, and the significance level α.

1: for each data point j “ 1 to n do
2: Compute the labels ℓj as in Algorithm 1.
3: end for
4: Let wj “ epXj , Zj , Vjq for each j P t1, 2, . . . , nu.
5: for each label ℓ P t1, 2, . . . , Lu: do
6: Compute γ̂ℓ, the regression coefficient obtained by a weighted linear regression of the indicator

function
␣

1tℓj “ ℓu
(n

j“1
on the control variate

␣

apXj , Zj , Vjq
(n

j“1
with weights

␣

wj

(n

j“1
.

7: Compute the augmented version of Wℓ as

ĂWℓ “

n
ÿ

j“1

wj ¨ r1tℓj “ ℓu ´ γ̂ℓapXj , Zj , Vjqs ` nγ̂ℓET
“

apX,Z, V q
‰

.

8: end for
9: Let W “

´

wj ¨ r1tℓj “ ℓu ´ γ̂ℓapXj , Zj , Vjqs ` γ̂ℓET
“

apX,Z, V q
‰

¯

ℓ,j
for 1 ď ℓ ď L, 1 ď

j ď n.
10: Calculate the sample covariance matrix rΩn “ L

n pW ´ 1
L ¨ 1LˆnqpW ´ 1

L ¨ 1LˆnqT.

11: Calculate the test statistic Un,L as follows rUn,L “ L
n

L
ř

ℓ“1

´

ĂWℓ ´ n
L

¯2

.

Output: Reject the null hypothesis if rUn,L ě θ
rΩn,α

; otherwise, accept the null hypothesis. Here,
θ
rΩn,α

is the 1 ´ α quantile of the distribution χ2
rΩn

, where A „ χ2
Ω denotes that A “ xTx for

x „ N p0,Ωq.

We would also like to discuss the choice of γℓ. According to the control covariate literature, with a222

fixed function a, the optimal choice of γℓ that minimizes variance is given by:223

γℓ “
Cov

”

wj1
␣

ℓj “ ℓ
(

, wjapXj , Zj ,Wjq

ı

Var
“

wjapXj , Zj ,Wjq
‰ . (7)

This coefficient is also the same as that obtained from a linear regression [14]. Thus, when implement-224

ing the algorithm, we take γℓ to be the regression coefficient obtained by running a weighted linear225

regression of the indicator function t1
␣

ℓj “ ℓ
(

unj“1 on the control variate
␣

apXj , Zj , Vjq
(n

j“1
with226

weights
␣

wj

(n

j“1
.227

We have outlined the new csPCR test, including this power enhancement step, in Algorithm 2.228

3.3 Theoretical Properties229

In this section, we establish that the proposed tests control the type-I error asymptotically. Further-230

more, we show that the power enhancement step effectively reduces the variance of the statistics Wℓ,231

which can typically improve the power.232

Assumption 1 (Fourth moment). The fourth moment of the density ratio epX,Z, V q is finite:233

ES
“

epX,Z, V q4
‰

ă 8. Furthermore, the fourth moment of product of the density ratio and the234

control variate function is also finite: ES
“

epX,Z, V q4apX,Z, V q4
‰

ă 8.235

Theorem 1 (Valid Tests). Under Assumption 1, assume that the null hypothesis of X KK Y | Z holds236

in the target population, then237

lim
nÑ8

P rAlgorithm 1 rejectss “ α. (8)

238

lim
nÑ8

P rAlgorithm 2 rejectss “ α. (9)
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Theorem 2 (Variance Reduction). Let Wl be the statistics computed in line 10 in Algorithm 1, and239

ĂWl be the statistics computed in line 7 in Algorithm 2. Under Assumption 1,240

lim sup
nÑ8

ˆ

Var
”

ĂWl

ı

{Var rWls

˙

ď 1. (10)

4 Numerical Simulation241

In this section, we present simulation studies to assess the performance of our proposed csPCR242

method and its power enhancement version denoted csPCR(pe), and compare them to a benchmark243

method. The benchmark method adopted is an importance-resampling based method [17], denoted as244

the IS method. For fair comparison, we used the same PCR statistic as our method for the testing245

with IS. We use a significance level of α “ 0.05.246

4.1 Simulation Setup247

We consider a semi-supervised setting where we have a large volume of unlabeled data of pXj , Zj , Vjq248

from both the source and target populations. In addition, we have a small number of labeled data of249

pYj , Xj , Zj , Vjq from the source population.250

We separate confounding variables Z into two sets: Z “ pZr, Znullq, where Zr is the relevant set and251

Znull is the null set. The relevant confounding variables Zr are generated as i.i.d. multivariate normal,252

with mean 0 for the source population and 1 for the target population to simulate the distributional253

shift in Z, where Zr P Rp and we set p “ 5. Null confounding variables Znull are generated254

independently with no correlation to other variables, modeled as N p0.1, Iqq with q “ 50 for sparse255

high-dimensional settings in both populations.256

The treatment variable X and the surrogate variable V are conditionally generated based on Z.257

Specifically, X is modeled identically across both the source and target populations as N puJZr, 1q,258

where u is a predefined parameter vector that remains the same for both populations.259

For V , it is modeled differently in the two populations, represented as N pvJ
S{T Zr ` p1´ θqaS{T X `260

θaS{T sinpXq, 1q. Here, vS and vT are predefined parameter vectors for the source and target261

populations, respectively. The parameter a varies between populations (aS for the source and aT for262

the target), controlling the effect of X on V , modeling the indirect effect. The factor θ modulates the263

nonlinear component of this relationship.264

The outcome variable Y is generated for both populations using the same conditional model over265

pX,Z, V q:266

Y |pX,Z, V qS{T „ N ppvTZrq
2 ` βV ` γX, 1q,

where β and γ control the effects of V (indirect) and X (direct) on Y , respectively.267

We generate 1000 unlabeled source and target samples to estimate the density ratio and generate 500268

labeled source samples for testing. Moreover, in the simulation, we assume we have full knowledge269

of the joint distribution of pX,Zq and estimate V |X,Z using an Elastic net regression model with270

5-fold cross-validation [20]. For the test statistic T in the algorithm, we choose a simple function271

T pX̃, Z, V, Y q “ Y ¨ X̃ . For each parameter iteration, we conduct 1000 Monte Carlo simulations272

to estimate the Type-I error and power. We estimate the covariance matrix of the sequence of Wi’s273

using the Monte Carlo method and use the momentchi2 package [1] for calculating the p-value.274

Additionally, we empirically choose the best hyperparameter L “ 3 for all our experiments through275

additional experiments shown in Appendix B.2.276

4.2 Simulation Results277

In Figure 3, we choose aS “ 1 and aT “ 0 to compare the Type-I error control of our methods278

with the benchmark. The left panel shows the Type-I error rate as the sample size of the data used279

to estimate the density ratio, ne, varies from small to large. There appears to be a slight Type-I280

error inflation for all three methods when the sample size ne is small, but the Type-I error quickly281

converges to the ideal level of 0.05 as ne grows larger. Moreover, our methods show more stable282

Type-I error control than the benchmark method when the estimation sample size is low. The right283
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panel shows that when the density ratio is well approximated, all three methods attain good Type-I284

error control regardless of the change in β, i.e., the strength of the indirect effect, but the csPCR and285

csPCR(pe) methods have more stable control.286

Figure 3: Comparison of Type-I error control across three methods.

To evaluate the statistical power of287

our csPCR test, we choose aS “ 0288

and aT “ 2, so that the null hypoth-289

esis holds true in the target popula-290

tion but not in the source population.291

As Figure 4a shows, both the csPCR292

and the csPCR(pe) methods have uni-293

formly higher power than the bench-294

mark method as we vary the indirect295

effect size β. For example, when β “ 1.4, the benchmark IS method has a power of 0.33, the csPCR296

method has a power of 0.44, and the csPCR(pe) method can attain a power of 0.8.297

When we fix the indirect effect β “ 2 and vary the direct effect of X (γ), as shown in Figure 4b, our298

methods still exceed the benchmark, and the power enhancement significantly improves the original299

version of the test. For example, when γ “ 1, the benchmark IS method has a power of 0.4, the300

csPCR method has a power of 0.62, and the csPCR(pe) method can attain a power of 0.86.301

(a) Increasing indirect effect β (b) Increasing direct effect γ (c) Varying nonlinear effect size θ

Figure 4: Comparison of statistical power of the three methods as the effect size varies: (a) indirect effect β, (b)
direct effect γ, and (c) nonlinear effect size θ.

We also test how adding a nonlinear component to the indirect effect affects the power when we302

assume a linear model of V | Z,X in the estimation stage. This can be helpful in assessing the303

performance of our methods under model misspecification. As Figure 4c indicates, as the nonlinear304

effect increases, the power of all three methods decreases, though our methods still significantly305

exceed the benchmark. Interestingly, we observe that as θ Ñ 1, i.e., there is a full nonlinear306

component without a linear component, the advantage of the power-enhanced version over the307

original csPCR test disappears. This occurs because when the V | X,Z model is misspecified and308

the density ratio estimation is inaccurate, the variance reduction in the control variates step reduces309

variance in the “wrong" direction, and thus does not improve the power of the original method.310

4.3 Effective Sample Size311

We notice a series of work in measuring the effective sample size (ESS) of the density ratio reweighting312

approaches [9]. Among them, one of the most common measure is neff “ p
řn

i“1 wiq
2{
řn

i“1 w
2
i .313

When the covariate shift between the source and target becomes stronger, the variance of the314

importance weight wi tends to be large and neff will become smaller, which could result in lower315

power. We carry out simulation studies on the relationship between the power of csPCR and the ESS316

determined by the degree of covariate shift as discussed in Appendix B.3.317

5 Real-World Application318

The COVID-19 pandemic has presented unprecedented challenges to global health systems, with319

high variability in outcomes based on demographic and clinical characteristics. Early identification320

of patients at high risk for severe outcomes, such as mortality within 90 days of hospital admission,321

is crucial for timely and effective treatment interventions. This study leverages extensive hospital322

data to develop models predicting 90-day mortality following hospital admission due to COVID-19.323

9



For this study, we extract patient data spanning from January 2020 to December 2023 from Duke324

University Health System (DUHS), focusing on individuals admitted with COVID-19. This period325

encompasses multiple waves of the pandemic, influenced by various circulating variants.326

Our dataset comprises patient records for a total of N “ 3, 057 individuals admitted with COVID-19.327

The outcome Y is defined as mortality within 90 days since hospital admission due to COVID-19.328

The treatment variable X is defined as binary, where 1 indicates the administration of any COVID-19329

specific medication (explained in Appendix C) and 0 otherwise. The covariates Z include comorbidity330

indices (renal disease, diabetes without complication, diabetes with complication, local tumor, and331

metastatic tumor), age, gender, and race, which are critical for adjusting the risk models due to332

their known influence on COVID-19 outcomes. The length of hospitalization, denoted as V , is333

standardized to follow a standard normal distribution (with a mean of zero and a standard deviation334

of one), facilitating comparisons and integration into predictive models regardless of original scale or335

distribution.336

The dataset is segmented into two distinct groups based on the date of hospital admission to align337

with pivotal changes in virus strain predominance and public health guidelines. The source data338

comprises COVID-19 admissions prior to November 30, 2021, with a sample size of N1 “ 1, 131339

patients. The target data includes admissions from November 30, 2021, through December 2023,340

totaling N2 “ 792 patients. This temporal division allows for the analysis of trends and outcomes341

associated with the evolving pandemic landscape. Prevalence of the 90-day mortality outcome within342

the source data is 14.3%, reflecting the impact of earlier virus strains and treatment protocols, while343

in the target data, the prevalence is substantially lower at 3.7%, possibly indicating the effect of344

improved treatments and vaccines, as well as the influence of different virus variants over time.345

Table 1: p-values of different methods on COVID-19 dataset
Method csPCR csPCR(pe) IS
p-value 0.025 0.032 0.663

For the analysis, we divide 50% of the source data, comprising 565 individuals, alongside the entirety346

of the target data, to estimate the density ratio. Density ratios of X,Z are estimated using probabilistic347

classification method [12], while the density ratio of V |X,Z is determined through Elastic Net348

regression. For all three methods, the test statistic T is chosen to be T pX̃, Z, V, Y q “ Y ¨ X̃ . As349

indicated in Table 1, both csPCR and csPCR(pe) give statistically significant results, whereas the350

IS method does not. The statistically significant results are consistent with biomedical literature.351

For example, through systematic review and meta-analysis, [21] reported that Bamlanivimab is352

effective in reducing the mortality rates of COVID patients. In a cohort study, [16] also found similar353

effectiveness for Nirmatrelvir–ritonavir.354

These results align with our findings from the simulation study and demonstrate that our method has355

increased power compared with the benchmark IS method.356

10



References357

[1] Dean A Bodenham and Niall M Adams. A comparison of efficient approximations for a358

weighted sum of chi-squared random variables. Statistics and Computing, 26(4):917–928, 2016.359

[2] Emmanuel Candes, Yingying Fan, Lucas Janson, and Jinchi Lv. Panning for gold:‘model-360

x’knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical361

Society Series B: Statistical Methodology, 80(3):551–577, 2018.362

[3] Emerson Y Chen, Vikram Raghunathan, and Vinay Prasad. An overview of cancer drugs363

approved by the us food and drug administration based on the surrogate end point of response364

rate. JAMA Internal Medicine, 179(7):915–921, 2019.365

[4] Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and Alex Smola.366

Correcting sample selection bias by unlabeled data. Advances in neural information processing367

systems, 19, 2006.368

[5] Adel Javanmard and Mohammad Mehrabi. Pearson chi-squared conditional randomization test.369

arXiv preprint arXiv:2111.00027, 2021.370

[6] Shuangning Li and Molei Liu. Maxway crt: improving the robustness of the model-x inference.371

Journal of the Royal Statistical Society Series B: Statistical Methodology, 85(5):1441–1470,372

2023.373

[7] Molei Liu, Eugene Katsevich, Lucas Janson, and Aaditya Ramdas. Fast and powerful conditional374

randomization testing via distillation. Biometrika, 109(2):277–293, 2022.375

[8] Molei Liu, Yi Zhang, Katherine P Liao, and Tianxi Cai. Augmented transfer regression learning376

with semi-non-parametric nuisance models. Journal of Machine Learning Research, 24(293):377

1–50, 2023.378

[9] Luca Martino, Víctor Elvira, and Francisco Louzada. Effective sample size for importance379

sampling based on discrepancy measures. Signal Processing, 131:386–401, 2017.380

[10] Binh T Nguyen, Bertrand Thirion, and Sylvain Arlot. A conditional randomization test for381

sparse logistic regression in high-dimension. Advances in Neural Information Processing382

Systems, 35:13691–13703, 2022.383

[11] Ziang Niu, Abhinav Chakraborty, Oliver Dukes, and Eugene Katsevich. Reconciling384

model-x and doubly robust approaches to conditional independence testing. arXiv preprint385

arXiv:2211.14698, 2022.386

[12] Jing Qin. Inferences for case-control and semiparametric two-sample density ratio models.387

Biometrika, 85(3):619–630, 1998.388

[13] James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coefficients389

when some regressors are not always observed. Journal of the American statistical Association,390

89(427):846–866, 1994.391

[14] Sheldon M Ross. Simulation. academic press, 2022.392

[15] Donald B Rubin. The calculation of posterior distributions by data augmentation: Comment: A393

noniterative sampling/importance resampling alternative to the data augmentation algorithm for394

creating a few imputations when fractions of missing information are modest: The sir algorithm.395

Journal of the American Statistical Association, 82(398):543–546, 1987.396

[16] Kevin L Schwartz, Jun Wang, Mina Tadrous, Bradley J Langford, Nick Daneman, Valerie397

Leung, Tara Gomes, Lindsay Friedman, Peter Daley, and Kevin A Brown. Population-based398

evaluation of the effectiveness of nirmatrelvir–ritonavir for reducing hospital admissions and399

mortality from covid-19. Cmaj, 195(6):E220–E226, 2023.400

[17] Nikolaj Thams, Sorawit Saengkyongam, Niklas Pfister, and Jonas Peters. Statistical testing under401

distributional shifts. Journal of the Royal Statistical Society Series B: Statistical Methodology,402

85(3):597–663, 2023.403

11



[18] Kaizheng Wang. Pseudo-labeling for kernel ridge regression under covariate shift. arXiv404

preprint arXiv:2302.10160, 2023.405

[19] Wenshuo Wang and Lucas Janson. A high-dimensional power analysis of the conditional406

randomization test and knockoffs. Biometrika, 109(3):631–645, 2022.407

[20] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of408

the Royal Statistical Society Series B: Statistical Methodology, 67(2):301–320, 2005.409

[21] Ling Zuo, Guangyu Ao, Yushu Wang, Ming Gao, and Xin Qi. Bamlanivimab improves410

hospitalization and mortality rates in patients with covid-19: a systematic review and meta-411

analysis. The Journal of infection, 84(2):248, 2022.412

12



A Proofs413

A.1 Preliminaries414

Throughout this section, we write Spxj , zj , vjq “ sj as the label assigned to sample j in Algorithms415

1 and 2, instead of using ℓj . This notation helps avoid confusion between different label choices.416

Proposition 1. Assume that the conditional independence X KK Y | Z holds on the target population417

T . Let epxj , zj , vjq denote the density ratio. For any integer ℓ P r1, Ls, the following holds:418

ESrepxj , zj , vjq ¨ 1tST pxj , zj , vjq “ ℓus “
1

L
.

Proof of Proposition 1. For simplicity, denote wj “ epXj , Zj , Vjq and sj “ ST pXj , Zj , Vjq.419

ESrepXj , Zj , Vjq ¨ 1tST pXj , Zj , Vjq “ ℓus

“ ES

«

E
“

wj ¨ Ppsj “ ℓ | Yj , Zj , Xj , Vjq
‰

ˇ

ˇ

ˇ

ˇ

Zj , Xj , Vj

ff

“ ES

«

wj ¨ E
“

Ppsj “ ℓ | Yj , Zj , Xj , Vjq
‰

ˇ

ˇ

ˇ

ˇ

Zj , Xj , Vj

ff

“

ż

pZj ,Xj ,Vjq

wj ¨ pSpZj , Xj , Vjq ¨ E
“

Ppsj “ ℓ | Yj , Zj , Xj , Vjq
‰

dZj dXj dVj

“

ż

pZj ,Xj ,Vjq

pT pZj , Xj , Vjq ¨ E
“

Ppsj “ ℓ | Yj , Zj , Xj , Vjq
‰

dZj dXj dVj

“ ET

«

E
“

Ppsj “ ℓ | Yj , Zj , Xj , Vjq
‰

ˇ

ˇ

ˇ

ˇ

Zj , Xj , Vj

ff

“ ET
“

Ppsj “ ℓ | Yj , Zj , Xj , Vjq
‰

“
1

L
.

(11)

The last equation follows from results in the non-covariate-shift scenario, e.g., from [5].420

A.2 Proof of Theorem 1421

A.2.1 Results for Algorithm 1422

Let pWℓqℓ“1,...,L be the sum of weights and Ω̂n be the sample covariance matrix in Algorithm 1. By423

Proposition 1, we have that424

EpWℓq “ n ¨ Erwj ¨ 1tℓj “ ℓus “
n

L
.

Note that the Wℓ’s are sums of i.i.d. random variables, and thus by the Central Limit Theorem, as425

n Ñ 8,426

An “

c

L

n

ˆ

W1 ´
n

L
,W2 ´

n

L
, . . . ,WL ´

n

L

˙

d
Ñ NLp0,Ωq,

where for any ℓ, ℓ˚ P t1, . . . , Lu427

Ωℓ,ℓ˚ “ LCovpw11 ts1 “ ℓu , w11
␣

s1 “ ℓ˚
(

q “ LES

”

w2
1 ¨ 1ts1 “ ℓu1ts1 “ ℓ˚u

ı

´
1

L

“ LES

”

w2
1 ¨ 1ts1 “ ℓu

ı

1
␣

ℓ “ ℓ˚
(

´
1

L
.

Therefore,428

Un,L “ AT
nAn

d
ÝÑ χ2

Ω.
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Next, we will focus on the variance estimation part. We will show that Ω̂n
p

Ñ Ω as n Ñ 8. For any429

ℓ, ℓ˚ P t1, . . . , Lu,430

Ω̂n,ℓ,ℓ˚ “ 1
␣

ℓ “ ℓ˚
( L

n
Dl ´

1

L
“ 1

␣

ℓ “ ℓ˚
( L

n

n
ÿ

j“1

w2
j ¨ 1tℓj “ ℓu ´

1

L

p
Ñ 1

␣

ℓ “ ℓ˚
(

LES

”

w2
1 ¨ 1ts1 “ ℓu

ı

´
1

L
“ Ωℓ,ℓ˚ .

Up til now, we have that431

Un,L “ AT
nAn

d
ÝÑ χ2

Ω, and θΩ̂n,α

p
Ñ θΩ,α.

Therefore,432

PpAlgorithm 1 rejectsq “ PpUn,L ě θΩ̂n,α
q Ñ Ppχ2

Ω ě θΩ,αq “ α.

A.2.2 Results for Algorithm 2433

Let pĂWℓqℓ“1,...,L and rΩn be the sum of weights and the sample covariance matrix in Algorithm 2.434

Let γ̂ℓ be the estimated coefficient in Algorithm 2.435

Recall that in (7), we have identified the optimal choice of γℓ. We will start by working with this436

optimal choice and show that the γ̂ℓ is close to it. Define437

|Wℓ “

n
ÿ

j“1

wj

`

1tℓj “ ℓu ´ γℓapXj , Zj , Vjq
˘

` nγℓET rapX,Z, V qs,

Kℓ,jpγq “ wj

`

1tℓj “ ℓu ´ γapXj , Zj , Vjq
˘

` γET rapX,Z, V qs, and

Hj “ wjapXj , Zj , Vjq ´ ET
“

apX,Z, V q
‰

.

Therefore, we have |Wℓ “
ř

j Kℓ,jpγℓq and ĂWℓ “
ř

j Kℓ,jpγ̂ℓq “ |Wℓ ´ pγ̂ℓ ´ γℓq
ř

j Hj .438

Note that by (6), EpHjq “ 0. By Proposition 1 and (6), we have Ep|Wℓq “ n
L . Furthermore, because439

|Wℓ is a sum of i.i.d. random variables, we have that as n Ñ 8,440

qAn “

c

L

n

ˆ

|W1 ´
n

L
,|W2 ´

n

L
, . . . ,|WL ´

n

L

˙

d
Ñ NLp0, qΩq, (12)

where for each ℓ, ℓ˚ P t1, . . . , Lu,441

qΩℓ,ℓ˚ “ LCov
␣

Kℓ,jpγℓq,Kℓ˚,jpγℓ˚ q
(

.

Therefore,442

qUn,L “ qAT
n
qAn

d
ÝÑ χ2

qΩ
.

Next, we will show that the actual statistic rUn,L is close to qUn,L, and that the estimated variance443

matrix is also close to qΩ. We start with noting that the estimator γ̂ℓ from linear regression is close to444

the optimal choice γℓ defined in (7): by the Central Limit Theorem, γ̂ℓ “ γℓ ` Opp1{
?
nq. And thus445

ĂWℓ “

n
ÿ

j“1

wj

`

1tℓj “ ℓu ´ γ̂ℓapXj , Zj , Vjq
˘

` nγ̂ℓET rapX,Z, V qs

“

n
ÿ

j“1

wj1tℓj “ ℓu ´ γ̂ℓ

¨

˝

n
ÿ

j“1

wjapXj , Zj , Vjq ´ nET rapX,Z, V qs

˛

‚

“

n
ÿ

j“1

wj1tℓj “ ℓu ´ γℓ

¨

˝

n
ÿ

j“1

wjapXj , Zj , Vjq ´ nET rapX,Z, V qs

˛

‚` Opp1q

“ |Wℓ ` Opp1q.
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The second-to-last line is because γ̂ℓ “ γℓ ` Opp1{
?
nq and the terms inside the parenthesis,

ř

j Hj ,446

is a sum of n independent mean-zero random variables.447

Therefore, together with (12), by Slusky’s Theorem, we have that448

rAn “

c

L

n

ˆ

ĂW1 ´
n

L
,ĂW2 ´

n

L
, . . . ,ĂWL ´

n

L

˙

d
Ñ NLp0, qΩq,

and thus,449

rUn,L “ rAT
n
rAn

d
ÝÑ χ2

qΩ
.

We will work on sample covariance matrix now. Recall that the sample covariance matrix rΩn “450
L
n pW ´ 1

L ¨ 1LˆnqpW ´ 1
L ¨ 1LˆnqT, where Wℓ,j “ wj ¨ r1tℓj “ ℓu ´ γ̂ℓapXj , Zj , Vjqs `451

γ̂ℓET
“

apX,Z, V q
‰

“ Kℓ,jpγ̂ℓq. Let’s start with WWT. For any ℓ, ℓ˚ P t1, . . . , Lu,452

pWWTqℓ,ℓ˚ “
ÿ

j

Kℓ,jpγ̂ℓqKℓ˚,jpγ̂ℓ˚ q

“
ÿ

j

`

Kℓ,jpγℓq ´ pγ̂ℓ ´ γℓqHj

˘ `

Kℓ˚,jpγℓq ´ pγ̂ℓ˚ ´ γℓ˚ qHj

˘

“
ÿ

j

Kℓ,jpγℓqKℓ˚,jpγℓ˚ q ´ pγ̂ℓ ´ γℓq
ÿ

j

HjKℓ˚,jpγℓ˚ q ´ pγ̂ℓ˚ ´ γℓ˚ q
ÿ

j

HjKℓ,jpγℓq

` pγ̂ℓ ´ γℓqpγ̂ℓ˚ ´ γℓ˚ q
ÿ

j

H2
j

“
ÿ

j

Kℓ,jpγℓqKℓ˚,jpγℓ˚ q ` Opp
?
nq

Therefore, by the law of large numbers,453

L

n
pWWTqℓ,ℓ˚ “

L

n

ÿ

j

Kℓ,jpγℓqKℓ˚,jpγℓ˚ q`Opp1{
?
nq “ LE

“

Kℓ,1pγℓqKℓ˚,1pγℓ˚ q
‰

`Opp1{
?
nq.

Similarly, for W1T, we have that for any ℓ, ℓ˚ P t1, . . . , Lu,454

pW1Tqℓ,ℓ˚ “
ÿ

j

Kℓ,jpγ̂ℓq “
ÿ

j

Kℓ,jpγℓq ´ pγ̂ℓ ´ γℓqHj “
ÿ

j

Kℓ,jpγℓq ` Opp
?
nq.

Therefore, again by the law of large numbers,455

L

N
pW1Tqℓ,ℓ˚ “

L

N

ÿ

j

Kℓ,jpγℓq ` Opp1{
?
nq “ LE

“

Kℓ,jpγℓq
‰

` Opp1{
?
nq “ 1 ` Opp1{

?
nq.

Combining the above results gives,456

rΩn,ℓ,ℓ˚ “
L

n

„

pW ´
1

L
¨ 1LˆnqpW ´

1

L
¨ 1LˆnqT

ȷ

ℓ,ℓ˚

“ LE
“

Kℓ,1pγℓqKℓ˚,1pγℓ˚ q
‰

´ LE
“

Kℓ,jpγℓq
‰

E
“

Kℓ˚,jpγℓ˚ q
‰

` Opp1{
?
nq

“ LCov
“

Kℓ,1pγℓq,Kℓ˚,1pγℓ˚ q
‰

` Opp1{
?
nq

“ qΩℓ,ℓ˚ ` Opp1{
?
nq.

Therefore, rΩn
p

Ñ qΩ.457

To summarize, we have that458

rUn,L “ rAT
n
rAn

d
ÝÑ χ2

qΩ
, and θ

rΩn,α

p
Ñ θ

qΩ,α.

Therefore,459

PpAlgorithm 2 rejectsq “ PprUn,L ě θ
rΩn,α

q Ñ Ppχ2
qΩ

ě θ
qΩ,αq “ α.
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A.3 Proof of Theorem 2460

Similar to the proof of Theorem 1, we define461

|Wℓ “

n
ÿ

j“1

wj

`

1tℓj “ ℓu ´ γℓapXj , Zj , Vjq
˘

` nγℓET rapX,Z, V qs,

Kℓ,jpγq “ wj

`

1tℓj “ ℓu ´ γapXj , Zj , Vjq
˘

` γET rapX,Z, V qs, and

Hj “ wjapXj , Zj , Vjq ´ ET
“

apX,Z, V q
‰

.

Therefore, we have |Wℓ “
ř

j Kℓ,jpγℓq and ĂWℓ “
ř

j Kℓ,jpγ̂ℓq “ |Wℓ ´ pγ̂ℓ ´ γℓq
ř

j Hj .462

We know from the literature that γℓ is the optimal choice of γ and thus Var
”

|Wℓ

ı

ď Var rWℓs. We463

will then move on to show that Var
”

ĂWℓ

ı

is close to Var
”

|Wℓ

ı

and thus asymptotically no greater464

than Var rWℓs.465

To this end, note that466

Var
”

ĂWℓ

ı

“ Var
”

|Wℓ ´ pγ̂ℓ ´ γℓq
ÿ

j

Hj

ı

“ Var
”

|Wℓ

ı

` 2Cov
”

|Wℓ, pγ̂ℓ ´ γℓq
ÿ

j

Hj

ı

` Var
“

pγ̂ℓ ´ γℓq
ÿ

j

Hj

‰

ď Var
”

|Wℓ

ı

` 2

c

Var
”

|Wℓ

ı

c

E
”

`

pγ̂ℓ ´ γℓq
ÿ

j

Hj

˘2
ı

` E
”

`

pγ̂ℓ ´ γℓq
ÿ

j

Hj

˘2
ı

.

But we also know from the proof of Theorem 1 that γ̂ℓ ´ γℓ
p

Ñ 0. Then, because of the bounded467

fourth moment assumption, by the Dominated Convergence Theorem, we have that468

1

n
E
”

`

pγ̂ℓ ´ γℓq
ÿ

j

Hj

˘2
ı

Ñ 0.

Therefore,469

lim sup
nÑ8

1

n

ˆ

Var
”

ĂWℓ

ı

´ Var
”

|Wℓ

ı

˙

ď 0.

Finally, we note that Var rWls “ Ωpnq, and hence470

lim sup
nÑ8

pVar
”

ĂWl

ı

{Var rWlsq ď 1.

B Additional Simulation Results471

B.1 Running time472

All experiments run on a Macbook Pro 2022 M2.473

Artificial dataset: Regarding running time for one iteration including density ratio estimation and474

X|Z model fitting (on average), csPCR took 5.12s, csPCR(pe) took 14.95s, IS method took 1.5s,475

PCR took 1.25s.476

Real-world application: Regarding running time for one test procedure, csPCR took 3.41s,477

csPCR(pe) took 11.32s, IS method took 0.81s.478

B.2 Finding optimal hyperparameter L479

We find the optimal L value for the testing algorithm by performing numerical simulations, evaluating480

its Type-I error control and power. We adopt the same numerical simulation setup as in the main text481

Section 4. We first choose aS “ 1 and aT “ 0 and also fix β “ 1 to compare the Type-I error rate482

for different choice of L of the csPCR method. We perform experiments with both true density ratio483

and estimated density ratio. The results are shown in Table 2.484
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Table 2: Type-I Error Rates at Different Levels of L of csPCR Method
L 2 3 5 10 15 20

True Density Ratio 0.05125 0.05000 0.04575 0.03675 0.02825 0.02425
Estimated Density Ratio 0.04620 0.05025 0.04425 0.03905 0.02725 0.02175

Figure 5: Comparison of statistical power of the three methods as the the parameter L varies.

We also test the power of the csPCR and csPCR(pe) method with different choices of L value. We485

choose aS “ 0 and aT “ 2 and fix β “ 2.486

As Table 2 and Figure 5 shows, as L value increases, the csPCR method become more conservative487

with more tight Type-I error control and lower power. We can observe that when we set L “ 3, the488

csPCR method can achieve most stable Type-I error rate control and also highest power empirically.489

Therefore, in our simulation experiments and real world data experiments, we fix L “ 3.490

B.3 Role of effective sample size491

We notice a series of work in measuring the effective sample size (ESS) of importance weight or492

sampling in the statistical computation literature, e.g., [Martino, et al, 2017] and others. Among them,493

one of the most common ways is to use the ratio neff “
p
ř

i“1 wiq
2

ř

i“1 w2
i

to approximate the ESS. When494

the covariate shift between the source and target becomes stronger, the variance of the importance495

weight wi tends to be large and neff will become smaller, which can result in lower power. Our496

power enhancement method based on control variate could potentially alleviate this issue with497

properly specified control functions.498

499

In the simulation study, we varied only µz , the mean of the confounding variables ZT . A higher µz500

signifies a stronger covariate shift between the source and target populations. From Figure 6 , it is501

evident that as µz increases, the Effective Sample Size (ESS) required significantly decreases, while502

the power of the csPCR method concurrently declines. These results suggest that increasing covariate503

shift leads to a reduction in ESS and a corresponding decrease in statistical power.504

B.4 Instability of the Importance Resampling (IS) method505

In this section, we will use numerical simulations to ilustrate that the performance if the IS method506

is subject to the resample size heavily. IS method performs resampling without replacement and507

typically has to sample a much smaller subset (theoretically, in the order of op
?
nq) of the source data508

to approximate the target. Consequently, the power of IS is substantially lower than our approach. If509

the resample size of IS is overly increased, it may fail to control the Type-I error due to excessive510

similarity between the resampled data and the original source data.511

512

To further illustrate, we conducted additional experiments with varied resample sizes in IS to assess513

its effect on Type-I error control and power. From Figure7. one can observe that IS starts to show514

high Type-I error inflation when its resample size increases to 400 but still shows much lower power515
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Figure 6: The left panel shows the comparison of statistical power of csPCR and csPCR(pe) method
as the covariate shift gets stronger. The right panel illustrates how the Effective Sample Size(ESS)
changes as covariate shift scale becomes larger.

(by around 0.4) than our method with this resample size (or even larger ones). This indicates that our516

method achieves better statistical efficiency than IS (DRPL).

Figure 7: Detailed comparison of Type-I error rate and power of csPCR and the IS method. With
the source sample size ns “ 1000, we gradually increase the resample size for the IS method from
100 to 1000. The two horizontal lines represent the Type-I error rate and power, respectively, of the
csPCR and csPCR(pe) methods (they do not change with the tuning of IS).

517

B.5 Choice of test statistic518

In this section we explore the effect of test statistics on the algorithm performance. The main519

principle of choosing the test statistic is to characterize the conditional dependency between X and520

Y under the alternative hypothesis. The test statistic Y X may not be the optimal choice and that521

using pY ´ ÊrY | ZsqpX ´ ErX | Zsq could remove the confounding effect of Z.522

523

Inspired by this, we used Y pX ´ ErX|Zsq as the test statistic to conduct additional simulations. As524

illustrated in Figure8, we find that Y pX ´ ErX|Zsq and Y X produce nearly the same power for525

both csPCR and csPCR(pe) with the change of effect size.526

C Real-World Application527

The specific medication indicated by the treatment variable X includes Ritonavir, Bamlanivimab,528

Casirivimab-Imdevimab, Remdesivir, Ritonavir Nirmatrelvir, Sotrovimab, Bamlanivimab Etesevimab.529

For simplicity, X “ 1 indicates any of these specific medication and X “ 0 otherwise.530
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(a) csPCR (b) csPCR(pe)

Figure 8: Power against effect size for csPCR and csPCR(pe) with two different test statistics XY
and pX ´ErX | ZsqY . We observe that the power is very similar with the two different test statistics.

C.1 Different outcome531

In our real data experiment part, the outcome variable Y is defined as mortality within 90 days since532

hospital admission due to COVID-19. In addition, we also analyzed mortality within 30 days since533

hospital admission. As shown in Table 3, both csPCR and csPCR(pe) methods give significant results,534

aligning with biomedical literature.

Table 3: p-values of different methods on COVID-19 dataset (mortality 30
Method csPCR csPCR(pe)
p-value 0.029 0.013

535
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NeurIPS Paper Checklist536

1. Claims537

Question: Do the main claims made in the abstract and introduction accurately reflect the538

paper’s contributions and scope?539

Answer: [Yes]540

Justification: In the abstract and introduction, we mentioned that we propose a novel541

Covariate Shift Corrected Pearson Chi-squared Conditional Randomization (csPCR) test542

and discussed our methodological, theoretical, and empirical contributions.543

Guidelines:544

• The answer NA means that the abstract and introduction do not include the claims545

made in the paper.546

• The abstract and/or introduction should clearly state the claims made, including the547

contributions made in the paper and important assumptions and limitations. A No or548

NA answer to this question will not be perceived well by the reviewers.549

• The claims made should match theoretical and experimental results, and reflect how550

much the results can be expected to generalize to other settings.551

• It is fine to include aspirational goals as motivation as long as it is clear that these goals552

are not attained by the paper.553

2. Limitations554

Question: Does the paper discuss the limitations of the work performed by the authors?555

Answer: [Yes]556

Justification: We examine the performance of the algorithms under model misspecification557

in Section 4.558

Guidelines:559

• The answer NA means that the paper has no limitation while the answer No means that560

the paper has limitations, but those are not discussed in the paper.561

• The authors are encouraged to create a separate "Limitations" section in their paper.562

• The paper should point out any strong assumptions and how robust the results are to563

violations of these assumptions (e.g., independence assumptions, noiseless settings,564

model well-specification, asymptotic approximations only holding locally). The authors565

should reflect on how these assumptions might be violated in practice and what the566

implications would be.567

• The authors should reflect on the scope of the claims made, e.g., if the approach was568

only tested on a few datasets or with a few runs. In general, empirical results often569

depend on implicit assumptions, which should be articulated.570

• The authors should reflect on the factors that influence the performance of the approach.571

For example, a facial recognition algorithm may perform poorly when image resolution572

is low or images are taken in low lighting. Or a speech-to-text system might not be573

used reliably to provide closed captions for online lectures because it fails to handle574

technical jargon.575

• The authors should discuss the computational efficiency of the proposed algorithms576

and how they scale with dataset size.577

• If applicable, the authors should discuss possible limitations of their approach to578

address problems of privacy and fairness.579

• While the authors might fear that complete honesty about limitations might be used by580

reviewers as grounds for rejection, a worse outcome might be that reviewers discover581

limitations that aren’t acknowledged in the paper. The authors should use their best582

judgment and recognize that individual actions in favor of transparency play an impor-583

tant role in developing norms that preserve the integrity of the community. Reviewers584

will be specifically instructed to not penalize honesty concerning limitations.585

3. Theory Assumptions and Proofs586

Question: For each theoretical result, does the paper provide the full set of assumptions and587

a complete (and correct) proof?588
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Answer: [Yes]589

Justification: The assumptions are listed in Section 3.3 and the proofs are provided in590

Appendix appendix:proof.591

Guidelines:592

• The answer NA means that the paper does not include theoretical results.593

• All the theorems, formulas, and proofs in the paper should be numbered and cross-594

referenced.595

• All assumptions should be clearly stated or referenced in the statement of any theorems.596

• The proofs can either appear in the main paper or the supplemental material, but if597

they appear in the supplemental material, the authors are encouraged to provide a short598

proof sketch to provide intuition.599

• Inversely, any informal proof provided in the core of the paper should be complemented600

by formal proofs provided in appendix or supplemental material.601

• Theorems and Lemmas that the proof relies upon should be properly referenced.602

4. Experimental Result Reproducibility603

Question: Does the paper fully disclose all the information needed to reproduce the main ex-604

perimental results of the paper to the extent that it affects the main claims and/or conclusions605

of the paper (regardless of whether the code and data are provided or not)?606

Answer: [Yes]607

Justification: Details of the simulation studies and real-data application are included in608

Sections 4, 5 and Appendix B.2.609

Guidelines:610

• The answer NA means that the paper does not include experiments.611

• If the paper includes experiments, a No answer to this question will not be perceived612

well by the reviewers: Making the paper reproducible is important, regardless of613

whether the code and data are provided or not.614

• If the contribution is a dataset and/or model, the authors should describe the steps taken615

to make their results reproducible or verifiable.616

• Depending on the contribution, reproducibility can be accomplished in various ways.617

For example, if the contribution is a novel architecture, describing the architecture fully618

might suffice, or if the contribution is a specific model and empirical evaluation, it may619

be necessary to either make it possible for others to replicate the model with the same620

dataset, or provide access to the model. In general. releasing code and data is often621

one good way to accomplish this, but reproducibility can also be provided via detailed622

instructions for how to replicate the results, access to a hosted model (e.g., in the case623

of a large language model), releasing of a model checkpoint, or other means that are624

appropriate to the research performed.625

• While NeurIPS does not require releasing code, the conference does require all submis-626

sions to provide some reasonable avenue for reproducibility, which may depend on the627

nature of the contribution. For example628

(a) If the contribution is primarily a new algorithm, the paper should make it clear how629

to reproduce that algorithm.630

(b) If the contribution is primarily a new model architecture, the paper should describe631

the architecture clearly and fully.632

(c) If the contribution is a new model (e.g., a large language model), then there should633

either be a way to access this model for reproducing the results or a way to reproduce634

the model (e.g., with an open-source dataset or instructions for how to construct635

the dataset).636

(d) We recognize that reproducibility may be tricky in some cases, in which case637

authors are welcome to describe the particular way they provide for reproducibility.638

In the case of closed-source models, it may be that access to the model is limited in639

some way (e.g., to registered users), but it should be possible for other researchers640

to have some path to reproducing or verifying the results.641

5. Open access to data and code642
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Question: Does the paper provide open access to the data and code, with sufficient instruc-643

tions to faithfully reproduce the main experimental results, as described in supplemental644

material?645

Answer: [Yes]646

Justification: Replication code for our simulation studies is submitted as supplementary647

material. It will also be made publicly available on GitHub once our paper is accepted.648

The COVID data set used for the real example in our paper is not publicly available due to649

privacy constraints.650
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• While we encourage the release of code and data, we understand that this might not be655

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not656

including code, unless this is central to the contribution (e.g., for a new open-source657

benchmark).658

• The instructions should contain the exact command and environment needed to run to659

reproduce the results. See the NeurIPS code and data submission guidelines (https:660

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.661

• The authors should provide instructions on data access and preparation, including how662

to access the raw data, preprocessed data, intermediate data, and generated data, etc.663

• The authors should provide scripts to reproduce all experimental results for the new664

proposed method and baselines. If only a subset of experiments are reproducible, they665

should state which ones are omitted from the script and why.666

• At submission time, to preserve anonymity, the authors should release anonymized667

versions (if applicable).668

• Providing as much information as possible in supplemental material (appended to the669

paper) is recommended, but including URLs to data and code is permitted.670

6. Experimental Setting/Details671

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-672

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the673

results?674

Answer: [Yes]675

Justification: Details of the simulation studies and real-data application are included in676

Sections 4, 5 and Appendix B.2.677
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• The answer NA means that the paper does not include experiments.679

• The experimental setting should be presented in the core of the paper to a level of detail680

that is necessary to appreciate the results and make sense of them.681

• The full details can be provided either with the code, in appendix, or as supplemental682

material.683

7. Experiment Statistical Significance684

Question: Does the paper report error bars suitably and correctly defined or other appropriate685

information about the statistical significance of the experiments?686

Answer: [Yes]687

Justification: Type-I errors, power, and p-values are provided in Sections 4 and 5.688

Guidelines:689

• The answer NA means that the paper does not include experiments.690

• The authors should answer "Yes" if the results are accompanied by error bars, confi-691

dence intervals, or statistical significance tests, at least for the experiments that support692

the main claims of the paper.693
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• The factors of variability that the error bars are capturing should be clearly stated (for694

example, train/test split, initialization, random drawing of some parameter, or overall695

run with given experimental conditions).696
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call to a library function, bootstrap, etc.)698

• The assumptions made should be given (e.g., Normally distributed errors).699

• It should be clear whether the error bar is the standard deviation or the standard error700

of the mean.701

• It is OK to report 1-sigma error bars, but one should state it. The authors should702

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis703

of Normality of errors is not verified.704

• For asymmetric distributions, the authors should be careful not to show in tables or705

figures symmetric error bars that would yield results that are out of range (e.g. negative706

error rates).707

• If error bars are reported in tables or plots, The authors should explain in the text how708

they were calculated and reference the corresponding figures or tables in the text.709

8. Experiments Compute Resources710

Question: For each experiment, does the paper provide sufficient information on the com-711

puter resources (type of compute workers, memory, time of execution) needed to reproduce712

the experiments?713

Answer: [Yes]714

Justification: We record relevant information in Appendix B.1.715

Guidelines:716

• The answer NA means that the paper does not include experiments.717

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,718

or cloud provider, including relevant memory and storage.719

• The paper should provide the amount of compute required for each of the individual720

experimental runs as well as estimate the total compute.721

• The paper should disclose whether the full research project required more compute722

than the experiments reported in the paper (e.g., preliminary or failed experiments that723

didn’t make it into the paper).724

9. Code Of Ethics725

Question: Does the research conducted in the paper conform, in every respect, with the726

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?727

Answer: [Yes]728

Justification: Yes, our research conforms to the NeurIPS Code of Ethics in every respect,729

including fairness, transparency, privacy, and social responsibility.730
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.732

• If the authors answer No, they should explain the special circumstances that require a733

deviation from the Code of Ethics.734

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-735

eration due to laws or regulations in their jurisdiction).736

10. Broader Impacts737
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societal impacts of the work performed?739
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• If the authors answer NA or No, they should explain why their work has no societal745

impact or why the paper does not address societal impact.746

• Examples of negative societal impacts include potential malicious or unintended uses747
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being used as intended and functioning correctly, harms that could arise when the759

technology is being used as intended but gives incorrect results, and harms following760
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strategies (e.g., gated release of models, providing defenses in addition to attacks,763

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from764

feedback over time, improving the efficiency and accessibility of ML).765

11. Safeguards766

Question: Does the paper describe safeguards that have been put in place for responsible767

release of data or models that have a high risk for misuse (e.g., pretrained language models,768

image generators, or scraped datasets)?769

Answer: [NA]770

Justification: We believe the paper poses no such risks.771
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• We recognize that providing effective safeguards is challenging, and many papers do780

not require this, but we encourage authors to take this into account and make a best781

faith effort.782

12. Licenses for existing assets783

Question: Are the creators or original owners of assets (e.g., code, data, models), used in784

the paper, properly credited and are the license and terms of use explicitly mentioned and785

properly respected?786

Answer: [Yes]787

Justification: We have cited the relevant papers and packages.788
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• We recognize that the procedures for this may vary significantly between institutions848

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the849

guidelines for their institution.850

• For initial submissions, do not include any information that would break anonymity (if851

applicable), such as the institution conducting the review.852
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