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Abstract

Conditional independence tests are crucial across various disciplines in determining
the independence of an outcome variable Y from a treatment variable X, condition-
ing on a set of confounders Z. The Conditional Randomization Test (CRT) offers
a powerful framework for such testing by assuming known distributions of X | Z;
it controls the Type-I error exactly, allowing for the use of flexible, black-box
test statistics. In practice, testing for conditional independence often involves
using data from a source population to draw conclusions about a target population.
This can be challenging due to covariate shift—differences in the distribution of
X, Z, and surrogate variables, which can affect the conditional distribution of
Y | X, Z—rendering traditional CRT approaches invalid. To address this issue,
we propose a novel Covariate Shift Corrected Pearson Chi-squared Conditional
Randomization (csPCR) test. This test adapts to covariate shifts by integrating
importance weights and employing the control variates method to reduce variance
in the test statistics and thus enhance power. Theoretically, we establish that the
csPCR test controls the Type-I error asymptotically. Empirically, through simu-
lation studies, we demonstrate that our method not only maintains control over
Type-I errors but also exhibits superior power, confirming its efficacy and practical
utility in real-world scenarios where covariate shifts are prevalent. Finally, we
apply our methodology to a real-world dataset to assess the impact of a COVID-19
treatment on the 90-day mortality rate among patients.

1 Introduction

Conditional independence tests are important across diverse fields for determining whether an
outcome variable Y is independent of a treatment variable X, conditioning on a potentially high-
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dimensional vector of confounding variables Z. This type of testing is critical for understanding the
complex relationships among variables. For instance, scientists may hope to understand whether
a specific genetic feature influences disease outcomes, whether a particular treatment effectively
extends life expectancy, or whether certain demographic factors impact college admissions.

Traditionally, these conditional testing problems are approached by modeling Y against X and Z
through some parametric or semiparametric model. However, this strategy has been criticized due
to potential model misspecification and limited observations of Y. As an alternative strategy, the
model-X framework and Conditional Randomization Test (CRT) propose testing for the general
conditional independence hypothesis Hy : X 1L Y | Z, free of any specific effect parameters [2].
The CRT assumes the distribution of X | Z to be known and can control the type-I error exactly,
allowing for the choice of any flexible, black-box test statistic. This strategy is particularly useful
when there is either strong and reliable scientific knowledge of the distribution of X | Z or an
auxiliary dataset of (X, Z) of large sample size, known as the semi-supervised setting.

0s In practice, testing for conditional independence frequently in-
o PR volves using data from a source population to draw conclusions

about a target population. This situation presents challenges
due to potential differences in the distribution of variables be-
tween the two populations. For example, economists may be
interested in whether college admission (Y") is independent of
family income (X)), conditioning on variables such as GPA,
| N _ .| extracurricular activities, geographic location, and other demo-
graphics (Z). In the source population, the relationship might
a be influenced by factors like wealthy parents investing in SAT
preparation, which boosts admission rates—a relationship that
may not exist in a target population where such preparation is
on a simulated example. The Type-I er- lgss common. Although Y may not appear indgpendent of X
ror inflation of PCR demonstrates that Z1VeN Z in the source population, the conclusion could vary
source analysis is not valid or generaliz- significantly in the target population. This discrepancy under-
able on the target due to covariate shift. scores the need for a robust and flexible testing procedure that
can adapt to shifts in distributions.

Type-| Error Rate

Figure 1: Type-I Error rates of our pro-
posed csPCR and the source-only PCR

More specifically, we address the covariate shift scenario, where the distributions of the treatment
variables X, the confounding variables Z, and some surrogate or auxiliary variables V' (e.g., SAT
scores) may differ between the source and target populations. However, the conditional distribution
of Y given X, Z, and V remains the same between them. In such scenarios, our goal is to leverage
information from the source to accurately test for conditional independence in the target population
without the observation of Y on target. In the scenario we consider, the presence of V' and potential
differences in P(V | X, Z) between the source and target populations may lead to the conditional
independence X 1L Y | Z not holding simultaneously in the two populations. Specifically, because

PY|X,Z)= fP(Y | X, Z,V)P(V | X,Z)dV,

the conditional distribution of Y given X and Z can vary between populations. This underscores
why the problem is non-trivial.

See Figure 1 for an example of the consequences of such covariate shift.

In this paper, we propose a novel conditional independence test suitable for covariate shift scenarios.
Our method builds upon the Pearson Chi-Squared Conditional Randomization (PCR) test, a powerful
model-X testing procedure that effectively addresses a broader range of alternative p-value distri-
butions than the vanilla CRT [5]. Methodologically, we make two major contributions. First, we
introduce importance weights into the label counting steps of the original PCR test, making the new
test valid under covariate shift. These weights adjust the importance of each sample according to
its density ratio, effectively rebalancing the source data to match the target population’s distribution.
Second, we introduce a power enhancement method that employs the control variates method to
reduce variance in the test statistics. Although importance weights can increase the variance in test
statistics, especially when the density ratio can become extremely high, potentially reducing power,
our power enhancement method effectively addresses this issue. Together, these innovations enable
us to develop a PCR test that is both powerful and valid under covariate shifts.



The rest of the paper is organized as follows: In Section 2, we provide a formal introduction to
the problem setup. In Section 3, we introduce the proposed Covariate Shift Corrected Pearson
Chi-squared Conditional Randomization (csPCR) test and establish that the proposed csPCR test
controls the Type-I error asymptotically. In Section 4, we demonstrate the empirical performance
of the csPCR test through simulation studies. In Section 5, we apply the proposed csPCR test to a
real-world dataset to assess the impact of a COVID-19 treatment on the 90-day mortality rate among
patients.

1.1 Related Work

Our work builds upon the model-X framework and the conditional randomization test proposed by
Candes et al. [2]. The particular method we develop is based on a variant of the vanilla CRT, the
Pearson Conditional Randomization (PCR) test [5]. Recent advances in the CRT include improving
computation time [7, 10], studying robustness [6, 11], and examining statistical power [19]. The
focus of this paper, different from the above, is on how to build a valid CRT procedure when there
is covariate shift. The paper is also complementary to the above literature: for example, we hope
that future work can conduct theoretical power analysis for our procedure or develop a double robust
version of the procedure just like in [6]. Finally, we note that surrogate variables play a crucial role in
this paper: because the distribution of the surrogate variables is different in the source and the target
population, naively testing the conditional independence hypothesis in the source population can
yield invalid conclusions for the target population. A surrogate or silver standard label is a variable
that is more feasible and accessible than Y in data collection and can be viewed as a noisy measure
of Y. For example, tumor response rate is often used as an early endpoint surrogate for the long-term
survival outcome [3], and blood pressure is commonly used as a surrogate for heart attacks. Surrogate
variables are also commonly used in environmental studies and economics. Surrogate variables also
play an important role in the paper by [6], albeit in a different way, where the surrogate variables are
used to learn the distribution of Y | X, Z and to further improve the robustness of the CRT procedure.

Statistical learning and inference under covariate shift has been extensively studied over the past years.
As a seminal work in addressing covariate shift bias, [4] proposed a density ratio weighting approach
using kernel mean matching to characterize the adjusting weights. Their key idea of importance
(re)weighting is intrinsically connected with early work in broader contexts like importance sampling
[15, e.g.] and semiparametric inference [13, e.g.]. [8] extended this idea to a doubly robust framework
accommodating surrogate variables like V' and being more robust to the misspecification or poor
quality of the density ratio models. [18] handled a more challenging scenario with severe shift and
poor overlap between the source and target populations. Among this track of literature, [17] is the
most closely related to our work as they also considered conditional independence testing under
distributional shifts and proposed a general testing procedure base on importance sampling (IS)
allowing for the use of CRT. Different from us, their work does not accommodate the covariate shifts
of some surrogate or auxiliary V. Moreover, as will be shown in our numerical studies, their general
IS testing strategy can encounter the loss of effective sample sizes and be less powerful than ours.

2 Problem Setup

2.1 Conditional Independence Testing under Covariate Shift

Let Y € R denote the outcome variable, X € R the treatment variable, Z € RP a vector of
confounding variables, and V € R? a vector of surrogate variables. To make the problem more
concrete, consider the following two examples:

Example 1 (College Admission). Y is college admission, X is family income, Z includes a number
of factors such as GPA, extracurricular activities, geographic location, and demographic information,
V' is the SAT score. In this case, V is easier to collect compared to 'Y as the college admission
requires individual-level surveys.

Example 2 (Health Outcome). Y is a long-term health outcome, X is a medical treatment, Z
includes factors such as age, gender, and health history, V includes surrogate variables like blood
pressure, BMI, and duration of hospital stays post the treatment, which can be measured within a
much shorter term than 'Y .
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(a) Source population. (b) Target population.
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Figure 2: Direct acyclic graphs illustrating possible differences between the source and the target
populations.

Consider a scenario involving two distinct populations: the source population S and the target
population 7. We collect data from the source population with the goal of making inferences about
the target population. The source data contains n independent and identically distributed samples of
(Y, X4, Z;., Vi) fori=1,....,n.Lety = (Y1,Ya,...,Y,)T e R", x = (X, Xo,..., X,,)| € R",
Z=(Zy,Z5,....2,)" e R"*P, and V = (Vi.,Va.,..., V)T € R"*4 We are interested in
testing the following conditional independence hypothesis in the target population:

Ho: X UY|Z (1)

We assume that the conditional distribution of Y | X, Z, V' is the same in both populations; however,
the distribution of (X, Z, V') varies between S and 7. More precisely, the joint distribution of
Y, X, Z,V can be described as follows:

Ps(Y7X,Z,V)=P3(X,Z,V)P(Y|X,Z7V) OHS,

Pr(Y,X,Z,V) = Pr(X,Z,V)P(Y|X,Z, V) onT. @

This situation is referred to as the covariate shift scenario because the distribution of the covariates
X, Z, and V in the source population S does not match that in the target population 7.

Let’s understand the above assumption and its implications through the two examples above. In the
college admissions example, it is plausible to assume that the rate of college admissions remains
consistent across the two populations when conditioned on the SAT score, family income, and other
confounding variables. However, the joint distribution of X,V and Z can differ: in the source
population, if wealthy parents frequently invest in SAT preparation, boosting admission rates, this
relationship may not hold in a target population where such preparation is uncommon. In such cases,
it is thus possible that X XY | Z in the source population but X 1l Y | Z in the target population
(see Figure 2 for such an example). In the health outcomes example, it is again plausible that the
conditional distribution of long-term health outcomes given the treatment variable, confounding
variables, and surrogates remains the same across the two populations. However, the assignment of
the treatment may depend differently on the surrogate variables across the two populations. Therefore,
it’s possible that X 1l Y | Z in one population, but not in the other.

In both examples, we can see that the result of naively applying a valid conditional independence test
on the source population cannot guarantee a valid conclusion for testing H in the target population.
Therefore, we need to develop new tools for addressing covariate shifts in conditional independence
tests.

2.2 Model-X Framework

In this paper, we operate within the model-X framework, as described by Candes et al. [2], which
assumes that the joint distributions of covariates X, V, Z are perfectly known in both the source and
target populations. This framework is particularly suited for scenarios where: (1) there is substantial
prior domain knowledge about the covariates X, V, and Z, or (2) there is a significant amount of
unsupervised data for these covariates in both populations, in addition to n labeled observations in
the source population, characterizing a semi-supervised setting.

An example of the first scenario can be seen in genetics, where researchers have well-established
models for the joint distributions of single nucleotide polymorphisms (SNPs). For the second scenario,
consider our earlier example involving health outcomes. Here, the outcome variable Y represents a
long-term health outcome that is more costly or sensitive to measure compared to the shorter-term



variables X, V, and Z. In such cases, the variables X, V, and Z are typically easier and less costly to
collect, frequently resulting in a semi-supervised setting in these health-related studies.

3 Method: Covariate Shift Corrected PCR Test

3.1 Incorporating the Density Ratio into the PCR Test

In Section 2.1, we discussed how naively applying conditional independence tests to the source
data cannot guarantee valid conclusions for the target population. To address this issue, we must
incorporate information about the differences between the two populations into our testing procedure.
In particular, we will make use of the density ratio defined as:

PT(Xv Z,V)

e(X,Z,V) = 7P3(X, 7

3

This ratio measures the relative likelihood of observing each combination of variables (X, Z, V)
in the target population compared to the source population. By reweighting the data points in the
source population using this density ratio, we effectively transform the source distribution to match
the distribution of the target population, thereby addressing the covariate shift problem.

More specifically, we build our method upon the recently proposed Pearson Chi-Squared Conditional
Randomization (PCR) test [5]. Compared to the vanilla CRT, the PCR test is designed to be more
powerful across a broader range of alternative p-value distributions. At a high level, the PCR test
assigns a label to each data point following a counterfeit sampling step and a subsequent score
computation step. Under the null hypothesis that X I Y | Z, the distribution of these labels
should be uniform across all possible labels. The PCR test then rejects the null hypothesis if
the empirical distribution of the labels deviates significantly from uniformity, as determined by a
Pearson’s chi-squared test.

Under distributional shift, if the data points were sampled from the target population, then the
distribution of the labels would be uniform. However, since the data points are actually sampled from
the source population, they must be reweighted using the density ratio. More specifically, in the final
step of the PCR test, where the Pearson’s chi-squared test is applied, we consider not the count of
data points for each label, but the sum of the density ratios of the data points for each label instead.
Under the null hypothesis, each sum should approximate n/L, where L is the total number of labels.
Consequently, we modify the Pearson’s chi-squared test to determine whether these weighted sums
deviate significantly from n/L.

Based on the above intuition, we propose the Covariate Shift Corrected PCR (csPCR) Test, as outlined
in Algorithm 1.

In Algorithm 1, lines 1-7 correspond to those in the original PCR test. These lines initiate the test by

. . (m) . . . . i
generating counterfeit samples X ."’. Assuming the source and target populations were identical, un
der the null hypothesis, the randorn variables (X, Y;, Z;), (X", Y;, Z;), ..., (X"}, Z;) would
be exchangeable. Consequently, the rank R; would be uniformly distributed over {1,...,M + 1} in

the absence of ties, leading to a uniform distribution of the labels as well.

Lines 8-10 in Algorithm 1 address the covariate shift by incorporating density ratios as importance
weights into ;. Due to this redefinition of WW;, the null distribution of the final test statistic
U, 1, is also different. Therefore, we also adjust the rejection threshold from the quantile of a chi-
squared distribution, as in the original PCR test, to the quantile of the weighted sum of chi-squared
distributions.

3.2 Power Enhancement

To effectively address covariate shift, incorporating density ratios as importance weights into the
PCR test is essential. However, when these ratios become large, they can increase the variance of the
statistics ;. This elevated variance can diminish the test’s power. Therefore, developing methods to
reduce this variance is crucial for maintaining the power of the test.



Algorithm 1 Covariate Shift Corrected PCR (csPCR) Test.

Input: Data Dy = (y,x,Z, V), the density ratio e, the test statistics 7', integers K, L > 1, and the
significance level a.

: Take M = KL — 1.

. for each data point j = 1 to n do

Draw M i.i.d samples Xj(-l), . ,XJ(-M) from Pr(X | Z).

Use T to score the initial data point (X, Y}, Z;) and its M counterfeits ()N(§1:M), Y;, Z;)

R

T = T(vaij Zj)

~(i (i . @
TV =T(X",Y;, 2)), forie {1,...,M}.

b

Let R; denote the rank of T; among {7}, Tj(l), . ,f’j-(M)}, with ties broken randomly.
Partition {1,..., M + 1} = S1|J...|JSL with Sy := {({—1)K +1,...,¢K}. Assign label
l;€{1,2,..., L} tosample j if R; € Sy, .

end for

Letw; = e(X;, Z;,V;) foreach j € {1,2,...,n}.

for each label £ € {1,2,...,L}: do

10:  Let W, be the sum of ¢-labeled importance weights: Wy = >, w; - 1{{; = ¢}.
j=1

S

© %A

11:  Let Dy be the sum of {-labeled squared importance weights: Dy = >} w3 - 1{{; = (}.
j=1

12: end for
13: Let Q, = Ldiag(Dy, Dy, -+, D) — 1 - 1pxr.
L
14: Calculate the test statistic U,, , as follows U,, 1, = L >, (Wg — %)2 .

n

Output: Reject the null hypothesis if Uy, 1, = 0q othe;rwise, accept the null hypothesis. Here,
b¢, . isthe 1 — a quantile of the distribution X?} , where A ~ x2 denotes that A = 2Tz for

x ~ N(0,Q).

To this end, we introduce a control variate function a, allowing a(X, Z, V) to serve as a control
variate in reducing variance in W; [14]. Specifically, for a chosen v,, we define

W, = Z wj - [1{¢; = 0} —yea(X;, Z;, Vi) + nyBr [a(X, Z,V)]. 5)
j=1
We can then use Wz instead of W, in our algorithm.

‘We note that for any arbitrary choice of the function a and the parameter ~,, the expectation of Wg
would be the same as that of W,:

E|W,| - Z E [w;1{¢; = ¢}] - Z YeE [w;a(X;, Z;, V)] + myEr [a(X, Z,V)] o

E [We] — ne (ES [e(X, Z,V)a(X, Z, V)] — B [a(X, Z, V)]) —E[W,].

Therefore, even if we make a sub-optimal choice of the function a and the parameter ~, in practice,
the resulting test (under certain assumptions) will still remain asymptotically valid (see Section 3.3
for more details).

However, for effective variance reduction, it is preferable to have the control covariates a(X, Z, V)
well-correlated with the outcome (See Section 4 for practical discussions on choices of the function
a). This is quite feasible, especially since the surrogate variable V is likely to be predictive of Y.



Algorithm 2 Covariate Shift Corrected PCR Test with Power Enhancement.

Input: Data Dy = (y,x, Z, V), the density ratio e, the test statistics T', the control variate function
a, integers K, L > 1, and the significance level .
for each data point 5 = 1 to n do
Compute the labels ¢; as in Algorithm 1.
end for
Letw; = e(X;, Z;,V;) foreach j € {1,2,...,n}.
for each label £ € {1,2,...,L}: do
Compute 4y, the regression coefficient obtained by a weighted linear regression of the indicator
function {1{¢; = ¢} };Lzl on the control variate {a(X, Z;, VJ)};;1 with weights {w; };;1.
7:  Compute the augmented version of Wy as

AR A S S i

We =Y w; - [1{; = 0} — 4ea(X;, Z;, V)] + 04y [a(X, Z,V)].

j=1
8: end for
9: Let W = (wj (L{l = 0} — Al X, 25, V)] + 4y [a(X, 2, V)])Z forl< (<L 1<
J
Jj<n.
10: Calculate the sample covariance matrix Q, = £(W — £ - 17,,)(W — - 1,,)7.
N L, 2
11: Calculate the test statistic U, 1, as follows U,, 1, = % > (We — %) .
=1

Output: Reject the null hypothesis if ﬁn L = 0y ; otherwise, accept the null hypothesis. Here,
¢ ., is the 1 — o quantile of the distribution X% , where A ~ x2 denotes that A = 2Tz for

x ~ N(0,Q).

We would also like to discuss the choice of ~,. According to the control covariate literature, with a
fixed function a, the optimal choice of 7, that minimizes variance is given by:

Cov |:U)j]]. {gj = €} ,wja(Xj, Zj,Wj)]

= Var [w;a(X;, Z;, W;)] v

This coefficient is also the same as that obtained from a linear regression [14]. Thus, when implement-
ing the algorithm, we take -y, to be the regression coefficient obtained by running a weighted linear
regression of the indicator function {1 {¢; = ¢ }}?:1 on the control variate {a (X, Z;,V;) }?:1 with

weights {wj };L:l.

We have outlined the new csPCR test, including this power enhancement step, in Algorithm 2.

3.3 Theoretical Properties

In this section, we establish that the proposed tests control the type-I error asymptotically. Further-
more, we show that the power enhancement step effectively reduces the variance of the statistics Wy,
which can typically improve the power.

Assumption 1 (Fourth moment). The fourth moment of the density ratio e(X,Z,V') is finite:
Es [e(X, Z, V)ﬂ < 0. Furthermore, the fourth moment of product of the density ratio and the
control variate function is also finite: Es [e(X, Z,V)*a(X, Z,V)*] < .

Theorem 1 (Valid Tests). Under Assumption 1, assume that the null hypothesis of X 1LY | Z holds
in the target population, then

lim P [Algorithm 1 rejects] = a. (8)
n—o0
lim P [Algorithm 2 rejects] = . )
n—00



Theorem 2 (Variance Reduction). Let W be the statistics computed in line 10 in Algorithm 1, and
W, be the statistics computed in line 7 in Algorithm 2. Under Assumption I,

n—oo

lim sup (Var [Wl] / Var [Wl]) <1 (10)

4 Numerical Simulation

In this section, we present simulation studies to assess the performance of our proposed csPCR
method and its power enhancement version denoted csPCR(pe), and compare them to a benchmark
method. The benchmark method adopted is an importance-resampling based method [17], denoted as
the IS method. For fair comparison, we used the same PCR statistic as our method for the testing
with IS. We use a significance level of o = 0.05.

4.1 Simulation Setup

We consider a semi-supervised setting where we have a large volume of unlabeled data of (X, Z;, V;)
from both the source and target populations. In addition, we have a small number of labeled data of
(Y;, X, Z;,V;) from the source population.

We separate confounding variables Z into two sets: Z = (Zy, Znun), Where Z, is the relevant set and
Zyui 1s the null set. The relevant confounding variables Z, are generated as i.i.d. multivariate normal,
with mean O for the source population and 1 for the target population to simulate the distributional
shift in Z, where Z, € R? and we set p = 5. Null confounding variables 7, are generated
independently with no correlation to other variables, modeled as N (0.1, I,) with ¢ = 50 for sparse
high-dimensional settings in both populations.

The treatment variable X and the surrogate variable V' are conditionally generated based on Z.
Specifically, X is modeled identically across both the source and target populations as N (u" Z;, 1),
where w is a predefined parameter vector that remains the same for both populations.

For V, it is modeled differently in the two populations, represented as N (vg /TZr +(1—0)as/TX +

fas/7sin(X),1). Here, vs and vy are predefined parameter vectors for the source and target
populations, respectively. The parameter a varies between populations (as for the source and a for
the target), controlling the effect of X on V, modeling the indirect effect. The factor # modulates the
nonlinear component of this relationship.

The outcome variable Y is generated for both populations using the same conditional model over
(X,Z,V):

YI(X,Z,V)sjr ~ N((0T Z:)* + BV +9X,1),
where (3 and «y control the effects of V' (indirect) and X (direct) on Y, respectively.

We generate 1000 unlabeled source and target samples to estimate the density ratio and generate 500
labeled source samples for testing. Moreover, in the simulation, we assume we have full knowledge
of the joint distribution of (X, Z) and estimate V| X, Z using an Elastic net regression model with
5-fold cross-validation [20]. For the test statistic 7" in the algorithm, we choose a simple function
T(X,Z,V,Y) =Y - X. For each parameter iteration, we conduct 1000 Monte Carlo simulations
to estimate the Type-I error and power. We estimate the covariance matrix of the sequence of W;’s
using the Monte Carlo method and use the momentchi2 package [1] for calculating the p-value.
Additionally, we empirically choose the best hyperparameter L = 3 for all our experiments through
additional experiments shown in Appendix B.2.

4.2 Simulation Results

In Figure 3, we choose as = 1 and a7 = 0 to compare the Type-I error control of our methods
with the benchmark. The left panel shows the Type-I error rate as the sample size of the data used
to estimate the density ratio, n., varies from small to large. There appears to be a slight Type-I
error inflation for all three methods when the sample size n. is small, but the Type-I error quickly
converges to the ideal level of 0.05 as n. grows larger. Moreover, our methods show more stable
Type-I error control than the benchmark method when the estimation sample size is low. The right



panel shows that when the density ratio is well approximated, all three methods attain good Type-I
error control regardless of the change in f3, i.e., the strength of the indirect effect, but the csPCR and
c¢sPCR(pe) methods have more stable control.

025 — 025 — To evaluate the statistical power of
020 T oRCRee | 020 e | our csPCR test, we choose as = 0
and a7 = 2, so that the null hypoth-
esis holds true in the target popula-
tion but not in the source population.
—— L AsFigure 4a shows, both the csPCR
" # ' and the csPCR(pe) methods have uni-
formly higher power than the bench-
mark method as we vary the indirect
effect size (5. For example, when 3 = 1.4, the benchmark IS method has a power of 0.33, the csPCR
method has a power of 0.44, and the csPCR(pe) method can attain a power of 0.8.
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Figure 3: Comparison of Type-I error control across three methods.

When we fix the indirect effect 5 = 2 and vary the direct effect of X (v), as shown in Figure 4b, our
methods still exceed the benchmark, and the power enhancement significantly improves the original
version of the test. For example, when v = 1, the benchmark IS method has a power of 0.4, the
csPCR method has a power of 0.62, and the csPCR(pe) method can attain a power of 0.86.
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(a) Increasing indirect effect 3 (b) Increasing direct effect ~y (c) Varying nonlinear effect size 0

Figure 4: Comparison of statistical power of the three methods as the effect size varies: (a) indirect effect 3, (b)
direct effect -y, and (c) nonlinear effect size 6.

We also test how adding a nonlinear component to the indirect effect affects the power when we
assume a linear model of V' | Z, X in the estimation stage. This can be helpful in assessing the
performance of our methods under model misspecification. As Figure 4c indicates, as the nonlinear
effect increases, the power of all three methods decreases, though our methods still significantly
exceed the benchmark. Interestingly, we observe that as §# — 1, i.e., there is a full nonlinear
component without a linear component, the advantage of the power-enhanced version over the
original csPCR test disappears. This occurs because when the V' | X, Z model is misspecified and
the density ratio estimation is inaccurate, the variance reduction in the control variates step reduces
variance in the “wrong" direction, and thus does not improve the power of the original method.

4.3 Effective Sample Size

We notice a series of work in measuring the effective sample size (ESS) of the density ratio reweighting
approaches [9]. Among them, one of the most common measure is neg = (>, w;)?/ >0, wi.
When the covariate shift between the source and target becomes stronger, the variance of the
importance weight w; tends to be large and neg will become smaller, which could result in lower
power. We carry out simulation studies on the relationship between the power of csPCR and the ESS

determined by the degree of covariate shift as discussed in Appendix B.3.

5 Real-World Application

The COVID-19 pandemic has presented unprecedented challenges to global health systems, with
high variability in outcomes based on demographic and clinical characteristics. Early identification
of patients at high risk for severe outcomes, such as mortality within 90 days of hospital admission,
is crucial for timely and effective treatment interventions. This study leverages extensive hospital
data to develop models predicting 90-day mortality following hospital admission due to COVID-19.



For this study, we extract patient data spanning from January 2020 to December 2023 from Duke
University Health System (DUHS), focusing on individuals admitted with COVID-19. This period
encompasses multiple waves of the pandemic, influenced by various circulating variants.

Our dataset comprises patient records for a total of N = 3,057 individuals admitted with COVID-19.
The outcome Y is defined as mortality within 90 days since hospital admission due to COVID-19.
The treatment variable X is defined as binary, where 1 indicates the administration of any COVID-19
specific medication (explained in Appendix C) and O otherwise. The covariates Z include comorbidity
indices (renal disease, diabetes without complication, diabetes with complication, local tumor, and
metastatic tumor), age, gender, and race, which are critical for adjusting the risk models due to
their known influence on COVID-19 outcomes. The length of hospitalization, denoted as V, is
standardized to follow a standard normal distribution (with a mean of zero and a standard deviation
of one), facilitating comparisons and integration into predictive models regardless of original scale or
distribution.

The dataset is segmented into two distinct groups based on the date of hospital admission to align
with pivotal changes in virus strain predominance and public health guidelines. The source data
comprises COVID-19 admissions prior to November 30, 2021, with a sample size of N; = 1,131
patients. The target data includes admissions from November 30, 2021, through December 2023,
totaling No = 792 patients. This temporal division allows for the analysis of trends and outcomes
associated with the evolving pandemic landscape. Prevalence of the 90-day mortality outcome within
the source data is 14.3%, reflecting the impact of earlier virus strains and treatment protocols, while
in the target data, the prevalence is substantially lower at 3.7%, possibly indicating the effect of
improved treatments and vaccines, as well as the influence of different virus variants over time.

Table 1: p-values of different methods on COVID-19 dataset
Method csPCR c¢sPCR(pe) IS
p-value 0.025 0.032 0.663

For the analysis, we divide 50% of the source data, comprising 565 individuals, alongside the entirety
of the target data, to estimate the density ratio. Density ratios of X, Z are estimated using probabilistic
classification method [12], while the density ratio of V| X, Z is determined through Elastic Net
regression. For all three methods, the test statistic 7" is chosen to be T(X,Z,V,Y) =Y - X. As
indicated in Table 1, both csPCR and csPCR(pe) give statistically significant results, whereas the
IS method does not. The statistically significant results are consistent with biomedical literature.
For example, through systematic review and meta-analysis, [21] reported that Bamlanivimab is
effective in reducing the mortality rates of COVID patients. In a cohort study, [16] also found similar
effectiveness for Nirmatrelvir—ritonavir.

These results align with our findings from the simulation study and demonstrate that our method has
increased power compared with the benchmark IS method.
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A  Proofs

A.1 Preliminaries
Throughout this section, we write S(x;, zj,v;) = s; as the label assigned to sample j in Algorithms
1 and 2, instead of using ¢;. This notation helps avoid confusion between different label choices.

Proposition 1. Assume that the conditional independence X 1L Y | Z holds on the target population
T. Let e(x;, z;,v;) denote the density ratio. For any integer { € [1, L], the following holds:

1

Esle(z;, zj,v5) - 1{S7 (), zj,v;) = £}] = I

Proof of Proposition 1. For simplicity, denote w; = e(X;, Z;,V;) and s; = S7(X;, Z;,V;).

Esle(X;, Z;, V) - 1{ST(X;, Z;, V) = ¢}]

“hs []E [wj - P(s; =LY}, Z;, X5, Vi) |Zj, X, V;

=Es [wj E[P(SJ =/ | }/}’Zjan>‘/3)] Zjan>V3

= J W 'pS(Zijj"/j) E [P<SJ =/ | YB’Zj7Xj>‘/}>] dZJ dXJ dVvJ
(25,X5,V5)

(1)
:J‘ pT(ZJI?X]Vij)'E[P(S]':E‘YvJVZJHXjﬂij)] dZJdXJd‘/J
(Zj7XJ'7VJ')
=Er []E [P(s; = £1Y}, 25, X5, V;)] 25, X5,V
= ET [P(sj =/ ‘ Y—jv Zijjv‘/j)]
_1
-
The last equation follows from results in the non-covariate-shift scenario, e.g., from [5]. O

A.2  Proof of Theorem 1
A.2.1 Results for Algorithm 1

Let (W) ¢=1,...,1, be the sum of weights and Qn be the sample covariance matrix in Algorithm 1. By
Proposition 1, we have that

_TL
,L.

Note that the W,’s are sums of i.i.d. random variables, and thus by the Central Limit Theorem, as

n — oo,
L n n n d
N _\/;(Wl_L,WQ—L,...,WL—L) 4 NL(0,9),

where for any ¢, ¢* € {1,...,L}

Qg)g* = LCOV(wl]I{Sl = f},wl]l {31 = g*}) = LEg [w% . ]1{51 — 6}]1{81 _ Z*}] _%
1
= IBs [w? 1fs = ] 1{e = ¢} — 1.

Therefore,
d
Un,L = A;I;An - X?Z
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Next, we will focus on the variance estimation part. We will show that Q. B Qasn — o0. For any
0, 0*e{l,...,L},

. L 1 L& 1
Q,,,,&g*I]].{EZK*}ElezZI{EIK*}ng]Z.]]_{Ejzg}fZ

Jj=1

21 {l = (*} LEs [wf sy = e}] - % = Qg

Up til now, we have that
Uni=ATA, X3, and 0y 5 0aa.

Therefore,
P(Algorithm [ rejects) = P(Uy,,1, = HQ"’Q) —P(x3 = 60.4) = o

A.2.2 Results for Algorithm 2

Let (Wg) ¢=1,...,1 and ﬁn be the sum of weights and the sample covariance matrix in Algorithm 2.
Let 4, be the estimated coefficient in Algorithm 2.

Recall that in (7), we have identified the optimal choice of ~,. We will start by working with this
optimal choice and show that the 4, is close to it. Define

W

> w; (144 = 6} — wa(X;, 25, V5)) + nyBrla(X, Z, V)],
j=1
Kej(y) = w; (1{¢; = 0} —=va(X;, Z;, V) + +E7[a(X, Z,V)], and
Hj = wja(Xj, Zj, V}) - ET [(L(X, Z, V)] .
Therefore, we have W, = 2 Ko j(7e) and W, = 2 Kei(5e) = We — (e — o) 2 Hj
Note that by (6), E(H;) = 0. By Proposition 1 and (6), we have E(W/Z) = 7. Furthermore, because

W, is a sum of i.i.d. random variables, we have that as n — o0,

~ L ([~ n ~ n ~ n\ d ~
An— n(WlL,WQL,...7WLL)4’NL(O,Q), (12)
where for each ¢, (* € {1,..., L},

QZ,Z* = LCov {Kf,j('Y@)a Kg*yj('yg*)} .

Therefore,

Next, we will show that the actual statistic ﬁn 1 1s close to ﬁn L, and that the estimated variance

matrix is also close to €2. We start with noting that the estimator 7, from linear regression is close to
the optimal choice 7 defined in (7): by the Central Limit Theorem, 9, = ¢ + O,(1/4/n). And thus

We = > w; (1{t; = 6 = ea(X;, 25, V) + niBrla(X, Z,V)]
j=1

wiL{l; = 0} — 40 | D wia(X;, Z;,V;) — nErla(X, Z,V)]
1 j=1

I
NgE

<.
Il

= > wil{t; =0} — o | Y wja(X;, Z;,V;) — nEBrla(X, Z,V)] | + Op(1)
j=1 j=1

= We + Op(l).

14



The second-to-last line is because 4, = ¢ + Op(1/4/n) and the terms inside the parenthesis, >, H,
is a sum of n independent mean-zero random variables.

Therefore, together with (12), by Slusky’s Theorem, we have that

~ L ~ n -~ n ~ n d ~
A, =A— (W —=Wo——=,.... W — =] — ,Q),
n( DL L L) NL(0,9)
and thus,

~

YT~ d 9
Un7L = AnAn d Xé

We will work on sample covariance matrix now. Recall that the sample covariance matrix ﬁn =
%(W — % . le)(W — % . 1L><n)T, where ngj = w]— . []]_{KJ = E} — ’A}/ga(Xj,Zj,‘/}')] +
YE7 [a(X,Z, V)] = K¢ (5). Let’s start with WW . Forany ¢, (* € {1,..., L},

(WW ) e = Z Ko i (Fe) Ko 5 (Fex)
= Z (Koj(ve) = (e — o) Hj) (Kox j(ve) — Boxe — vex ) Hj)

= D Ko j(v) Kex s (vex) = (e = v0) Y HiKops (o) — (e — vex) Y. Hi Ko i (e)
J J J

+ (e = 70) Bex — vex) Y H?
J

= ) K () Ko 3 (es) + Opl(/)

J

Therefore, by the law of large numbers,

L L

E(WWT)M* = DK (ve) Kox j (vex ) +0p(1/3/n) = LE [Ke 1 (v0) K 1 (v ) | +Op (1/3/n).
J

Similarly, for W17, we have that for any ¢, ¢* € {1,..., L},
(W1T) s = D Ko j () = > Kuj(ve) — Ge — v0)Hy = " K j(ve) + Op(v/n).
J J J
Therefore, again by the law of large numbers,
W) oox = 1 D1 Ke () + Op(1/V) = LE [Kys()] + Op(1/v/) = 1+ 0p(1/v).
J

Combining the above results gives,

~ L 1 1
Q = W — — 100)(W = = - 15,,)"
n, 0% n |:< I Lx )( I Lx ) j|e’[*

LE [Ke,1(W)Kz*,1(W*)] - LE [K&J‘(W)] E [Kﬁ*,j (W*)] + Op(1//n)
= L Cov [Kg1(ve), Kex 1 (vex )| + Op(1/4/0)
= Qo + Op(1/3/n).

Therefore, (~2n 2 Q0.

To summarize, we have that

Therefore,
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A.3 Proof of Theorem 2

Similar to the proof of Theorem 1, we define
W, = Z (144 = &} —vea(X;, 25, V) + nyErla(X, Z,V)],

Hj = wJCL(XJ,ZJ,VvJ) - ET [a(X, Z7 V)] .

Therefore, we have Wg = Zj Ky j(7¢) and f/lv/'g = Zj Ky ;(Fe) = Wg — (Fe —e) Zj H;.

We know from the literature that ~, is the optimal choice of « and thus Var [I\/I//g] < Var [W,]. We

will then move on to show that Var [Wg] is close to Var [Wg] and thus asymptotically no greater
than Var [W;].
To this end, note that

Var [Wz] = Var [Wg — (B — e ZH]

= Var [W[] + 2 Cov [Wg, (He — o) ZH ] + Var [('yg ~Ye) EH

< Var [We] + 2\/Var [Wg]\/IE [((w — e ZHJ ] +E [((w Ye) ZH ]

But we also know from the proof of Theorem 1 that 4, — v, 2 0. Then, because of the bounded
fourth moment assumption, by the Dominated Convergence Theorem, we have that

CE (G- )] 0.

Therefore,

lim sup — (Var [Wg] Var [Wg]) < 0.

n—ow N

Finally, we note that Var [W;] = Q(n), and hence

lim sup(Var [Wl] /Var [W]) <1

n—o0

B Additional Simulation Results

B.1 Running time

All experiments run on a Macbook Pro 2022 M2.

Artificial dataset: Regarding running time for one iteration including density ratio estimation and
X|Z model fitting (on average), csPCR took 5.12s, csPCR(pe) took 14.95s, IS method took 1.5s,
PCR took 1.25s.

Real-world application: Regarding running time for one test procedure, csPCR took 3.41s,
csPCR(pe) took 11.32s, IS method took 0.81s.

B.2 Finding optimal hyperparameter L

We find the optimal L value for the testing algorithm by performing numerical simulations, evaluating
its Type-I error control and power. We adopt the same numerical simulation setup as in the main text
Section 4. We first choose as = 1 and a7 = 0 and also fix 5 = 1 to compare the Type-I error rate
for different choice of L of the csPCR method. We perform experiments with both true density ratio
and estimated density ratio. The results are shown in Table 2.
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Table 2: Type-I Error Rates at Different Levels of L of csPCR Method
L 2 3 5 10 15 20

True Density Ratio 0.05125 0.05000 0.04575 0.03675 0.02825 0.02425
Estimated Density Ratio  0.04620 0.05025 0.04425 0.03905 0.02725 0.02175

1.0

0.8 - +
. 0.6
[
; -
3 o
2 0.4 * +

0.2 +— ¢sPCR

csPCR(pe)

2 3 4 5 6
L

Figure 5: Comparison of statistical power of the three methods as the the parameter L varies.

We also test the power of the csPCR and csPCR(pe) method with different choices of L value. We
choose as = 0 and ay = 2 and fix § = 2.

As Table 2 and Figure 5 shows, as L value increases, the csPCR method become more conservative
with more tight Type-I error control and lower power. We can observe that when we set L = 3, the
¢sPCR method can achieve most stable Type-I error rate control and also highest power empirically.
Therefore, in our simulation experiments and real world data experiments, we fix L = 3.

B.3 Role of effective sample size

We notice a series of work in measuring the effective sample size (ESS) of importance weight or
sampling in the statistical computation literature, e.g., [Martino, et al, 2017] and others. Among them,
N2
one of the most common ways is to use the ratio nesy = % to approximate the ESS. When
i=1 "1
the covariate shift between the source and target becomes stronger, the variance of the importance
weight w; tends to be large and n. ¢y will become smaller, which can result in lower power. Our
power enhancement method based on control variate could potentially alleviate this issue with

properly specified control functions.

In the simulation study, we varied only (., the mean of the confounding variables Z7. A higher
signifies a stronger covariate shift between the source and target populations. From Figure 6 , it is
evident that as p, increases, the Effective Sample Size (ESS) required significantly decreases, while
the power of the csPCR method concurrently declines. These results suggest that increasing covariate
shift leads to a reduction in ESS and a corresponding decrease in statistical power.

B.4 Instability of the Importance Resampling (IS) method

In this section, we will use numerical simulations to ilustrate that the performance if the IS method
is subject to the resample size heavily. IS method performs resampling without replacement and
typically has to sample a much smaller subset (theoretically, in the order of o(1/n)) of the source data
to approximate the target. Consequently, the power of IS is substantially lower than our approach. If
the resample size of IS is overly increased, it may fail to control the Type-I error due to excessive
similarity between the resampled data and the original source data.

To further illustrate, we conducted additional experiments with varied resample sizes in IS to assess
its effect on Type-I error control and power. From Figure7. one can observe that IS starts to show
high Type-I error inflation when its resample size increases to 400 but still shows much lower power
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Figure 6: The left panel shows the comparison of statistical power of csPCR and csPCR(pe) method
as the covariate shift gets stronger. The right panel illustrates how the Effective Sample Size(ESS)
changes as covariate shift scale becomes larger.

(by around 0.4) than our method with this resample size (or even larger ones). This indicates that our
method achieves better statistical efficiency than IS (DRPL).

1.0 1.0
IS | s
0.8 csPCR 0.8 csPCR
£ - ¢sPCR(pe) ---- csPCR(pe)
o
+ 0.6 0.6
o [7)
D s
- 0.4 0.4
(]
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=
0.2 0.2
0.0 0.0
200 400 600 800 1000 200 400 600 800 1000
Resample Size Resample Size

Figure 7: Detailed comparison of Type-I error rate and power of csPCR and the IS method. With
the source sample size n; = 1000, we gradually increase the resample size for the IS method from
100 to 1000. The two horizontal lines represent the Type-I error rate and power, respectively, of the
¢sPCR and csPCR(pe) methods (they do not change with the tuning of IS).

B.5 Choice of test statistic

In this section we explore the effect of test statistics on the algorithm performance. The main
principle of choosing the test statistic is to characterize the conditional dependency between X and
Y under the alternative hypothesis. The test statistic Y X may not be the optimal choice and that

using (Y — E[Y | Z])(X — E[X | Z]) could remove the confounding effect of Z.

Inspired by this, we used Y (X — E[X|Z]) as the test statistic to conduct additional simulations. As
illustrated in Figure8, we find that Y (X — E[X|Z]) and Y X produce nearly the same power for
both ¢sPCR and csPCR(pe) with the change of effect size.

C Real-World Application

The specific medication indicated by the treatment variable X includes Ritonavir, Bamlanivimab,
Casirivimab-Imdevimab, Remdesivir, Ritonavir Nirmatrelvir, Sotrovimab, Bamlanivimab Etesevimab.
For simplicity, X = 1 indicates any of these specific medication and X = 0 otherwise.
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Figure 8: Power against effect size for csPCR and csPCR(pe) with two different test statistics XY
and (X —E[X | Z])Y. We observe that the power is very similar with the two different test statistics.

C.1 Different outcome

In our real data experiment part, the outcome variable Y is defined as mortality within 90 days since
hospital admission due to COVID-19. In addition, we also analyzed mortality within 30 days since
hospital admission. As shown in Table 3, both csPCR and csPCR(pe) methods give significant results,
aligning with biomedical literature.

Table 3: p-values of different methods on COVID-19 dataset (mortality 30
Method csPCR c¢sPCR(pe)

p-value 0.029 0.013
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we mentioned that we propose a novel
Covariate Shift Corrected Pearson Chi-squared Conditional Randomization (csPCR) test
and discussed our methodological, theoretical, and empirical contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We examine the performance of the algorithms under model misspecification
in Section 4.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The assumptions are listed in Section 3.3 and the proofs are provided in
Appendix appendix:proof.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details of the simulation studies and real-data application are included in
Sections 4, 5 and Appendix B.2.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

21



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Replication code for our simulation studies is submitted as supplementary
material. It will also be made publicly available on GitHub once our paper is accepted.
The COVID data set used for the real example in our paper is not publicly available due to
privacy constraints.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details of the simulation studies and real-data application are included in
Sections 4, 5 and Appendix B.2.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Type-I errors, power, and p-values are provided in Sections 4 and 5.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We record relevant information in Appendix B.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, our research conforms to the NeurIPS Code of Ethics in every respect,
including fairness, transparency, privacy, and social responsibility.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the impact of the paper on the fields of healthcare and
social sciences.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We believe the paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the relevant papers and packages.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have provided detailed documentation of the newly proposed algorithm.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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