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Abstract

Diffusion Probabilistic Models (DPMs) have been recently utilized to deal
with various blind image restoration (IR) tasks, where they have demonstrated
outstanding performance in terms of perceptual quality. However, the task-specific
nature of existing solutions and the excessive computational costs related to their
training, make such models impractical and challenging to use for different IR
tasks than those that were initially trained for. This hinders their wider adoption,
especially by those who lack access to powerful computational resources and vast
amount of training data. In this work we aim to address the above issues and enable
the successful adoption of DPMs in practical IR-related applications. Towards
this goal, we propose a modular diffusion probabilistic IR framework (DP-IR),
which allows us to combine the performance benefits of existing pre-trained state-
of-the-art IR networks and generative DPMs, while it requires only the additional
training of a relatively small module (0.7M params) related to the particular IR
task of interest. Moreover, the architecture of the proposed framework allows for
a sampling strategy that leads to at least four times reduction of neural function
evaluations without suffering any performance loss, while it can also be combined
with existing acceleration techniques such as DDIM. We evaluate our model on four
benchmarks for the tasks of burst JDD-SR, dynamic scene deblurring, and super-
resolution. Our method outperforms existing approaches in terms of perceptual
quality while it retains a competitive performance with respect to fidelity metrics.

1 Introduction

With the advent of deep learning we have witnessed outstanding results in a wide range of computer
vision tasks [89], including many challenging blind image restoration (IR) problems [84] such as
burst imaging [40], super-resolution (SR) [9], deconvolution [58], etc. The standard approach for
supervised learning in a blind IR setting involves training a feed-forward network that should estimate
the latent image based on the available low-quality measurements. Such models are usually trained
to maximize fidelity metrics like PSNR or SSIM, but the visual quality of the resulting images is
sub-optimal [6]. The inclusion of perceptual losses [30] to the objective can improve the visual
results, but fails to convincingly address the problem.

A promising direction towards IR results of high visual quality is to consider such problems within a
generative framework. Several generative models have been recently proposed including Variational
Autoencoders (VAEs) [33], Generative Adversarial Neural Networks (GANs) [22], Normalizing
Flows (NFs) [16] and Diffusion Probabilistic Models (DPMs) [65]. Due to their impressive results
in image generation, they have been further utilized to perform conditional sampling of high-
quality images, with their low-quality or distorted counterparts playing the role of the conditional
input [21, 38, 46, 39]. To date, DPMs appear to be the most promising framework and lead to the
best results among all existing generative approaches.
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Figure 1: The proposed architecture consists of three modules: a Denoising Network ϕD
θD

(x̃t, σ̃t), an IR
Network ϕIR

θIR
(y) and a Fusion Network ϕF

θF

(
xIR

0 ,xD
0 , t

)
. A small version of MIRNet [81] is used as the

Denoising Network, while a pre-trained SwinIR [42] or BSRT [50] or FFTFormer [34] is used as the IR Network,
depending on the IR task. See section 3.3 for a detailed description.

Nevertheless, there are certain limitations that existing DPMs face, which hinder their wider adoption
in IR tasks. In particular, inference of such models involves a sampling process that requires
a large number (in the order of hundreds) of neural function evaluations (NFEs), which can be
computationally very expensive, especially when considering images of high resolution. Another
important limitation is that an efficient conditioning on the image measurements has yet to be
proposed for DPMs in order to make them applicable to a wider range of blind IR problems. Indeed,
all of the existing methods aim to learn the parameters of a single input-conditioned network for a
specific blind IR task. As a result, the trained model overfits on the distribution of the condition space,
and the whole model has to be retrained if we need to employ it to a different reconstruction task
than the one that was initially trained for. Considering the huge amount of data and computational
resources required for training a single DPM (see appendix A), such re-training becomes infeasible if
at least one of the previous requirements is not satisfied.
In this work we aim to address the above issues by proposing a novel conditional diffusion network
coupled with an accelerated sampling process. Specifically, our network adopts an improved
conditioning strategy and is built on the foundation of existing off-the-shelf IR networks paired with
a denoising module, which is applicable to a variety of reconstruction problems without requiring
any re-training. Additionally, we introduce an accelerated sampling procedure that is enabled by
our proposed network architecture and allows the merging of a large number of sampling steps in
a single one, computed with a single NFE. Our proposed acceleration can work in tandem with
accelerated sampling schemes such as DDIM [66]. To assess the performance of our network, we
validate it on three challenging blind IR tasks, namely, burst joint demosaicking, denoising and
super-resolution (JDD-SR), dynamic scene deblurring, and 4× single image super-resolution (SISR).
In all of the tested scenarios, our approach demonstrates the best perception-distortion trade-off
among the state-of-the-art (SOTA) methods, while compared to other DPM-based solutions it requires
a smaller number of sampling steps.

2 Related Works
Burst Image Restoration. One of the pioneering works in multi-frame IR was introduced in [70],
where a frequency-domain-based solution was proposed. Then, several MAP models with various
regularization terms have been designed to cope with visual artifacts caused by operating in the
frequency domain [3, 18, 63]. Using the same MAP framework, a JDD-SR method robust to noise
and outliers was developed in [19]. Meanwhile, the block matching alignment algorithm of [25] was
extended by [79] to obtain a robust motion model with the aid of an adaptive kernel interpolation
method merging sparse pixel samples.
Advancements in deep learning have led to high-performing methods such as those in [17, 37, 4, 5,
49, 41]. The DBSR approach [4] aligns multiple input frames in the feature space utilizing an optical
flow estimator (e.g. PWCNet [68]) and employs an attention-based fusion mechanism to aggregate
features. In [37] a differentiable image registration module has been introduced, which exploits
the aliasing effects appearing in bursts of low-resolution (LR) images. In [41] KBNet estimates
blur kernels for a burst sequence to incorporate them with LR features so as to generate a better
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super-resolved image, while in [17] BIPNet attempts to fuse complementary information from the
burst sequence with the help of generated pseudo-burst features. Another line of work effectively
employs deformable convolutions for the inter-frame alignment task [49, 74, 17] and achieves SOTA
results in various tasks, including burst SR.

Single Image Restoration. Among the recent IR methods, the most successful ones are those that
adopt an end-to-end supervised formulation, where a deep neural network is trained to directly map a
low-quality and degraded image to a point estimate of the latent high-quality image [88, 45, 69, 83].
Consequently, in the pursuit of further improving the reconstructions and achieving a better pixel-
level result, more advanced network architectures have been proposed [82, 42, 10, 34], at the cost
of being more computationally heavy. While this formulation leads to SOTA fidelity (e.g. , PSNR,
SSIM), the produced output is an average/median of all plausible predictions, which typically lacks
high-frequency information (e.g. texture).

Generative adversarial networks (GAN) [22] have been adopted by several IR methods such as
SISR [38, 73, 75] and dynamic scene deblurring [35, 36, 85] to produce more natural and perceptually
pleasing results. Although this adversarial non-reference formulation aims to push the predictions
towards the manifold of natural images, it is also prone to introducing unrealistic texture and
hallucinations in the output [14]. Moreover, the adversarial training process requires extra supervision
as it can easily fall into a mode collapse or may diverge [2, 62].

Likelihood-based deep generative models such as NFs [47, 46], auto-regressive models [23], and
VAEs [57] have also been applied to IR tasks, where one can obtain a diverse set of predictions from a
learned posterior [57]. Conditioned on LR inputs, flow-based methods attempt to map high-resolution
(HR) images to the latent flow-space. Although such techniques circumvent the training instability
met in GANs, strong architectural constraints (e.g. network invertibility) still remain an issue.

Recently another class of methods based on a stochastic diffusion process has been introduced
and demonstrated outstanding performance on various tasks that range from unconditional image
generation [26, 55, 60] to image-to-image translation/restoration [39, 61, 78, 20, 60, 15, 76, 59].
DvSR proposed in [78] employs a “predict-and-refine” conditional diffusion method specifically
tailored for the image deblurring task, while SRDiff [39] utilizes features of a pretrained SR model
for conditional super-resolved image generation. Further, recent works in [76, 80] have considered
several IR tasks (e.g. inpainting, super-resolution, colorization, etc.). In conclusion, their ability to
capture complex statistics of the visual world, makes DPMs a very attractive solution that is worth
being further investigated.

3 Proposed Conditional Diffusion Model

3.1 Background

Denoising Diffusion Probabilistic Models (DDPMs) [26, 65] are special cases of Hierarchical
Markovian Variational Autoencoders where the dimension of the latent variables matches the
dimension of the data. Starting with a sample x0∈RN , the encoding sequence {xt}Tt=0 traverses the
latent space with a diffusion process defined by a Gaussian transition probability:

q (xt|xt−1) ≡ N
(
xt;
√

1− βtxt−1, βtIN

)
. (1)

The sequence 0 < β1, β2, . . . , βT < 1 that appears in eq. (1) defines the noise scheduling for the
forward process in such a way so that the latent variable at the final timestep T approximates the
standard Gaussian: xT ∼ N (xT ;0, IN ). Based on this diffusion process, it is possible to express
the transition probability directly from x0 to xt in closed form as:

q (xt|x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) IN

)
, (2)

where αt ≡ 1− βt and ᾱt ≡
∏t

s=1 αs.

The reverse process is enabled by the posterior distribution which is represented in the form:

p (xt−1|xt,x0) = N
(
xt−1;µt (xt,x0) , σ

2
t IN

)
, (3)

where µt (xt,x0) ≡
√
ᾱt−1βt

1−ᾱt
x0+

√
αt(1−ᾱt−1)

1−ᾱt
xt and σ2

t ≡ 1−ᾱt−1

1−ᾱt
βt. DDPMs aim to approximate

its mean by the quantity µθ (xt, t), which is learned from training data, and then utilize eq. (3) to
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perform sampling. There are different possible parameterizations of µt (xt,x0), which accordingly
lead to different interpretations for the transition mean [48]. In this work, we pursue the one based on
the score function ∇ log p (xt), which reads as:

µt (xt,x0) =
xt + (1− αt)∇ log p (xt)√

αt
. (4)

In this case, the reverse process defined in eq. (3) can be considered as sampling via Annealed
Langevin Dynamics, in which the score function is approximated by the quantity sθ (xt, t) learned
via denoising score matching [28, 72].

3.2 Conditional Score Matching
The diffusion models described above do not take into account the dependence of the sampled data
on their degraded observations y ∈RM , when we are dealing with IR problems. Fortunately, the
score-based models can be extended to accommodate conditional sampling by replacing the score
function in eq. (4) with a conditional score function ∇xt log p (xt|y). For non-blind IR problems, a
popular approach is to decompose the conditional score function into a score function ∇ log p (xt)
and a log-likelihood gradient term ∇xt

log p (y|xt) [54, 67]. This last term is directly dependent on
the image formation model, which unfortunately is unknown for blind IR tasks. Therefore, most of the
existing works [39, 59, 60] aim instead to learn the primal conditional score function ∇xt

log p (xt|y)
via ad-hoc conditional denoising score matching. In this work, we also utilize the primal conditional
score function, but we rely on its explicit form as given in the following lemma, whose proof is
provided in the appendix B.
Lemma 3.1. Let y∈RM , x0∈RN ∼ p (x0|y), and xt∈RN , ᾱt∈R are defined as in eq. (2). Then,
the conditional score function is computed as:

∇xt
log p (xt|y) =

√
ᾱt E [x0|y,xt]− xt

1− ᾱt
. (5)

The above result implies that the conditional score function can be approximated by utilizing a trained
joint reconstruction and denoising model. Specifically, if the augmented variable zt =

[
yT xT

t

]T
represents the union of the degraded data y and the noisy data xt, then the conditional expected value
E [x0|zt] corresponds to the reconstructed underlying image x0 from the measurements zt. A joint
reconstruction model ϕ

θ
(y,xt, t) can be trained by the minimization of the empirical expected pixel

mean-squared error (MSE) across the samples from the training dataset D (x0,y,xt, t):
min
θ

Ex0,xt,y∼D∥ϕθ (y,xt, t)− x0∥22 = min
θ

∑
i

∥ϕθ

(
yi,xi

t, t
)
− xi

0∥22. (6)

The optimal solution is the conditional expectation ϕMSE
θ

(y,xt, t) = E [x0|y,xt], and, thus, such
a trained model can be substituted in eq. (5). This amounts to approximating the conditional score
function ∇xt

log p (xt|y) with scθ (y,xt, t) ≡
√
ᾱtϕθ

(y,xt,t)−xt

1−ᾱt
.

3.3 Proposed Network Architecture
Our objective is to parameterize the function ϕ

θ
(y,xt, t) in a form of a neural network (CNN) and

design a specific architecture of this network. The absence of explicit knowledge about the formation
model x0 → y requires the network to learn it implicitly from training data. Such an approach
generally results in over-fitting, meaning that the trained model can only be employed for the task it
was originally trained for [39, 78]. To overcome this problem, we initially build on the hypothesis
that the conditional expectation E [x0|y,xt] related to the conditional score function in eq. (5), can
be approximated by a function of two easier to compute conditional expectations, that is

E [x0|y,xt] ≈ f (E [x0|y] ,E [x0|xt]) . (7)

Based on such an approximation, it is now possible to learn a single unconditional generative
denoising model that can be applied in different reconstruction problems. Further, we note that
despite the absence of a good approximation of the likelihood term, E [x0|y], various task-specific
networks trained with a fidelity objective are readily available in the literature. Indeed, using a
similar reasoning as the one provided for eq. (6), such reconstruction networks can output a good
approximation of the quantity E [x0|y]. This finally motivates us to express the joint reconstruction
and denoising network ϕ

θ
(y,xt, t) into three components (see Figure 1). Specifically, our network
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can be described as ϕF
θF

(
ϕIR

θIR
(y) ,ϕD

θD
(x̃t, σ̃t) , t

)
, where x̃t ≡ xt√

ᾱt
∼ N

(
x0, σ̃

2
t IN

)
is the

noisy version of x0 with noise variance σ̃2
t ≡ 1−ᾱt

ᾱt
according to eq. (2), and the sub-modules

ϕD
θD

,ϕIR
θIR

,ϕF
θF

are defined next.

IR network ϕIR
θIR

(y), which is learned in a supervised manner to predict E [x0|y]. Specifically, we
employ the BSRT-Small [50] for burst JDD-SR, FFTformer [34] for dynamic scene deblurring, and
SwinIR [42] for SISR. We do not train these networks but use their publicly available trained weights.
Denoising network ϕD

θD
(x̃t, σ̃t), which is learned in a supervised manner to predict E [x0|xt] by

denoising x̃t. Specifically, we employ a smaller version of MIRNet [81], which we call MIRNet-S.
It is obtained by reducing the amount of RRG and MRB blocks from the original architecture to
three and one, respectively. We refer to the original paper [81] for the detailed description of the
blocks structure, as we use them without any modifications. Once trained, this network is reused
for all considered reconstruction problems. We note that we our motivation for utilizing a smaller
version of MIRNet as a Denoising module, is to approximately match the number of parameters and
the computational complexity of the networks used in our framework with those of the alternative
methods under study. This way we can ensure a fair evaluation and comparison among competing
methods. Such strategy has allowed us to achieve direct performance comparisons under similar
conditions.
Fusion network ϕF

θF

(
xIR
0 ,xD

0 , t
)
, which predicts the conditional expectation E [x0|y,xt]. This

module refines and combines the predictions of the previous two networks and is the only one
that needs to be trained for each specific IR task. The fusion network accepts as inputs the image
estimates xIR

0 ,xD
0 and a timestep t. Its architecture consists of two branches. The first one involves

a convolution layer with nf output channels followed by a single dense block [27] without batch
normalization. Its purpose is to independently encode both input images into the corresponding
features f1,f2 with nf channels each. The second branch encodes the timestep t into a vector
of weights w ∈ (0, 1)

nf using the sinusoidal positional encoding [71], followed by a two layer
perceptron and a sigmoid function as the final activation. The features f1,f2 and the weights w are
then passed to the Convex Combination Channel Attention (3CA) layer, which performs the per-
channel aggregation of input features as a convex combination of the form: w ⊙ f1 + (1−w)⊙ f2.
The output of this layer is decoded by two consequent dense blocks with nf channels each, followed
by a convolution layer which produces the final output E [x0|y,xt]. This proposed architecture
results in a significantly smaller network size than those of the Denoising and IR modules. Thus
we can train the fusion network fast and by using only a small amount of problem-specific training
data. While we explored several basic fusion architectures, we did not delve into extensive research
to ascertain the optimal design. Our proposed fusion module serves as a proof of concept, validating
our framework and demonstrating its potential for performance enhancement. A comprehensive
investigation into optimal fusion architectures remains a promising area for future research.
Such a modular overall architecture allows us to capitalize on the existing SOTA non-blind denoising
and blind IR networks, while it also allows us to easily replace any of these networks when better ones
become available in the future. As we describe next, another important advantage of our proposed
pipeline, is that it allows us to achieve a significant acceleration for the sampling process without
incurring any loss of reconstruction quality.

3.4 Proposed Accelerated Sampling
According to eq. (3), our conditional denoiser should be evaluated for all timesteps t = T, ..., 0,
which leads to a total of T NFEs. We note that by construction, for the forward process it holds that
xT ∼ N (0, IN ). This means that in the beginning of sampling, the latent variable xT does not
contain any information about x0. It is also reasonable to expect that a similar lack of information
about x0 exists for a number of steps prior to T . Specifically, for those steps we expect that the
quantity E [x0|y,xt] is heavily influenced by E [x0|y], while the contribution of E [x0|xt] is not
significant enough. A theoretical justification for this argument is provided in appendix C. Based
on the above reasoning, we select a timestep τ such that for the first T − τ reverse steps we use the
following approximation: E [x0|y,xt] ≈ E [x0|y] = ϕIR

θIR
(y). This is achieved by disabling the

lower branch of our proposed conditional score matching network, namely the Denoising ϕD
θD

(x̃t, σ̃t)

and Fusion ϕF
θF

(
xIR
0 ,xD

0

)
modules (Figure 1). Our strategy can be further supported by the recent

study in [12], where it has been demonstrated that the image sampling via DPMs could be divided
into stages depending on the reverse process timesteps. In this spirit we activate the Denoising and
Fusion modules at a timestep τ that is selected experimentally for the particular IR task of interest.
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Figure 2: Forward and reverse diffusion process. Blue
solid arrows: transitions at the forward pass with
sampling distribution from eq. (1). Dashed arrow:
cumulative transition probability from eq. (2). Black
solid arrows: transitions at the backward pass with
the sampling distribution from eq. (3). Red solid
arrow: closed-form cumulative transition probability
from eq. (8) representing our accelerated sampling.

Table 1: Performance evaluation on the task of Burst
JDD-SR. We highlight the overall best for each
metric.

Methods PSNR↑ SSIM↑ LPIPS↓ TOPIQ∆↓ NFE ↓ Params↓
Target ∞ 1 0 0 N/A N/A
DBSR 31.98 0.891 0.198 0.10 N/A 13.0M
DeepRep 34.66 0.927 0.136 0.07 N/A 12.1M
EBSR 36.05 0.940 0.111 0.15 N/A 26.0M
BIPNet 34.86 0.934 0.112 0.03 N/A 6.7M
BSRT-Small 35.91 0.940 0.109 0.12 N/A 4.9M
BSRT-Large 36.98 0.947 0.095 0.16 N/A 20.7M

Ours 35.53 0.933 0.084 0.02 6 21.6M

Our results clearly indicate that the reconstruction result is going to be exactly the same whether we
utilize the multi-step reverse diffusion process or the proposed one-step process that is described
in Lemma 3.2. Indeed, since the quantity E [x0|y] is predicted by the IR network, which does not
depend on the reverse diffusion parameters, ϕIR

θIR
(y) needs to be evaluated only once and its output

can be re-used throughout the whole iterative sampling procedure. Expanding more on this idea,
we show in Lemma 3.2 that it is possible to omit entirely the first T − τ reverse diffusion steps and
instead perform a single step directly from T to τ with a procedure very similar to the one obtained
for the diffusion process in eq. (2) from eq. (1). We provide the derivation in appendix D.
Lemma 3.2. The transition probability defined in eq. (3) for a single reverse step, can be extended to
k reverse steps starting from xt as:

p(xt−k|xt,x0) = N
(
xt−k;µt,k (xt,x0) , σ

2
t,kIN

)
, (8)

where

µt,k (xt,x0) =

k−1∑
i=0

Γt−k+1
t−i−1 γt−ix0 + Γt−k+1

t xt and σ2
t,k =

k−1∑
i=0

(
Γt−k+1
t−i−1

)2
σ2
t−i. (9)

In the above equations we make use of the following notation:

γt =

√
ᾱt−1βt

1− ᾱt
and Γj

i ≡

{√∏i
n=j αn

1−ᾱj−1

1−ᾱi
for i ≥ j

1 for i < j
(10)

Since for the first T − τ steps x0 is approximated by the quantity E [x0|y], which is independent of
the timestep t, we utilize eq. (8) to directly sample xτ as

xτ ∼ p (xτ |xT ,E [x0|y]) = N
(
xτ ;µT,T−τ (xT ,E [x0|y]) , σ2

T,T−τI
)
. (11)

This allows us to reduce the NFEs from T +1 to τ+1, meaning that the required evaluations of
Denoising + Fusion networks is reduced from T to τ . In both cases, we additionally count a single
evaluation of the IR network. We depict our acceleration strategy with a red arrow in Figure 2. Finally,
in practice we use τ = T

200 for burst JDD-SR and dynamic scene deblurring, and τ = T
4 for SISR,

effectively reducing the NFEs by two orders of magnitude and a factor of four, respectively.
The proposed acceleration procedure can be also interpreted as starting the sampling from step τ of
the latent space using a non-standard Gaussian distribution as defined in eq. (11), instead of starting
from step T and using a standard Gaussian sample xT ∼ N (0, IN ). We note, that a similar idea
was explored in [13, 52], where it was proposed to start the sampling from an observation that has
been passed through a predefined number of forward diffusion steps. In our case the starting point for
sampling is obtained via the approximated reverse process, which as a consequence of Lemma 3.2
does not alter the final reconstruction result. In another words, if we approximate x0 with E [x0|y],
then the reconstruction result will be the same both for the multi-step reverse diffusion process and
the proposed one-step process. Moreover, it is easy to show that our strategy generalizes the one
proposed in [13, 52], as it leads to the same starting point if we make the following specific choices:
xT ∼ N (

√
ᾱTE [x0|y] , (1− ᾱT ) I) and σ2

t = 1−ᾱt−1

1−ᾱt
βt. In practice ᾱT ≈ 0, so the first condition
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holds almost exactly. The second condition represents the particular choice of the noise variance used
in the reverse process, with several existing parametrizations [26, 55]. Our method is compatible
with all of them and leads to different distributions for the starting point. In all our experiments
we use the parametrization σ2

t = βt from [26]. More detailed conceptual and technical differences
along with experimental results are provided in appendix E. Furthermore, our acceleration strategy is
complimentary to other sampling acceleration techniques [66, 31]. To demonstrate this, we utilize
the DDIM [66] sampling to further reduce the NFEs by a factor of five for the SISR task. As a result,
the reverse diffusion process used for this problem requires T

20 + 1 NFEs in total.

4 Experimental Results

We evaluate our method on four public datasets across a range of tasks, namely burst JDD-SR,
dynamic scene deblurring, and SISR. Below we describe our specific architecture and design choices
related to all utilized modules.

Training. Our training procedure consists of two stages. We first employ a diverse, yet small
DF2K (combination of DIV2K [1] and Flickr2K [45]) dataset to train a Denoising Module for
Gaussian denoising in the sRGB domain with input noise levels ranging in [0, 244.3]. These noise
levels corresponds to timesteps in the range of [0, 250] for the diffusion process with T = 1000.
We use the original training procedure of MIRNet [81] to learn the parameters of our MIRNet-S
architecture. At the second stage we train our Fusion Modules with nf = 64 for each IR task and
the corresponding pre-trained off-the-shelf IR network. It is worth noting, that at this stage the
parameters of Denoising and IR modules are kept frozen and only the Fusion Module is trained.
Specifically, we train it for 300k iterations with a learning rate of 10−4 × 0.99 it/1000, batch size
of 128, and crop size of 256× 256. To train our Fusion networks we use datasets that are common
among our main competitors, specifically the ZurichRAW2RGB [29] dataset for burst JDD-SR,
GoPro [53] for dynamic scene deblurring and DIV2K [1] for 4× SISR. For burst JDD-SR the Fusion
network is trained in the sRGB domain. All the networks are trained using the Ascend 910 AI
accelerators [44]. To make our results reproducible, we provide a full description of the training
procedure in appendix H.

Inference. For each IR task we use the procedure described in section 3.4 to obtain the reconstructed
images with T = 1000. To demonstrate the effectiveness of our approach, for each problem of interest
except for burst JDD-SR we need half of the NFEs compared to the diffusion-based competitor
that uses the least number of sampling steps. Specifically, for dynamic scene deblurring we use
τ = 5, resulting in 200× acceleration achieved solely by our proposed sampling strategy. This
amounts to 6 NFEs when counting the additional IR network evaluation performed to skip the first
T − τ = 995 steps using eq. (8). For SISR we select τ = 250, which results in 4× acceleration using
our sampling procedure. In order to demonstrate how it can be complemented by other proposed
acceleration strategies, for the final τ = 250 steps we achieve 5× step reduction by employing
DDIM sampling [66]. The combination of both acceleration strategies results in 20× step reduction
and 51 NFEs overall. Applying the DDIM acceleration technique on top of our proposed one-step
strategy leads to an insignificant quantitative/qualitative difference (see appendix G) compared to
our original scheme. Since for the burst JDD-SR problem no diffusion-based methods have yet been
proposed, we use the same setting as for the dynamic scene deblurring problem, as it requires the
smallest NFEs. In all our experiments we use the linear scheduling of the diffusion process variances
βt ∈

[
2× 10−2, 10−4

]
defined in eq. (1).

Evaluation. For the burst JDD-SR evaluation we use the SyntheticBurst test set [4], consisting
of 300 synthetically pre-generated raw burst sequences. Each sequence contains 14 noisy raw LR
images with handshake motion, whose corresponding targets have a resolution of 320× 320. Since
our networks are trained on sRGB images, the outputs of all methods are converted to the sRGB
space prior to comparison. For dynamic scene deblurring we evaluate on the GoPro test [53] and
HIDE [64] benchmarks, which contain 1111 and 2025 images of 720p resolution, respectively. For
4× SISR we use the DIV2K validation dataset [1] consisting of 100 images of 2K resolution.
For the quantitative evaluation of the reconstruction quality we rely on the widely used fidelity
metrics PSNR and SSIM [77], and the reference-based perceptual metric LPIPS [86]. Moreover, we
also utilize the non-reference image quality assessment (NR-IQA) metric TOPIQ [8] and report the
absolute distance between the output and the target scores, which we indicate as TOPIQ∆.
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Table 2: Performance evaluation on the GoPro and HIDE test sets for dynamic scene deblurring. † indicates that
public implementation is unavailable and the scores are copied from the authors’ paper. We highlight the overall
best for each metric, and the best among perceptual-oriented methods.

Methods GoPro HIDE
NFE ↓ Params ↓

PSNR↑ SSIM↑ LPIPS↓ TOPIQ∆↓ PSNR↑ SSIM↑ LPIPS↓ TOPIQ∆↓
Target ∞ 1 0 0 ∞ 1 0 0 N/A N/A
HINet 32.77 0.960 0.088 0.033 30.33 0.932 0.120 0.044 N/A 88.6M
MPRNet 32.66 0.959 0.089 0.027 30.96 0.939 0.114 0.059 N/A 20.1M
MIMO-UNet+ 32.44 0.957 0.091 0.034 29.99 0.930 0.124 0.028 N/A 16.1M
NAFNet 33.71 0.967 0.078 0.017 31.32 0.943 0.103 0.024 N/A 67.9M
Restormer 32.90 0.961 0.084 0.018 31.20 0.942 0.109 0.048 N/A 26.1M
FFTFormer 34.21 0.969 0.071 0.012 31.62 0.946 0.096 0.006 N/A 16.6M

Perceptual-oriented Methods
DeblurGANv2 29.08 0.918 0.117 0.025 27.51 0.885 0.159 0.065 N/A 60.9M
DvSR† 31.66 0.948 0.059 - 29.77 0.922 0.089 - 500 26.1M
icDPM† 31.19 0.943 0.057 - 29.14 0.910 0.088 - 500 52.0M
InDi† 31.49 0.946 0.058 - - 10 27.7M
Ours 33.72 0.963 0.053 0.011 31.32 0.937 0.087 0.002 6 33.2M

Input: 0.424 HINet: 0.127 Restormer: 0.136 DeblurGANv2: 0.171 InDI: 0.080

Target NAFNet: 0.083 FFTFormer: 0.059 DvSR: 0.072 Ours: 0.059

Figure 3: Visual comparisons on the GoPro test set for the task of dynamic scene deblurring (best viewed by
zooming in). Every output image is accompanied by its LPIPS value.

4.1 Results

Burst JDD-SR. In Table 1 we compare our proposed pipeline with existing methods, namely
DBSR [4], DeepRep [5], and the current SOTA methods, namely BIPNet [17], BSRT-Small [50],
BSRT-Large [50], and EBSR [49]. Our method demonstrates SOTA performance across the perceptual
metrics while maintaining competitive PSNR and SSIM scores compared to existing methods. Thus,
our method reconstructs images that are closer to the target based on the human perception while
maintaining a high level of fidelity. We refer to figures in the appendix M for a qualitative visual
assessment. Furthermore, we notice an improvement in terms of visual quality and perceptual metrics
compared to BSRT-Small, which we use as the IR module of choice in our framework. This indicates
that our approach preserves the fidelity of the IR model outputs, while enhancing their perceptual
quality by running few reverse diffusion steps. It is worth noting that for this case, where a burst of raw
images serves as input, we use the exact same denoising network that was trained on sRGB images
and which we later deploy to all considered single-input IR tasks. This highlights the generalization
ability of our approach not only to different IR problems but also to different input formats. Note that
AFCNet [51], LKR [37], and Burstormer [17] are not included in our comparisons due to the absence
of a publicly available implementation (or trained network parameters). Finally, the comparison with
SOTA EBSR and BSRT shows that our DP-IR reconstructions compares favorably in terms of visual
quality, while not lacking significantly in terms of fidelity.

Dynamic Scene Deblurring. Table 2 show quantitative results on the GoPro [53] and HIDE [64]
datasets, respectively. We compare our approach with the SOTA reconstruction-based methods:
NAFNet [59], FFTFormer [34] and diffusion-based methods: DvSR [78], InDI [15], and icDPM [59].
Our framework outperforms all competing methods across the perceptual metrics and demonstrates
the best perception-distortion (P-D) trade-off among all perceptual-based methods. Moreover, our
DP-IR uses twice less number of reverse steps (NFE=5) compared to the state-of-the-art InDI and still
achieves better perceptual quality (e.g. LPIPS) and is more consistent with the ground-truth (+2.22dB
in PSNR). Despite the fact that our fusion module is trained only on the GoPro dataset, the gains in
perceptual quality do transfer over the HIDE test images, providing SOTA scores for the perceptual
metrics. Also, among perceptual-oriented methods, DP-IR outperforms the closest competitor DvSR

8



Input: 0.341 SwinIR: 0.123 HCFlow: 0.109 ESRGAN: 0.092 InDI: 0.078

Target HAT: 0.128 LDM: 0.140 SRDiff: 0.122 Ours: 0.077

Figure 4: Visual comparisons on the DIV2K validation set for the task of 4× bicubic super-resolution (best
viewed by zooming in). Every output image is accompanied by its LPIPS value.

Table 3: Performance evaluation on the DIV2K
validation set for 4× SISR. We highlight the overall
best for each metric, and the best among perceptual-

oriented methods.
Methods PSNR↑ SSIM↑ LPIPS↓ TOPIQ∆↓ NFE ↓ Params↓
Target ∞ 1 0 0 N/A N/A
SRResNet 29.07 0.824 0.266 0.046 N/A 1.5M
RRDB 29.48 0.834 0.254 0.038 N/A 16.7M
SwinIR 29.63 0.837 0.248 0.030 N/A 11.9M
LIIF 29.30 0.830 0.258 0.046 N/A 22.3M
HAT 29.75 0.840 0.245 0.035 N/A 20.6M

Perceptual-oriented Methods

ESRGAN 26.64 0.758 0.115 0.014 N/A 16.7M
HCFlow 27.02 0.766 0.124 0.021 N/A 23.2M
SwinIR-GAN 24.88 0.734 0.222 0.115 N/A 11.9M
LDM 23.30 0.697 0.218 0.019 100 169.0M
SRDiff 27.14 0.773 0.129 0.008 100 23.6M
InDI 26.45 0.741 0.136 0.009 100 62.3M
IDM 27.35 0.782 0.147 0.008 2000 116.6M
Ours 28.12 0.793 0.140 0.002 51 28.5M

Table 4: Ablation on various denoiser and IR networks
on DIV2K validation for 4× SISR.

Denoiser IR Network PSNR↑ SSIM↑ LPIPS↓ TOPIQ∆↓
Target inf 1 0 0

UDP RRDB 27.93 0.777 0.149 0.006
MIRNet-S RRDB 28.12 0.795 0.150 0.014
MIRNet-S SwinIR 28.12 0.793 0.140 0.002

Table 5: Ablation on various fusion networks on
DIV2K validation for 4× SR task

Fusion Module PSNR↑ SSIM↑ LPIPS↓ Params
TDWA 27.26 0.751 0.266 8385
L-DWT 29.27 0.818 0.233 30.0M
U-Net 28.19 0.785 0.141 31.0M
Proposed Fusion 27.93 0.777 0.149 0.7M

Table 6: Perception-Distortion trade-off on DIV2K
validation for 4× SISR.

Timestep, τ 50 100 150 200 250 300 350

PSNR ↑ 28.77 28.46 28.24 28.06 27.93 27.81 27.71

LPIPS↓ 0.170 0.161 0.155 0.152 0.149 0.147 0.146

by 1.55dB in terms of PSNR. Visual comparisons of our method and the SOTA deblurring models:
NAFNet, FFTFormer, DvSR, and InDI is depicted in Figure 3. From these results we observe that
our model shows a noticeable improvement in perceptual quality. Moreover, we have performed a
computational cost analysis for the diffusion-based models and significantly outperformed existing
methods from ∼2 to 100 times (see appendix F).

Super-Resolution. We compare our method with reconstruction-based [38, 73, 42, 11, 10], GAN-
based [73, 87, 42], NF-based [43] models, and DPMs [60, 39, 15, 20]. Table 3 summarizes the
quantitative results on the DIV2K validation set. Our solution produces the best fidelity scores among
all six perceptual-based methods and the best TOPIQ perceptual metric among all competing methods.
The visual comparison in Figure 4 reveals that our framework produces super-resolved images that
exhibit more refined structures and fine-grained details. Additional examples for all reported IR tasks
are provided in appendix M.

5 Ablation Studies

Modular Approach. One of the main benefits of our framework is its ability to capitalize on the
performance of existing restoration networks at a relatively low additional computational cost. To
showcase this, we conduct an experiment on the task of 4× SISR using two different denoising
architectures, namely UDP [7] and MIRNet-S [81], and two IR architectures, namely RRDB [1] and
SwinIR [42]. UDP is trained with the same settings as MIRNet-S and the fusion module is retrained
for each of the three cases. From Table 4, we observe that the same IR network combined with a
better denoising module, leads to better fidelity (see PSNR, SSIM). A same trend, but for perceptual
metrics is observed if one upgrades the IR module from RRDB to the SwinIR and keeps the same
denoising module. This clearly indicates that one can achieve better results by employing either a
more powerful denoiser or IR module, without the need to fully retrain the entire score estimator as is
the common practice followed in most of the existing methods (e.g. LDM, SRDiff, DvSR, etc. ).

Fusion Strategies. In this study we use the UDP denoiser and the RRDB network from Table 4 and
study several different fusion approaches, namely the Time-dependent Weighted Averaging (TDWA),
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Learnable Discrete Wavelet Transform (L-DWT), our proposed Fusion network, and U-Net with
time embeddings [56]. TDWA consists of sinusoidal positional encoding followed by a three-layer
MLP, which predicts the weights for the timestep t. Those weights are then passed to the 3CA layer
(section 3.3) together with the outputs from the denoiser and IR modules to perform the fusion in the
image space. In contrast, L-DWT directly learns weights for each scale and channel of a 3-level Haar
DWT [24]. L-DWT has only 30 trainable parameters, which needs significantly less training time and
data. Table 5 indicates that, as expected, a more powerful fusion module leads to better perceptual
and reconstruction quality. Overall, we see that the proposed Fusion network shows a better balance
between the reconstruction, visual quality and the computational cost.

Perception-Distortion Trade-off. By varying the timestep τ , when the denoiser and fusion modules
are activated, one can favor the perceptual quality over the reconstruction fidelity (see Table 6). Here,
we use the same UDP denoiser and RRDB as the IR module and experiment on the DIV2K [1]
validation for the task of 4× SISR. Table 6 shows that the denoiser can operate on τ > 250, which
corresponds to a wider noise range than the one the denoiser is initially trained for. Furthermore, we
observe the same perception-distortion trade-off for dynamic scene deblurring task (see Appendix
Table 13)

Limitations Our empirical findings highlight that the optimal selection of τ is intrinsically linked
to the nature of the reconstruction problem, particularly the output quality of the IR Network. While
we have experimentally identified optimal parameters for each test dataset in this study, we posit that
a more refined approach would involve tailoring the acceleration parameters on an individual sample
basis. However, the absence of a dependable methodology for assessing the quality of the IR and
Denoising Networks’ outputs at specific diffusion process timesteps – especially in the absence of
ground truth data – constitutes a considerable challenge. This underscores a compelling avenue for
future inquiry into adaptive optimization of acceleration parameters.

Furthermore, a notable constraint of our approach is its reliance on the efficacy of the employed
Denoising and IR modules. As such, for novel image restoration tasks where a pre-trained IR network
is unavailable, our framework might be inapplicable. Additionally, for imaging modalities (e.g.
medical imaging) lacking a trained score-matching network (denoising module), it is imperative to
either fine-tune an existing module or undertake comprehensive re-training with appropriate image
datasets.

6 Conclusion
We present a modular conditional diffusion probabilistic framework for IR problems along with a
sampling acceleration strategy that achieves a significant speed-up during the inference stage. Our
framework achieves SOTA results both quantitatively and visually on the tasks of burst JDD-SR,
dynamic scene deblurring, and 4× SISR without the need for re-training on a large pool of data and
significant computational cost. This is mainly accomplished by utilizing pretrained models and only
training a relatively small fusion module. While in this work we have not exhaustively considered
all blind IR problems, we hope that our results can serve as a positive indication that the perceptual
quality of the reconstructed outputs can improve significantly at the cost of only several additional
NFEs, making possible a wider adoption of DPMs for IR applications even when there are tight
requirements on computational complexity. Our ablation studies indicate that a variety of pretrained
networks can be used with our method and further improvements on the results can be achieved by
utilizing better denoising, IR, and fusion modules.
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A Conditional DPM Training Requirements

To the best of our knowledge, all diffusion-based approaches that have been proposed in the literature
to deal with image restoration tasks, require the training of far larger conditional backbone networks
(∼10-100M params). This turns out to be significantly more challenging both in terms of necessary
training data and computational resources. To showcase this, we provide an indicative example
below. If we adopt the existing diffusion-based SISR baselines and train them for a completely
different restoration problem, by following the original authors’ training strategies it turns out that
the computational and data requirements are significantly higher than those of our method.

Table 7: Comparison of the proposed approach against existing DPM methods for SISR task in terms of training
dataset requirements and training parameters.

Method Params required Data required
Ours 1x 1x
SRDiff ∼ 34x ∼ 4x
LDM ∼ 240x ∼ 1000x
InDI ∼ 89x ∼ 1x
IDM ∼ 167x ∼ 1x

Based on these data, we can safely state that our strategy provides a reasonable trade-off between the
required training complexity and the competitive performance of our method to a variety of blind
inverse problems.

B Proof of Lemma 3.1

To derive the conditional score function, we first express the conditional probability p (xt|y) as:

p (xt|y) =
∫

p (xt,x0|y) dx0 =

∫
p (xt|y,x0) p (x0|y) dx0 =

∫
q (xt|x0) p (x0|y) dx0,

(12)

where we used the fact that xt is conditionally independent of y and according to eq. (2) it holds
p (xt|y,x0) = q (xt|x0). Differentiating both sides of eq. (12) with respect to (w.r.t.) xt we get:

∇xtp (xt|y) =
∫

p (x0|y)∇xtq (xt|x0) dx0. (13)

Based on the definition of q (xt|x0) in eq. (2), it also holds that: ∇xt
q (xt|x0) =

−q (xt|x0)
xt−

√
ᾱtx0

1−ᾱt
. Substituting this result back to eq. (13), we get:

∇xt
p (xt|y) =

√
ᾱt

1− ᾱt

∫
x0q (xt|x0) p (x0|y) dx0 −

xt

1− ᾱt

p(xt|y)︷ ︸︸ ︷∫
q (xt|x0) p (x0|y) dx0 . (14)

Next, if we divide both sides in eq. (13) with p (xt|y) and use that ∇xt
log p (xt|y) =

∇xtp(xt|y)
p(xt|y) ,

we get:

∇xt log p (xt|y) =
1

(1− ᾱt)

(√
ᾱt

∫
x0

q (xt|x0) p (x0|y)
p (xt|y)

dx0 − xt

)
. (15)

We can further express the integral in eq. (15) as follows:∫
x0

q (xt|x0) p (x0|y)
p (xt|y)

dx0 =

∫
x0

q (xt|x0) p (x0|y) p (y)
p (xt|y) p (y)

dx0 =

∫
x0

p (xt|x0,y) p (x0,y)

p (xt,y)
dx0

=

∫
x0

p (xt,x0,y)

p (xt,y)
dx0 =

∫
x0p (x0|y,xt) dx0 = E [x0|y,xt] .

Substituting this result in eq. (15) finally leads us to the result of the lemma: ∇xt
p (xt|y) =√

ᾱt E[x0|y,xt]−xt

1−ᾱt
.
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C Theoretical Justification of the Conditional Expectation Approximation

By construction, for the forward process from eq. (1) it holds that xT ∼ N (0, IN ) when T → ∞,
which means that in the beginning of reverse sampling, the latent variable xT does not contain
any information about x0. Below we provide a theoretical result that can serve as an indication
that during the sampling process and up to some timestep τ , we can use an approximation of
E [x0|y,xt] ≈ E [x0|y], given that the contribution of E [x0|xt] is not significant enough. This is
achieved by disabling the lower branch of our proposed conditional score matching network, which
includes the Denoising ϕD

θD
(x̃t, σ̃t) and Fusion ϕF

θF

(
xIR
0 ,xD

0

)
modules (Figure 1). A formal

theoretical analysis is available under the following simplifications:

• The observation model is linear: y = Ax0 + n.
• Denoising Network is an identity transformation: ϕD

θD
(x̃t, σ̃t) ≡ x̃t.

• Image Restoration Network is a back-projection: ϕIR
θIR

(y) ≡ ATy

• Fusion Network is a convex combination in a spatial domain: ϕF
θF

(
xIR
0 ,xD

0 , t
)
≡ wxIR

0 +

(1− w)xD
0 .

• Diffusion process approaches the continuous-time regime: T → ∞.

Our theoretical result is provided in the form of the following proposition.
Proposition C.1. Let y ∈ RM be the measurements obtained according to the following observation
model: y = Ax0 + n, where A ∈ RM×N , ∥A∥2 ≤ 1 and n ∼ N (0, σyIM ) , σy ≤ 1. Then,
for any given A,σy,x0 ∈ RN , and any fixed w ∈ (0, 1), there exists a timestep τ , such that for
all t > τ the back-projected signal ATy approximates x0 better than the convex combination
wATy + (1− w)x̃t in the following sense:

Ey|x0
∥x0 −ATy∥22 ≤ Ey,xt|x0

∥x0 −
(
wATy + (1− w)x̃t

)
∥22, (16)

where x̃t ∼ N
(
x0, σ̃

2
t IN

)
, σ̃2

t ≡ 1−ᾱt

ᾱt
is defined as a noisy version of x0 within the diffusion

process described by eqs. (1) and (2) with T → ∞.

For our proof we use the following intermediate result.
Lemma C.2. Let σ ∈ Rn

+, x ∼ p (x) ≡ N
(
0,diag

(
σ2
))

, B ∈ Rn×n. Then the following holds:∫
xTBx p (x) dx = tr

(
diag

(
σ2
)
B
)
. (17)

Proof. We first note that since Cov (x) = diag
(
σ2
)
, the random variables xi are independent,

p (x) =
∏n

i=1 p (xi), and distributed as xi ∼ p (xi) ≡ N
(
0,σ2

i

)
. We further note that it holds:

xTBx =

n∑
i,j=1

xixjB
j
i =

n∑
i,j=1
i ̸=j

xixjB
j
i +

n∑
i=1

x2
iB

i
i . (18)

Using these results, the derivation of eq. (17) is straightforward:∫
xTBx p (x) dx =

n∑
i,j=1
i ̸=j

(
Bj

i

∫
xip (xi) dxi

∫
xjp (xj) dxj

n∏
k=1
k ̸=i,j

∫
p (xk) dxk

)
(19)

+

n∑
i=1

Bi
i

∫
x2
i p (xi) dxi

n∏
k=1
k ̸=i

∫
p (xk) dxk =

n∑
i=1

Bi
iσ

2
i = tr

(
diag

(
σ2
)
B
)
,

since for all i = 1, n, it holds that
∫
p (xi) dxi = 1,

∫
xip (xi) dxi = 0,

∫
x2
i p (xi) dxi = σ2

i .

We start our proof from computing the left part of the inequality in eq. (16). Since y = Ax0 + n,
where n ∼ N (0, σyIM ), we have that: p (y|x0) = N

(
Ax0, σ

2
yIM

)
. This allows us to write:

Ey|x0
∥x0 −ATy∥22 =

∫
∥x0 −ATy∥22 p (y|x0) dy =

∫
∥x0 −ATy∥22

exp
(
−∥y−Ax0∥2

2

2σ2
y

)
(√

2πσy

)M dy ≡ I1.
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We now apply a change of variables from y to n = y −Ax0, for which dn = dy. Using the fact
that 1

(
√
2πσy)

M exp
(
−∥n∥2

2

2σ2
y

)
= p (n) = N

(
0, σ2

yIM
)
, we have that:

I1 =

∫
∥x0 −ATAx0 −ATn∥22 p (n) dn. (20)

Next, we denote ∆x0 ≡ x0 −ATAx0 =
(
IN −ATA

)
x0 and expand the norm inside the integral

to get:

I1 =∆xT
0∆x0

∫
p (n) dn− 2∆xT

0A
T

∫
np (n) dn+

∫
nTAATnp (n) dn.

Since p (n) = N
(
0, σ2

yIM
)

is a zero-mean Gaussian probability distribution, it holds that∫
p (n) dn = 1,

∫
np (n) dn = 0, and we get:

I1 = ∆xT
0∆x0 +

∫
nTAATnp (n) dn = ∆xT

0∆x0 + tr
(
σ2
yAAT

)
= ∆xT

0∆x0 + σ2
y∥A∥2F ,

(21)

where we have used the result of lemma C.2. Substituting back the value of ∆x0, we end up with:

Ey|x0
∥x0 −ATy∥22 = ∥

(
IN −ATA

)
x0∥22 + σ2

y∥A∥2F . (22)

Next, we compute the right part of the inequality in eq. (16). We first note, that the quantities
y = Ax0 + n and xt =

√
ᾱtx0 + ϵt are independent when conditioned on x0, as n ∼

N
(
0, σ2

yIM
)

and ϵt ∼ N (0, (1− ᾱt) IN ) are independent random noise vectors. This allows
us to write: p (y,xt|x0) = p (y|x0) p (xt|x0). Using these results, the expectation Ey,xt|x0

∥x0 −(
wATy + (1− w)x̃t

)
∥22 can be written as:

Ey,xt|x0
∥x0 −

(
wATy + (1− w)x̃t

)
∥22 (23)

=I2 ≡
∫
∥x0 −

(
wATy + (1− w)

xt√
ᾱt

)
∥22 p (y|x0) p (xt|x0) dydxt.

Similarly to eq. (20), we apply the following change of integration variables: n = y−Ax0, dy = dn

and ϵt = xt −
√
ᾱtx0, dxt = dϵt. We additionally note, that x0 −

(
wATy + (1−w)√

ᾱt
xt

)
=

x0 − wATAx0 − (1− w)x0 − wATn − 1−w√
ᾱt

ϵt, and that x0 − wATAx0 − (1− w)x0 =

w
(
IN −ATA

)
x0 = w∆x0. As a result, the integral I2 takes the form:

I2 =

∫
∥w∆x0 − wATn− 1− w√

ᾱt
ϵt∥22 p (n) p (ϵt) dndϵt. (24)

Now we use the augmented variable

ϵ =
[
nT ϵTt

]T ∼ p (n) p (ϵt) = N
(
0,diag

([
σ2
y1

T
M (1− ᾱt)1

T
N

]T))
= p (ϵ) ,

where with 1i we denote the vector of dimension i filled with ones. We also denote with W =[
wAT 1−w√

ᾱt
IN
]
, as in this case, Wϵ = wATn+ 1−w√

ᾱt
ϵt. With all these modifications, the integral

I2 takes the form:

I2 =

∫
∥w∆x0 −Wϵ∥22 p (ϵ) dϵ = w2∆xT

0x0

∫
p (ϵ) dϵ− 2w∆xT

0W

∫
ϵ p (ϵ) dϵ (25)

+

∫
ϵTW TWϵ p (ϵ) dϵ = w2∆xT

0∆x0 + tr
(
diag

([
σ2
y1

T
M (1− ᾱt)1

T
N

]T)
W TW

)
.

Further, we define D = diag
([

σ2
y1

T
M (1− ᾱt)1

T
N

]T)
and compute the respective trace in eq. (25)

as:

tr
(
DW TW

)
= tr

(
WDW T

)
tr

((
WD1/2

)(
WD1/2

)T)
∥WD1/2∥2F

= w2σ2
y∥A∥2F + (1− w)

2 1− ᾱt

ᾱt
∥IN∥2F = w2σ2

y∥A∥2F + (1− w)
2 1− ᾱt

ᾱt
N.
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Based on the above, the integral I2 takes the form:

I2 = w2∆xT
0∆x0 + w2σ2

y∥A∥2F + (1− w)
2 1− ᾱt

ᾱt
= w2I1 +

(
1− w2

) 1− ᾱt

ᾱt
N. (26)

As a result of our derivations, the inequality from Proposition C.1 takes the form:

Ey|x0
∥x0 −ATy∥22 ≤ w2 Ey|x0

∥x0 −ATy∥22 + (1− w)
2 1− ᾱt

ᾱt
N. (27)

The quantity Ey|x0
∥x0 −ATy∥22 has finite value, as it can be upper bounded as follows:

Ey|x0
∥x0 −ATy∥22 = ∥

(
IN −ATA

)
x0∥22 + σ2

y∥A∥2F
≤∥IN −ATA∥22∥x0∥22 + σ2

y min (M,N) ∥A∥22
≤
(
∥IN∥2 + ∥A∥22

)2
N +min (M,N) ∥A∥22 ≤ 4N +min (M,N) .

In the above chain of inequalities we have used the submultiplicative property and triangle inequality
for ℓ2 matrix norms together with the norms equivalence inequality for ℓ2 and Frobenius matrix
norms, where we also upper-bound the rank of matrix A with its minimal dimension. Additionally,
we have used the assumptions of Proposition C.1, specifically σy ≤ 1 and ∥A∥ ≤ 1.

As to the second term of the rhs of eq. (27), we note that since limt→∞ ᾱt = 0 by design of the
diffusion process, it holds that limt→T

1−ᾱt

ᾱt
= limt→∞

1−ᾱt

ᾱt
= ∞. This formally translates to the

following condition:

∀ϵ > 0 ∃τ (ϵ) ∈ N : ∀t > τ ⇒ 1− ᾱt

ᾱt
≥ ϵ. (28)

Selection of ϵ = 1+w
1−w (4 + min (M/N, 1)) ≥ 1+w

1−w

Ey|x0
∥x0−ATy∥2

2

N > 0 into eq. (28) translates it to

∀w ∈ (0, 1)∃τ (w) ∈ N : ∀t > τ ⇒ 1− ᾱt

ᾱt
≥
(
1− w2

)
Ey|x0

∥x0 −ATy∥22
(1− w)

2
N

, (29)

which concludes the proof given the equivalence of eq. (27) and eq. (16).

D Proof of Lemma 3.2

We prove the correctness of the transition kernel formula by induction on k.

Base case. First, we focus on the case k = 1, for which eq. (8) should match the transition
probability from eq. (3). Indeed, from eq. (10), it holds:

k−1∑
i=0

Γt−k+1
t−i−1 γt−i = Γt

t−1γt = γt =

√
ᾱt−1βt

1− ᾱt
, (30)

Γt−k+1
t = Γt

t =

√
αt (1− ᾱt−1)

1− ᾱt
, (31)

k−1∑
i=0

(
Γt−k+1
t−i−1

)2
σ2
t−i =

(
Γt
t−1

)2
σ2
t = σ2

t . (32)

Substituting these results in eq. (9) and then in eq. (8) leads us to eq. (3).

Induction Step. Let the induction hypothesis from eq. (8) to be valid for some k, such that
t− k ∈ (0, T ]. Then, we need to show that eq. (8) is also valid for k + 1.

We note, that from eq. (3) we have xt−k−1 = µt−k (xt−k,x0) + σt−kϵ1, where ϵ1 ∼ N (0, IN ).
At the same time, since eq. (8) is valid for k by the induction hypothesis, we have that xt−k =
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µt,k (xt,x0) + σt,kϵ2, where ϵ2 ∼ N (0, IN ). Combining these two equations with eqs. (3), (8)
and (9), we get:

xt−k−1 =

√
ᾱt−k−1βt−k

1− ᾱt−k
x0 +

√
αt−k (1− ᾱt−k−1)

1− ᾱt−k
xt−k + σt−kϵ1 (33)

= x0

(√
αt−k (1− ᾱt−k−1)

1− ᾱt−k

k−1∑
i=0

Γt−k+1
t−i−1 γt−i +

√
ᾱt−k−1βt−k

1− ᾱt−k

)
+ xt

√
αt−k (1− ᾱt−k−1)

1− ᾱt−k
Γt−k+1
t

+

√√√√αt−k (1− ᾱt−k−1)
2

(1− ᾱt−k)
2

k−1∑
i=0

(
Γt−k+1
t−i−1

)2
σ2
t−iϵ2 + σt−kϵ1.

To move further, we first prove that ∀i, j ∈ N+, i ≥ j, Γj
i from eq. (10) can be decomposed as:

Γj
i = Γj

jΓ
j+1
i . This is easy to show by direct substitution, that is:

Γj
jΓ

j+1
i =

√
αj

1− ᾱj−1

1− ᾱj

√√√√ i∏
n=j+1

αn
1− ᾱj

1− ᾱi

√√√√αj

i∏
n=j+1

αn
1− ᾱj−1

1− ᾱi
=

√√√√ i∏
n=j

αn
1− ᾱj−1

1− ᾱi
= Γj

i .

(34)

We additionally note that it holds:
√
αt−k (1− ᾱt−k−1)

1− ᾱt−k
= Γt−k

t−k, (35)
√
ᾱt−k−1βt−k

1− ᾱt−k
= γt−k = Γt−k

t−k−1γt−k (36)

σ2
t−k =

(
Γt−k
t−k−1

)2
σ2
t−k, (37)

as Γt−k
t−k−1 = 1, since t− k − 1 < t− k.

First, we compute the multiplier of xt in eq. (33). Since t ≥ t− k+1 ∀k ∈ N+, we can use eq. (34)
to derive the following result:

√
αt−k (1− ᾱt−k−1)

1− ᾱt−k
Γt−k+1
t = Γt−k

t−kΓ
t−k+1
t = Γt−k

t , (38)

where we have additionally utilized the result of eq. (35). Next, we simplify the multiplier of x0

from eq. (33). We divide the sum inside this multiplier into two parts:

k−1∑
i=0

Γt−k+1
t−i−1 γt−i =

k−2∑
i=0

Γt−k+1
t−i−1 γt−i + Γt−k+1

t−k γt−k+1 =

k−2∑
i=0

Γt−k+1
t−i−1 γt−i + γt−k+1, (39)

where to separate the γt−k+1 term we have used the lower case of Γj
i from eq. (10). Here we

additionally note, that if k = 1, then the remaining sum
∑k−2

i=0 Γt−k+1
t−i−1 becomes zero. If k > 1, then

for all the terms of this sum it holds t− i−1 ≥ t−k+1. Combining this with the results of eqs. (34)
to (36), we can compute the multiplier of x0 from eq. (33) as:

√
αt−k (1− ᾱt−k−1)

1− ᾱt−k

k−1∑
i=0

Γt−k+1
t−i−1 γt−i +

√
ᾱt−k−1βt−k

1− ᾱt−k
=

k−2∑
i=0

Γt−k
t−kΓ

t−k+1
t−i−1 γt−i + Γt−k

t−kγt−k+1

+Γt−k
t−k−1γt−k =

k−2∑
i=0

Γt−k
t−i−1γt−i +

[
Γt−k
t−i−1γt−i

]
i=k−1

+
[
Γt−k
t−i−1γt−i

]
i=k

=

k∑
i=0

Γt−k
t−i−1γt−i.

(40)

To simplify the remaining part of eq. (33), which involves the terms with the Gaussian noise vectors
ϵ1 and ϵ2, we utilize the fact that ∀a, b ≥ 0, ϵ1, ϵ2 ∼ N (0, IN ) it holds:

√
aϵ1 +

√
bϵ2 ∼
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N (0, (a+ b) IN ). Based on this, we can write:√√√√αt−k (1− ᾱt−k−1)
2

(1− ᾱt−k)
2

k−1∑
i=0

(
Γt−k+1
t−i−1

)2
σ2
t−iϵ2 + σt−kϵ1 ∼ N

(
0, σ̂2

t,k+1I
)
, (41)

where, if we additionally use the results of eqs. (35) and (37), we have that:

σ̂2
t,k+1 =

(
Γt−k
t−k

)2 k−1∑
i=0

(
Γt−k+1
t−i−1

)2
σ2
t−i +

(
Γt−k
t−k−1

)2
σ2
t−k. (42)

Now, we use the same strategy as in eq. (39) and eq. (40) to simplify this expression:

σ̂2
t,k+1 =

k−2∑
i=0

(
Γt−k
t−kΓ

t−k+1
t−i−1

)2
σ2
t−i +

(
Γt−k
t−k

)2
σ2
t−k+1 +

(
Γt−k
t−k−1

)2
σ2
t−k =

k∑
i=0

(
Γt−k
t−i−1

)2
σ2
t−i.

(43)

From eqs. (38), (40) and (43), we get:

xt−k−1 ∼ N
(
µ̂t,k+1 (xt,x0) , σ̂

2
t,k+1IN

)
, (44)

where

µ̂t,k+1 (xt,x0) =

k∑
i=0

Γt−k
t−i−1γt−ix0 + Γt−k

t xt, (45)

σ̂2
t,k+1 =

k∑
i=0

(
Γt−k
t−i−1

)2
σ2
t−i. (46)

By direct substitution of k = k + 1 into eq. (9) it is easy to show that

µ̂t,k+1 (xt,x0) = µt,k+1 (xt,x0) ,

σ̂2
t,k+1 = σ2

t,k+1,

which implies that the induction hypothesis from eq. (8) is valid for k+1. This completes the proof of
the induction step and combined with with the base case it proves by induction the validity of eq. (8)
for every feasible k.

E Comparative Analysis: Proposed Accelerated Sampling and Prior work

E.1 Conceptual Difference

Using our notation, both [13] and [52] propose to start the reverse process from a timestep τ and a
noisy version xτ of the initial estimate of x0, which we denote by E [x0|y]. The main conceptual
difference of our approach is that in these cases xτ is obtained using the forward diffusion process,
while in our case we end up in xτ using the reverse process. The initial motivation for our proposed
approach is also different. In particular, while we motivate our procedure from a probabilistic
viewpoint and propose to approximate the conditional score function as a composition of three
functions, the authors in [13] base their strategy on the contrastive property of reverse SDEs, while
the authors in [52] use the re-projection of unrealistic images to the manifold of natural images in
the noisy latent space.

E.2 Technical Difference

Given that in our work we consider the standard DDPM realization of diffusion process (VP-SDE),
we will explain the existing differences under this scenario. The authors of [13] and [52] propose to
parameterize xτ as

xτ =
√
ᾱτE [x0|y] +

√
1− ᾱτz, z ∼ N (0, I) .
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In contrast, in our case by using Eq.(10) we adopt the following parametrization:

xτ =

T−τ−1∑
i=0

Γτ+1
T−i−1γT−iE [x0|y] + Γτ+1

T xT +

√√√√T−τ−1∑
i=0

(
Γτ+1
T−i−1

)2
σ2
T−iz,

where z,xT ∼ N (0, I) .

Thus, our parametrization is more general and it is possible to show by induction, that under certain
conditions it leads to the exact same xτ as in [13] and [52].

Finally, to experimentally demonstrate that our approach exhibits certain benefits compared to the
ones described in [13] and [52], we conducted additional comparisons for the SISR problem between
the different sampling strategies (see Table 8). From these results it is clear that our proposed strategy
works better in practice and leads to superior results both in terms of fidelity and perceptual quality.

Table 8: Comparison of the proposed acceleration scheme and prior works [13, 52] for the SISR task.
Acceleration Strategy PSNR ↑ SSIM ↑ LPIPS ↓ TOPIQ∆ ↓ NFE ↓
Ours 28.12 0.793 0.140 0.002 51
[13] and [52] 28.05 0.783 0.142 0.016 51

F Computational Cost Analysis

In this section, we calculate the computational cost for each diffusion-based method in terms of
TFLOPs. The input image size for all competing approaches is 720p (1280 x 720).

Table 9: Computational cost of the proposed and existing diffusion-based methods for the Dynamic Scene
Deblurring task with 720p input resolution.

Method TFLOP (equation) TFLOP Total ↓
DvSR [78] 1.2×NFE + 4.8 604.8
icDPM [59] 4.8×NFE + 5.2 2405.2
InDI [15] 4.8×NFE 48.0
Ours 4.3×NFE + 1.9 23.4

The proper way to interpret equations in Table 9 is as follows: TFLOPtotal = x×N + y, where x is
the TFLOP complexity for a single backbone pass within the diffusion process, N is the total number
of neural function evaluations (NFEs) per sampling process, and is the complexity of sub-modules
that have to be run once per image (e.g. Image Restoration network in our method, pre-processing
net for icDPM [59] and DvSR [78]). Based on these results, we observe that the computational cost
of our method is significantly lower compared to our diffusion-based competitors.

G Proposed one-step acceleration with/without DDIM

Utilizing our one-step acceleration, we bypass steps from t = T to t = τ , allowing us to either
straightforwardly execute the remaining t = τ steps or apply any existing acceleration strategies.
To demonstrate that our one-step acceleration is complementary to existing accelerated sampling
strategies, we combined the DDIM [66] acceleration technique with our one-step acceleration for
the single-image super-resolution (SISR) task (refer to Table 10). We notice that no significant
quantitative/qualitative difference after applying this acceleration technique has been observed.

Table 10: Results for the proposed one-step acceleration with/without DDIM acceleration tested on SISR task
Method PSNR ↑ SSIM ↑ LPIPS ↓ TOPIQ∆ ↓ NFE ↓
Ours (with DDIM) 28.12 0.793 0.140 0.002 51
Ours w/o DDIM 28.16 0.794 0.139 0.007 251
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H Training Procedure

Denoising Module. We use two denoising architectures, namely MIRNet-S and UDP [7] for our
main experiments and ablation studies. MIRNet-S (15.95M parameters) is a lighter version of the
original MIRNet (31.78M parameters) [81], where MSRB is decreased from 2 to 1. In contrast,
UDP (11.78M parameters) [7] architecture is not modified and used as it is. Both models are trained
for the Gaussian denoising task in the sRGB domain with input noise level σ̃ ∈ [0, 244.3]. More
specifically, for each element of batch the noise standard deviation is selected randomly using uniform
sampling within this range. The batch size, training crop size, and initial learning rate are set to 8 (in
total), 192× 192, and 2 · 10−4, respectively. Overall, all denoisers are trained for 1M iterations on 8
Ascend 910 AI accelerators using the Adam [32] optimizer with default parameters and a decaying
learning rate scheduler: lrs = lr0 ∗ γ⌊s/2000⌋, where γ = 0.999. We employ an MSE loss to train
the denoising model and concatenate the noise level with the noisy image as an input to the denoiser
same as [7].

IR Module. As mentioned in the main manuscript, we utilize existing models with publicly
available pretrained parameters. For the tasks of burst JDD-SR, dynamic scene deblurring, and SISR
we have used BSRT-Small [50], FFTFormer [34], and SwinIR [42], respectively. A description
of each one of these IR networks, including their number of trainable parameters, is provided in
Table 11.

Fusion Module. For each IR task under study, we follow the same protocol. We train the fusion
module for 300K iterations with batch size of 128 (in total), and crop size of 256× 256. The training
takes place on 8 Ascend 910 AI accelerators, while the optimizer of choice is Adam [32] with default
parameters and a learning rate scheduler lrs = lr0 ∗ γ⌊s/1000⌋, where γ = 0.99. For each one of
the studied IR tasks we train our Fusion module on a dedicated dataset. Specifically, we use the
ZurichRaw2RGB [29] dataset for burst JDD-SR, GoPro [53] for dynamic scene deblurring, and
DIV2K [1] for SISR. The selection of these specific datasets is motivated by the fact that they are
widely used by all the competing methods for network training related to the IR tasks of interest. The
detailed description of training data we used for each problem is provided below.

• JDD-SR. Following the same protocol as in [4, 37, 49, 5, 17, 50], we generate 46K burst sets
from the training set of ZurichRAW2RGB. Each burst set, which contains 14 low-resolution
images in the raw domain, is inferenced by BSRT-Small [50] and post-processed to produce
an image in the sRGB domain. Then, these predictions are used as input to train only our
Fusion module, while Denoising and IR networks are frozen.

• Dynamic Scene Deblurring. We follow the standard protocol for this problem and use the
GoPro dataset for training. Specifically, we use 3214 pairs of clean and blurry 1280× 720
images, out of which we have excluded the 1111 pairs reserved for evaluation purposes. In
order to provide a fair comparison, we follow exactly the same setup as in [35, 85, 83, 34]
and train only the fusion module using the provided GoPro training data.

• SISR We employ the well-known DIV2K [1] dataset for the SISR task. This dataset
contains a set of 800 images of 2K resolution, which we used for training our Fusion
module. Following the standard protocol, we use the additionally provided 100 2K images
for evaluation.

I Fusion Module

The main goal of our proposed Fusion module is to predict the conditional expectation E [x0|y,xt]
given the estimates of E [x0|xt] and E [x0|y], which are produced by the denoising and IR modules,
respectively. To do so, our fusion network accepts as inputs the image estimates xD

0 ,xIR
0 and a

timestep t. Its exact architecture is depicted in Figure 5 and it consists of two branches. The upper
branch operates on xD

0 , xIR
0 and produces the corresponding features f1, f2 using a single dense

block [27] without a normalization layer. The lower branch encodes the timestep t into a vector of
weights w ∈ (0, 1)

nf using the sinusoidal positional encoding [71], followed by a two layer MLP,
and a sigmoid function as the final activation. Then, we perform a weighted summation of f1, f2 in
the feature space. Finally, two consequent dense blocks [27], with nf channels each, followed by
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Figure 5: Detailed visualization of the proposed Fusion module.

Table 11: Number of parameters and source code of methods used as an IR module in our framework.
IR Modules Parameters ↓ Code & Weights
BSRT-Small 4.92M link
FFTFormer 16.56M link
SwinIR 11.85M link

a convolution layer produce the final estimate of E [x0|y,xt]. Our proposed architecture has only
0.73M learnable parameters, which is significantly lower (7-22 times) compared to the Denoising and
IR modules. As a result, the Fusion module requires less training time/resources and can be trained
only on a small amount of problem-specific training data.

J Fusion Module Robustness

In order to assess the robustness/generalization ability of our method, we have conducted additional
experiments where we evaluate the reconstruction quality achieved when the Fusion network, which
was originally trained on the MIRNet-S and SwinIR pair, is combined with the following pairs of
denosing and IR networks:

• The Fusion module is combined with the same pair of denoising and IR networks as those
used during its training.

• The Fusion module is combined with a different IR network and the same denoising network
as the one used during its training.

• The Fusion module is combined with a different denoising network and the same IR network
as the one used during its training.

• The Fusion module is combined with different denoising and IR networks than the ones
used during its training.

Table 12: The performance of Fusion module for different train/test pair scenarios for 4x SR task.
Trained Pair Tested Pair PSNR↑ SSIM↑ LPIPS↓ TOPIQ∆↓

- Target ∞ 1 0 0
1 MIRNet-S + SwinIR MIRNet-S + SwinIR 28.12 0.793 0.140 0.002
2 MIRNet-S + SwinIR MIRNet-S + RRDB 28.20 0.795 0.144 0.023
3 MIRNet-S + SwinIR UDP + SwinIR 28.47 0.808 0.177 0.017
4 MIRNet-S + SwinIR UDP + RRDB 28.46 0.807 0.183 0.025

From these experiments as shown in the table above, we observe that changing the denoising network
to a less powerful one leads to a noticeable drop in terms of perceptual quality ( 30% in LPIPS) and
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slightly blurrier results, which corresponds to a PSNR increase by 0.2dB. Conversely, altering the
IR network has a minimal impact on both the reconstruction and perceptual metrics. In summary,
under the particular IR task, the Fusion network evaluated with a different pair of denoising and IR
modules demonstrates a good generalization ability and a robust behavior.

K Perception-Fidelity Trade-off

We have evaluated our method on the GoPro dataset (motion deblurring) for different τ , when the
denoising and Fusion modules are activated. From Table 13, we observe that the perception-fidelity
trade-off follows a similar trend to the one for the SISR 4x task. The main difference is that in this
particular case the necessary reverse diffusion steps are less than in SISR.

Table 13: Perception-Distortion Trade-off on GoPro validation for dynamic scene deblurring task.
τ 0 1 5 10 20 25
PSNR, dB 34.21 34.02 33.72 33.52 33.23 33.14
LPIPS 0.071 0.057 0.053 0.052 0.052 0.052

L Information about Competing methods.

Below, we provide links to the code implementation and trained weights for all baselines used for
comparison.

Table 14: Code and model weights of the competing methods for burst JDD-SR task.
Method Link to Code Link to Weights
DBSR link link
DeepRep link link
EBSR link link
BIPNet link link
BSRT link link

Table 15: Code and model weights of the competing methods for dynamic scene deblurring task.
Method Link to Code Link to Weights
HINet link link
MPRNet link link
MIMO-UNet+ link link
NAFNet link link
Restormer link link
FFTFormer link link
DeblurGANv2 link link

M Additional Results

In the section, we provide additional visual comparison of the proposed method with existing SOTA
approaches for all IR tasks under study.
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Table 16: Code and model weights of the competing methods for SISR task.
Method Link to Code Link to Weights
SRResNet link link
RRDB link link
SwinIR link link
LIIF link link
HAT link link
ESRGAN link link
HCFlow link link
SwinIR-GAN link link
LDM link link
SRDiff link link
IDM link link

DBSR: 0.144 DeepRep: 0.084 BSRT-Small: 0.048 BSRT-Large: 0.060

Target BIPNet: 0.069 EBSR: 0.054 Ours: 0.036

Figure 6: Visual comparison of our approach against competing methods on the Burst JDD-SR task (best viewed
by zooming in). Every output image is accompanied by its LPIPS value.

DBSR: 0.280 DeepRep: 0.270 BSRT-Small: 0.225 BSRT-Large: 0.258

Target BIPNet: 0.258 EBSR: 0.252 Ours: 0.131

Figure 7: Visual comparison of our approach against competing methods on the Burst JDD-SR task (best viewed
by zooming in). Every output image is accompanied by its LPIPS value.

DBSR: 0.160 DeepRep: 0.108 BSRT-Small: 0.081 BSRT-Large: 0.068

Target BIPNet: 0.089 EBSR: 0.083 Ours: 0.042

Figure 8: Visual comparison of our approach against competing methods on the Burst JDD-SR task (best viewed
by zooming in). Every output image is accompanied by its LPIPS value.
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DBSR: 0.165 DeepRep: 0.079 BSRT-Small: 0.036 BSRT-Large: 0.036

Target BIPNet: 0.043 EBSR: 0.035 Ours: 0.030

Figure 9: Visual comparison of our approach against competing methods on the Burst JDD-SR task (best viewed
by zooming in). Every output image is accompanied by its LPIPS value.

Input: 0.477 HINet: 0.128 Restormer: 0.135 DeblurGANv2: 0.195 InDI: 0.111

Target NAFNet: 0.112 FFTFormer: 0.094 DvSR: 0.106 Ours: 0.092

Figure 10: Visual comparison of our approach against competing methods on the GoPro test set for the task of
dynamic scene deblurring (best viewed by zooming in). Every output image is accompanied by its LPIPS value.

Input: 0.547 HINet: 0.171 Restormer: 0.137 DeblurGANv2: 0.284 icDPM: 0.121

Target NAFNet: 0.133 FFTFormer: 0.122 DvSR: 0.127 Ours: 0.101

Figure 11: Visual comparison of our approach against competing methods on the GoPro test set for the task of
dynamic scene deblurring (best viewed by zooming in). Every output image is accompanied by its LPIPS value.

Input: 0.533 HINet: 0.157 Restormer: 0.095 DeblurGANv2: 0.213 icDPM: 0.112

Target NAFNet: 0.086 FFTFormer: 0.105 DvSR: 0.134 Ours: 0.097

Figure 12: Visual comparison of our approach against competing methods on the HIDE test set for the task of
dynamic scene deblurring (best viewed by zooming in). Every output image is accompanied by its LPIPS value.
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Input: 0.402 HINet: 0.242 Restormer: 0.248 DeblurGANv2: 0.303 icDPM: 0.160

Target NAFNet: 0.207 FFTFormer: 0.182 DvSR: 0.192 Ours: 0.150

Figure 13: Visual comparison of our approach against competing methods on the HIDE test set for the task of
dynamic scene deblurring (best viewed by zooming in). Every output image is accompanied by its LPIPS value.

Input: 0.630 SwinIR: 0.056 HCFlow: 0.208 ESRGAN: 0.194 InDI: 0.245

Target HAT: 0.045 LDM: 0.273 SRDiff: 0.212 Ours: 0.048

Figure 14: Visual comparison of our approach against competing methods on the DIV2K validation set for the
task of 4× SISR (best viewed by zooming in). Every output image is accompanied by its LPIPS value.

Input: 0.244 SwinIR: 0.102 HCFlow: 0.075 ESRGAN: 0.072 InDI: 0.074

Target HAT: 0.116 LDM: 0.190 SRDiff: 0.090 Ours: 0.072

Figure 15: Visual comparison of our approach against competing methods on the DIV2K validation set for the
task of 4× SISR (best viewed by zooming in). Every output image is accompanied by its LPIPS value.

Input: 0.394 SwinIR: 0.114 HCFlow: 0.046 ESRGAN: 0.044 InDI: 0.057

Target HAT: 0.022 LDM: 0.141 SRDiff: 0.061 Ours: 0.022

Figure 16: Visual comparison of our approach against competing methods on the DIV2K validation set for the
task of 4× SISR (best viewed by zooming in). Every output image is accompanied by its LPIPS value.
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Input: 0.335 SwinIR: 0.230 HCFlow: 0.114 ESRGAN: 0.127 InDI: 0.194

Target HAT: 0.219 LDM: 0.269 SRDiff: 0.119 Ours: 0.140

Figure 17: Visual comparison of our approach against competing methods on the DIV2K validation set for the
task of 4× super-resolution (best viewed by zooming in). Every output image is accompanied by its LPIPS
value.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: For all the theoretical results mentioned in the paper, in section 3 and in
appendix we provide detailed descriptions, a full set of assumptions and complete proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In section 4 and appendices H and I we provide the complete and detailed
description of our training and inference procedures, that enables the reproducibility of our
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [No]

Justification: All the data we used in our work is publicly available. Upon the acceptance of
the paper we plan to release the inference code together with the trained models checkpoints.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]

Justification: In section 4 and appendices H and I we provide the detailed description of our
training and inference procedures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Following the common practices in the field of image restoration, we do not
report the error bars, as the correct estimation of them is computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]

Justification: For all the experiments the information on the computer resources is provided
in appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research strictly follows the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Besides the fact that in our work we train the conditional generative models,
their limited capacity does not allow to generate anything that could be considered as
a negative social impact. The proposed techniques are used to increase the perceptual
appearance of the low-quality images and hardly pose any positive/negative societal impact.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: All the data used for training of our networks or pre-trained networks that we
have utilized in our work is publicly available and widely known to be safe, so the paper
poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: all the datasets used in the paper are publicly available, and in section 4 we
properly cite the papers where such datasets were introduced.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The submission does not release new assets. Upon acceptance we plan to
release well documented inference code under the non-commercial usage licence.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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