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ABSTRACT

Therapeutic peptides show promise in targeting previously undruggable binding
sites, with recent advancements in deep generative models enabling full-atom pep-
tide co-design for specific protein receptors. However, the critical role of molec-
ular surfaces in protein-protein interactions (PPIs) has been underexplored. To
bridge this gap, we propose an omni-design peptides generation paradigm, called
SurfFlow, a novel surface-based generative algorithm that enables comprehensive
co-design of sequence, structure, and surface for peptides. SurfFlow employs
a multi-modality conditional flow matching (CFM) architecture to learn distribu-
tions of surface geometries and biochemical properties, enhancing peptide binding
accuracy. Evaluated on the comprehensive PepMerge benchmark, SurfFlow con-
sistently outperforms full-atom baselines across all metrics. These results high-
light the advantages of considering molecular surfaces in de novo peptide dis-
covery and demonstrate the potential of integrating multiple protein modalities
for more effective therapeutic peptide discovery. Anonymous codes are available
athttps://anonymous.4open.science/r/SurfFlow—880B/.

1 INTRODUCTION

Peptides, short-chain proteins composed of roughly 2 to
50 amino acids linked by peptide bonds, play critical roles
in various biological processes, including cell signaling,
enzymatic catalysis, and immune responses
[2022). They are essential mediators in pharmacology due
to their ability to bind cell surface receptors with high
affinity and specificity, inducing intracellular effects with Y™ b ol .

low toxicity, minimal immunogenicity, and ease of de- = M
livery, as well as being readily synthesized and modi- 2| o A L tr
fied. (Muttenthaler et al.|[2021)). Conventional simulation et
or searching methods of peptide discovery rely on fre-
quent calculations of physical energy functions, a process

hindered by the vast design space of peptides (Bhardwaj

2016)). This has spurred a growing demand for com-
putational approaches that facilitate in silico peptide de-

sign and analysis.

Recent progress in diffusion probabilistic (Ho et al., Figure 1: Comparison of full-atom pep-
2020) and flow-based (Lipman et al} [2022) models e design with and without the surface
have illuminated tremendous promise in molecular de- . o< ioe

sign 2023), antibody engineering (Luo et al.|

2022} Martinkus et al., [2024), de novo protein design (Yim et al.}, 2023} [Wu et all, 2024) as well
as peptide discovery (Ramasubramanian et al.,|2024). Peptides, when unbound, often exist in high-

energy, high-entropy states with unstable conformations, only becoming functional upon binding to
target receptors. Therefore, peptide design must be explicitly conditioned on binding pocketsVanhee]
(2011). Besides, as residues interact with each other through non-covalent forces formed by
side-chain groups, increasing efforts have been made to capture protein-peptide interactions through

full-atom geometries (Kong et al.}[2024; [Lin et al.,[2024} [Li et al.} 2024)), pushing sequence-structure
co-design beyond just backbones.

(a) Full-atom peptide design
- ¢

p
S

(b) Full-atom peptide design -
with surface constraint



https://anonymous.4open.science/r/SurfFlow-880B/

Despite advances, growing attention is given to molecular surfaces in protein-protein interactions
(PPIs), as these interactions are largely dictated by how complementarily the surfaces of interacting
proteins fit together (Kastritis & Bonvin, [2013;|Song et al.,[2024). The shape, electrostatic potential,
and hydrophobicity of molecular surfaces are key determinants of the interaction’s strength and
specificity (Jones & Thornton, |1996; |Lee et al., 2023; Wu & Li, 2024b)). The surface geometry
such as protrusions, grooves, and clefts enables lock-and-key or induced-fit mechanisms essential
for specific binding. The molecular surfaces act as a fundamental interface that dictates how proteins
recognize and bind to each other, making it as essential as side chains in PPIs. For these reasons,
it is vital to simultaneously consider all molecular modalities — sequence, structure, and surface —
during peptide generation (see Fig. [I), enhancing the consistency across aspects in what we term
omni-design.

Toward this goal, we propose SurfFlow, a surface-based generative algorithm built upon a multi-
modality Conditional Flow Matching (CFM) architecture (Lipman et al.| 2022} |Albergo & Vanden-
Eijnden, |2022; |Albergo et al., [2023)). In SurfFlow, CFM is applied not only to internal geometries
such as backbone and side-chain angles but also to the molecular surface, represented by surface
point positions and unit norm vectors as a rigid frame in SE(3). Additionally, omni-design requires
incorporating biochemical property constraints, as complementary surface geometries alone do not
guarantee successful binding-accurate placement of charges, polarity, or hydrophobicity at the bind-
ing interface is also necessary (Gainza et al) [2023). To achieve this, SurfFlow learns the trans-
formation from prior distributions to the expected biochemical property distributions. Since surface
features such as hydrophobicity are categorical, we apply the Discrete Flow Models (DFMs) (Camp-
bell et al., [2024) to discrete data space using Continuous-Time Markov Chains (CTMC). Finally,
recognizing that key peptide characteristics like cyclicity and disulfide bonds influence stability and
binding affinity(Buckton et al.l [2021)), we include these factors as additional conditions to enhance
the capacity and generalization of SurfFlow. We evaluate SurfFlow on the comprehensive peptide
design benchmark PepMerge (L1 et al.}2024), and experiments demonstrate that it consistently out-
performs full-atom baselines across all metrics, highlighting the advantages of considering surfaces
for de novo peptide design.

2 PRELIMINARY AND BACKGROUND

Proteins and Molecular Surfaces. A protein is a biomolecule consisting of multiple amino acid
residues, each defined by its type, backbone frame, and side-chain torsion angles (Fisher, [2001).
The type of the i-th residue, denoted by a; € {1...20}, is determined by its side-chain R group.
The rigid frame of each residue is constructed from the coordinates of four backbone heavy atoms
N, Ca, C, and O, with Ca positioned at the origin. This frame is represented by a position vector
x; € R3 and a rotation matrix O; € SO(3) (Jumper et al.,[2021). Unlike the backbone, the side-
chain conformation is more flexible, involving up to four rotatable torsion angles between side-chain
atoms, denoted by x; € [0,27)%. Additionally, the backbone torsion angle ¢; € [0, 27) affects the
position of the oxygen atom.

We further consider the molecular surface, which is computed by moving a probe of a certain radius
(approximately 1 A) along the protein to calculate the Solvent Accessible Surface (SAS) and Solvent
Excluded Surface (SES). The probe’s coordinates define the surface as an oriented point cloud ) =
{g; : 1 < i < m}. Each surface point g; has associated attributes (x;,n;, 77, X?), where 7 €
R? represents its 3D coordinates, and n{ € R3 is the corresponding unit normal vector. 77 €
R¥ and Y$ € R¥T capture its continuous and categorical physicochemical properties, such as
hydrophobicity, hydrogen bonding, and charge (Gainza et al., 2020; Song et al., [2024; Wu & Li,
2024b).

This work focuses on designing peptides based on target proteins. Formally, given a peptide CPP
with e, residues and a target protein C™ with n,. residues, we aim to model the conditional
joint distribution p (CP®P | C™*¢). The receptor can be sufficiently and succinctly parameterized as
C™¢ = {(ai, O, i, xi) } o, where x;[0] = ¢; and x; € [0,27)°. As for the ligand peptide, the
surface is also portrayed, resulting in Cpep = {(a;, O;, @5, x;)};27 U {(zf, nf, 77, 7)1, with
m >> npep. Practically, software like PyMol (DeLano et al.,[2002) or MSMS (Robinson et al.,[2014)
can be utilized to compute the raw molecular surface of a protein.



Probability Path and Flow. Let P(M) be the space of probability distributions on a manifold M
with a Riemanian metric g. A probability path p; : [0,1] x M — P(M) is an interpolation in the
probability space between two distributions pg, p1 € P(M) indexed by a continuous parameter .

A flow on M is defined by a one-parameter diffeomorphism ¢ : M — M, which is the re-
sult of integrating instantaneous deformations described by a time-varying vector field u; € U.
u(z) € T M is the gradient vector of the path p; on x at time ¢. By solving the following Or-

dinary Differential Equation (ODE) on M over ¢ € [0, 1] with an initial condition of ¢¢(z) = x:
%(m) = u¢(¢p¢(z)). We acquire the time-dependent flow ¢; : M — M and the final diffeomor-
phism by setting ®(x) = ¢ (x). Notably, ¢;(x) is also the solution of another ODE: da = w;(x)d¢,
which transports the point  along the vector field u;(z) from time 0 up to time ¢. Given a source
density po, ¢:(x) induces a push-forward operation p; = [¢¢]xpo. It reshapes the point density

T ~ po to a more complicated one along u¢(x), and the change-of-variable operator # is defined

by [¢e]4po(x) = po (¢; ' (z)) det {‘%t (x )} The time-varying density p; is characterized by the

Fokker-Planck equation: % = —div(usp:), also known as the continuity equation. Under these

conditions, u; is said to be the probability flow for p;, and p; is said to be the marginal probability
path generated by ;. Flow Matching (FM) (Lipman et al.|[2022; |Albergo & Vanden-Eijnden, |2022;
Albergo et al.} 2023) trains a Continuous Normalizing Flow (CNF) by fitting a vector field vy € U
with parameters 6 to a target vector field u; that produce a probability path p;. Its objective falls at
the tangent space as:

Lrim(0) = E4(0,1],2mpe () V0 (2, 1) — Ut(I)H?p (H
As wu; is intractable, an alternative is to construct the conditional probability path
pi(x|z1) with a conditional vector field ui(z|x;). The objective becomes: Lcrpm(0) =
Bt t4[0,1],1 ~p1 (1) 2ops (z|21) [[V0 (2, 1) — ut(:(:\afl)Hg. Riemannian FM and Conditional Rieman-
nian FM (CRFM) objectives are proven to share the same gradients (Lipman et al.} 2022} Tong
et al.| 2023} [Chen & Lipman, [2023). During inference, one can solve the ODE related to the neural
vector field vy to push xy € M from the source distribution pg to the data distribution p; in time.

Continuous-Time Markov Chains. CTMC (Norris, [1998) is a class of continuous-time discrete
stochastic processes and is closely linked to probability flows. Suppose a categorical variable x has
S states and its trajectory x; over time ¢t € [0, 1] follows a CTMC, z; alternates between resting
in its current state and periodically jumping to another randomly chosen state. The frequency and
destination of the jumps are determined by the rate matrix R, € RS*S with the constraint its off-
diagonal elements are non-negative. The probability x; will jump to a different state j is Ry (¢, j) d¢
for the next infinitesimal time step d¢. The transition probability is written as:

. Ry (x4, 7)dt for j # x; . .
d = . =9 y R s dt, 2
Pitare (J | 7¢) {1 4 Ry (zg,2) At for j = ay {x,7} + Re (24, 7) (2)
where {i,j} is the Kronecker delta. d{i,j} is 1 when ¢ = j and is otherwise O.
Ry (we,2) = —) 4, Re (24, k) in order for pyiqs¢(- | @) to sum to 1 . Using com-

pact notation, p;i 4, is therefore a categorical distribution with probabilities & {zs,-} +
Ry (x,-) dt denoted as Cat (6 {x, j} + Ry (w¢,7) dt). Namely, j ~ prrage (| 2¢) <= j ~
Cat (0 {x¢,j} + Ry (x4, 7) dt). In practice, we need to simulate the sequence trajectory with finite
time intervals At. A trajectory can be simulated with Euler steps (Sun et al.,[2022).

Tiyar ~ Cat (6 {zy, xiypar} + Re (Te, Ty ar) AL, 3)

where the variable z starts from an initial sample zy ~ pg at time ¢ = 0. The rate matrix R; along
with an initial distribution p, together define the CTMC. With the marginal distribution at time ¢ as
pt (x¢), the Kolmogorov equation allows us to relate the rate matrix R, to the change in p; (x¢):

O (w1) = > Re (o) pe(d) — D> Re (@0, 5) pr (1) - 4)
JFTe jH#Ty

incoming outgoing

The difference between the incoming and outgoing probability mass is the time derivative of the
marginal O;p; (x;). Subsequently, we attain O;p; = R: pr where the marginals are treated as prob-
ability mass vectors: p; € [0, 1]5 and defines an ODE in a vector space. The probability path p, is
said to be generated by R; if 9;p; = R/ p; for Vt € [0, 1] (Campbell et al., 2024).



side-chain Omni-design

€ [0,2m)* ¥=¢” Embedding
residue a;{ ©; € R3 ‘T‘ Encoder %, Full-atom design Peptide
0; € SO(3) {N'CO\%} L ,‘ _Backbone and P
t «‘O",O ] : "_side-chain angles 2
receptor S backbone ‘ O 2 > ‘\‘2 SV ¢
) s s g 7.0
pe o % s S
_§ OO "0 Surface design Sler
5 ¥ ™y ) T
<O ° Surface frame and | \E’;,‘.}, :
) IS n . Z -
< doet Feature space phyS|phem|caI features
Cree = {(ai, Os, @i, Xi) } 125
Euclidean CFM SO(3) CFM Discrete Flow
xS € Rmx3 0 C SO(3) s € Rmx1
= @
S0 g\
/ N
ANe charge
(X hydrophoblcny
Position — - ) hydrogen bond B
O R (B
\J\ gpes 4 ) 0] \,\\
&
uy® () | @1, xp) u$ (07 [ 05,08 P (07 [ XF)
Surface Point Positions Normal Vector Orientations Physichemical Features

Figure 2: Workflow of SurfFlow for our peptide omni-design, which considers the multi-modality
consistency among sequence, structure, and molecular surface during the generation process.

3 METHOD

A molecular surface encapsulates both the 3D geometry of a protein in Euclidean space and its bio-
chemical attributes, such as hydrophobicity and charge (Gainza et al.,[2020). The interplay between
surface shape and these biochemical properties is essential for defining a protein’s function. Given
a target receptor with specific geometric and biochemical constraints, SurfFlow concurrently gen-
erates the peptide’s internal structure and external surface. Moreover, it can also account for key
factors such as cyclicity and disulfide bonds (see Fig.[2).

3.1 FLOW MATCHING FOR SURFACE GENERATION

A CFM framework is employed to learn the conditional peptide distribution based on its target
protein p (CP®P | C™°). This joint probability is empirically decomposed into the product of proba-
bilities of the internal structure elements and the external surface elements:

p(CPP | C**°) x p ({(awOaanan)}npep Crec) p ({(wf,nf,‘l‘is7'rf)};11 |Crec) )

where p ({(z§,nj, 77, Y5)}, |C™°) is further separated as the product of four basic elements
p({&s} [Cm) p ({ns} |C™) p ({8}, |C°) p ({X5}L, |C™¢). The construction of
different probability flows on the surface point’s position p (x; | C™°), orientation p (n] | C"),
continuous properties p (77 | C™°), and categorical properties p (TS | C™°) is elaborated as follows.

Position. Euclidean CFM is utilized to generate surface point positions * € R™*3, Following
common practice (Yim et al.,[2023} |Lin et al., 2024; Li et al., 2024)), we adopt the standard isotropic
Gaussian A (0, I3) as the prior, with the target distribution being p (x* | C*¢). The conditional
flow is defined as a linear interpolation between sampled noise @ ~ N (0, I3) and data points
x5 ~ p(x®| C™). This linear interpolation ensures a straight trajectory, contributing to training
and sampling efficiency by following the shortest path between two points in Euclidean space (Liu
et al., 2022). The conditional vector field u}” is obtained by taking the time derivative of the linear
flow (bp using Independent Coupling technlqueS'

pOS ($07w1) - twl + (1 - t)w(sh (6)

xi —x}
s (7)

pos
( 1—-t¢

x; | z], zp) = ] — x



We use a time-dependent translation-invariant surface network vP*(-) to predict the conditional
vector field based on the current interpolant ; and the timestep ¢. The CFM objective of the surface
point cloud position is formulated as:

Lpos(e) =K |Upos (wfa L, CreC) - (wi - wg)”i ) ®

tNZA(O,l),p(mf),p(mg),p(mﬁ|mg,mf)

where 2/(0, 1) is a uniform distribution on [0, 1]. During generation, we first sample from the prior
x§ ~ N (0, I3) and solve the probability flow with the learned predictor vP*(-) using the N-step
forward Euler method to get the position of residue j with ¢ = {O, ceey %} :

1
R A e 9)

Normal Vector Orientations. The normal vector n] is a unit vector perpendicular to the tangent
plane of the surface at ;. It reveals essential geometric information of the surface orientation and
curvature, directly tied to the protein’s functional (Song et al., [2024; Wu & Li, [2024b). Convex
regions, for example, might be more accessible for binding, while concave regions might be better
suited for pockets or clefts involved in substrate binding (Laskowski et al.l [1996). To capture its
orientation, we construct a set of rotation matrices O° C SO(3) with respect to the global frame,

whose element is defined by O = (nf, d;,ng x ci,) € SO(3). Here, d; is a unit vector orthogonal

to i and is acquired by normalizing the cross product between 72; and the direction pointing from
the surface point } to its nearest C,, coordinate. This frame O effectively describes the geometric
relationship between the protein surface and the underlying backbone structure.

The 3D rotation group SO(3) is a smooth Riemannian manifold, with its tangent space, s0(3),
forming a Lie algebra consisting of skew-symmetric matrices. Elements of s0(3) can be viewed
as infinitesimal rotations around specific axes and represented as rotation vectors in R? (Blanco-
Claraco, |2021). In line with prior work (L1 et al.l 2024; [Lin et al., [2024), we adopt the uniform
distribution over SO(3) as the prior p (OS). Just as FM in Euclidean space is based on the shortest
path between two points, we extend this idea to SO(3) by using geodesics, which define the minimal
rotational distance between two orientations (Lee, [2018). These geodesics provide a natural frame-
work for interpolating and evolving rotations while respecting the geometry of the manifold (Bose
et al., 2023; [Yim et al.l 2023). The conditional flow ¢°" and vector field u" are constructed by
geodesic interpolation between Of C U(SO(3)) and OF € p (O | C™°), with the geodesic distance
decreasing linearly over time:

@ (05,0%) = expoy (11080, (03)) o
ori s s s logos (Of)
u” (Of [ 05, 01) = 1t7—t’ "

where exp(-) and log(-) are the exponential and logarithm maps on SO(3) that can be computed

efficiently using Rodrigues’ formula (Li et al., 2024). A rotation-equivariant surface network v°1(-)

is applied to predict the vector field ug", represented as rotation vectors. The CFM objective on

SO(3) is formulated as:

2
10&’;05 (07)

ori =K
Loi(0) T

,Uori (Of, t, Orec) _ , (12)

SO(3)

t~1(0,1),p(05),p(03).p(05105,05)

where the vector field v°1(-) is defined in the tangent space s0(3) of SO(3), with the norm | - |?
derived from the canonical metric on SO(3). In the inference phase, the process is initialized at
0§ ~ U(SO(3)) and proceeds by following the geodesic in SO(3), taking small steps over time ¢:

1 .
Oy 1 = expo; (NUOH (Of,t,creC)) . (13)

Physichemical Features. FM is typically applied to continuous spaces. However, certain bio-
chemical characteristics take on discrete, categorical values. For example, each surface point can



be classified into three categories based on its hydrogen bonding potential: donor, acceptor, or neu-
tral. This challenge also arises in protein generation tasks that focus solely on structure (Luo et al.,
2022), where residue types follow a categorical distribution. To address this, previous studies (Li
et al) [2024; [Lin et al) [2024) have employed soft one-hot encoding to map categorical distribu-
tions to a probability simplex or directly applied FM to multinomial distributions. However, this
straightforward approach may result in suboptimal performance for protein co-design. Recently,
more advanced FM methods tailored for discrete spaces have been proposed (Campbell et al.,2024;
Gat et al., [2024; [Stark et al., [2024) to overcome these limitations.

Discrete flow models (DFMs) are generative algorithms designed to operate in discrete spaces by
simulating a probability flow that transitions from noise to data. DFMs trace a trajectory of discrete
variables that align the noise-to-data flow, allowing the generation of new samples. Building on
the work of |(Campbell et al.| (2024); |Gat et al.| (2024), we implement a DFM using CTMCs for the
biochemical properties XY* € R"™*!, Specifically, we train a neural network v° (-) to approximate
the true denoising distribution py, (X | X{). This is done using a cross-entropy loss, where the
model learns to predict the clean data point Y'§ when given a noisy input Y7 ~ pyy (X3 | Y7) as:

Leat(6) = By gy(0,1)0(x) pun (xi1e7) [l08 V™ (X5,,07)] (14)

Here, rather than a linear interpolation towards Y7 from a uniform prior pgflif(rg | X5) =

Cat (t5{X5, Y5} + (1 — t)+), we adopt an artificially introduced mask state M and the conditional
path becomes (Campbell et al., [2024)):

PR (05 | X7) = Cat(t5{ X5, Y3} + (1 — £)3{M, Y7}). (15)

Notably, £(-) has a strong relation to the model loglikelihood and the Evidence Lower
Bound (ELBO) used to train diffusion models (Campbell et al) [2024). It also does not de-
pend on R (YX$,j | X35). There are many choices for R; (X$,j | Y3) that all generate the same
py1 (X7 | Y1) Atinference time, we pick the rate matrix for X'y # j as:

_ ReLU (atpt|1 (j ‘ Ti) - atil’t\l (Tf | TT))

* TS . ‘rS :
AR S pin (X7 17) |

(16)

where ReLLU(a) = max(a,0) and J;p;|; can be found by differentiating our explicit form for py|;
in Equ. |15 This choice of R} assumes p,; (X7 | X7) > 0.

Overall Training Loss. Combining all modalities, the final FM objective is for conditional peptide
generation obtained as the weighted sum of three loss functions in Equ. and [14] as well as
several additional loss. It can be written as:

CCFM = )\pos»cpos + )\ori»cori + )\catﬁcat + )\con»ccon + /\str»cstra (17)

where A, are the hyperparameters to control the impact of different loss components. Loy is the
loss function for continuous biochemical properties, and Lq, is the FM objective for modeling
the factorized distribution of residues’ positions {a; }?:‘1", orientations {O; };.L:‘lp, amino acid types
{z; }?icf’, and side-chain torsion angles {x; }?:f as discussed in Equ. |5| and Appendix [Cl The
network details to parameterize the generation procedure is illustrated in Appendix [Al

3.2 FLOW MATCHING WITH CONDTIONS

Inspired by the success of controllable image generation (Zhang et al., 2023), we propose pep-
tide design conditioned on key factors ¢, such as sequence length np, cyclicity, and the presence
of disulfide bonds. Our objective becomes p (CPP | C™, ¢), allowing flow models to incorporate
additional conditions. Accordingly, the vector field networks are adapted to vP°® (xf,t,C™, ¢),
o1 (03 ,t,C™¢, ¢), and v (Y5, t,C™, ¢). In practice,we focus on two primary goals: (1) Cyclic
peptides offer enhanced stability by constraining the backbone, thus reducing conformational flex-
ibility and increasing resistance to enzymatic degradation. This structure form improves binding
affinity due to more defined and stable conformations. (2) Disulfide bonds, covalent interactions
between cysteine residues, assist in proper folding and structural stabilization. These bonds pro-
tect peptides from oxidative damage and proteolytic enzymes, enhancing their resistance to harsh



Table 1: Evaluation of methods in the sequence-structure co-design task. The best and suboptimal
results are labeled boldly and underlined.

Geometry Energy Design
AAR %1 RMSDA| SSR%1T BSR%?T Stb. %1 Aff. %1 Des.%7T Div.t
RFdiffusion (Watson et al.|[2023) 40.14 4.17 63.86 26.71 26.82 16.53 78.52 0.38
ProteinGen (Lisanza et al.|[2023) 45.82 4.35 29.15 24.62 23.48 13.47 71.82 0.54
Diffusion (Luo et al.|[2022) 47.04 3.28 74.89 49.83 15.34 17.13 48.54 0.57
PepFlow (L1 et al.||2024) 51.25 2.07 83.46 86.89 18.15 21.37 65.22 0.42
SurfFlow 54.07 1.96 85.11 87.38 22.46 22.51 73.60 0.61
1= —38.44 u=-2393 /ﬂ\ =-31.87
~100 -80 -60 —410 -20 o 20 40 60 -100 -80 -60 -40 7!20 0 20 40 60 —71-0707—;70 ~60 —A'IQi -20 o Z’D’ 40 60
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Figure 3: Binding energy distributions of designed and native peptides, where the lower is better.

industrial conditions. Additionally, disulfide bonds can improve biological activity by creating con-
formational constraints, further enhancing the therapeutic potential of peptide-based drugs.

4 EXPERIMENTS

We comprehensively evaluate SurfFlow on unconditioned and conditioned sequence-structure co-
design tasks and the side-chain packing problem. For benchmarking, we use the PepMerge
dataset (Li et al., [2024) derived from PepBDB (Wen et al., 2019) and Q-BioLip (Wei et al., [2024).
Following the methodology of |Li et al.| (2024)), we cluster the peptide-protein complexes based on
40% sequence identity using mmseqs2 (Steinegger & Soding, 2017), after filtering out duplicates
and applying empirical criteria (e.g., resolution < 4A, peptide length between 3 and 25). This
process yields 8,365 non-redundant complexes across 292 clusters. To ensure a fair and direct com-
parison, we employ the same test set as|Li et al.|(2024), consisting of 10 clusters and 158 complexes.
More experimental details and additional results are elaborated on Appendix [B]

4.1 UNCONDITIONED SEQUENCE-STRUCTURE CO-DESIGN

Baselines. Two lines of state-of-the-art protein design approaches are chosen as baselines. The
first kind ignores the side-chain conformations, including RFDiffusion (Watson et al., |2023)) and
ProteinGen (Lisanza et al.,|2023). RFDiffusion produces protein backbones and sequences are later
forecast by ProteinMPNN (Dauparas et al.,|2022)). ProteinGen improves RFDiffusionby jointly sam-
pling backbones and corresponding sequences. The other kind considers a full-atom style protein
generation, including Diffusion (Luo et al., [2022)) and PepFlow (Li et al.} 2024).

Evaluation Metrics. Generated peptides are evaluated from three key aspects. (1) Geometry:
Designed peptides should closely resemble native sequences and structures. We use the amino
acid recovery rate (AAR) to quantify sequence identity between generated peptides and ground
truth. Structural similarity is assessed through the root-mean-square deviation (RMSD) of C', atoms
after aligning the complexes. Secondary-structure similarity ratio (SSR) measures the proportion of
shared secondary structures, while the binding site ratio (BSR) compares the overlap between the
binding sites of the generated and native peptides on the target protein. (2) Energy: Our goal
is to design high-affinity peptide binders that enhance the stability of protein-peptide complexes.
Affinity is defined as the percentage of generated peptides with higher binding affinities (lower
binding energies) than the native peptide, while Stability indicates the proportion of complexes with
lower total energy than the native state. Energy calculations are performed using Rosetta (Alford
et al.,|2017). (3) Design: Designability reflects the consistency between designed sequences and
structures. It is measured by the fraction of sequences that can fold into structures similar to their
corresponding generated forms, with C,, RMSD < 2 A as the threshold. We use ESMFold (Lin
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2022) to refold the sequences. Diversity, measured as the average of one minus the pairwise
TM-Score (Zhang & Skolnick, |2004), indicates structural dissimilarity among designed peptides.

Results. Table[T]illustrates that our SurfFlow generates significantly more diversified and consis-
tent peptides with better binding energy and closer resembles compared to the baselines. Specif-
ically, SurfFlow achieves the state-of-the-art AAR of 54.07% and RMSD of 1.96 Awith improve-
ments of 5.51% and 5.31% over the full-atom PepFlow. Besides, it also owns a stronger capacity
of desiging peptides with more accurate binding ratio of 87.38% and higher affinity propertion of
22.51% (see Fig.[3). These stastics confirm the benefits of explicitly modeling the surface geometry
and biochemical constraints. It is worth mentioning that the decoupled approach, RFDiffusion, at-
tains better Stability (26.82% v.s. 22.46%) and Designability (78.52% v.s. 73.60%), as it is trained
in the entire PDB and are proned towards structures with more stable motifs 2024). Fig-
ure[d] presents two examples of designed peptides by full-atom PepFlow and surface-based SurfFlow
and Appendix [D.2]shows how the positions of surface point clouds evolves over the entire time pe-
riod. Evidently, SurfFlow generates peptides with topologically similar geometries, irrespective of
their native length. Notably, the produced peptides share comparable side-chain compositions and
conformations, enabling efficient interactions with the target protein at the appropriate binding site.

4.2 CONDITIONED SEQUENCE-STRUCTURE CO-DESIGN

There are several key characteristics of effective peptides widely recognized in the biologi-
cal community. Cyclicity, for instance, are polypeptide chains with a circular bond sequence.
Many occur naturally and exhibit antimicrobial or toxic properties, while others are laboratory-
synthesized 2009). These cyclic peptides typically demonstrate high resistance to diges-
tion, making them attractive to researchers developing novel oral medications like antibiotics and
immunosuppressants 2006). Additionally, evidence indicates that disulfide patterns are cru-
cial in the folding and structural stabilization of peptides. The deliberate introduction of disulfide
bridges into natural or engineered peptides can often enhance their biological activities, specificities,
and stabilities (Annis et al}, [1997). Given these insights, we propose a conditional co-design chal-
lenge. This challenge involves calculating the proportions of cyclic peptides and peptides containing
disulfide bonds within generated peptide sets for evaluation purposes.

Results. Table[2]documents the results with several Key findings. Without conditional constraints,
neither full-atom deep generative models nor our omni-design method met the requirements for
cyclicity or disulfide bridges. Even with the incorporation of molecular surfaces, only 2-4% of the
189 designed peptides in the test samples exhibited cyclicity or contained disulfide bonds. In con-
trast, When trained with additional conditions and prompted to generate peptides with specific prop-
erties, SurfFlow significantly increases the proportion of peptides with desired characteristics, with
cyclicity from 2.67% to 8.02% and disulfide bonds from 4.27% to 9.10%. Figure [5 visualizes two



Table 2: Proportions of cyclic peptides and peptides with disulfide bonds designed by different
mechanisms and in the original PepMerge dataset.

Metrics | PepFlow  SurfFlow (w/o ¢) | SurfFlow | PepMerge
Cyclicity 2.13% 2.67% 8.02% 15.50%
Disulfide Bond% 3.21% 4.27% 9.10% 18.18%

Table 3: Evaluation results of the side-chain packing task.

MSE° |
X1 X2 X3 X4 Correct % 1

Rosseta 38.31 43.23 53.61 71.67 57.03
SCWRL4  30.06 4040 49.71 53.79 60.54
DLPacker 2244 35.65 5853 61.70 60.91
AttnPacker 19.04 2849 40.16 60.04 61.46
DiffPack 17.92 26.08 36.20 67.82 62.58
PepFlow 17.38 24.71 33.63 58.49 62.79

SurfFlow 1713 2386 31.97 55.08 63.02

examples with the cyclic condition. Interestingly, in the case of 3AVC, where the native peptide is
non-cyclic, SurfFlow generated a novel cyclic peptide with a lower binding energy (AG = —37.98
v.s. AG = —38.24). For 5ICZ, which originally had a cyclic peptide, SurfFlow designed a new
type of cyclic peptide with a better binding energy (AG = —45.78 v.s. AG = —48.30).

4.3 SIDE-CHAIN PACKING

Side-chain packing is a critical task in protein structure modeling, focusing on the prediction of
peptide side-chain angles. Our approach generates 64 distinct side-chain conformations for each
peptide using multiple models, employing a partial sampling strategy to efficiently recover the most
probable side-chain angles. This method allows us to navigate the conformational space effectively
while reducing computational overhead and maintaining high accuracy.

Baselines. We compare SurfFlow against several established approaches. These include energy-
based methods such as RosettaPacker (Leman et al.l 2020) and SCWRL4 (Krivov et al., [2009),
which rely on physical energy minimization techniques for side-chain positioning. Additionally, we
evaluate against learning-based models including DLPacker (Misiura et al.| 2022), AttnPacker (Mc-
Partlon & Xul 2023)), and DiffPack (Zhang et al [2024), which leverage various DL strategies like
attention mechanisms and diffusion to predict side-chain configurations based on learned represen-
tations of protein structure.

Metrics. Two primary metrics are employed for evaluation. First, we calculate the Mean Absolute
Error (MAE) of four key torsion angles: X1, X2, X3, and x4. Given the inherent flexibility of side
chains and the importance of small deviations in structural biology, we also report the proportion of
predictions that fall within a 20° deviation from the ground truth. This additional metric captures
the practical accuracy of side-chain prediction, emphasizing how well the models perform within
biologically relevant error margins.

Results. Tablereports the results, it can be observed that the incorporation of molecular surfaces
contributes to more accurate predictions of all four side-chain angles compared to full-atom models
and other baselines. SurfFlow attains the highest correct ratio of 63.02%. The enhanced accuracy
suggests that surface information provides crucial context for predicting side-chain configurations,
likely by better representing the local environment and potential interactions that influence side-
chain positioning.

5 RELATED WORKS

Protein Design with Generative DL. Generative models have made significant strides in protein
design, particularly in applications like engineering enzyme active sites (Yeh et al.| [2023)). These



methods generally fall into three categories: sequence design, structure design, and co-design. In
sequence design, protein sequences are crafted through techniques such as oracle-guided directed
evolution (Jain et al.l 2022)) or by leveraging protein language models (Madani et al., [2020; |Verkuil
et al., 2022)). Another common strategy, called fix-backbone sequence design, involves generating
sequences that fit a predefined backbone structure (Ingraham et al., 2019; Jing et al.,[2020; Hsu et al.,
20225 |Gao et al., | 2022bga; Zheng et al., 2023b). Given the importance of 3D structural information
in proteins, some approaches focus on first generating protein backbone structures (Anand & Achim,
2022), which are then paired with sequence prediction models like ProteinMPNN (Dauparas et al.,
2022) to determine the matching sequence. Co-design methods, which generate sequence-structure
pairs simultaneously, are especially useful for antibody design (Jin et al.| 2021} Kong et al.| [2022;
Wu & Lil [2024a). Recent studies also emphasize side-chain interactions in conditional protein
generation, enabling full atomic detail (Martinkus et al.| 2024; |Krishna et al.,2024). However, none
of these methods have addressed the simultaneous generation of protein sequence, structure, and
surfaces.

From a technical standpoint, diffusion and flow-based models have become popular for designing
novel and diverse proteins (Ingraham et al.| 2023 [Lin & AlQuraishi, [2023). Some studies focus on
sequence generation alone using discrete diffusion models (Alamdari et al., 2023} |[Frey et al., 2023}
Gruver et al., 2024; [Yi et al.|, 2024). These models are also applied to generate protein structures
in 3D or SE(3) space (Trippe et all [2022; |Anand & Achim), [2022} Bose et al., 2023} [Yim et al.,
2023 [Wu et al.| 2024). Among them, RFDiffusion (Watson et al., 2023) has seen notable success,
with wet-lab validation of generated proteins. However, these methods often require a separate
model for sequence generation. In co-design, earlier efforts include ProteinGenerator (Lisanza et al.}
2023)), which uses Euclidean diffusion over one-hot encoded amino acids while predicting structure
at each step using RosettaFold (Baek et al.|[2021)). Protpardelle (Chu et al., 2024)) applies Euclidean
diffusion to structure while iteratively predicting the sequence. Multiflow (Campbell et al.| [2024])
introduces a DFM model over protein sequences, offering flexible conditioning during inference.
Early co-design methods by (Luo et al.l |2022; |Shi et al., [2022) focused on designing CDR loops
in antibodies. Co-design for peptides is also gaining traction, with models like PepFlow (Li et al.,
2024) and PPIFlow (Lin et al., [2024) excelling in full-atom peptide design using multi-modality
FM. Finally, PepGLAD (Kong et al.| [2024) explored peptide structure and sequence diffusion, but
no code has been made available.

Molecular Surface Modeling. The properties of a protein’s molecular surface are crucial in de-
termining the nature and strength of its interactions with other molecules. This surface is shaped
by van der Waals (vdW) radii (Connolly, [1983) and is often represented as meshes created from
signed distance functions. MaSIF (Gainza et al.| [2020) was a pioneering effort in applying mesh-
based geometric deep learning to abstract internal protein folds and study protein interactions. Later,
Sverrisson et al.|(2021) simplified the process by representing molecular surfaces as point clouds,
assigning atom types to each point to reduce pre-computation costs. Other key works have inte-
grated protein surface data with structural information in a multimodal approach (Somnath et al.,
2021)), using advanced pretraining techniques (Wu & Li,|2024b) and implicit neural representations
(INRs)(Park et al., [2019) for self-supervised learningLee et al.| (2023) and dynamic structure mod-
eling|Sun et al.|(2024)). Despite these developments, protein design based on surface characteristics
remains relatively unexplored. However, recent progress, such as |Gainza et al|(2023)’s extension
of MaSIF for de novo binder design, and SurfPro (Song et al.,|2024), which eliminates the need for
handcrafted feature extraction, has begun to address this gap by generating functional proteins di-
rectly from surface data. SurfFlow stands out as the first approach to generate all protein modalities
simultaneously using flow-based algorithms.

6 CONCLUSION

This work presents SurfFlow, a novel deep generative model that produces all protein modalities —
sequence, structure, and surface — concurrently. We apply SurfFlow to solving a specific peptide
design challenge and integrate some key characteristics like cyclicity and disulfide bonds into the
generation process. Empirical results prove the reasonability and promise of considering molecular
surfaces for protein discovery. Limitation and future work is elucidated in Appendix
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A PARAMETERIZATION WITH NETWORKS

In order to model the joint distribution of the peptide based on its target protein p (CPeP | C*¢°),
we adopt an encoder-decoder framework to generate peptides. The encoder extracts the geometric
and biochemical features of the receptor C*“¢ as the condition of the generation process, while the
decoder regresses the vector fields of our multi-modality flow matching architecture.

Encoder. We first utilize a time-independent equivariant geometric encoder to capture the context
information of the receptor. Specifically, it takes the sequence and structure of the target protein Cle.
and computes the hidden residue representations hc. € R™c*¥rec and the residue-pair embeddings
Zrec c Rnrec X wpair .

Decoder. The decoder receives (hyec, Zrec) and is time-dependent. It consists of two geometric
networks: one is the 6-layer Invariant Point Attention (IPA) module (Jumper et al.l 2021])) to regress
the vector fields of the internal structures {(a;, O;,x;, xj)}?ff, and the other is an variant of
equivariant graph neural networks (EGNN) (Satorras et al., [2021) to regress the vector fields of
the surface geometry {(z{,n$, 7, X$)}",. To be specifica, we first sample a random timestep
t ~ U(0,1) to construct the time-dependent vector fields for every modality of the peptide Cep,
containing sequence, structure, and surface. Both IPA and EGNN take the timestamp ¢, the interplant
state of peptide’s internal structure (a;, Oy, ¢, X:) as well as receptor’s information (Ayec, Zrec) as
input, and the interplant state of peptide’s surface (zf,n{, 77, Y7) is also forwarded into EGNN.

Subsequently, IPA recovers the internal structure of original peptide (dl, Oy, &1, )21), while the

3-layer EGNN recovers the surface (:&f, ny, 77, 'i'f) Moreover, two additional losses containing

the backbone position loss L1,,(#) and the torsion angle loss L., (6) (Li et al.,2024) is imposed for
extra constraint.

Equivariance. The joint distribution p (CPP | C**¢) must satisfy the roto-translational equivari-
ance to ensure the generalization. That is, for any translation vector € € R? and for any orthogonal
matrix O € R3*3, it should satisfy:

p(OCP® +€|0C™ +¢), (18)
where OCP® + € = {(a;,0;,0z; + €,x;)};27 U {(Oz; + e,ni, 77, Y})}/ . Following the

standard operation called zero-mass-center (Yim et al.,|2023; |Lin et al.,2024), we substract the mass
center of the receptor from all inputs’ coordinates to achieve the invariance to translation, which
also improves the training stability. Moreover, it can be proven that when the prior distributions
p(ao), p(Oo), p(x0), p(x0), P(x§), p(nY), p(75), and p(Y) are SE(3)-invariant, while the vector
fields v®3(-) and v°°(-) are SE(3)-invariant, and the vector field v°"(-) is SO(3)-equivariant and
T(3)-invariant, and the vector field vP*(+) is SE(3)-equivariant, then the density p (CPP | C™°)
generated by the ODE sampling process is SE(3)-equivariant. Notably, the choice of IPA and EGNN
guarantees the equivariance and invariance requirement of those vector fields.

Conditional Design. Controlling the output of deep generative models such as diffusions or flows
has become a hotspot in recent years. Apart from the receptor Cy.., we often want to create pep-
tides with specific conditions, such as cyclicity and disulfide bonds. Conventionally, conditional
controls involve classifier guidance (Dhariwal & Nichol, 2021) and classifier-free guidance (Ho
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et al.;[2020). Evidence indicates that with enough high-quality training data, classifier-free guidance
tends to yield better results, being able to generate an almost infinite number of sample categories
without the need to retrain a classifier architecture. This leads to wide usage of classifier-free guid-
ance in modern Al systems (Ramesh et al) [2022; Zheng et al., [2023a). Due to this superiority,
we adopt the classifier-free guidance to realize the insertion of peptide conditions ¢ and transfer
P(Cpep|Crec) 10 p(Chep|Crec, ). Specifically, we denote the null condition by ¢ by convention
and set p(Chpep|Crec, 8) := D(Cpep|Crec) and u;(+]-,8) := u(+|-). Then taking the surface point
positions for example, our training loss becomes (Zheng et al., [2023al):

0P (2,71 = ) e+ b-0) = (@ — )3,
19)

Lpos(0) = ]Etml/{(O,l),b,p(a:f),p(mé),p(mf\mg,wi)

where b ~ Bernoulli(pyncona) indicates the probability to use the null condition.

B EXPERIMENTAL DETAILS

B.1 TRAINING AND SAMPLING

All experiments are implemented on 4 NVIDIA A100 GPUs. Specifically, we train SurfFlow for
320K iterations and set the initial learning rate of 5e-4. A plateau cheduler is used with a factor of 0.8
and patience of 10. The minimum learning rate is Se-6. The batch size was 32 for each distributed
node. An Adam optimizer is used with a gradient clipping. A dropout ratio of 0.15 is adopted for
the EGNN decoder. The weights for different loss components are set as Apos = 0.2, Aori = 0.2,
Acat = 1.0, Acon = 1.0, and Ay, = 1.0. For the encoder part, the residue embedding size is set as
Yrec = Ypair = 128. For the decoder part, the node and edge embedding sizes are set as 128 and 64
for IPA, respectively, while as 16 and 8 for EGNN, respectively, since the number of surface points
m + m’ are orders of magnitude larger than the number of complex’s residues npep + Nyec. We
set the length of generated peptides the same as the length of their corresponding native peptides.
We download the PepMerge data (Li et al.l 2024) from its official repository: https://drive.
google.com/drive/folders/1bHaKDF3uCDPtfsihjZzs0zmjwFoUUluVl.

B.2 PHYSICHEMICAL SURFACE FEATURES

Three types of surface biochemical properties are leveraged in the experiments. To be specific,
free electrons and potential hydrogen bond donors (FEPH) is a categorical variable, while electro-
statics and hydropathy are continuous variables. Therefore, ), = 1 and ¢y = 2. We resort to
MaSIF (Gainza et al.| [2020)’s scripts to acquire these surface features.

Free electrons and proton donors. The location of FEPH in the molecular surface was computed
using a hydrogen bond potential as a reference. Vertices in the molecular surface whose closest
atom is a polar hydrogen, a nitrogen, or an oxygen were considered potential donors or acceptors in
hydrogen bonds. Then, a value from a Gaussian distribution was assigned to each vertex depending
on the orientation between the heavy atoms. These initial values range from -1 (optimal position for
a hydrogen bond acceptor) to +1 (optimal position for a hydrogen bond donor). Then the point is
determined as an acceptor or a donor (a binary label) by whether FEPH is negative or positive.

Hydropathy. Each vertex was assigned a hydropathy scalar value according to the Kyte and
Doolittle scale of the amino acid identity of the atom closest to the vertex. These values, in the
original scale, ranged between -4.5 (hydrophilic) to +4.5 (most hydrophobic) and were then normal-
ized to be between -1 and 1.

Poisson-Boltzmann continuum electrostatics. PDB2PQR was used to prepare protein files for
electrostatic calculations and APBS (v.1.5) was used to compute Poisson-Boltzmann electrostatics
for each protein. The corresponding charge at each vertex of the meshed surface was assigned using
Multivalue, provided within the APBS suite. Charge values above +30 and below -30 were capped
at those values and then values were normalized between -1 and 1.
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C FLOW MATCHING FOR INTERNAL STRUCTURES

Lst:(0) in Equ. computes the loss for peptide’s structures p ({(aj, 0;, :I:j,xj)}?ff’ ’Cr“).
Here, we provide a quick view of how to conduct full-atom CFM for residues’ positions x, types
a, backbone torsions O, and side-chain angles x. To be concrete, the objective is ¢ (g, 1) =
tey + (1 — t)xo for residues’ positions x, expg, (t log, (01)) for backbone orientations O,
ot (x0,x1) = [tx1 + (1 —t)xo] mod 27 for side-chain angles x, and ¢; (Go,a1) = ta; + (1 —
t)ay for residue types a, where a is the representation of a using a soft one-hot encodeing operation
and satisfies logit(a;) = a; € R?.

D ADDITIONAL RESULTS AND VISUALIZATION

D.1 ABLATION STUDIES

We conduct experiments to investigate the contributions of each component of our SurfFlow model.
Table[]shows that the removal of the biophysical features significantly reduces the performance with
a drop of 3.76% in Designability and 4.91% in Diversity. Besides, it also indicates that inclusion of
surface orientation is beneficial, which brings an improvement of 1.94% in AAR.

Table 4: Ablation studies on different components of SurfFlow.

Geometry Energy Design
AAR %1 RMSDA| SSR%1T BSR%?T Stb. %1 Aff. %1 Des. %1 Div.t
SurfFlow 54.07 1.96 85.11 87.38 22.46 22.51 73.60 0.61
w/o Position 53.26 1.99 84.79 87.15 21.30 22.38 72.09 0.60
w/o Orientation 53.04 2.00 84.60 87.04 20.79 22.46 72.36 0.60
w/o Biophysical Prop. 52.31 2.03 83.96 86.98 19.55 22.47 70.83 0.58

D.2 SURFACE POINT CLOUD EVOLUTION

We give some examples of how the surface point clouds move from time ¢ = 0 to the terminal time
t = 1. It can be seen that after time ¢ = 0.5, those clouds begin to take shapes.

t=0 t=0.3 t=0.5 t=0.7 t=1.0

Figure 6: Visualization of the evolution of surface points’ positions over time [0, 1].
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E LIMITATIONS AND FUTURE WORKS

Despite the enhancement of our SurfFlow over the original full-atom design mechanism, there
are still rooms for future explorations. For instance, further improvements can be expected if
the surface information of the receptor’s surface information is considered and incorporated into

the joint distribution modeling. Namely, our objective becomes Crec = {a;, Oj, Z;, X; };L;ef U

{x5,ni, 77, X5}~ |, where m/ is the number of receptor’s surface points. Moreover, the sucess of
RFDiffusion implies that pretraining on regular proteins in PDB can be benefitial.
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