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A Theory-Driven Approach to Inner Product Matrix Estimation
for Incomplete Data: An Eigenvalue Perspective
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Abstract
Addressing the critical challenge of data incompleteness in inner

product matrix estimation, we introduce a novel eigenvalue correc-

tion method designed to precisely reconstruct true inner product

matrices from incomplete data. Utilizing random matrix theory, our

method adjusts the eigenvalue distribution of the estimated inner

product matrix to align with the ground-truth. This approach sig-

nificantly reduces estimation errors for both inner product matrices

and the derived Euclidean distance matrices, thereby enhancing

the effectiveness of similarity searches on incomplete data. Our

method surpasses traditional data imputation and similarity calibra-

tion techniques in both maximum inner product search and nearest

neighbor search tasks, demonstrating marked advancements in

managing incomplete data. It exhibits robust performance across

various missing rates and diverse scenarios.
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1 Introduction
In information retrieval, accurately calculating inner product be-

tween data samples is crucial [27]. When data is fully observed, this

calculation is straightforward. However, incomplete data, which

frequently occurs during collection and transformation, prevents di-

rect computation of pairwise inner products. As a result, estimation

becomes necessary, often leading to a significant decrease in the

accuracy of inner product measurements [8, 18, 24]. This challenge

is amplified when a large portion of the data is missing, making it

both more difficult and more critical to obtain a high-quality inner

product matrix for downstream applications. To address this issue,

we propose a simple, effective, and robust approach for improving

the accuracy of inner product estimation on incomplete data using
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Figure 1: A motivating example: Eigenvalue distribution di-
vergence of inner product matrix 𝑺𝒐 on incomplete data 𝑿𝒐 .

eigenvalue analysis, benefiting applications such as maximum inner

product search (MIPS) and nearest neighbor search (NNS).

Traditional methods for handling incomplete data, such as data
imputation [9, 17], rely heavily on assumptions about the underly-

ing data structure. For instance, many matrix completion methods

assume the data follows a low-rank [4, 10] or high-rank [6] struc-

ture, while optimal transport-based methods [21, 28] assume that

the distribution between observed andmissing data is aligned. How-

ever, these approaches have two main drawbacks: (1) Inaccurate
Estimation: Their primary goal is to recover the missing data, not

to ensure accurate inner product calculations, which often leads

to errors in the resulting inner product matrices [18]; and (2) Per-
formance Degradation: Their effectiveness, particularly in inner

product estimation and retrieval accuracy, declines significantly as

the proportion of missing data increases, rendering them ineffective

in high-missingness scenarios [26].

Alternatively, a series of optimization approaches, known as

similarity calibration [16, 18, 26], emphasize the importance of

ensuring that the inner product matrix is positive semi-definite

(PSD) [22]. Given incomplete data 𝑋𝑜 = [𝑥𝑜
𝑖
]𝑛
𝑖=1
∈ R𝑑×𝑛 with 𝑛

samples, these techniques bypass data imputation by starting with

an initial inner product matrix 𝑆𝑜 ∈ R𝑛×𝑛
, where 𝑆𝑜

𝑖 𝑗
denotes the

estimated inner product between 𝑥𝑜
𝑖
and 𝑥𝑜

𝑗
. The matrix 𝑆𝑜 is then

calibrated to the nearest PSD matrix by solving the optimization

problem, i.e., min𝑆⪰0 ∥𝑆 − 𝑆𝑜 ∥2𝐹 . Due to their reliance on the PSD

property, they face two major limitations: (1) Limited Applicabil-
ity: If 𝑆𝑜 is already PSD, no further improvement can be made; and

(2) Limited Improvement: Simply restoring the PSD property

often fails to capture the underlying structure of the true inner prod-

uct matrix 𝑆∗, leading to only marginal improvements. The core

issue is that these methods do not directly address the discrepancy

between the initial estimate 𝑆𝑜 and the true matrix 𝑆∗, specifically
∥𝑆𝑜 − 𝑆∗∥𝐹 , which motivates us to design a more reliable approach.

Our goal goes beyond merely ensuring the PSD property; we

aim to accurately reconstruct 𝑆∗. Achieving this requires consistent
estimation of both eigenvalues and eigenvectors, yet accurately esti-

mating high dimensional eigenvectors is notably challenging [2, 14].

Consequently, our focus narrows to the estimation of eigenvalues.

1
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In Fig. 1, we examine the eigenvalue distribution and uncover a

key insight: as the missing rate increases, the eigenvalues of 𝑺𝒐

increasingly diverge from those of the ground truth matrix 𝑺∗.
This underscores the necessity for a method that adjusts 𝑆𝑜 ’s eigen-

values to more closely match the empirical spectral distribution

(ESD) with that of the ground truth 𝑆∗.
To accurately recover eigenvalues, it is therefore natural to ask

the following questions regarding the variations in eigenvalues:

Q1. How does missingness alter eigenvalues from 𝑆∗ to 𝑆𝑜?
Q2. How to correct 𝑆𝑜 ’s eigenvalues to recover those of 𝑆∗?

This paper explores these bidirectional questions within the

context of the inner product matrix. For Q1, we theoretically ana-

lyze the impact of missing data on the eigenvalue distribution for

both i.i.d. and non-i.i.d. data, providing a clear explanation for the

observed eigenvalue distribution divergence, using the Marchenko-

Pastur (MP) Law from random matrix theory. In response to Q2,

we propose a series of algorithms designed to accurately correct

eigenvalues for i.i.d., non-i.i.d., and real-world data, backed by solid

theoretical support.

Our contributions are summarized as follows:

• Theory-Driven Approach: Moving beyond merely ensuring

the PSD property [16, 18, 26], we introduce a fundamentally differ-

ent approach that accurately corrects the eigenvalue distribution

of inner product matrices. Leveraging the MP Law, we propose an

optimal eigenvalue correction strategy for incomplete i.i.d. data in

Section 3, supported by theoretical bounds in Theorems 4 and 7.

This strategy is extended into a practical algorithm for non-i.i.d.

data in Section 4, requiring no assumptions about missing mecha-

nisms and effectively aligning 𝑆𝑜 ’s eigenvalues with those of 𝑆∗.
• Robust Performance: We present simple yet effective al-

gorithms that provide high-quality estimations of inner product

matrices, even under a wide range of missing rates. Extensive exper-

imental results demonstrate the robust performance of our eigen-

value correction approaches across several key areas: (1) accurate
estimation of both inner product and Euclidean distance matrices,

(2) stable performance in downstream applications, i.e., maxi-

mum inner product search and nearest neighbor search tasks, even

with high missing rates, and (3) broad applicability across various

data types and missingness scenarios, consistently outperforming

traditional data imputation and similarity calibration methods.

Notations. Complete matrices (vectors) are denoted by 𝑋 (𝑥)

and observed matrices (vectors) are denoted by 𝑋𝑜
(𝑥𝑜 ), which may

contain missing values. If no missing values, 𝑋𝑜 = 𝑋 and 𝑥𝑜 = 𝑥 .

𝑆 denotes the normalized inner product matrix and 𝐷 denotes the

squared Euclidean distance matrix.

2 Preliminaries
2.1 Intuitive Estimation of Inner Product
Estimating pairwise inner products is challenging with incomplete

data. [18, 26] provided an intuitive estimate for inner products

on partially observed data, denoted as 𝑥𝑜 , 𝑦𝑜 ∈ R𝑑 . As depicted
in Fig. 2, employing a non-empty index set 𝐼 ⊆ {1, · · · , 𝑑} that
identifies jointly observed features, the normalized inner product

Observed Value Missing Value

Incomplete Data                       Complete Data

common features

xo yo
xo
I yoI

Rd R|I|I ⊆ {1, · · · , d}

Figure 2: Intuitive estimation of pairwise inner product.

can be estimated unbiasedly within the |𝐼 |-dimensional space by:

1

𝑑
𝑥𝑜
⊤
𝑦𝑜 ≈ 1

|𝐼 | 𝑥
𝑜
𝐼
⊤
𝑦𝑜𝐼 =: 𝑠𝑜 (𝑥𝑜 , 𝑦𝑜 ) . (1)

For observed data matrix 𝑋𝑜 = [𝑥𝑜
𝑖
]𝑛
𝑖=1
∈ R𝑑×𝑛 with 𝑛 samples,

the normalized inner product matrix is intuitively estimated by

𝑆𝑜 = [𝑠𝑜 (𝑥𝑜
𝑖
, 𝑥𝑜

𝑗
)]𝑛
𝑖,𝑗=1

∈ R𝑛×𝑛
.

2.2 Similarity Calibration Method’s Limitations
The most closely related work in similarity estimation is the simi-

larity calibration method [16, 18, 26], which aims to find the nearest

PSDmatrix for the initial estimate 𝑆𝑜 by solving 𝑆 := argmin𝑆⪰0 ∥𝑆−
𝑆𝑜 ∥2

𝐹
. However, its reliance on the PSD property leads to the fol-

lowing inherent limitations:

(1) Limited Applicability: Its effectiveness is contingent on 𝑆𝑜

being non-PSD. As illustrated in Fig. 3(a), with a small missing rate

(e.g., 20%) and a large
𝑑
𝑛 (e.g., 10), 𝑆𝑜 is likely to be PSD and 𝑆 = 𝑆𝑜 .

The non-PSD requirement precludes further improvement, thereby

narrowing the method’s applicability.

(2) Limited Improvement: As depicted in Fig. 3(b), this tech-

nique derives 𝑆 by setting all negative eigenvalues of 𝑆𝑜 to zero. The

resulting eigenvalue distribution (yellow line) remains significantly

distant from the ground truth (blue line), inadequately capturing

the true distribution and yielding marginal improvements.

(3) Limited Distance Estimation: The Euclidean distance ma-

trices derived from the calibrated inner product matrices often show

large estimation errors, resulting in weak performance in nearest

neighbor search tasks. This is likely due to PSD optimization al-

tering the intrinsic structure of the inner product matrices, which

degrades the quality of the derived distance matrices.

These limitations motivated us to develop a new method that

accurately recovers the inner product matrix, especially for the

eigenvalue distribution, without relying on the PSD property.
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Figure 4: A diagram of our proposed eigenvalue correction approach.

3 Inner Product Estimation for I.I.D. Data
We aim to accurately reconstruct the true inner product matrix

𝑆∗, starting with the intuitive estimate 𝑆𝑜 . The key question, from

the perspective of eigenvalues, is understanding the relationship

between the eigenvalues of 𝑆𝑜 and those of 𝑆∗. To explore this, we

focus on simple cases of i.i.d. data, where tools from random matrix

theory can be effectively used to study eigenvalue distributions.

In this section, we first explore the true eigenvalue distribution

for complete i.i.d. data (Section 3.1). Next, we provide a theoretical

analysis of the eigenvalue distribution for incomplete i.i.d. data (Sec-

tion 3.2), offering explanations for the phenomenon of eigenvalue

distribution divergence. Finally, we propose a novel eigenvalue

correction approach for incomplete i.i.d. data (Section 3.3) that ac-

curately recovers the true eigenvalues, supported by a rigorous

optimality analysis (Section 3.4).

3.1 Inner Product of Complete I.I.D. Data
Consider fully observed i.i.d. data 𝑋 = [𝑥𝑖 𝑗 ]𝑛𝑖,𝑗=1 ∈ R

𝑑×𝑛
with zero

mean and finite variance. The true normalized inner product matrix

is defined as 𝑆∗ = 𝑋⊤𝑋/𝑑 ∈ R𝑛×𝑛
, whose eigenvalue distribution

can be well described by the Marchenko-Pastur (MP) Law [19]

from random matrix theory. Based on the MP Law, the conver-

gence of the empirical spectral distribution (ESD) 𝐹 ∗𝑛 (𝑥) ≡ 𝐹 ∗ (𝑥) =
1

𝑛

∑
1≤𝑖≤𝑛 1{𝜆∗𝑖 ≤ 𝑥} of 𝑆∗, is established in Lemma 1. Here, 𝜆∗

𝑖
represents the 𝑖-th eigenvalue of 𝑆∗, ordered as 𝜆∗

1
≥ · · · ≥ 𝜆∗𝑛 .

Lemma 1 (Eigenvalue Distribution for Complete I.I.D. Data
[19]). Consider 𝑋 = [𝑥1, . . . , 𝑥𝑛] ∈ R𝑑×𝑛 , where the entries are i.i.d.
random variables with mean 0 and variance 𝜎2 < ∞. As 𝑑, 𝑛 → ∞
with 𝑑/𝑛 → 𝑐 > 0, the empirical spectral distribution (ESD) 𝐹 ∗ of 𝑆∗

almost surely converges weakly to the limiting spectral distribution
(LSD) 𝜇∗. The LSD 𝜇∗ is supported on the interval:

[𝜆∗−, 𝜆∗+] = [𝜎2 (1 − 𝑐−1/2)2, 𝜎2 (1 + 𝑐−1/2)2],
with the density function:

𝑓 ∗ (𝑥) = 𝑐

2𝜋𝜎2

√︁
(𝜆∗+ − 𝑥) (𝑥 − 𝜆∗−)

𝑥
1𝑥∈[𝜆∗−,𝜆∗+ ] .

This lemma shows that (1) almost all non-zero eigenvalues of 𝑆∗

lie within the spectral support [𝜆∗−, 𝜆∗+], (2) the LSD and spectral

support for complete i.i.d. data depend only on 𝑐 , assuming the

variance 𝜎2 is fixed, and (3) the eigenvalues of any equal-size i.i.d.

data matrices 𝑋1, 𝑋2, · · · ∈ R𝑑×𝑛 drawn from the same distribution,

converge to the same limiting spectral distribution, whichmotivates

us to design algorithms for more general data in Section 4.

3.2 Inner Product of Incomplete I.I.D. Data
Considering partially observed i.i.d. data 𝑋𝑜 = [𝑥𝑜

𝑖 𝑗
]𝑛
𝑖,𝑗=1

∈ R𝑑×𝑛 ,
we simplify our theoretical analysis by focusing on a missing com-

pletely at random (MCAR) scenario, where each entry 𝑥𝑜
𝑖 𝑗
is uni-

formly missing with probability 𝑟 ∈ (0, 1), representing the missing

rate. The initial inner product matrix 𝑆𝑜 is estimated using Eq. (1).

In Theorem 2, we expand the Marchenko-Pastur Law to theoret-

ically determine the LSD 𝜇𝑜 of 𝑆𝑜 , illustrating that the eigenvalue

distribution of 𝑆𝑜 hinges on both 𝑐 and 𝑟 , proven in Appendix A.1.

Theorem 2 (Eigenvalue Distribution for Incomplete I.I.D.
Data). Consider 𝑋𝑜 = [𝑥𝑜

1
, . . . , 𝑥𝑜𝑛] ∈ R𝑑×𝑛 , where the true val-

ues of {𝑥𝑜
𝑖 𝑗
} are i.i.d. random variables with mean 0 and variance

𝜎2 < ∞, missing completely at random (MCAR) with a missing rate
of 𝑟 ∈ (0, 1). As 𝑑, 𝑛 → ∞ with 𝑑/𝑛 → 𝑐 ∈ (0, +∞), the limiting
spectral distribution 𝜇𝑜 of the initial estimate 𝑆𝑜 is supported on

[𝜆𝑜−, 𝜆𝑜+] =
[
𝜎2 (1 − 𝑐−1/2)2 − 𝑟

1 − 𝑟 ,
𝜎2 (1 + 𝑐−1/2)2 − 𝑟

1 − 𝑟

]
with the density function

𝑓 𝑜 (𝑥) = 𝑐 (1 − 𝑟 )2
2𝜋𝜎2

√︁
(𝜆𝑜+ − 𝑥) (𝑥 − 𝜆𝑜−)
(1 − 𝑟 )𝑥 + 𝑟 1𝑥∈[𝜆𝑜−,𝜆𝑜+ ] .

To further explore how 𝑟 and 𝑐 influence eigenvalue distributions,

we graphically depict the spectral support of 𝑆𝑜 in Fig. 5 with two

key observations:

• Impact of 𝒓 : The spectral support [𝜆𝑜−, 𝜆𝑜+] of 𝑆𝑜 gradually

widens as the missing rate 𝑟 increases. This confirms the eigenvalue

distribution divergence, as shown in Fig. 1, which is caused by the

missing values and can be theoretically explained by Theorem 2.

• Impact of 𝒄: The upper boundary 𝜆𝑜+ increases monotonically

as 𝑐 decreases, indicating that eigenvalue distributions become

more sensitive to missing data at smaller values of 𝑐 .
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Figure 5: The impact of 𝒓 and 𝒄 on the spectral support of 𝑺𝒐 .

Beyond the spectral support, we explore the alignment between

the ESD and LSD, as shown in Fig. 6, leading to two key insights:

• Distribution Alignment: The ESDs of both 𝑆∗ and 𝑆𝑜 closely

align their corresponding LSDs across varying missing rates, sug-

gesting that the density function of the LSD can be effectively used

to estimate the ESD with high accuracy.

• Distribution Shape: The eigenvalue distributions of 𝑆𝑜 con-

sistently maintain a shape similar to the ground-truth distribution

of 𝑆∗ under various missing rates, indicating a linear transformation

between the LSD of 𝑆𝑜 and that of 𝑆∗.
This consistency of distribution shape motivates us to design a

precise eigenvalue correction strategy, as detailed in Section 3.3.
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Figure 6: Distribution alignment and consistent shape. Con-
sider 𝑋𝑜 = [𝑥𝑜

𝑖 𝑗
] ∈ R2000×1000 with 𝑥𝑜

𝑖 𝑗

𝑖 .𝑖 .𝑑.∼ N(0, 1) and 𝑐 = 2.

3.3 Proposed Eigenvalue Correction Strategy for
Incomplete I.I.D. Data

Motivated by the consistent shape in eigenvalue distributions ob-

served in Fig. 6, we propose a novel eigenvalue correction approach

to recover the true eigenvalue distribution of 𝑆∗ through a linear

transformation. Our method corrects the eigenvalues {𝜆𝑜
𝑖
} within

the spectral support of 𝑆𝑜 using the following linear transformation:

ˆ𝜆𝑖 :=
𝜆∗+ − 𝜆∗−
𝜆𝑜+ − 𝜆𝑜−

· (𝜆𝑜𝑖 − 𝜆
𝑜
−) + 𝜆∗− = (1 − 𝑟 )𝜆𝑜𝑖 + 𝑟 . (2)

This procedure effectively aligns the spectral support of 𝑆𝑜 with

that of 𝑆∗, as evidenced by 𝜆∗± = (1 − 𝑟 )𝜆𝑜± + 𝑟 . However, it is
crucial to note that in scenarios where 𝑑 < 𝑛, 𝑆∗ contains (𝑛 − 𝑑)

zero eigenvalues outside its support. Therefore, in cases where

𝑑 < 𝑛, we adjust the smallest (𝑛 −𝑑) eigenvalues of 𝑆𝑜 to zero. The

complete Algorithm 1 is summarized as follows.

Algorithm 1 Eigenvalue Correction for I.I.D. Data

Input: 𝑋𝑜 ∈ R𝑑×𝑛 : an incomplete i.i.d. data matrix with mean 0

and variance 𝜎2 < ∞; 𝑟 : the missing rate of MCAR.

Output: 𝑆 ∈ R𝑛×𝑛
: the corrected inner product matrix.

1: Calculate the initial estimate 𝑆𝑜 via Eq. (1).

2: Perform eigen-decomposition 𝑆𝑜 = 𝑈Λ𝑈⊤ with Λ =

Diag(𝜆𝑜
1
, · · · , 𝜆𝑜𝑛) and 𝜆𝑜1 ≥ · · · ≥ 𝜆

𝑜
𝑛 .

3: if 𝑑 < 𝑛 then
4:

ˆ𝜆𝑖 ← (1 − 𝑟 )𝜆𝑜𝑖 + 𝑟 for 1 ≤ 𝑖 ≤ 𝑑 ;
5:

ˆ𝜆𝑖 ← 0 for 𝑑 + 1 ≤ 𝑖 ≤ 𝑛.
6: else if 𝑑 ≥ 𝑛 then
7:

ˆ𝜆𝑖 ← (1 − 𝑟 )𝜆𝑜𝑖 + 𝑟 for 1 ≤ 𝑖 ≤ 𝑛.
8: end
9: Compute the eigenvalue matrix Λ̂ = Diag( ˆ𝜆1, · · · , ˆ𝜆𝑛).
10: Return 𝑆 = 𝑈 Λ̂𝑈⊤.

3.4 Optimality Analysis
On the recovery of true eigenvalue distribution, we prove the op-

timality of the proposed correction strategy in Theorem 3. Theo-

retically, the consistent distribution patterns of 𝑆𝑜 and 𝑆∗ originate
from the linear transformation relationship between their prob-

ability density functions (PDFs) 𝑓 ∗ (𝑥) and 𝑓 𝑜 (𝑥), as defined in

Lemma 1 and Theorem 2, respectively. The proof is provided in the

Appendix A.2.

Theorem 3 (Optimality of Eigenvalue Correction Strategy).
Given incomplete i.i.d. data𝑋𝑜 with MCAR, the linear transformation
𝜆𝑜
𝑖
↦→ ˆ𝜆𝑖 := (1− 𝑟 )𝜆𝑜𝑖 + 𝑟 is the optimal transformation to reconstruct

the spectral distribution of 𝑆∗, in the sense that almost surely |𝐹 (𝑥) −
𝐹 ∗ (𝑥) | → 0 for any 𝑥 ∈ R, where 𝐹 (𝑥) and 𝐹 ∗ (𝑥) are distribution
functions corresponding to { ˆ𝜆𝑖 } and {𝜆∗𝑖 }, respectively.

Theorem 3 illustrates our capability to precisely align all eigen-

values {𝜆𝑜
𝑖
} with {𝜆∗

𝑖
} for any non-zero missing rate 𝑟 . This marks

a significant advancement over similarity calibration methods [16,

18, 26], which only partially correct negative eigenvalues and rely

on a non-PSD 𝑆𝑜 under a large missingness.

Regarding the quality of inner product estimation, while previous

works [16, 18, 26] assert that ∥𝑆 −𝑆∗∥𝐹 ≤ ∥𝑆𝑜 −𝑆∗∥𝐹 , our approach
achieves a significantly tighter error bound in Theorem 4 (proven

in the Appendix A.3), indicating a more substantial improvement.

Theorem 4 (Error Bound of Inner Product Estimation). Given
incomplete i.i.d. data𝑋𝑜 with MCAR, for any small constant 𝜀, it holds
with probability (1 − 𝑜 (1)) that ∥𝑆 − 𝑆∗∥𝐹 ≤ (𝜂𝑆 + 𝜀)∥𝑆𝑜 − 𝑆∗∥𝐹 ,
where 𝜂𝑆 =

√︃
1 − 𝑟 2𝑐−1

(2+𝑐−1 ) (1−𝑟 )2+2𝑟 (1−𝑟 )+𝑐−1 ∈ (0, 1).

Remark. Achieving precise recovery of 𝑆∗ is generally challenging,
as consistent estimation of 𝑆∗’s eigenvectors from 𝑆𝑜 is not feasible
without additional information or a specific covariance structure [14].
Unlike previous works [16, 18, 26] that focus on restoring the PSD
property, our approach aims to accurately reconstruct the true spectral
distribution of 𝑆∗, yielding estimates with significantly reduced error.

4
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4 Inner Product Estimation for Non-I.I.D. Data
Beyond i.i.d. data, our theory can be extended to more general cases

of non-i.i.d. data, where features are correlated and samples are

independently and identically distributed. As is well known, the

complex structure of non-i.i.d. data makes theoretical analysis more

challenging, as we lack powerful tools available for non-i.i.d. data.

To effectively model non-i.i.d. data, we first investigate separable

data, a generalized version of i.i.d. data that can be analyzed using

random matrix theory. We then extend our theoretical insights to

more general real-world data and propose a simple yet effective

approach to correct eigenvalue distributions, without assuming any

specificmissingmechanism. This approach shows strong and robust

performance in the empirical validations presented in Section 6.

4.1 Inner Product of Separable Data
We begin with separable data, a generalized form of i.i.d. data stud-

ied in random matrix theory. To simplify the analysis, we assume

the data is missing completely at random (MCAR) and establish the

relationship between the eigenvalues of the initial inner product

matrix 𝑆𝑜 and the ground-truth 𝑆∗, as presented in Theorem 5 and

proven in Appendix A.4.

Theorem 5 (Eigenvalue Distribution for Separable Data). Con-
sider non-i.i.d. separable data 𝑋 = [𝑥1, . . . , 𝑥𝑛] ∈ R𝑑×𝑛 , where
𝑥𝑖 = Σ1/2𝑧𝑖 ∈ R𝑑 , with 𝑧𝑖 having independent coordinates, E[𝑧𝑖 ] = 0,
and Cov(𝑧𝑖 ) = 𝐼𝑑 . Define 𝑋𝑜 as the incomplete version of 𝑋 with
MCAR in a missing rate 𝑟 , and 𝑆𝑜 as the initial inner product matrix
of 𝑋𝑜 . For the eigenvalues {𝜆𝑜

𝑖
} of 𝑆𝑜 , it holds that, for 1 ≤ 𝑖 ≤ 𝑛,

𝜆𝑜𝑖 − (1 − 𝑟 )
−1𝜆∗𝑖

𝑝
→ 𝑟 (1 − 𝑟 )−1tr(Σ)/𝑑,

where
𝑝
→ indicates convergence in probability.

Two key insights emerge from Theorem 5. Firstly, it reveals

that MCAR introduces a linear relationship: Support(𝑆𝑜 ) ≈ (1 −
𝑟 )−1Support(𝑆∗) +𝑟 (1−𝑟 )−1tr(Σ)/𝑑 . This relationship can be lever-
aged to recover the true eigenvalues and improve the inner product

estimate. Secondly, it also suggests that MCAR preserves the funda-

mental “shape" of the LSD, modulo scaling and shifting adjustments,

which is consistent with the i.i.d. case shown in Fig. 6.

4.2 Inner Product of Real-World Data
It is widely recognized that modeling real-world data is difficult

due to their varying distributions and complex structures. Without

a specific data model, it is impossible to theoretically derive the

true eigenvalue distributions for incomplete real data. However, we

can empirically estimate these true eigenvalue distributions using

fully observed real data, which provides a foundation for further

eigenvalue correction.

How can we obtain such an empirical estimate? Motivated by

our theory on i.i.d. and separable data, we have both theoretically

and empirically observed that two fully observed, equal-sized
subsets 𝑿1 and 𝑿2 from the same dataset X exhibit similar
eigenvalue distributions. This implies that if 𝑋𝑜

1
is derived from

𝑋1 with missing values, we can use the eigenvalue distribution of

𝑋2 as an empirical estimate for that of 𝑋1. In this case, the fully

observed 𝑋2 serves as reference data for the incomplete 𝑋𝑜
1
. To

formalize this observation, we present the following Theorem 6:

Theorem 6 (Eigenvalue Distribution for Non-I.I.D. Data). Let
𝑋1, 𝑋2 ∈ R𝑑×𝑛 be two fully-observed subsets of non-i.i.d. data from
the same distribution. Assume 𝑋𝑖 = Σ1/2𝑍𝑖 (𝑖 = 1, 2), where 𝑍𝑖 ’s
elements have zero mean, share the same variance, and have finite
fourth moments. Then, the empirical spectral distributions (ESDs)
of 𝑆1 = 𝑋⊤

1
𝑋1/𝑑 and 𝑆2 = 𝑋⊤

2
𝑋2/𝑑 converge to the same limiting

spectral distribution (LSD) as 𝑑, 𝑛 →∞ with 𝑑/𝑛 → 𝑐 ∈ (0, +∞).

4.3 Proposed Eigenvalue Correction Strategy for
Incomplete Non-I.I.D. Data

For general real data, we also observe consistency in eigenvalue

distributions, as partially supported by Theorem 6. Take the CI-

FAR10 image dataset [15] as an example. Consider two random

subsets, 𝑋1 and 𝑋2, each containing 1,000 samples, and construct

an incomplete 𝑋𝑜
1
from 𝑋1 with 50% random missing entries. As

shown in Fig. 7, we visualize the eigenvalues of their inner product

matrices 𝑆1, 𝑆2, and 𝑆
𝑜
1
, and make the following observations:

• Similar Small Eigenvalues: 𝑆1 and 𝑆2 share nearly identical

small eigenvalues from 𝜆100 to 𝜆1000 within the spectral support.

• Distinct Large Eigenvalues: 𝑆1 and 𝑆2 have distinct large
eigenvalues from 𝜆1 to 𝜆5, which act as outliers beyond the spectral

support, reflecting unique characteristics in 𝑋1 and 𝑋2.

• Impact of Missingness: 𝑆𝑜
1
and 𝑆1 exhibit similar large eigen-

values from 𝜆1 to 𝜆5, but show significant differences in smaller

eigenvalues from 𝜆100 to 𝜆1000, indicating that missingness has a

substantial impact on the spectral support.
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Figure 7: Eigenvalue distributions of real data fromCIFAR10.

These insights led us to develop a universal correction strategy,

presented in Algorithm 2, which does not rely on any specific miss-

ing mechanism or data distribution. To correct 𝑆𝑜
1
, we use a simple

yet effective approach: using 𝑺2 as a reference, we retain 𝑺𝒐1 ’s
top-𝒌 largest eigenvalues and replace the rest with those from
𝑺2. This approach is inspired by the well-known spiked models

[13] in random matrix theory, where signals (outliers) and the bulk

(spectral support) are handled separately [14].

Algorithm 2 Eigenvalue Correction for Non-I.I.D. Data

Input: 𝑋𝑜
1
∈ R𝑑×𝑛 : an incomplete subset; 𝑋2 ∈ R𝑑×𝑛 : a complete

subset; 𝑘 : top-𝑘 eigenvalues (hyperparameter).

Output: 𝑆1 ∈ R𝑛×𝑛
: the corrected inner product matrix for 𝑋𝑜

1
.

1: Calculate 𝑆𝑜
1
, 𝑆2 from 𝑋𝑜

1
, 𝑋2 via Eq. (1).

2: Perform 𝑆𝑜
1
= 𝑈1Λ

𝑜
1
𝑈⊤
1

and Λ𝑜
1
= Diag(𝜆𝑜

1
, · · · , 𝜆𝑜𝑛).

3: Perform 𝑆2 = 𝑈2Λ
∗
2
𝑈⊤
2

and Λ∗
2
= Diag(𝜆∗

1
, · · · , 𝜆∗𝑛).

4: Compute Λ̂1 = Diag(𝜆𝑜
1
, · · · , 𝜆𝑜

𝑘︸      ︷︷      ︸
from 𝑆𝑜

1

, 𝜆∗
𝑘+1, · · · , 𝜆

∗
𝑛︸         ︷︷         ︸

from 𝑆2

).

5: Return 𝑆1 = 𝑈1Λ̂1𝑈
⊤
1
.

5
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5 Extension
5.1 Extension on Scalability and Efficiency
Scalability Analysis. In practice, we often encounter cases where

the number of incomplete samples exceeds that of complete sam-

ples. In such scenarios, we handle the unequal-sized matrices 𝑋𝑜
1
∈

R𝑑×𝑛1
and 𝑋2 ∈ R𝑑×𝑛2

(with 𝑛1 > 𝑛2) by using a divide-and-

conquer approach. As shown in Fig. 8, we partition 𝑆𝑜
1
∈ R𝑛1×𝑛1

and 𝑆2 ∈ R𝑛2×𝑛2
into submatrices {𝑆𝑜

𝑖 𝑗
} and {𝑆𝑝𝑞}, each of size

𝑚 × 𝑚 (with 𝑚 ≪ 𝑛1, 𝑛2, assuming 𝑛1 and 𝑛2 are divisible by

𝑚). We then perform eigen-decomposition for each diagonal sub-

matrix 𝑆𝑜
𝑖𝑖
or 𝑆𝑝𝑝 , and singular value decomposition for each off-

diagonal submatrix 𝑆𝑜
𝑖 𝑗
or 𝑆𝑝𝑞 , achieving quadratic time complex-

ity 𝑶 (𝒎𝒏21 + 𝒎𝒏22) with highly parallelizable processing. Rather

than correcting the entire 𝑆𝑜
1
, we correct each 𝑆𝑜

𝑖 𝑗
∈ R𝑚×𝑚 to 𝑆𝑖 𝑗

individually, and reconstruct the corrected one 𝑆1 = (𝑆𝑖 𝑗 ) ∈ R𝑛1×𝑛1
.

This approach enables more scalable processing of large datasets

with a higher number of incomplete samples. The scalable Algo-
rithm 3 is summarized in Appendix B.1 with a detailed example.
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R R
Figure 8: Schematic diagram of the scalable Algorithm 3.

Efficiency Analysis. For large datasets, the time complexity of the

scalable Algorithm 3 is quadratic,𝑂 (𝑚𝑛2
1
+𝑚𝑛2

2
), where𝑚 ≪ 𝑛1, 𝑛2.

For smaller datasets, while the time complexity of Algorithms 1

and 2 is𝑂 (𝑛3), these algorithms are highly efficient in practice. For

instance, they require less than 0.1 seconds for 𝑛 = 1,000 and less

than 1 minute for𝑛 = 10,000. The primary computational cost arises

from the eigen-decomposition of 𝑆 ∈ R𝑛×𝑛
. Despite the cubic com-

plexity, Algorithm 1 only performs eigen-decomposition once, and

Algorithm 2 performs it twice, ensuring fast execution in practice.

In contrast, similarity calibration methods [18, 26] require multiple

eigen-decompositions in their iterative optimization procedures,

leading to much longer run times.

5.2 Extension to Euclidean Distance
We have established a comprehensive framework for estimating

the inner product on both i.i.d. and non-i.i.d data in Sections 3 and

4. It is natural to compute the Euclidean distance from the inner

product. Suppose we have obtained normalized inner product 𝑆

for incomplete 𝑋𝑜 = [𝑥𝑜
𝑖 𝑗
] ∈ R𝑑×𝑛 , the squared Euclidean distance

between 𝑥𝑜
𝑖
and 𝑥𝑜

𝑗
∈ R𝑑 can be approximated via ∥𝑥𝑜

𝑖
− 𝑥𝑜

𝑗
∥2 ≈

𝑑 · 𝑠𝑖𝑖 + 𝑑 · 𝑠 𝑗 𝑗 − 2𝑑 · 𝑠𝑖 𝑗 =: ˆ𝑑𝑖 𝑗 , where 𝑠𝑖 𝑗 approximates
1

𝑑
𝑥𝑜
𝑖
⊤𝑥𝑜

𝑗
.

Then, the squared Euclidean distance matrix is obtained by

�̂� := [ ˆ𝑑𝑖 𝑗 ] = Diag(𝑑𝑆) · 𝐽 + 𝐽 · Diag(𝑑𝑆) − 2𝑑𝑆, (3)

where 𝐽 is an all-ones matrix of size 𝑛×𝑛 and Diag(·) is to extract a
diagonal matrix. Furthermore, we derive an error bound for the Eu-

clidean distance estimation in Theorem 7, proven in Appendix A.6.

Theorem 7 (Error Bound of Euclidean Distance Estimation).
Given incomplete i.i.d data 𝑋𝑜 with MCAR, there exists 𝜂𝐷 ∈ (0, 1)
such that ∥�̂� − 𝐷∗∥𝐹 ≤ (𝜂𝐷 + 𝜀)∥𝐷𝑜 − 𝐷∗∥𝐹 holds with probability
(1 − 𝑜 (1)) for any small 𝜀 > 0, with 𝜂𝐷 specified in Eq. (A.13).

Remark. Our method’s corrected inner product results in signifi-
cantly smaller estimation errors of Euclidean distance in practice. By
comparison, similarity calibration methods lack theoretical guaran-
tees for Euclidean distance, often leading to larger errors and weaker
performance in nearest neighbor search tasks.

6 Experiments
To evaluate the performance, we focus on the estimation errors of

both inner product and Euclidean distance matrices (Section 6.2),

with applications in maximum inner product search and nearest

neighbor search (Section 6.3). This is followed by a robustness

analysis (Section 6.4) and application extensions (Section 6.5).

6.1 Experimental Setting
Dataset. We evaluate the performance on four benchmark datasets,

covering a reasonable range of applications: CIFAR10 [15]: a color-
image dataset with colorful images of 32×32 (𝑑 = 3, 072); LFW [12]:

a face-image dataset with resized gray images of 64×64 (𝑑 = 4, 096);

COIL100 [23]: an object-image dataset with resized gray images

of 32 × 32 (𝑑 = 1, 024); ISOLET [5]: a speech dataset that contains

recordings of different speakers (𝑑 = 617).

Data Setting. From each dataset, we randomly select two subsets,

each containing 𝑛 samples: one serves as the incomplete 𝑋𝑜
1
, and

the other as the complete 𝑋2. Our experiments focus on inner
product matrix estimation for the incomplete 𝑿𝒐

1 . We report

average results for 10 random seeds on a ThinkStation equipped

with an Intel i7-12700 Core and 32GB RAM.

Missing Mechanism. For simplicity and fairness, we apply the

most commonly used Missing Completely at Random (MCAR)

mechanism [17] in Sections 6.2-6.4, where each entry in 𝑋𝑜
1
is

replaced by the NA value with a probability 𝑟 , known as the miss-
ing rate. Crucially, our algorithms’ application to real data in
Algorithms 2 and 3, operates without explicit assumptions
about the missing mechanism. It proves effective across various
missing mechanisms, as shown in Section 6.5.

Baseline Methods. Various methods designed for handling in-

complete data are considered for comparison, including: (1) Sta-
tistical Imputation: Mean [11], 𝑘-nearest neighbors (𝒌NN) [1];
(2) Matrix Completion: Singular Value Thresholding (SVT) [3],
Kernelized Factorization Matrix Completion (KFMC) [6], Polyno-
mial Matrix Completion (PMC) [7]; (3) Optimal-transport-based
Imputation: Transformed Distribution Matching (TDM) [28]; (4)
Deep Imputation: GAIN [25] andMIWAE [20]; (5) Similarity
Calibration: Direct Matrix Calibration (DMC) [16], Similarity Ma-

trix Calibration (SMC) [26], and Similarity Vector Calibration (SVC)
[18]. Implementation details and hyperparameters are provided in

Appendix C.
6
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Table 1: Comparison of Relative Error (RE) in inner product and Euclidean distance estimation with 𝑛 = 1, 000 samples and 80%

random missing. Bold shows the best result, and underline marks the second-best. Our method achieves the lowest errors.

Metric: RE(𝑋 ) = ∥𝑋−𝑋
∗ ∥𝐹

∥𝑋 ∗ ∥𝐹 ↓ Relative Error of 𝑆 Relative Error of 𝐷

Baseline Type Method CIFAR10 LFW COIL100 ISOLET CIFAR10 LFW COIL100 ISOLET

Statistical
Imputation

Mean (2005) 0.958±0.000 0.958±0.000 0.957±0.000 0.958±0.000 0.814±0.001 0.811±0.000 0.808±0.003 0.810±0.001
𝑘NN (2016) 0.947±0.002 0.944±0.003 0.939±0.003 0.944±0.003 0.811±0.001 0.806±0.001 0.802±0.003 0.803±0.001

Matrix
Completion

SVT (2010) 0.865±0.002 0.866±0.002 0.869±0.003 0.880±0.002 0.790±0.001 0.791±0.001 0.789±0.002 0.795±0.001
KFMC (2019) 0.946±0.013 0.958±0.000 0.916±0.004 0.934±0.001 0.811±0.003 0.811±0.000 0.768±0.014 0.804±0.002
PMC (2020) 0.841±0.010 0.924±0.003 0.733±0.022 0.841±0.005 0.743±0.009 0.802±0.003 0.789±0.254 0.769±0.004

OT Imputation TDM (2023) 0.957±0.001 0.956±0.001 0.956±0.001 0.957±0.001 0.789±0.003 0.784±0.003 0.785±0.003 0.780±0.004
Deep
Imputation

GAIN (2018) 1.074±0.167 1.200±0.197 2.053±0.289 8.313±3.783 0.432±0.065 0.504±0.064 0.418±0.036 0.327±0.056
MIWAE (2019) 0.625±0.014 0.577±0.013 0.918±0.002 0.824±0.058 0.281±0.003 0.228±0.005 0.466±0.102 0.398±0.023

Similarity
Calibration

DMC (2015) 0.225±0.007 0.228±0.003 0.488±0.012 0.696±0.009 0.742±0.007 0.662±0.004 1.315±0.014 1.903±0.017
SMC (2023) 0.184±0.006 0.190±0.003 0.375±0.010 0.508±0.007 0.306±0.007 0.266±0.003 0.579±0.018 0.829±0.012
SVC (2024) 0.226±0.013 0.220±0.003 0.447±0.022 0.631±0.021 0.490±0.005 0.428±0.003 0.901±0.010 1.331±0.012

Initial Estimate 𝑆𝑜 & 𝐷𝑜
0.269±0.008 0.273±0.004 0.574±0.013 0.806±0.010 0.079±0.001 0.072±0.000 0.214±0.032 0.219±0.005

Our Method EC 0.156±0.005 0.160±0.003 0.305±0.008 0.397±0.004 0.049±0.001 0.046±0.001 0.182±0.038 0.148±0.005
Improvement from 𝑆𝑜 , 𝐷𝑜

to Ours 42%±0% 42%±0% 47%±1% 51%±1% 38%±0% 36%±0% 16%±5% 32%±1%

6.2 Evaluation on Estimation Error
To estimate a high-quality inner product matrix for incomplete

data, we aim to produce an accurate estimate for the incomplete

data 𝑋𝑜
1
and derive a reliable Euclidean distance matrix from it. The

evaluation metric we use is Relative Error (RE), which quantifies

the error in the estimated matrices. The relative error of the inner

product matrix 𝑆 and the Euclidean distance matrix 𝐷 is defined as:

RE(𝑋 ) := ∥𝑋 − 𝑋
∗∥𝐹

∥𝑋 ∗∥𝐹
(4)

where 𝑋 denotes the estimated matrix (either inner product 𝑆 or

Euclidean distance 𝐷), and 𝑋 ∗ represents the ground truth matrix.

As illustrated in Table 1, our Eigenvalue Correction (EC)
method demonstrates superior performance across both inner prod-

uct and Euclidean distance estimation compared to baseline meth-

ods, including data imputation and similarity calibration techniques.

• Comparison with Imputation Methods: (1) Statistical
Imputation: The 𝑘NN method estimates missing values by av-

eraging those of the nearest neighbors. However, the neighbor

relationship can be compromised by missing values, leading to in-

accurate estimates. (2) Matrix Completion: Methods like SVT,

KFMC, and PMC perform matrix completion based on assump-

tions of low-rank or high-rank structures, and their performance

often deteriorates when the data does not fit these assumptions.

(3) Optimal-transport-based Imputation. TDM utilizes optimal

transport to match distributions of 𝑋 but does not match spectral

distribution of the inner product matrix 𝑆 . (4) Deep Imputation:
The performance of deep learning models like GAIN and MIWAE

heavily relies on the quality and size of the training data. In our

case, the training data is limited to only 1,000 samples from the

complete data 𝑋2, and the missing rate is high (80%), both of which

contribute to the suboptimal performance of these deep imputation

methods. In sum, imputation methods aim to recover the original

data rather than the inner product matrix 𝑆 , which may not ensure

the quality of 𝑆 and𝐷 . Additionally, imputationmethodsmay not be

applicable at high missing rates (e.g., 80%), where their performance

significantly degrades, as illustrated in Fig. 9 in Section 6.4.

• Comparison with Calibration Methods: Similarity cali-

bration methods, such as DMC, SMC and SVC, improve the initial

estimate 𝑆𝑜 by adjusting it to the nearest PSD matrix. While this

reduces the estimation error of the inner product matrix compared

to 𝑆𝑜 , these methods fail to capture the true eigenvalue distribu-

tion of the inner product matrix. As a result, they can distort the

structure of 𝑆 , leading to an unreliable Euclidean distance matrix

with significantly larger errors than 𝐷𝑜
derived from 𝑆𝑜 .

• Improvement from 𝑺𝒐 , 𝑫𝒐 to Ours: Our method consis-

tently improves the initial estimate 𝑆𝑜 , achieving 42%-51% reduc-

tions in relative errors. This improvement is driven by our method’s

ability to effectively correct the eigenvalue distribution of 𝑆𝑜 to

align with the ground truth, highlighting the importance of eigen-

value distribution in inner product estimation. As a result, the Eu-

clidean distance matrices derived from our corrected inner product

matrices also outperform 𝐷𝑜
, with 16%-38% error reduction.

6.3 Evaluation on Similarity Search
We evaluate the quality of the estimated inner product matrix 𝑆 ∈
R𝑛×𝑛

and Euclidean distance matrix 𝐷 ∈ R𝑛×𝑛
for the incomplete

data 𝑋𝑜
1
∈ R𝑑×𝑛 through similarity search applications, specifically

maximum inner product search (MIPS) and nearest neighbor search

(NNS). In these tasks, each incomplete sample in 𝑋𝑜
1
is treated

as a query, and we perform one-vs-all retrieval, aiming to find

the top-𝑁 candidates with the highest inner products or smallest

Euclidean distances. The search accuracy is measured using Recall,

with Recall@N representing the average proportion of true top-

𝑁 results found within the top-𝑁 retrieved candidates across all

queries. For our experiments, we set 𝑁 = 10, and refer to Recall@10

as Recall. A higher Recall indicates better preservation of local

relationships (i.e., pairwise similarity or distance) across all samples.
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Table 2: Comparison of retrieval recall of maximum inner product search (MIPS) and nearest neighbor search (NNS) with
𝑛 = 1, 000 samples and 80% random missing. Bold shows the best result, and underline marks the second-best.

Metric: Recall@10 ↑ Recall for MIPS Recall for NNS

Baseline Type Method CIFAR10 LFW COIL100 ISOLET CIFAR10 LFW COIL100 ISOLET

Statistical
Imputation

Mean (2005) 0.565±0.010 0.541±0.006 0.350±0.005 0.234±0.007 0.184±0.011 0.187±0.013 0.094±0.008 0.077±0.006
𝑘NN (2016) 0.604±0.012 0.567±0.008 0.371±0.004 0.250±0.007 0.186±0.011 0.191±0.015 0.114±0.010 0.086±0.009

Matrix
Completion

SVT (2010) 0.484±0.009 0.438±0.011 0.351±0.005 0.215±0.007 0.303±0.012 0.285±0.012 0.199±0.003 0.138±0.004
KFMC (2019) 0.602±0.032 0.552±0.006 0.261±0.022 0.281±0.007 0.205±0.027 0.187±0.013 0.157±0.010 0.121±0.008
PMC (2020) 0.418±0.035 0.573±0.020 0.414±0.024 0.227±0.007 0.293±0.014 0.248±0.013 0.396±0.014 0.251±0.010

OT Imputation TDM (2023) 0.275±0.022 0.242±0.031 0.248±0.009 0.169±0.012 0.152±0.011 0.155±0.011 0.088±0.003 0.070±0.007
Deep
Imputation

GAIN (2018) 0.221±0.088 0.286±0.086 0.176±0.077 0.241±0.069 0.242±0.026 0.275±0.035 0.059±0.015 0.086±0.031
MIWAE (2019) 0.258±0.005 0.068±0.021 0.226±0.013 0.054±0.011 0.086±0.003 0.036±0.002 0.077±0.006 0.042±0.006

Similarity
Calibration

DMC (2015) 0.678±0.004 0.656±0.005 0.427±0.005 0.281±0.005 0.444±0.009 0.515±0.010 0.258±0.008 0.192±0.004
SMC (2023) 0.719±0.004 0.692±0.006 0.455±0.006 0.310±0.006 0.472±0.027 0.459±0.024 0.355±0.005 0.258±0.006
SVC (2024) 0.630±0.040 0.637±0.021 0.423±0.008 0.288±0.008 0.505±0.011 0.554±0.010 0.318±0.012 0.221±0.005

Initial Estimate 𝑆𝑜 & 𝐷𝑜
0.605±0.005 0.582±0.006 0.369±0.004 0.236±0.005 0.543±0.004 0.542±0.006 0.380±0.006 0.224±0.006

Our Method EC 0.758±0.005 0.735±0.005 0.503±0.012 0.382±0.007 0.734±0.004 0.720±0.006 0.525±0.012 0.385±0.010
Improvement from 𝑆𝑜 , 𝐷𝑜

to Ours 25%±1% 26%±1% 36%±3% 62%±3% 35%±1% 33%±1% 38%±4% 72%±5%

As shown in Table 2, our method achieves the highest search

accuracy for both MIPS and NNS, even with 80% missing data,

maintaining recall scores above 0.7 for CIFAR10 and LFW datasets,

effectively preserving pairwise relationships. In contrast, imputa-

tion methods perform poorly, particularly in NNS, as they fail to

accurately recover pairwise distances and neighbor relationships.

Similarly, calibration methods like DMC and SMC also show weak

performance in NNS, often worse than the initial estimate 𝐷𝑜
, con-

sistent with the larger errors observed in Table 1.

6.4 Robustness Analysis
We assess the robustness by varying the missing rate 𝑟 from 20% to

80%. As shown in Fig. 9, our EC method consistently delivers accu-

rate estimations (RE(𝑆) < 0.16, RE(𝐷) < 0.05) across all missing rates.

Unlike imputation methods, which experience a sharp increase in

RE and significant drops in recall, our method demonstrates mini-

mal decline in performance for both MIPS and NNS. This highlights

the robustness of our approach even under large missingness, with

detailed numerical results provided in Appendix D.1.
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Figure 9: Robustness analysis on the CIFAR10 with 𝑛 = 1, 000.

6.5 Extension on Missing Mechanism
Our method described in Algorithm 2, which do not rely on the

missing mechanism, adapts to various scenarios, including Missing

at Random (MAR) [21] and Missing Not at Random (MNAR) [28].
Additionally, it accommodates more realistic missing patterns, such

as Segmental-Missing (SM: missing in random length segments)

and Block-Missing (BM: missing in random size blocks). Table 3

showcases the effectiveness across different mechanisms, where

top-two lines denote the best performance achieved by imputation

and calibration methods. Detailed results are in Appendix D.5.
Table 3: Recall@10 of NNS task under various missing mech-
anisms on the CIFAR10 dataset with 𝑛 = 1, 000 and 𝑟 = 80%.

Mechanism MAR MNAR SM BM

Imputation 0.607±0.010 0.330±0.013 0.310±0.016 0.378±0.014
Calibration 0.743±0.012 0.523±0.013 0.477±0.013 0.359±0.020
EC (Ours) 0.763±0.014 0.734±0.007 0.689±0.006 0.529±0.011

Note. We provide comprehensive results of ablation study (Ap-

pendix D.1), hyperparameter analysis (Appendix D.2), efficiency
analysis (Appendix D.3), scalability analysis (Appendix D.4), and
the extension on missing mechanism (Appendix D.5).

7 Conclusion
Addressing the critical challenge of data incompleteness in inner

product matrix estimation, we introduce a novel eigenvalue cor-

rection method. This method excels at reconstructing accurate

inner product matrices from incomplete data by leveraging the

Marchenko-Pastur Law. Unlike traditional imputation and cali-

bration approaches, our method focuses on refining eigenvalue

distributions to enhance accuracy in inner product and Euclidean

distance estimations, thus improving similarity search tasks. Ex-

tensive experiments demonstrate our method’s effectiveness and

robustness in both maximum inner product search and nearest

neighbor search tasks. Its adaptability to various missing mecha-

nisms confirms its practical utility in real-world applications.
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A Proof
A.1 Proof of Theorem 2
Theorem 2 (Eigenvalue Distribution for Incomplete I.I.D.
Data). Consider 𝑋𝑜 = [𝑥𝑜

1
, . . . , 𝑥𝑜𝑛] ∈ R𝑑×𝑛 , where the true val-

ues of {𝑥𝑜
𝑖 𝑗
} are i.i.d. random variables with mean 0 and variance

𝜎2 < ∞, missing completely at random (MCAR) with a missing rate
of 𝑟 ∈ (0, 1). As 𝑑, 𝑛 → ∞ with 𝑑/𝑛 → 𝑐 ∈ (0, +∞), the limiting
spectral distribution 𝜇𝑜 of the initial estimate 𝑆𝑜 is supported on

[𝜆𝑜−, 𝜆𝑜+] =
[
𝜎2 (1 − 𝑐−1/2)2 − 𝑟

1 − 𝑟 ,
𝜎2 (1 + 𝑐−1/2)2 − 𝑟

1 − 𝑟

]
with the density function

𝑓 𝑜 (𝑥) = 𝑐 (1 − 𝑟 )2
2𝜋𝜎2

√︁
(𝜆𝑜+ − 𝑥) (𝑥 − 𝜆𝑜−)
(1 − 𝑟 )𝑥 + 𝑟 1𝑥∈[𝜆𝑜−,𝜆𝑜+ ] .

Proof. Given a complete version of the data matrix 𝑋 ∈ R𝑑×𝑛 .
We assume that each entry 𝑥𝑖 𝑗 , for 1 ≤ 𝑖 ≤ 𝑑 and 1 ≤ 𝑗 ≤ 𝑛, can
not be observed with probability 𝑟𝑖 𝑗 ∈ (0, 1), which is referred to as

themissing rate. We considermissing completely at random (MCAR)
with homogeneous missing, namely 𝑟𝑖 𝑗 = 𝑟 for all 𝑖 ∈ [𝑑] and 𝑗 ∈
[𝑛]. We introduce a matrix 𝐵 = [𝑏𝑖 𝑗 ] ∈ R𝑑×𝑛 of Bernoulli variables

to make this clear. Sample 𝑏𝑖 𝑗
𝑖 .𝑖 .𝑑∼ Bernoulli(1 − 𝑟 ) independent of

𝑋 , and we write

𝑥𝑜𝑖 𝑗 = 𝑏𝑖 𝑗𝑥𝑖 𝑗 , ∀𝑖 ∈ [𝑑], 𝑗 ∈ [𝑛],

which is equivalent to the matrix form

𝑋𝑜 = 𝐵 ◦ 𝑋 ∈ R𝑑×𝑛,
where ◦ denotes the Hadamard product. We should notice that

• E(𝑥𝑖 𝑗 ) = 0 and var(𝑥𝑖 𝑗 ) = 𝜎2 for all 𝑖 ∈ [𝑑] and 𝑗 ∈ [𝑛];
• E(𝑥𝑜

𝑖 𝑗
) = 0 and var(𝑥𝑜

𝑖 𝑗
) = var(𝑏𝑖 𝑗 ) · var(𝑥𝑖 𝑗 ) = (1 − 𝑟 )𝜎2

for all 𝑖 ∈ [𝑑] and 𝑗 ∈ [𝑛];
• 𝑥𝑜

𝑖 𝑗
are independent of each other.

Then the LSD of 𝑋𝑜⊤𝑋𝑜/𝑑 is MP((1 − 𝑟 )𝜎2, 𝑐−1). Here MP(𝜎2, 𝑐)
corresponds to the LSD of sample covariance matrix with popula-

tion covariance matrix Σ = 𝜎2𝐼𝑑 and aspect ratio 𝑑/𝑛 → 𝑐 .

The pairwise inner product matrix 𝑆𝑜 = [𝑠𝑜
𝑖 𝑗
] ∈ R𝑛×𝑛

is cal-

culated (here we assume the number of observed coordinates is

approximately (1 − 𝑟 )𝑑) as

𝑠𝑜𝑖 𝑗 =

{
1

(1−𝑟 )2𝑑 𝑥
𝑜⊤
𝑖
𝑥𝑜
𝑗
, 𝑖 ≠ 𝑗,

1

(1−𝑟 )𝑑 𝑥
𝑜⊤
𝑖
𝑥𝑜
𝑗
, 𝑖 = 𝑗 .

Writing this in a matrix form, we have

𝑆𝑜 =
1

(1 − 𝑟 )2
𝑋𝑜⊤𝑋𝑜/𝑑 − 𝑟

(1 − 𝑟 )2
Diag(𝑋𝑜⊤𝑋𝑜/𝑑),

where Diag(𝑋𝑜⊤𝑋𝑜 ) denotes the diagonal matrix with diagonal

entries being those of 𝑋𝑜⊤𝑋𝑜
. From the viewpoint of the law of

large number, we have

1

1 − 𝑟 Diag(𝑋
𝑜⊤𝑋𝑜/𝑑) ≈ 𝐼𝑛, 𝑆𝑜 ≈ 1

(1 − 𝑟 )2
𝑋𝑜⊤𝑋𝑜/𝑑 − 𝑟

1 − 𝑟 𝐼𝑛,

where the approximation error caused by “≈” is 𝑂𝑝 (𝑛−1/2 log𝑛) in
the sense that ∥Diag(𝑋𝑜⊤𝑋𝑜/𝑑) − 𝐼𝑛 ∥2 = 𝑂𝑝 (𝑛−1/2 log𝑛).

For the first matrix
1

(1−𝑟 )2𝑋
𝑜⊤𝑋𝑜/𝑑 ∈ R𝑛×𝑛

, we have

Spec

{
1

(1 − 𝑟 )2
𝑋𝑜⊤𝑋𝑜/𝑑

}
=

1

(1 − 𝑟 )2
Spec

{
𝑋𝑜⊤𝑋𝑜/𝑑

}
→ 1

(1 − 𝑟 )2
MP((1 − 𝑟 )𝜎2, 𝑐−1),

(A.1)

which is supported on (1 − 𝑟 )−1 [𝜎2 (1 − 𝑐−1/2)2, 𝜎2 (1 + 𝑐−1/2)2].
For the second matrix

𝑟
(1−𝑟 )2Diag(𝑋

𝑜⊤𝑋𝑜/𝑑),

𝑟

(1 − 𝑟 )2
Diag(𝑋𝑜⊤𝑋𝑜/𝑑) ≈ 𝑟

1 − 𝑟 𝐼𝑛 .

Then the LSD of 𝑆𝑜 is supported on

(1 − 𝑟 )−1 [𝜎2 (1 − 𝑐−1/2)2, 𝜎2 (1 + 𝑐−1/2)2] − 𝑟 (1 − 𝑟 )−1

=[𝜎
2 (1 − 𝑐−1/2)2 − 𝑟

1 − 𝑟 ,
𝜎2 (1 + 𝑐−1/2)2 − 𝑟

1 − 𝑟 ]

=:[𝜆𝑜−, 𝜆𝑜+] .

(A.2)

From the Eq. (A.1), we can easily obtain the density function 𝑓 𝑜 (𝑥)
of the LSD of 𝑆𝑜 :

𝑓 𝑜 (𝑥) = 𝑐 (1 − 𝑟 )2
2𝜋𝜎2𝑠

√︁
(𝜆𝑜+ − 𝑥) (𝑥 − 𝜆𝑜−)
(1 − 𝑟 )𝑥 + 𝑟 1𝑥∈[𝜆𝑜−,𝜆𝑜+ ] . (A.3)

□

A.2 Proof of Theorem 3
Theorem 3 (Optimality of Eigenvalue Correction Strategy).
Given incomplete i.i.d. data𝑋𝑜 with MCAR, the linear transformation
𝜆𝑜
𝑖
↦→ ˆ𝜆𝑖 := (1− 𝑟 )𝜆𝑜𝑖 + 𝑟 is the optimal transformation to reconstruct

the spectral distribution of 𝑆∗, in the sense that almost surely |𝐹 (𝑥) −
𝐹 ∗ (𝑥) | → 0 for any 𝑥 ∈ R, where 𝐹 (𝑥) and 𝐹 ∗ (𝑥) are distribution
functions corresponding to { ˆ𝜆𝑖 } and {𝜆∗𝑖 }, respectively.

Proof. On one hand, Lemma 1 implies that almost surely

|𝐹 ∗ (𝑥) − 𝜇∗ (𝑥) | → 0, ∀𝑥 ∈ R, (A.4)

where 𝜇∗ equals to the MP law 𝜇𝑐 with aspect ratio 𝑐 . On the other

hand, Theorem 2 implies that almost surely

|𝐹𝑜 (𝑥) − 𝜇𝑜 (𝑥) | → 0 (A.5)

and

𝜇𝑜 (𝑥) = 𝜇𝑐 ((1 − 𝑟 )𝑥 + 𝑟 ) (A.6)

for all 𝑥 ∈ R under MCAR, where 𝐹𝑜 and 𝜇𝑜 denote the ESD and

LSD of 𝑆𝑜 , respectively. Thus, from Eqs. (A.4), (A.5) and (A.6), we

conclude that almost surely

|𝐹 (𝑥) − 𝐹 ∗ (𝑥) | → 0, ∀𝑥 ∈ R,

since the linear transformation 𝜆𝑜
𝑖
↦→ ˆ𝜆𝑖 := (1 − 𝑟 )𝜆𝑜𝑖 + 𝑟 leads to

𝐹 (𝑥) = 𝐹𝑜 ((1 − 𝑟 )−1 (𝑥 − 𝑟 )).
□
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A.3 Proof of Theorem 4
Theorem 4 (Error Bound of Inner Product Estimation). Given
incomplete i.i.d. data𝑋𝑜 with MCAR, for any small constant 𝜀, it holds
with probability (1 − 𝑜 (1)) that ∥𝑆 − 𝑆∗∥𝐹 ≤ (𝜂𝑆 + 𝜀)∥𝑆𝑜 − 𝑆∗∥𝐹 ,
where 𝜂𝑆 =

√︃
1 − 𝑟 2𝑐−1

(2+𝑐−1 ) (1−𝑟 )2+2𝑟 (1−𝑟 )+𝑐−1 ∈ (0, 1).

Proof. First, we have

∥𝑆 − 𝑆∗∥2𝐹 = tr

[
(𝑆 − 𝑆∗) (𝑆 − 𝑆∗)⊤

]
= tr(𝑆2) − 2tr(𝑆∗𝑆) + tr(𝑆∗2)

and

∥𝑆𝑜 − 𝑆∗∥2𝐹 = tr

[
(𝑆𝑜 − 𝑆∗) (𝑆𝑜 − 𝑆∗)⊤

]
= tr(𝑆𝑜2) − 2tr(𝑆∗𝑆𝑜 ) + tr(𝑆∗2)

It follows that

∥𝑆𝑜 − 𝑆∗∥2𝐹 − ∥𝑆 − 𝑆
∗∥2𝐹 = tr(𝑆𝑜2) − tr(𝑆2) + 2tr

[
𝑆∗ (𝑆 − 𝑆𝑜 )

]
Note that 𝑆 = (1 − 𝑟 )𝑆𝑜 + 𝑟𝐼𝑛 due to the linear transformation

ˆ𝜆𝑖 = (1 − 𝑟 )𝜆𝑜𝑖 + 𝑟 in Theorem 3 for 1 ≤ 𝑖 ≤ 𝑛. It leads to

𝑆 − 𝑆𝑜 = −𝑟𝑆𝑜 + 𝑟𝐼𝑛
𝑆2 = (1 − 𝑟 )2𝑆𝑜2 + 2𝑟 (1 − 𝑟 )𝑆𝑜 + 𝑟2𝐼𝑛

and then

tr

[
𝑆∗ (𝑆 − 𝑆𝑜 )

]
= −𝑟 tr

(
𝑆∗𝑆𝑜

)
+ 𝑟 tr(𝑆∗),

tr(𝑆2) = (1 − 𝑟 )2tr(𝑆𝑜2) + 2𝑟 (1 − 𝑟 )tr(𝑆𝑜 ) + 𝑟2𝑛.

On one hand, it holds with high probability, i.e., probability

(1 − 𝑜 (1)), that

1

𝑛

(
∥𝑆𝑜 − 𝑆∗∥2𝐹 − ∥𝑆 − 𝑆

∗∥2𝐹
)

=
1

𝑛

{
tr(𝑆𝑜2) − tr(𝑆2) + 2tr

[
𝑆∗ (𝑆 − 𝑆𝑜 )

]}
=
1

𝑛

{
(2𝑟 − 𝑟2)tr(𝑆𝑜2) − 2𝑟 (1 − 𝑟 )tr(𝑆𝑜 ) − 𝑟2 − 2𝑟 tr(𝑆∗𝑆𝑜 ) + 2𝑟 tr(𝑆∗)

}
≥ (2𝑟 − 𝑟2)

(
1 + 𝑐−1

(1 − 𝑟 )2

)
− 2𝑟 (1 − 𝑟 ) − 𝑟2 − 2𝑟

(
1 + 𝑐−1

1 − 𝑟

)
+ 2𝑟 − 𝜀

=
𝑟2𝑐−1

(1 − 𝑟 )2
− 𝜀 (A.7)

for any small constant 𝜀 > 0, since

1

𝑛
tr(𝑆𝑜 ) = 1

𝑛
tr

(
1

(1 − 𝑟 )2
𝑋𝑜⊤𝑋𝑜/𝑑 − 𝑟

(1 − 𝑟 )2
Diag(𝑋𝑜⊤𝑋𝑜/𝑑)

)
𝑝
→(1 − 𝑟 )−1 − 𝑟 (1 − 𝑟 )−1 = 1,

1

𝑛
tr(𝑆𝑜2) = 1

𝑛
tr

{(
1

(1 − 𝑟 )2
𝑋𝑜⊤𝑋𝑜/𝑑 − 𝑟

(1 − 𝑟 )2
Diag(𝑋𝑜⊤𝑋𝑜/𝑑)

)
2

}
=
1

𝑛
tr

{(
1

(1 − 𝑟 )2
𝑋𝑜⊤𝑋𝑜/𝑑

)
2

}
− 2

𝑛
tr

{(
1

(1 − 𝑟 )2
𝑋𝑜⊤𝑋𝑜/𝑑

)
Diag

(
𝑟

(1 − 𝑟 )2
𝑋𝑜⊤𝑋𝑜/𝑑

)}
+ 1

𝑛
tr

{
Diag

(
1

(1 − 𝑟 )2
𝑋𝑜⊤𝑋𝑜/𝑑

)
2

}
𝑝
→ 1 + 𝑐−1
(1 − 𝑟 )2

− 2𝑟

(1 − 𝑟 )2
+ 𝑟2

(1 − 𝑟 )2

=1 + 𝑐−1

(1 − 𝑟 )2
,

1

𝑛
tr(𝑆∗𝑆𝑜 ) = 1

1 − 𝑟
1

𝑛
tr(𝑆∗𝑆) − 𝑟

1 − 𝑟

≤ 1

1 − 𝑟

√︂
1

𝑛
tr(𝑆∗2) · 1

𝑛
tr(𝑆2) − 𝑟

1 − 𝑟
𝑝
→ 1

1 − 𝑟
√︁
(1 + 𝑐−1) (1 + 𝑐−1) − 𝑟

1 − 𝑟

=1 + 𝑐−1

1 − 𝑟 .

On the other hand, it holds that

1

𝑛
∥𝑆𝑜 − 𝑆∗∥2𝐹 =

1

𝑛
tr(𝑆𝑜2) − 2

𝑛
tr(𝑆∗𝑆𝑜 ) + 1

𝑛
tr(𝑆∗2)

=
1

𝑛
tr(𝑆𝑜2) − 2

(
1

1 − 𝑟
1

𝑛
tr(𝑆∗𝑆) − 𝑟

1 − 𝑟

)
+ 1

𝑛
tr(𝑆∗2)

≤ 1

𝑛
tr(𝑆𝑜2) + 2𝑟

1 − 𝑟 +
1

𝑛
tr(𝑆∗2)

𝑝
→ 1 + 𝑐−1

(1 − 𝑟 )2
+ 2𝑟

1 − 𝑟 + (1 + 𝑐
−1)

= 2 + 𝑐−1 + 𝑐−1

(1 − 𝑟 )2
+ 2𝑟

1 − 𝑟 , (A.8)

where in the third step we used the fact that tr(𝑆∗𝑆) ≥ 0 since both

𝑆∗ and 𝑆 are non-negative definite.

Thus, we can conclude from Eq. (A.7) and Eq. (A.8) that

∥𝑆𝑜 − 𝑆∗∥2
𝐹
− ∥𝑆 − 𝑆∗∥2

𝐹

∥𝑆𝑜 − 𝑆∗∥2
𝐹

≥
𝑟 2𝑐−1

(1−𝑟 )2

2 + 𝑐−1 + 𝑐−1
(1−𝑟 )2 +

2𝑟
1−𝑟
− 𝜀

=
𝑟2𝑐−1

(2 + 𝑐−1) (1 − 𝑟 )2 + 2𝑟 (1 − 𝑟 ) + 𝑐−1
− 𝜀

holds with high probability for any small constant 𝜀 > 0. Equiva-

lently, we take

𝜂𝑆 =

√︄
1 − 𝑟2𝑐−1

(2 + 𝑐−1) (1 − 𝑟 )2 + 2𝑟 (1 − 𝑟 ) + 𝑐−1
,

then for any small constant 𝜀 > 0, it holds with high probability:

∥𝑆 − 𝑆∗∥𝐹
∥𝑆𝑜 − 𝑆∗∥𝐹

≤ 𝜂𝑆 + 𝜀.

Finally, it is not hard to verify that 𝜂𝑆 ∈ (0, 1) when 𝑟 ∈ (0, 1) and
𝑐 ∈ (0,∞).

□
11
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A.4 Proof of Theorem 5
Theorem 5 (Eigenvalue Distribution for Incomplete Separa-
ble Data). Consider non-i.i.d. separable data 𝑋 = [𝑥1, . . . , 𝑥𝑛] ∈
R𝑑×𝑛 , where 𝑥𝑖 = Σ1/2𝑧𝑖 ∈ R𝑑 , with 𝑧𝑖 having independent coor-
dinates, E[𝑧𝑖 ] = 0, and Cov(𝑧𝑖 ) = 𝐼𝑑 . Define 𝑋𝑜 as the incomplete
version of 𝑋 with MCAR in a missing rate 𝑟 , and 𝑆𝑜 as the initial
inner product matrix of 𝑋𝑜 . For the eigenvalues {𝜆𝑜

𝑖
} of 𝑆𝑜 , it holds

that, for 1 ≤ 𝑖 ≤ 𝑛,

𝜆𝑜𝑖 − (1 − 𝑟 )
−1𝜆∗𝑖

𝑝
→ 𝑟 (1 − 𝑟 )−1tr(Σ)/𝑑,

where
𝑝
→ indicates convergence in probability and 𝜆∗

𝑖
is the 𝑖-th eigen-

value of ground-truth 𝑆∗.

Proof. Consider the observed data matrix 𝑋𝑜
𝑛 = (𝑥𝑜

1
, · · · , 𝑥𝑜𝑛) ∈

R𝑑×𝑛 with ground truth 𝑋𝑛 = (𝑥1, · · · , 𝑥𝑛) ∈ R𝑑×𝑛 . Suppose 𝑥𝑖 =
Σ1/2𝑧𝑖 . Then it holds that

𝑥𝑜𝑖 𝑗 = 𝑏𝑖 𝑗 · 𝑥𝑖 𝑗 = 𝑏𝑖 𝑗𝑧
⊤
𝑖 Σ

1/2
𝑗
, 𝑖 ∈ [𝑑], 𝑗 ∈ [𝑛],

where 𝑥𝑖 = Σ1/2𝑧𝑖 and 𝑏𝑖 𝑗
𝑖 .𝑖 .𝑑∼ Bernoulli(1 − 𝑟 ) and Σ

1/2
𝑗

denotes

the 𝑗-th column of Σ1/2. Since 𝑥𝑖 follows Gaussian distribution,

then 𝑥𝑖
𝑑
= 𝑈𝑥𝑖 for any 𝑑 × 𝑑 orthogonal matrix𝑈 . So it suffices to

deal with the simple case of diagonal Σ, that is, Σ𝑖 𝑗 = 0 for any

𝑖 ≠ 𝑗 . We denote Σ = Diag(𝜎2
1
, · · · , 𝜎2

𝑑
) ∈ R𝑑×𝑑 . It follows that

𝑥𝑜𝑖 𝑗 = 𝑏𝑖 𝑗𝜎 𝑗𝑧𝑖 𝑗 ,

or equivalently,

𝑥𝑜𝑖 = Σ1/2 (𝐵𝑖 ◦ 𝑧𝑖 ) =: Σ1/2𝑧𝑜𝑖 , (A.9)

where we use 𝑧𝑜
𝑖
:= 𝐵𝑖 ◦ 𝑧𝑖 to denote the counterpart of 𝑥𝑜

𝑖
for

𝑖 ∈ [𝑛]. It is not hard to verify that

E(𝑧𝑜𝑖 𝑗 ) = 0, var(𝑧𝑜𝑖 𝑗 ) = 1 − 𝑟, 𝑧𝑜𝑖1 𝑗1 ⊥ 𝑧
𝑜
𝑖2 𝑗2

,

∀(𝑖, 𝑗) ∈ [𝑛] × [𝑑] and (𝑖1, 𝑗1) ≠ (𝑖2, 𝑗2) ∈ [𝑛] × [𝑑].
This leads to that

Spec(𝑋𝑜⊤
𝑛 𝑋𝑜

𝑛/𝑑) = (1 − 𝑟 ) · Spec(𝑋⊤𝑛 𝑋𝑛/𝑑). (A.10)

Recalling the definition of inner product matrix 𝑆𝑜𝑛 , we have

𝑆𝑜𝑛 =
1

(1 − 𝑟 )2
𝑋𝑜⊤
𝑛 𝑋𝑜

𝑛/𝑑 −
𝑟

(1 − 𝑟 )2
Diag(𝑋𝑜⊤

𝑛 𝑋𝑜
𝑛/𝑑) (A.11)

For the second term on the right hand side, we have

Diag(𝑋𝑜⊤
𝑛 𝑋𝑜

𝑛/𝑑) ≈ (1 − 𝑟 )tr(Σ)/𝑑 · 𝐼𝑛 (A.12)

since 𝑥𝑜⊤
𝑖
𝑥𝑜
𝑖
/𝑑 = 𝑧𝑜⊤

𝑖
Σ𝑧𝑜

𝑖
/𝑑 → (1 − 𝑟 )tr(Σ)/𝑑 almost surely for all

1 ≤ 𝑖 ≤ 𝑛. More specifically, we have
Diag(𝑋𝑜⊤

𝑛 𝑋𝑜
𝑛/𝑑) − (1 − 𝑟 )tr(Σ)/𝑑 · 𝐼𝑛


2
= 𝑂𝑝 (𝑛−1/2 log𝑛).

Thus, we can conclude that

𝜆𝑖 (𝑆𝑜𝑛) − (1 − 𝑟 )−1supp(𝑋⊤𝑛 𝑋𝑛/𝑑)
𝑝
→ 𝑟 (1 − 𝑟 )−1tr(Σ)/𝑑

for 1 ≤ 𝑖 ≤ 𝑛. Also, (A.10), (A.11) and (A.12) together imply that

the LSD of 𝑆𝑜 and 𝑋⊤𝑛 𝑋𝑛/𝑑 share the same “shape”.

□

A.5 Proof of Theorem 6
Proof. Theorem 6 can be directly implied from the MP Law

[19]. □

A.6 Proof of Theorem 7
Theorem 7 (Error Bound of Euclidean Distance Estimation).
Given incomplete i.i.d data 𝑋𝑜 with MCAR, there exists 𝜂𝐷 ∈ (0, 1)
such that ∥�̂� − 𝐷∗∥𝐹 ≤ (𝜂𝐷 + 𝜀)∥𝐷𝑜 − 𝐷∗∥𝐹 holds with probability
(1 − 𝑜 (1)) for any small 𝜀 > 0, with 𝜂𝐷 specified in Eq. (A.13).

Proof. First, by the definition of Frobenius norm, we have

∥�̂� − 𝐷∗∥2𝐹 = tr

[
(�̂� − 𝐷∗) (�̂� − 𝐷∗)⊤

]
= tr(�̂�2) − 2tr(�̂�𝐷∗) + tr(𝐷∗2)

and

∥𝐷𝑜 − 𝐷∗∥2𝐹 = tr

[
(𝐷𝑜 − 𝐷∗) (𝐷𝑜 − 𝐷∗)⊤

]
= tr(𝐷𝑜2) − 2tr(𝐷𝑜𝐷∗) + tr(𝐷∗2).

This leads to

∥𝐷𝑜 − 𝐷∗∥2𝐹 − ∥�̂� − 𝐷
∗∥2𝐹 = tr(𝐷𝑜2) − 2tr(𝐷𝑜𝐷∗) − tr(�̂�2) + 2tr(�̂�𝐷∗)

Recall Eq. (3) that

�̂� = Diag(𝑑𝑆) · 𝐽 + 𝐽 · Diag(𝑑𝑆) − 2𝑑𝑆.
Also, we have

𝐷𝑜 = Diag(𝑑𝑆𝑜 ) · 𝐽 + 𝐽 · Diag(𝑑𝑆𝑜 ) − 2𝑑𝑆𝑜 ,
𝐷∗ = Diag(𝑑𝑆∗) · 𝐽 + 𝐽 · Diag(𝑑𝑆∗) − 2𝑑𝑆∗ .

Using the approximations ∥ Diag(𝑆) − 𝐼𝑛 ∥2 = 𝑂𝑝 (𝑛−1/2 log𝑛),
∥ Diag(𝑆𝑜 )−𝐼𝑛 ∥2 = 𝑂𝑝 (𝑛−1/2 log𝑛), ∥ Diag(𝑆∗)−𝐼𝑛 ∥2 = 𝑂𝑝 (𝑛−1/2 log𝑛),
we have

�̂�/𝑑 ≈ 2𝐽 − 2𝑆, 𝐷𝑜/𝑑 ≈ 2𝐽 − 2𝑆𝑜 , 𝐷∗/𝑑 ≈ 2𝐽 − 2𝑆∗,
where the approximation error (in ℓ2 norm) is 𝑜𝑝 (1). It follows that

�̂�2/𝑑2 ≈ 4(𝐽 2 − 𝐽𝑆 − 𝑆 𝐽 + 𝑆2),
𝐷𝑜2/𝑑2 ≈ 4(𝐽 2 − 𝐽𝑆𝑜 − 𝑆𝑜 𝐽 + 𝑆𝑜2),
𝐷∗2/𝑑2 ≈ 4(𝐽 2 − 𝐽𝑆∗ − 𝑆∗ 𝐽 + 𝑆∗2)

and

𝐷𝑜𝐷∗/𝑑2 ≈ 4(𝐽 2 − 𝐽𝑆∗ − 𝑆𝑜 𝐽 + 𝑆𝑜𝑆∗),
�̂�𝐷∗/𝑑2 ≈ 4(𝐽 2 − 𝐽𝑆∗ − 𝑆 𝐽 + 𝑆𝑆∗) .

Then we have

tr(𝐷𝑜2)/𝑑2 ≈ 4(tr(𝐽 2) − 2tr(𝐽𝑆𝑜 ) + tr(𝑆𝑜2))
= 4𝑛2 − 8tr{𝐽 [(1 − 𝑟 )−1 (𝑆 − 𝑟𝐼𝑛)]} + 4tr(𝑆𝑜2),
≈ 4𝑛2 + 8𝑟 (1 − 𝑟 )−1𝑛 − 8(1 − 𝑟 )−1tr(𝐽𝑆) + 4𝑛

[
1 + 𝑐−1 (1 − 𝑟 )−2

]
tr(𝐷𝑜𝐷∗)/𝑑2 ≈ 4(tr(𝐽 2) − tr(𝐽𝑆∗) − tr(𝑆𝑜 𝐽 ) + tr(𝑆𝑜𝑆∗))

= 4𝑛2 − 4tr(𝐽𝑆∗) − 4tr(𝑆𝑜 𝐽 ) + 4tr(𝑆𝑜𝑆∗),
≈ 4𝑛2 − 4tr(𝐽𝑆∗) − 4(1 − 𝑟 )−1tr(𝑆 𝐽 ) + 4𝑟 (1 − 𝑟 )−1𝑛
+ 4(1 − 𝑟 )−1tr(𝑆𝑜𝑆∗) − 4𝑟 (1 − 𝑟 )−1𝑛
≈ 4𝑛2 − 4tr(𝐽𝑆∗) − 4(1 − 𝑟 )−1tr(𝑆 𝐽 ) + 4(1 − 𝑟 )−1tr(𝑆𝑆∗)

tr(�̂�2)/𝑑2 ≈ 4(tr(𝐽 2) − 2tr(𝐽𝑆) + tr(𝑆2))

≈ 4𝑛2 − 8tr(𝐽𝑆) + 4𝑛
(
1 + 𝑐−1

)
,

tr(�̂�𝐷∗)/𝑑2 ≈ 4(tr(𝐽 2) − tr(𝐽𝑆∗) − tr(𝑆 𝐽 ) + tr(𝑆𝑆∗))
= 4𝑛2 − 4tr(𝐽𝑆∗) − 4tr(𝑆 𝐽 ) + 4tr(𝑆𝑆∗),

12
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where all approximations “≈” hold in the sense of convergence in

probability (after appropriate scaling). Thus, it holds that

(∥𝐷𝑜 − 𝐷∗∥2𝐹 − ∥�̂� − 𝐷
∗∥2𝐹 )/𝑑

2

= (tr(𝐷𝑜2) − 2tr(𝐷𝑜𝐷∗) − tr(�̂�2) + 2tr(�̂�𝐷∗))/𝑑2

≈ 8𝑟 (1 − 𝑟 )−1𝑛 + 4𝑐−1𝑟 (2 − 𝑟 ) (1 − 𝑟 )−2𝑛 − 8𝑟 (1 − 𝑟 )−1tr(𝑆𝑆∗)
≥ 8𝑟 (1 − 𝑟 )−1𝑛 + 4𝑐−1𝑟 (2 − 𝑟 ) (1 − 𝑟 )−2𝑛 − 8𝑟 (1 − 𝑟 )−1 (1 + 𝑐−1)𝑛 − 𝜀𝑛

with probability (1 − 𝑜 (1)) for any constant 𝜀 > 0, since tr(𝑆𝑆∗) ≤√︃
tr(𝑆2)tr(𝑆∗2) ≈ (1 + 𝑐−1)𝑛. Also, it holds with probability (1 −

𝑜 (1)) that
∥𝐷𝑜 − 𝐷∗∥2𝐹 /𝑑

2

=

(
tr(𝐷𝑜2) − 2tr(𝐷𝑜𝐷∗) + tr(𝐷∗2)

)
/𝑑2

≈ 8𝑟 (1 − 𝑟 )−1𝑛 + 4(2 + 𝑐−1 + 𝑐−1 (1 − 𝑟 )−2)𝑛 − 8(1 − 𝑟 )−1tr(𝑆𝑆∗)
≤ 8𝑟 (1 − 𝑟 )−1𝑛 + 4(2 + 𝑐−1 + 𝑐−1 (1 − 𝑟 )−2)𝑛 + 𝜀𝑛
for any constant 𝜀 > 0. Taking

𝜂𝐷 =

√︄
1 − 8𝑟 (1 − 𝑟 )−1 + 4𝑐−1𝑟 (2 − 𝑟 ) (1 − 𝑟 )−2 − 8𝑟 (1 − 𝑟 )−1 (1 + 𝑐−1)

8𝑟 (1 − 𝑟 )−1 + 4(2 + 𝑐−1 + 𝑐−1 (1 − 𝑟 )−2)
,

(A.13)

then for any small constant 𝜀 > 0, it holds with probability (1−𝑜 (1))
that

∥�̂� − 𝐷∗∥𝐹
∥𝐷𝑜 − 𝐷∗∥𝐹

≤ 𝜂𝐷 + 𝜀.

It can be verified that 𝜂𝐷 ∈ (0, 1) when 𝑟 ∈ (0, 1) and 𝑐 ∈ (0,∞).
□

B Algorithm
B.1 Scalable Algorithm for Non-I.I.D. Data
Consider a large dataset with unequal-sized subsets: an incomplete

𝑋𝑜
1
∈ R𝑑×10,000 and a complete 𝑋2 ∈ R𝑑×5,000. We partition the

similarity matrices 𝑆𝑜 and 𝑆 into smaller submatrices to apply a

divide-and-conquer strategy. Let𝑚 = 2,500, so 𝑆𝑜 ∈ R10,000×10,000

is split into 16 submatrices and 𝑆 ∈ R5,000×5,000
into 4 submatrices,

each of size 2,500 × 2,500, as shown below:

𝑆𝑜 =


𝑺𝒐11 𝑆𝑜

12
𝑆𝑜
13

𝑆𝑜
14

𝑆𝑜
21

𝑺𝒐22 𝑆𝑜
23

𝑆𝑜
24

𝑆𝑜
31

𝑆𝑜
32

𝑺𝒐33 𝑆𝑜
34

𝑆𝑜
41

𝑆𝑜
42

𝑆𝑜
43

𝑺𝒐44

 𝑆 =

[
𝑺11 𝑆12
𝑆21 𝑺22

]
,

where bold represents the diagonal blocks. The procedure of scal-

able eigenvalue correction is as follows.

1. Correcting Diagonal Submatrices:
• Perform eigen-decomposition on 𝑆11 and 𝑆22 as 𝑆𝑖𝑖 = 𝑈

∗
𝑖𝑖
Λ∗
𝑖𝑖
𝑈 ∗⊤
𝑖𝑖

,

and average the eigenvalues: Λ∗ = (Λ∗
11
+ Λ∗

22
)/2.

• For each 𝑆𝑜
𝑖𝑖
, perform eigen-decomposition 𝑆𝑜

𝑖𝑖
= 𝑈 𝑜

𝑖𝑖
Λ𝑜
𝑖𝑖
𝑈 𝑜⊤
𝑖𝑖

,

and replace the small eigenvalues of Λ𝑜
𝑖𝑖
with those of Λ∗

to obtain Λ̂𝑖𝑖 .

• Reconstruct the corrected diagonal submatrices: 𝑆𝑖𝑖 = 𝑈
𝑜
𝑖𝑖
Λ̂𝑖𝑖𝑈

𝑜⊤
𝑖𝑖

.

2. Correcting Off-diagonal Submatrices:
• Perform singular value decomposition (SVD) on 𝑆∗

12
and

𝑆∗
21
, and average the singular values: Σ∗ = (Σ∗

12
+ Σ∗

21
)/2.

• For each off-diagonal submatrix 𝑆𝑜
𝑖 𝑗
, perform SVD: 𝑆𝑜

𝑖 𝑗
=

𝑈 𝑜
𝑖 𝑗
Σ𝑜
𝑖 𝑗
𝑉𝑜⊤
𝑖 𝑗

, and update Σ𝑜
𝑖 𝑗
by replacing small singular val-

ues with those from Σ∗.
• Reconstruct the corrected off-diagonal submatrices: 𝑆𝑖 𝑗 =

𝑈 𝑜
𝑖 𝑗
Σ̂𝑖 𝑗𝑉

𝑜⊤
𝑖 𝑗

.

This approach yields an enhanced similarity matrix 𝑆 = (𝑆𝑖 𝑗 ) for
the incomplete data 𝑋𝑜

1
via a divide-and-conquer strategy, where

the complete steps are summarized in Algorithm 3.

Algorithm 3 Scalable Eigenvalue Correction for Non-I.I.D.
Data

Input: 𝑋𝑜
1
∈ R𝑑×𝑛1

: an incomplete subset;𝑋2 ∈ R𝑑×𝑛2
: a complete

subset; 𝑘 : top-𝑘 eigenvalues or singular values (hyperparame-

ter);𝑚: the partition size (hyperparameter).

Output: 𝑆 ∈ R𝑛1×𝑛1
: the corrected inner product matrix for 𝑋𝑜

1
.

1: Set 𝑁1 = 𝑛1/𝑚 and 𝑁2 = 𝑛2/𝑚.

2: Calculate 𝑆𝑜 ∈ R𝑛1×𝑛1 , 𝑆 ∈ R𝑛2×𝑛2
from 𝑋𝑜

1
, 𝑋2 via Eq. (1).

3: Partition 𝑆𝑜 into submatrices {𝑆𝑜
𝑖 𝑗
}𝑁1

𝑖, 𝑗=1
of size𝑚 ×𝑚;

4: Partition 𝑆 into submatrices {𝑆𝑝𝑞}𝑁2

𝑝,𝑞=1
of size𝑚 ×𝑚.

5: ⊲ Stage-I. Correcting Diagonal Submatrices
6: parfor 𝑝 = 1, 2, . . . , 𝑁2 do
7: Perform eigen-decomposition: 𝑆𝑝𝑝 = 𝑈𝑝𝑝Λ

∗
𝑝𝑝𝑈

⊤
𝑝𝑝 ;

8: end
9: Calculate average eigenvalues in 𝑆 : Λ∗ = 1

𝑁2

∑𝑁2

𝑝=1
Λ∗𝑝𝑝 =

Diag(𝜆∗
1
, 𝜆∗

2
, . . . , 𝜆∗𝑚).

10: parfor 𝑖 = 1, 2, . . . , 𝑁1 do
11: Perform eigen-decomposition: 𝑆𝑜

𝑖𝑖
= 𝑈 𝑜

𝑖𝑖
Λ𝑜
𝑖𝑖
𝑈 𝑜⊤
𝑖𝑖

with Λ𝑜
𝑖𝑖
=

Diag(𝜆𝑜
1
, 𝜆𝑜

2
, . . . , 𝜆𝑜𝑚);

12: Correct the eigenvalues by Λ̂𝑖𝑖 =

Diag(𝜆𝑜
1
, · · · , 𝜆𝑜

𝑘︸      ︷︷      ︸
from 𝑆𝑜

, 𝜆∗
𝑘+1, · · · , 𝜆

∗
𝑚︸          ︷︷          ︸

from 𝑆

);

13: Obtain corrected diagonal submatrix: 𝑆𝑖𝑖 = 𝑈
𝑜
𝑖𝑖
Λ̂𝑖𝑖𝑈

𝑜⊤
𝑖𝑖

.

14: end
15: ⊲ Stage-II. Correcting Off-diagonal Submatrices
16: parfor 𝑝, 𝑞 = 1, 2, . . . , 𝑁2 (𝑝 ≠ 𝑞) do
17: Perform singular value decomposition: 𝑆𝑝𝑞 = 𝑈𝑝𝑞Σ

∗
𝑝𝑞𝑉

⊤
𝑝𝑞 ;

18: end
19: Calculate average singular values in 𝑆 : Σ∗ =

1

𝑁2 (𝑁2−1)
∑
𝑝≠𝑞 Σ

∗
𝑝𝑞 = Diag(𝜎∗

1
, 𝜎∗

2
, . . . , 𝜎∗𝑚).

20: parfor 𝑖, 𝑗 = 1, 2, . . . , 𝑁1 (𝑖 ≠ 𝑗 ) do
21: Perform singular value decomposition: 𝑆𝑜

𝑖 𝑗
= 𝑈 𝑜

𝑖 𝑗
Σ𝑜
𝑖 𝑗
𝑉𝑜⊤
𝑖 𝑗

with Σ𝑜
𝑖 𝑗

= Diag(𝜎𝑜
1
, 𝜎𝑜

2
, . . . , 𝜎𝑜𝑚);

22: Correct singular values by Σ̂𝑖 𝑗 =

Diag(𝜎𝑜
1
, · · · , 𝜎𝑜

𝑘︸       ︷︷       ︸
from 𝑆𝑜

, 𝜎∗
𝑘+1, · · · , 𝜎

∗
𝑚︸          ︷︷          ︸

from 𝑆

);

23: Obtain corrected off-diagonal submatrix: 𝑆𝑖 𝑗 = 𝑈
𝑜
𝑖 𝑗
Σ̂𝑖 𝑗𝑉

𝑜⊤
𝑖 𝑗

.

24: end
25: Return 𝑆 = (𝑆𝑖 𝑗 ) ∈ R𝑛1×𝑛1

.

Quadratic Time Complexity. Given a partition size of𝑚, 𝑆𝑜 ∈
R𝑛1×𝑛1

is divided into

𝑛2

1

𝑚2
submatrices of size 𝑚 × 𝑚. Similarly,
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𝑆 ∈ R𝑛2×𝑛2
is divided into

𝑛2

2

𝑚2
submatrices. In total, there are

𝑛2

1
+𝑛2

2

𝑚2

submatrices. The time complexity for the eigen-decomposition or

singular value decomposition of each𝑚 ×𝑚 submatrix is 𝑂 (𝑚3).
Therefore, the overall time complexity of Algorithm 3 is

𝑛2

1
+𝑛2

2

𝑚2
·

𝑂 (𝑚3) = 𝑶 (𝒎𝒏21+𝒎𝒏22), resulting in quadratic complexity and a

significant reduction in running time. Additionally, all loops (Lines

6-8, 10-14, 16-18, and 20-24) are designed for parallel execution,

further enhancing efficiency.

C Experimental Settings
C.1 Datasets
We utilize four well-known benchmark datasets that cover a rea-

sonable range of application domains, encompassing various types

of images and speech data.

• CIFAR10 [15]
1
: a color-image dataset consists of 60,000 color

images of 32× 32 pixels across 10 classes, each image reshaped into

a 3,072-dimensional vector (𝑑 = 3, 072).

• LFW [12]
2
: a face-image dataset features 13,233 images of

faces, each resized to 64 × 64 pixels in grayscale and reshaped into

a 4,096-dimensional vector (𝑑 = 4, 096);

•COIL100 [23] 3: an object-image dataset comprises 7,200 object

images in 100 classes, each resized to 32 × 32 pixels in grayscale

and reshaped into a 1,024-dimensional vector (𝑑 = 1, 024).

• ISOLET [5]
4
: a speech dataset contains 7,797 recordings of

different speakers, each represented by a 617-dimensional vector

(𝑑 = 617).

C.2 Baseline Methods and Hyperparameters
Our approach is evaluated against a range of representativemethods

designed to incomplete data:

•Mean [11]: Replaces missing values with the mean of observed

values in the corresponding feature.

• 𝒌NN [1]: Imputes missing values using average values of 𝑘-

nearest neighbors (default: 𝑘 = 10).

• SVT [3]: Employs singular value thresholding for low-rank

matrix completion.

• KFMC [6]: Utilizes a kernelized factorization technique for

high-rank matrix completion in the offline pattern (default: polyno-

mial kernel).

• PMC [7]: Applies polynomial matrix completion for low-rank

matrix completion (default: polynomial kernel).

•TDM [28]: Uses transformed distributionmatching for optimal-

transport-based imputation, requiring more than 6 hours for 1,000

iterations (default: 𝑇 = 3 and 𝐾 = 2 for 1,000 iterations).

•GAIN [25]: Uses generative adversarial nets (GAN) framework

to impute the missing components conditioned on what is actually

observed.

•MIWAE [20]: Uses the importance-weighted autoencoder and

maximises a potentially tight lower bound of the log-likelihood of

the observed data.

1
https://www.cs.toronto.edu/~kriz/cifar.html

2
https://vis-www.cs.umass.edu/lfw/

3
https://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php

4
http://archive.ics.uci.edu/ml/datasets/ISOLET

• DMC [16]: Adjusts an initial similarity matrix 𝑆𝑜 to its nearest

positive semi-definite (PSD) matrix through convex optimization,

specifically by solvingmin𝑆⪰0 ∥𝑆−𝑆𝑜 ∥2𝐹 . This is achieved by setting
all negative eigenvalues of the inner product matrix to zero.

• SMC [26]: Calibrates an initial similarity matrix 𝑆𝑜 towards

PSD by sequentially updating the similarity vector 𝑣 to solvemin𝑣 ∥𝑆−
𝑆𝑜 ∥2

𝐹
subject to 𝑆 ⪰ 0.

• SVC [18]: Adjusts an initial similarity matrix 𝑆𝑜 to the PSD

matrix by batch calibrating similarity vectors. The optimization

involves solvingmin𝑣
1

2
(𝑣−𝑣𝑜 )⊤ (𝑣−𝑣𝑜 ) under constraint 𝑣⊤𝑆−1𝑣 ≤

1, where 𝑣 is the similarity vector.

C.3 Implementation Details
Implementation. In all experiments, we randomly select 𝑛 sam-

ples to form the incomplete dataset 𝑋𝑜
1
∈ R𝑑×𝑛 , with entries miss-

ing according to different mechanisms, and another 𝑛 samples for

the complete dataset 𝑋2 ∈ R𝑑×𝑛 . These are combined into a single

data matrix𝑋 = [𝑋𝑜
1
, 𝑋2], used by all imputation algorithms to gen-

erate an imputed matrix 𝑋 = [𝑋1, 𝑋2]. The inner product matrix 𝑆1

is then computed from 𝑋1 for imputation methods. For calibration

methods, the process begins with the initial inner product matrix

𝑆𝑜
1
from 𝑋𝑜

1
, as defined by Eq. (1), which is optimized to 𝑆1 using

various optimization techniques. In short, the route of imputation

is 𝑋𝑜
1
→ 𝑋1 → 𝑆1, while the route of calibration is 𝑋𝑜

1
→ 𝑆𝑜

1
→ 𝑆1.

Finally, all experiments of estimation errors and similarity search

performance are conducted on 𝑆1.

Similarity Search Tasks. We perform one-versus-all similarity

searches. In the maximum inner product search, each sample in

the incomplete dataset 𝑋𝑜
1
serves as a query. Using the estimated

inner product matrix 𝑆1, we identify the top-𝑁 candidates with the

highest inner product. The Recall@N for each sample is calculated

as the proportion of true top-𝑁 items among the top-𝑁 candidates.

The average Recall@N is then recorded across all samples. Simi-

larly, the nearest neighbor search involves identifying the top-𝑁

candidates with the smallest Euclidean distance for each query.

D Comprehensive Results and Analysis
To demonstrate the effectiveness of our method, we provide com-

prehensive results in this section, including ablation study (Sec-

tion D.1), hyperparameter analysis (Section D.2), efficiency analysis

(Section D.3), and scalability analysis (Section D.4), followed by

extension on various missing mechanisms (Section D.5).

D.1 Ablation Study
As shown in Table D.4, even with a small missing rate (e.g., 20%),

while the initial estimate 𝑆𝑜 (𝐷𝑜
) is close to the ground-truth, our

EC method enhances it by reducing relative errors and improv-

ing search accuracy. As missing rates increase, our EC method

continues to demonstrate stable search accuracy, confirming its

consistent improvements from the initial estimate across various

levels of missing data.
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Table D.4: Ablation study under various missing rates on the
incomplete CIFAR10 dataset with 𝑛 = 1, 000. “RE" denotes the
relative error of the estimation, and “Recall" indicates the
search accuracy of Recall@10.

Metric RE(S) ↓ RE(D) ↓ Recall(S) ↑ Recall(D) ↑
Rate 𝑟 𝑆𝑜 EC 𝐷𝑜

EC 𝑆𝑜 EC 𝐷𝑜
EC

20% 0.041 0.039 0.013 0.012 0.927 0.931 0.919 0.925
30% 0.056 0.051 0.017 0.016 0.903 0.912 0.893 0.904
40% 0.073 0.064 0.023 0.020 0.876 0.892 0.863 0.883
50% 0.095 0.078 0.029 0.025 0.842 0.871 0.823 0.859
60% 0.126 0.096 0.038 0.030 0.795 0.846 0.769 0.830
70% 0.175 0.120 0.052 0.038 0.724 0.811 0.687 0.793
80% 0.269 0.156 0.079 0.049 0.605 0.758 0.543 0.734

D.2 Hyperparameter Analysis
For hyperparameter, we select the number of top-𝑘 eigenvalues,

𝑘 , from the set {1, 5, 10, 15, 20, 25} to enhance search performance,

as detailed in Tables D.5 and D.6. Fig. D.10 demonstrates that our

method consistently performs well across various 𝑘 values. It’s

important to note that the optimal 𝑘 may vary depending on the

specific data types and settings.

Table D.5: Hyperparameter 𝑘 of our method on incomplete
datasets with 𝑛 = 1, 000 and 𝑟 = 80%.

Dataset CIFAR10 LFW COIL100 ISOLET

𝑘 5 5 1 1

Table D.6: Hyperparameter 𝑘 of our method on incomplete
CIFAR10 dataset with 𝑛 = 1, 000.

Missing Rate 𝑟 20% 30% 40% 50% 60% 70% 80%

𝑘 25 20 20 15 10 10 5

D.3 Efficiency Analysis
•EfficiencyAdvantage on Small-ScaleDatasets. Our ECmethod

significantly outpaces imputation techniques in terms of running

time. When handling 1,000 incomplete samples, EC is hundreds

to thousands of times faster than matrix completion methods like

SVT, KFMC, and PMC. It even surpasses the 𝑘NN method by 2 to

12 times, achieving an impressive runtime of approximately 0.1

seconds across four datasets, as shown in Table D.7.

• Efficiency Advantage on Large-Scale Datasets. Our com-

prehensive testing on the full versions of datasets reveals our

method’s high efficiency on large-scale datasets. The EC method

processes several thousand samples in datasets like LFW, COIL100,

and ISOLET in just 3-18 seconds without any partitioning speedup.

This performance far exceeds that of traditional imputation meth-

ods by several orders of magnitude.

• Speedup Validation: Our divide-and-conquer strategy con-

siderably reduces computational complexity to quadratic terms,

significantly enhancing efficiency on large datasets, particularly

for the CIFAR10 dataset with 30,000 incomplete samples. By imple-

menting a partition size of𝑚 = 1, 000, we achieve a roughly 6-fold
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Figure D.10: Hyperparameter analysis on incomplete CI-
FAR10 dataset with 𝑛 = 1, 000 and various 𝑟 .

Table D.7: Efficiency analysis on the incomplete datasets with
𝒏 = 1, 000 and 𝒓 = 80%.

Time (sec) CIFAR10 LFW COIL100 ISOLET

Mean 0.05±0.01 0.06±0.00 0.02±0.00 0.01±0.01
𝑘NN 0.68±0.02 0.89±0.02 0.24±0.01 0.16±0.02
SVT 57.46±1.65 77.36±1.70 16.97±0.25 9.47±0.10
KFMC 17.23±19.53 0.22±0.02 14.84±4.79 10.97±1.23
PMC 356.75±21.24 378.28±29.79 460.81±9.32 405.62±22.42
TDM > 6h > 6h > 6h > 6h

GAIN 792.51±2.33 1592.45±82.16 102.99±1.32 51.39±3.57
MIWAE 3495.00±46.87 4888.27±235.58 632.96±5.26 398.80±3.32
DMC 0.06±0.01 0.05±0.00 0.05±0.01 0.05±0.00
SMC 28.10±1.35 26.89±1.01 26.56±0.77 25.06±0.09
SVC 0.07±0.02 0.06±0.01 0.06±0.00 0.06±0.01
𝑆𝑜 , 𝐷𝑜

0.05±0.00 0.06±0.00 0.02±0.00 0.01±0.00
EC (Ours) 0.08±0.01 0.07±0.01 0.08±0.01 0.07±0.01

speedup, completing eigenvalue correction for 30,000 samples in

just 4 minutes. This runtime is substantially faster than that of

conventional imputation and calibration methods, while the PMC,

TDM and SMC methods cannot execute within 6 hours.

15



1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

WWW’25, April 28–May 2, 2025, Sydney, Australia Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Table D.8: Performance of Maximum Inner Product Search on Four Entire Datasets with 𝑟 = 80%. “RE(S)" denotes the relative
error of the inner product estimation, and “Recall(S)" indicates the MIPS accuracy of Recall 10@10. Bold highlights the best
result. The last line uses “↓" to indicate error reduction from 𝑆𝑜 to ours, and “↑" to show accuracy improvement from 𝑆𝑜 to ours.

Dataset CIFAR10 LFW COIL100 ISOLET

Size 𝑛 30,000 6,600 3,600 3,800

Metric RE(S) ↓ Recall(S) ↑ RE(S) ↓ Recall(S) ↑ RE(S) ↓ Recall(S) ↑ RE(S) ↓ Recall(S) ↑
Mean 0.960±0.000 0.307±0.003 0.960±0.000 0.409±0.004 0.959±0.000 0.231±0.003 0.960±0.000 0.139±0.002
𝑘NN 0.942±0.001 0.328±0.007 0.948±0.001 0.443±0.005 0.941±0.002 0.249±0.005 0.943±0.001 0.157±0.002
SVT 0.866±0.000 0.235±0.008 0.867±0.000 0.288±0.005 0.870±0.001 0.219±0.005 0.882±0.001 0.125±0.003
KFMC 0.929±0.001 0.119±0.034 0.943±0.009 0.460±0.031 0.919±0.002 0.107±0.008 0.933±0.001 0.145±0.007
𝑆𝑜 0.270±0.001 0.362±0.002 0.273±0.002 0.451±0.004 0.579±0.004 0.240±0.004 0.816±0.007 0.135±0.002
DMC 0.253±0.001 0.395±0.002 0.239±0.001 0.528±0.003 0.517±0.004 0.277±0.005 0.750±0.006 0.160±0.002
SMC - - - - 0.367±0.002 0.296±0.005 0.508±0.004 0.178±0.003
SVC 0.231±0.008 0.416±0.018 0.218±0.004 0.536±0.009 0.473±0.014 0.284±0.004 0.689±0.020 0.167±0.002
EC (Ours) 0.141±0.000 0.617±0.003 0.146±0.001 0.673±0.003 0.290±0.002 0.360±0.007 0.379±0.004 0.277±0.004
EC-5,000 0.144±0.000 0.602±0.002 - - - - - -

EC-2,000 0.149±0.000 0.585±0.002 - - - - - -

EC-1,000 0.155±0.000 0.564±0.002 - - - - - -

𝑆𝑜 → EC 48%↓±0% 70%↑±1% 47%↓±0% 49%↑±1% 50%↓±1% 50%↑±3% 53%↓±0% 106%↑±4%

Table D.9: Performance of Nearest Neighbor Search on Four Entire Datasets with 𝑟 = 80%. “RE(D)" denotes the relative error of
the Euclidean distance estimation, and “Recall(D)" indicates the NNS accuracy of Recall 10@10. Bold highlights the best result.
The last line uses “↓" to indicate error reduction from 𝐷𝑜 to ours, and “↑" to show accuracy improvement from 𝐷𝑜 to ours.

Dataset CIFAR10 LFW COIL100 ISOLET

Size 𝑛 30,000 6,600 3,600 3,800

Metric RE(D) ↓ Recall(D) ↑ RE(D) ↓ Recall(D) ↑ RE(D) ↓ Recall(D) ↑ RE(D) ↓ Recall(D) ↑
Mean 0.814±0.000 0.032±0.002 0.811±0.000 0.079±0.004 0.809±0.002 0.026±0.002 0.810±0.001 0.037±0.003
𝑘NN 0.809±0.000 0.033±0.002 0.807±0.000 0.081±0.005 0.802±0.002 0.033±0.002 0.802±0.001 0.044±0.004
SVT 0.790±0.000 0.061±0.003 0.791±0.000 0.137±0.004 0.790±0.002 0.068±0.002 0.795±0.001 0.068±0.004
KFMC 0.804±0.001 0.047±0.003 0.808±0.001 0.100±0.013 0.775±0.005 0.057±0.002 0.802±0.002 0.069±0.003
𝐷𝑜

0.079±0.000 0.245±0.001 0.072±0.000 0.389±0.002 0.216±0.012 0.259±0.002 0.225±0.007 0.121±0.002
DMC 3.048±0.002 0.035±0.002 1.808±0.002 0.159±0.007 2.378±0.036 0.049±0.002 3.112±0.017 0.063±0.003
SMC - - - - 1.102±0.017 0.255±0.003 1.566±0.012 0.180±0.003
SVC 2.667±0.002 0.034±0.002 1.281±0.002 0.223±0.007 1.758±0.027 0.086±0.006 2.538±0.013 0.085±0.004
EC (Ours) 0.046±0.000 0.567±0.001 0.043±0.000 0.650±0.003 0.183±0.014 0.356±0.011 0.154±0.009 0.276±0.003
EC-5,000 0.046±0.000 0.552±0.001 - - - - - -

EC-2,000 0.048±0.000 0.534±0.001 - - - - - -

EC-1,000 0.049±0.000 0.511±0.002 - - - - - -

𝐷𝑜 → EC 42%↓±0% 131%↑±1% 40%↓±0% 67%↑±1% 15%↓±2% 37%↑±4% 32%↓±2% 127%↑±4%

D.4 Scalability Analysis
• Scalability Evidence. Our method significantly enhances scala-

bility and performance on large datasets. For example, Tables D.8

and D.9 illustrate the EC method’s efficacy on the large-scale CI-

FAR10 dataset with 30,000 samples. Both with and without parti-

tioning, the EC method exhibits exceptional scalability, achieving

the smallest estimation errors and the highest recall values.

• Performance Advantage. On the full-version large datasets,

the similarity search performance of some imputation methods

drops markedly, with Recall(D) falling below 0.1. In contrast, our

EC method maintains robust performance; even the worst results,

with a partition size of 𝑚 = 1, 000, still achieve Recall above 0.5

on the CIFAR10 dataset. This significantly surpasses all baseline

methods, underscoring our method’s effectiveness and scalability.

D.5 Extension on Various Missing Mechanisms
To align with baseline methods, we adopt the MCARmechanism for

main experiments. Furthermore, we show the effectiveness of our

method on other missing mechanisms, as discussed in Section 6.5.

Specifically, we incorporate realistic missing data patterns
5
in the

CIFAR10 dataset, detailed below:

5
Official codes [28] from https://github.com/hezgit/TDM were used to simulate the

MAR and MNAR.

16

https://github.com/hezgit/TDM


1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

A Theory-Driven Approach to Inner Product Matrix Estimation for Incomplete Data: An Eigenvalue Perspective WWW’25, April 28–May 2, 2025, Sydney, Australia

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Table D.10: Performance of Maximum Inner Product Search under Various Missing Mechanisms on incomplete CIFAR10 dataset
with 𝑛 = 1, 000 and 𝑟 = 80%. “RE(S)" denotes the relative error of the inner product estimation, and “Recall(S)" indicates the MIPS
accuracy of Recall 10@10. Bold highlights the best result. The last line uses “↓" to indicate error reduction from 𝑆𝑜 to ours, and
“↑" to show accuracy improvement from 𝑆𝑜 to ours.

Mechanism MAR MNAR Segmental-Missing Block-Missing

Metric RE(S) ↓ Recall(S) ↑ RE(S) ↓ Recall(S) ↑ RE(S) ↓ Recall(S) ↑ RE(S) ↓ Recall(S) ↑
Mean 0.886±0.003 0.786±0.012 0.955±0.001 0.656±0.008 0.958±0.000 0.527±0.014 0.953±0.000 0.390±0.012
𝑘NN 0.875±0.003 0.790±0.012 0.942±0.002 0.675±0.009 0.946±0.003 0.570±0.010 0.939±0.003 0.440±0.014
SVT 0.802±0.005 0.673±0.012 0.854±0.004 0.518±0.007 0.866±0.003 0.476±0.012 0.856±0.004 0.433±0.013
KFMC 0.845±0.028 0.664±0.092 0.922±0.028 0.604±0.056 0.948±0.014 0.560±0.038 0.922±0.034 0.358±0.039
PMC 0.755±0.012 0.604±0.019 0.801±0.012 0.510±0.020 0.829±0.011 0.426±0.022 0.718±0.019 0.503±0.021
TDM 0.885±0.003 0.646±0.015 0.954±0.002 0.415±0.024 0.957±0.001 0.276±0.027 0.952±0.000 0.270±0.022
𝑆𝑜 0.158±0.014 0.792±0.013 0.264±0.007 0.640±0.005 0.310±0.008 0.561±0.011 0.518±0.013 0.424±0.011
DMC 0.154±0.015 0.798±0.014 0.221±0.005 0.705±0.003 0.265±0.007 0.630±0.011 0.465±0.012 0.479±0.011
SMC 0.153±0.015 0.801±0.014 0.182±0.004 0.736±0.004 0.219±0.006 0.670±0.010 0.392±0.012 0.524±0.011
SVC 0.195±0.050 0.695±0.078 0.223±0.010 0.650±0.043 0.255±0.006 0.597±0.026 0.437±0.014 0.462±0.016
EC (Ours) 0.152±0.015 0.802±0.014 0.155±0.003 0.770±0.004 0.190±0.004 0.711±0.009 0.342±0.020 0.565±0.012
𝑆𝑜 → EC 4%↓±1% 1%↑±0% 41%↓±1% 20%↑±1% 39%↓±1% 27%↑±1% 34%↓±3% 33%↑±2%

Table D.11: Performance of Nearest Neighbor Search under Various Missing Mechanisms on incomplete CIFAR10 dataset with
𝑛 = 1, 000 and 𝑟 = 80%. “RE(D)" denotes the relative error of the Euclidean distance estimation, and “Recall(D)" indicates the NNS
accuracy of Recall 10@10. Bold highlights the best result. The last line uses “↓" to indicate error reduction from 𝐷𝑜 to ours, and
“↑" to show accuracy improvement from 𝐷𝑜 to ours.

Mechanism MAR MNAR Segmental-Missing Block-Missing

Metric RE(D) ↓ Recall(D) ↑ RE(D) ↓ Recall(D) ↑ RE(D) ↓ Recall(D) ↑ RE(D) ↓ Recall(D) ↑
Mean 0.799±0.001 0.481±0.010 0.808±0.001 0.187±0.012 0.814±0.001 0.192±0.013 0.813±0.001 0.190±0.009
𝑘NN 0.795±0.000 0.501±0.010 0.803±0.001 0.194±0.013 0.810±0.001 0.197±0.014 0.809±0.001 0.198±0.009
SVT 0.772±0.002 0.581±0.008 0.780±0.001 0.330±0.013 0.790±0.001 0.303±0.010 0.788±0.001 0.300±0.012
KFMC 0.770±0.022 0.524±0.034 0.788±0.017 0.220±0.032 0.811±0.004 0.211±0.026 0.797±0.018 0.222±0.035
PMC 0.720±0.010 0.607±0.010 0.713±0.010 0.322±0.012 0.737±0.008 0.310±0.016 0.686±0.013 0.378±0.014
TDM 0.777±0.001 0.377±0.017 0.784±0.002 0.158±0.011 0.790±0.004 0.160±0.014 0.790±0.002 0.163±0.015
𝐷𝑜

0.050±0.004 0.753±0.013 0.078±0.001 0.562±0.007 0.092±0.001 0.499±0.006 0.154±0.001 0.333±0.006
DMC 0.139±0.003 0.743±0.012 0.719±0.006 0.462±0.012 0.813±0.006 0.419±0.014 1.186±0.008 0.298±0.011
SMC 0.068±0.004 0.722±0.012 0.296±0.006 0.473±0.028 0.341±0.008 0.438±0.023 0.522±0.013 0.359±0.020
SVC 0.096±0.009 0.722±0.040 0.476±0.003 0.523±0.013 0.544±0.004 0.477±0.013 0.829±0.005 0.345±0.010
EC (Ours) 0.048±0.004 0.763±0.014 0.049±0.001 0.734±0.007 0.061±0.001 0.689±0.006 0.108±0.004 0.529±0.011
𝐷𝑜 → EC 3%↓±0% 1%↑±0% 37%↓±1% 31%↑±1% 34%↓±1% 38%↑±1% 30%↓±2% 59%↑±4%

•Missing at Random (MAR) [21]: It samples a fixed subset

of features to remain complete, while the rest are subject to miss-

ingness based on a logistic model using the non-missing features

as inputs.

•Missing Not at Random (MNAR) [28]: It implements a lo-

gistic model where inputs are masked by MCAR, creating a logistic-

masking MNAR pattern.

• Segmental-Missing (SM): Pixels in vectorized images are

missing in segments of random lengths.

• Block-Missing (BM): Pixels in original 32 × 32 images are

missing in blocks of random sizes.

The results in Tables D.10 and D.11 highlight our method’s ro-

bustness and effectiveness across a range of realistic missing data

scenarios, characterized by the smallest estimation errors and high-

est search accuracy. While the initial estimate 𝑆𝑜 (𝐷𝑜
) shows good

performance under theMAR setting, leaving little room for improve-

ment, our method significantly outperforms the initial estimate and

baseline methods in MNAR, Segmental-Missing, and Block-Missing.

17


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Intuitive Estimation of Inner Product
	2.2 Similarity Calibration Method's Limitations

	3 Inner Product Estimation for I.I.D. Data
	3.1 Inner Product of Complete I.I.D. Data
	3.2 Inner Product of Incomplete I.I.D. Data
	3.3 Proposed Eigenvalue Correction Strategy for Incomplete I.I.D. Data
	3.4 Optimality Analysis

	4 Inner Product Estimation for Non-I.I.D. Data
	4.1 Inner Product of Separable Data
	4.2 Inner Product of Real-World Data
	4.3 Proposed Eigenvalue Correction Strategy for Incomplete Non-I.I.D. Data

	5 Extension
	5.1 Extension on Scalability and Efficiency
	5.2 Extension to Euclidean Distance

	6 Experiments
	6.1 Experimental Setting
	6.2 Evaluation on Estimation Error
	6.3 Evaluation on Similarity Search
	6.4 Robustness Analysis
	6.5 Extension on Missing Mechanism

	7 Conclusion
	References
	A Proof
	A.1 Proof of Theorem 2
	A.2 Proof of Theorem 3
	A.3 Proof of Theorem 4
	A.4 Proof of Theorem 5
	A.5 Proof of Theorem 6
	A.6 Proof of Theorem 7

	B Algorithm
	B.1 Scalable Algorithm for Non-I.I.D. Data

	C Experimental Settings
	C.1 Datasets
	C.2 Baseline Methods and Hyperparameters
	C.3 Implementation Details

	D Comprehensive Results and Analysis
	D.1 Ablation Study
	D.2 Hyperparameter Analysis
	D.3 Efficiency Analysis
	D.4 Scalability Analysis
	D.5 Extension on Various Missing Mechanisms


