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I. RESEARCH VISION

Robots have the potential to complete a variety of tasks to
aid users, from retrieving lost items in cluttered home environ-
ments to encouraging users to perform physical rehabilitation.
A robot’s ability to functionally perform these tasks is a
necessary but not sufficient property that drives robot adoption
[46]. Across use cases, a robot’s utility depends on its ability
to align with the individual needs and preferences of each user,
but users can have conflicting preferences that prevent a single
robot policy from benefiting all users [2, 41, 45]. A founda-
tional goal of human-robot interaction is to develop robots that
can be readily used by any user. However, current systems that
take a one-size-fits all approach to robot deployment cannot
satisfy users that have diametrically opposed preferences.

Prior work in robot learning has demonstrated the efficacy
of user-collected data to allow robots to computationally
reason over user preferences [4]. Users can teach robots
desired behaviors through many channels such as trajectory
comparisons [3, 39, 32], trajectory rankings [6, 10, 34],
demonstration [27, 35, 49], corrections [1, 11, 31], language
[30, 37, 44, 47], or by specifying reward values [9, 25]. An
overarching limitation of these approaches is that they require
conscious effort from the user to communicate over these
channels. However, users naturally communicate preferences
through many embodied channels (e.g., gaze, proxemics, or
gestures) that can be computationally leveraged [29, 40].

My research establishes theoretical and algorithmic foun-
dations to allow robots to adapt to users’ individual needs and
preferences through natural embodied interfaces. I pursue this
goal by (1) learning representations from data generated during
robot use and (2) encoding cognitive and structural biases into
algorithms to efficiently adapt robot policies with limited data.

II. LEARNING FROM NATURALLY GENERATED DATA

Internet-scale robot datasets are scarce, but users naturally
emit data through several embodied channels that can be
leveraged. My first research direction addresses this gap by
learning robot representations from these embodied channels.

Robot Embodiment. Users automatically infer expecta-
tions from the physical design of a robot [7, 36], high-
lighting design as a communication channel. To understand
this channel, We introduced the concept of design metaphors
[8] as a representation of users’ mental models of expected
robot function [17]. We found that using these metaphors
can reliably describe population-level social and functional
expectations over a dataset of 165 socially interactive robots
observed by over 1800 people. The semantic relationships
between metaphors additionally induced corresponding mea-
surable changes in users’ expectations of robots, e.g., robots

Fig. 1: Research overview. My research models natural in-
teractions from users such as (a) exploratory search and (b)
user engagement dynamics to adapt robot policies to individ-
ual users. These models facilitate adaptation in limited data
domains such as (c) adjusting rehabilitation exercises and (d)
finding preferred trajectories in learned representation spaces.

that were described as “a person” were perceived as more com-
petent than robots described as “a toddler”. We also showed
that design metaphors can be used as a predictive measurement
to understand expectations of unseen robot embodiments [19].
Extending design as a communication channel, we created a
generative framework to modulate robot expectations through
clothing design [22] and screen-based faces [23].

Exploratory Search. Design metaphors capture users’ men-
tal models of static robot designs, but preferences can also
emerge through interaction. Traditional preference-learning as-
sumes fixed preferences, but users often engage in exploratory
search to jointly discover what they prefer the robot to do and
what it can do [33]. We created an interface that allows users
to perform exploratory search in high-dimensional robot action
spaces [18]. This work learns from users’ exploratory actions,
where users selectively tested embodied actions on a physical
robot that assisted users with locating and fetching items,
shown in Fig 1a. The users’ exploratory actions when selecting
behaviors suggested their true preferences. We formulated
the problem of contrastive learning from exploratory actions
(CLEA) to learn human-aligned representations from users’



natural interactions [24], without requiring explicit user labels.
We found that CLEA representations captured preferences
using 80% less data than self-supervised representations in
down-stream preference learning tasks.

User Engagement Dynamics. Both Design Metaphors
and CLEA learned population-level representations of robot
behaviors before users engaged in routine interaction, however,
robots can learn about users continually during use. We
identified engagement is a salient embodied channel that can
be used to train robot social policies. We formulated successful
social interaction policies as optimizing user engagement [15].
To achieve this, we learned personal engagement dynamics
models from facial cues, p(st+1 | st, at), rather than directly
predicting reward or failure as in prior works [5, 12, 43]. We
evaluated this approach in a rehabilitation exercise domain
for users with cerebral palsy, shown in Fig. 1b. Robots that
select actions to maximize engagement according to these
dynamics models resulted in significantly increased volume
of interaction with robots in our user simulations.

III. ALGORITHMS TO EFFICIENTLY ADAPT ROBOTS

Though users emit data from many channels, they also have
limited time to spend adapting robots. My second research
direction creates techniques to efficiently adapt robot behavior.

Physical Interaction. Robots have the potential to collect
longitudinal and objective physical interaction data that can be
used for several purposes, increasing their utility. We investi-
gated how robots can learn personalized movement models of
post-stroke participants for adaptive rehabilitation by creating
the bimanual arm reaching test with robots (BARTR) [16, 20].
BARTR, shown in Fig. 1c, consisted of a physically assistive
robot to position a reaching target and a socially assistive
robot that provided feedback and test instructions. Using time
to reach and arm choice data, we trained Gaussian Processes
to model users from limited system use data. These models
allowed us to developed a causal framework to calculate
personalized task difficulty to facilitate rehabilitation [20].
We also used these models to derive an objective metric
for arm nonuse, which is traditionally difficult to monitor in
neurorehabilitation [26]. The BARTR metric was correlated
with existing clinical standards [42], but achieved a higher
test-retest reliability, enabling repeated nonuse assessment.

Generating Trajectories for Hair Care. The BARTR
interaction clinically assessed post-stroke users, but the same
robot can be used to augment users’ ability to perform
activities of daily living. To expand the robot’s usefulness, we
created the first robotic hair combing interface [14]. Specifying
these paths manually requires a high degree of user effort
to “draw” trajectories that appropriately comb hair, requiring
high levels of skill and dexterity. We estimated the structural
gradient of the user’s hair from images to plans trajectories
that follow the hair’s structural gradients, requiring only one
click from the user to generate combing trajectories. This
technique generalizes across several hair lengths, colors, and
styles. We found through a user study that this algorithm
produces trajectories that are comparable to human-drawn

paths and exert minimal forces. Through a collaboration, we
extended this interaction to robots with dexterous soft end
effectors, extending hair care to three new tasks that leverage
the structural compliance of soft robots [48].

Intuitively Ranking Trajectories. Robot hair combing
leverages structural priors to reduce user effort. Many robot
behaviors exist in learned representation spaces that do not
have such intuitive structures for users to efficiently navigate
[4]. Previous approaches to eliciting preferences from rankings
maximize an information gain objective to generate sets of
trajectories that are easy for users to rank. Maximizing this
objective does not produce trajectory sets that users perceive
as improving over time. I defined a novel algorithm called
CMA-ES-IG that combines an information gain objective with
CMA-ES optimization to produce trajectory sets that efficiently
converge to users’ preferred trajectories in as few as ten rank-
ings [21], compared to hundreds of pairwise comparisons. Our
user studies evaluated this algorithm across robots performing
social gestures and functional handover tasks, shown in Fig.
1d. Users found that CMA-ES-IG learned their preferences
more quickly and easily than state-of-the-art baselines [3, 32].

IV. FUTURE WORK

Jointly Learning Function and Preference. Many
preference-learning approaches in robotics conflate preference
and function. Users generally rate successful policies as better
than unsuccessful policies, but preferences are more likely
to vary between users. In dialogue generation, functional
policies are often trained from data before preference learning
techniques are applied to better collect user feedback [28].
My prior work assumed access to policies that functionally
accomplish tasks from manually engineered robot systems. My
future work will leverage quality-diversity (QD) optimization
[13] to autonomously learn sets of robot policies that maximize
an objective, f(π), that functionally performs tasks (quality),
while varying along several measure functions, mi(π), that
capture differences in user preferences (diversity). I aim to
evaluate QD algorithms across several user-interactive do-
mains, such as hair care, feeding, item retrieval, and cooking.
These domains enable the collection of embodied user data and
will highlight the generalization of QD-based policy learning.

Transferring Preferences Across Tasks. My work demon-
strated that the same robot can perform more than one task,
such as hair combing and stroke assessment, but current
preference learning techniques require robots to relearn user
models for each new task. I hypothesize that some elements
of users’ preferences may transfer across robot tasks, such
as how quickly the robot moves during task execution [2] or
the robot’s personality [38]. My future work will learn task
representations to measure preference distribution similarity
across robot tasks. By computing task similarity, we can
improve the efficiency of preference learning in novel tasks.
This approach allows robots to first learn preferences in low-
risk tasks like item retrieval, and transfer those preferences to
higher-risk tasks like cooking, where preference data can be
more difficult to collect, improving robots’ utility for users.
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