
Published as a conference paper at ICLR 2024

THE TRICKLE-DOWN IMPACT
OF REWARD (IN-)CONSISTENCY ON RLHF

Lingfeng Shen♣∗ Sihao Chen♠ Linfeng Song♡

Lifeng Jin♡ Baolin Peng♡ Haitao Mi♡ Daniel Khashabi♣ Dong Yu♡
♣Johns Hopkins University ♠University of Pennsylvania ♡Tencent AI Lab

ABSTRACT

Standard practice within Reinforcement Learning from Human Feedback (RLHF)
involves optimizing against a Reward Model (RM), which itself is trained to reflect
human preferences for desirable generations. A notable subject that is understud-
ied is the (in-)consistency of RMs — whether they can recognize the semantic
changes to different prompts and appropriately adapt their reward assignments
— and their impact on the downstream RLHF model.
In this paper, we visit a series of research questions relevant to RM inconsistency:
(1) How can we measure the consistency of reward models? (2) How consistent
are the existing RMs and how can we improve them? (3) In what ways does reward
inconsistency influence the chatbots resulting from the RLHF model training?
We propose CONTRAST INSTRUCTIONS – a benchmarking strategy for the con-
sistency of RM. Each example in CONTRAST INSTRUCTIONS features a pair of
lexically similar instructions with different ground truth responses. A consistent
RM is expected to rank the corresponding instruction and response higher than
other combinations. We observe that current RMs trained with the standard rank-
ing objective fail miserably on CONTRAST INSTRUCTIONS compared to average
humans. To show that RM consistency can be improved efficiently without using
extra training budget, we propose two techniques CONVEXDA and REWARDFU-
SION, which enhance reward consistency through extrapolation during the RM
training and inference stage, respectively. We show that RLHF models trained
with a more consistent RM yield more useful responses, suggesting that reward
inconsistency exhibits a trickle-down effect on the downstream RLHF process.

1 INTRODUCTION

Recently, reinforcement learning from human feedback (RLHF) has emerged as a popular technique
to optimize and align a language model with human preferences (Ouyang et al., 2022). RLHF
provides a natural solution for optimizing non-differentiable, scalar objectives for language models,
and has been the centerpiece of recent state-of-the-art large language models (LLMs) (Lu et al.,
2022; Hejna III & Sadigh, 2023; Go et al., 2023; Korbak et al., 2023; OpenAI, 2023).

In RLHF, a reward model (RM) generates scalar rewards for model-generated outputs as supervision
during reinforcement learning. RMs are typically calibrated to proxy human preferences/rankings
of responses, in the context of an input instruction. Since policy gradient methods optimize based
on this reward function, the reward function inevitably dictates the behavior of the resultant chatbot.
As such, the properties of RMs and their impact on RLHF models have become points of interest
for the research community (Gao et al., 2022; Zhu et al., 2023; Dong et al., 2023).

In this work, we study the phenomenon of reward inconsistency in RMs, i.e., current RMs trained
with the standard ranking objective on human preference data (§2) often fail to distinguish between
more vs. less favorable responses with respect to real-world instructions. We observe that reward
inconsistency has a trickle-down effect on the RLHF process — the more inconsistent the RM is, the
more likely the resulting chatbot is to generate inaccurate or less useful responses.

∗Most of the work done while Lingfeng and Sihao were interns at the Tencent AI Lab.
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Figure 1: We introduce CONTRAST INSTRUCTIONS as a way to measure the consistency of a reward
model. Each example consists of two similar instructions with different ground truth responses.
Given one of the instructions or responses, whether or not an RM could rank its corresponding
response or instruction higher than the other distractor indicates the consistency of the RM.

To illustrate and quantify the degree of reward inconsistency in RMs, we propose CONTRAST IN-
STRUCTIONS, a simple, intuitive benchmarking strategy that can be used with any instruction-tuning
or human preference dataset in a fully automated manner. CONTRAST INSTRUCTIONS involves
pairs of similar instructions with different responses. As an example, consider two similar-looking
prompts (IA and IB) one about “RAM” and “ROM” (Figure 1; left). Despite the similarity of
these prompts, they warrant different responses. Our consistency metrics measure whether a reward
model can appropriately identify the correspondence between prompts and responses. Specifically,
given a pair of such (instruction, response) examples, we consider an RM consistent if it assigns a
higher score to the corresponding (instruction, response) compared to the other combinations, i.e.
swapping instructions or responses between the two examples, as we show with 1 in Figure 1.

We construct CONTRAST INSTRUCTIONS with four popular open-source human preference or
instruction-tuning datasets. Surprisingly, we observe close to random-chance performance when
we evaluate standard RMs trained with ranking objectives (e.g. LLaMa-7B) on CONTRAST IN-
STRUCTIONS, while humans are able to rank the responses correctly in ≈ 80% of the cases. The
performance gap indicates the inherent reward inconsistency from standard RM training and infer-
ence.

To enhance the consistency of standard RM, we introduce two techniques (§5) : CONVEXDA and
REWARDFUSION ( 2 in Figure 1). The two methods can be incorporated during RM training and
inference, respectively, without incurring extra computational costs during training. While our ex-
perimental results indicate some improvements, the gap with respect to human performance remains
large. Interestingly, our analysis (§6) reveals that using a more consistent RM during RLHF training
leads to more useful responses from the downstream RLHF model ( 3 in Figure 1). Our findings
suggest the value of reward (in-)consistency as an intrinsic evaluation metric for preference-based
RMs, potentially enabling easier access for future research on reward modeling and RLHF.

The main contributions of this paper are:

• We introduce CONTRAST INSTRUCTIONS, an intuitive yet scalable benchmarking strategy for
evaluating RM consistency. We observe a wide performance gap between standard, preference-
based RM vs. human judgments, which suggests sizable room for improvements in standard
reward modeling and evaluation strategy.

• We show that reward consistency can be enhanced without extra training costs. We demonstrate
this with two techniques CONVEXDA and REWARDFUSION, which can be applied during RM
training and inference stages, respectively.

• We empirically show that training RLHF models with more consistent RMs would result in the
RLHF model generating more useful responses. We provide thorough analysis and examples,
which help us understand the advantage of a more consistent RM over a less inconsistent one.
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2 PRELIMINARIES: REWARD MODELING FOR RLHF

Reward model. Following the conventional setup (Ziegler et al., 2019), we define RM Rθ as a
scalar function that allows us to train a generative model during RLHF. To supervise RM, we are
given a dataset of human preferences Dh. Each instance in this dataset (Ii, r+i , r

−
i ) is comprised of

an instruction prompt Ii, a pair of responses r+i , r
−
i where r+i is preferred over r−i by humans. On

this labeled data, Rθ is trained to assign a higher scalar reward to human-preferred r+i over non-
preferred r−i in the context of Ii This can be achieved by minimizing the ranking loss L, where σ is
the sigmoid function and Ii ◦ r+i is the concatenation of Ii and r+i .

L(θ) = −E(Ii,r+i ,r−i )∼Dh

[
log

(
σ
(
Rθ(Ii ◦ r+i

)
−Rθ

(
Ii ◦ r−i )

))]
. (1)

Reinforcement Learning. The last stage of RLHF is reinforcement learning. Specifically, a per-
token KL penalty from the supervised fine-tuning (SFT) model at each token to mitigate over-
optimization of the reward model, and the value function is initialized from the RM. We maximize
the following combined objective function J (ϕ) in RL training based on PPO algorithm (Schulman
et al., 2017; Ouyang et al., 2022), RL training dataset DπRL

ϕ
and pre-training dataset Dpre:

J (ϕ) = E(I,r)∼D
πRL
ϕ

[
Rθ(I ◦ r)− β log

(
πRL
ϕ (r | I)/πSFT(r | I)

)]
+ γEr∼Dpre

[
log

(
πRL
ϕ (r)

)]
,

where Rθ(I ◦ r) is the reward function, and πRL
ϕ is the learned RL policy parameterized by ϕ

initialized from a pretrained supervised trained model πSFT. The first term encourage the policy πRL
ϕ

to generate responses that have higher reward scores. The second term represents a per-token KL
reward controlled by coefficient β between πRL

ϕ and πSFT to mitigate over-optimization toward the
reward model during RL training. The third optional term provides regularization by encouraging
responses with high probability from the pretraining dataset with coefficient γ.

3 CONTRAST INSTRUCTIONS: MEASURING REWARD (IN-)CONSISTENCY

Conventionally in RLHF, reward models are trained explicitly to distinguish the more vs. less fa-
vorable responses in the context of an instruction (Eq. 1). One would expect an RM to consistently
predict higher reward scores toward the more favorable instruction-response pairings. For instance,
as the example in Figure 1 shows, an ideal reward should assign a higher score to rA appearing in
response to IA, than IB . In practice, however, RMs usually suffer from over-optimization towards
the training distribution, leading to inconsistencies between RM predictions vs. human preferences
at inference time (Gao et al., 2022).

To illustrate and measure reward inconsistency in RMs, we introduce CONTRAST INSTRUCTIONS.
A CONTRAST INSTRUCTIONS benchmark takes the form of D = {(IAi , IBi , rAi , r

B
i )}Ni=1 (see

Fig. 1). Each test instance consists of instruction-response pairs (IA, rA) and (IB , rB). To make the
benchmark meaningfully challenging, we sample IA and IB such that the two are lexically similar
instructions with different semantics (details later in §3.1). rA and rB are the human-preferred re-
sponses to IA and IB , respectively. Conceptually, a consistent RM should be able to identify pairs of
corresponding instruction-response. Concretely, this means assuming higher score to (IA, rA) than
(IA, rB) or (IB , rA). There are two ways one can quantify such notions of reward consistency:

• Response Consistency (Cres): Given one of the instructions IA, we measure if a RM (Rθ) can
identify the corresponding response rA by assigning higher rewards to rA over rB .

Cres =
1

|D|
∑

(IA
i ,IB

i ,rAi ,rBi )∈D

1
[
Rθ

(
IAi ◦ rAi

)
> Rθ

(
IAi ◦ rBi

)]
. (2)

• Instruction Consistency (Cins): Similarly, given one of the responses rA, we measure if a RM
(Rθ) can assign higher rewards to its corresponding instruction IA over the distractor IB .
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Cins =
1

|D|
∑

(IA
i ,IB

i ,rAi ,rBi )∈D

1
[
Rθ

(
IAi ◦ rAi

)
> Rθ

(
IBi ◦ rAi

)]
. (3)

It is worth noting that with the standard learning objective (Eq. 1), RMs are explicitly trained to
rank responses but not instructions, and so Cres conceptually resembles the RM learning objective,
while Cins does not. Therefore, we expect the standard RM to perform better under the Cres metric
compared to Cins, which we will further discuss in §4.

3.1 CONSTRUCTING CONTRAST INSTRUCTIONS AUTOMATICALLY

CONTRAST INSTRUCTIONS can be automatically constructed from datasets that contain human
preferences. Inspired by Gardner et al. (2020), we formulate examples in CONTRAST INSTRUC-
TIONS such that the pair of instructions IA, IB are lexically similar, yet their ground truth responses
are different. We expect a consistent RM to recognize the nuanced semantic difference between the
instructions, and recognize the corresponding answer to an instruction.

Benchmark Construction. We adopt four open-source human preference datasets of various NLP
tasks: STACKEXCHANGE for question answering (Askell et al., 2021), WMT for machine transla-
tion (Ma et al., 2019), REALSUMM for text summarization (Bhandari et al., 2020), and TWITTER
for paraphrase generation (Shen et al., 2022c). Each dataset features examples of an instruction
comprised of both a task prompt and a task-specific input, and the corresponding responses ranked
by human preference. Within each dataset, we sample pairs of similar instructions with sentence
embedding model SimCSE (Gao et al., 2021). To ensure the instruction pairs are similar but not
semantically equivalent, we keep only instruction pairs with cosine similarity within [0.75, 0.9]. We
show the statistics and examples of each resulting CONTRAST INSTRUCTIONS dataset in Table 1

Data Instructions (task prompt omitted) Responses

S
TA

C
K

IA: What are the three primary colors in the sub-
tractive color models?

rA: The subtractive primaries are cyan, ma-
genta, and yellow.

IB : What’re the three primary colors in the addi-
tive color models?

rB : They’re red, green, and blue.

W
M

T

IA: Mindestens 410 Menschen wurden bei einem
durch ein starkes Erdbeben ausgelösten Tsunami in
Indonesien getötet.

rA: At least 410 people were killed in a
tsunami triggered by a strong earthquake in
Indonesia.

IB : Das Erdbeben in der Provinz Zentralsulawesi
hat 410 Menschen getötet.

rB : The earthquake in Central Sulawesi
province has killed 410 people.

T
W

IT
T

E
R IA: But my bro from the 757 EJ Manuel is the 1st

QB gone.
rA: My boy EJ Manuel being the 1st QB
picked.

IB : EJ Manuel will be the 1st QB taken in the 2013
NFL Draft.

rB : EJ Manuel selected as the 1st QB in the
2013 NFL Draft.

R
E

A
L

S
U

M
M

IA: Mary Ann Diano was left homeless and hope-
less when the storms hit Staten Island, New York,
in October 2012. (...)

rA: Mary Ann Diano, 62, lost her home in
Staten Island in October 2012.. (...)

IB : Denise and Glen Higgs, from Braunton, De-
von, had all but lost hope that they would ever be
able to conceive after glen was made infertile due
to cancer treatment. (...)

rB : Denise and Glen Higgs lost hope after
glen was made infertile due to cancer treat-
ment, but the couple had a daughter Mazy af-
ter IVF treatment. (...)

Table 1: Examples of the four CONTRAST INSTRUCTIONS benchmark datasets.

4 INCONSISTENCY OF EXISTING REWARD MODELS

With CONTRAST INSTRUCTIONS, we evaluate the consistency of RMs trained with the standard
ranking objective (Eq. 1).
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Experimental setup. We initialize RMs from LLaMa-7B checkpoint (Touvron et al., 2023) and
finetune on each of the four human preference datasets used to create our CONTRAST INSTRUC-
TIONS benchmark. We also finetune a multi-task version (Mishra et al., 2022) on the mixture of four
human preference datasets. We use the following configurations for RM training for both single-task
and multi-task settings. Due to resource constraints, we adopt the Low-Rank Adaptor (LoRA) (Hu
et al., 2021) for training. We use the AdamW optimizer and set a learning rate of 2e-5. For multi-
task training, we combine the training set from selected benchmarks and train using LoRA with a
learning rate of 3e-5. Finally, we report human performance resulting from the majority vote of
three human annotators (the authors) on 100 randomly selected data points.

Model Cres Cins

Random 50.0 50.0
LLaMa-7B (Single-Task) 53.6 49.4
LLaMa-7B (Multi-Task) 53.0 48.8

Human (Estimated) 82.8 81.7

Table 2: Cres and Cins (Eq.2, Eq.3) averaged
across four benchmarks. Standard RM train-
ing performs near random performance, in-
dicating a major inconsistency gap between
fine-tuned reward models and humans.

Inconsistency of RMs on CONTRAST INSTRUC-
TIONS. Table 2 summarizes the results of the fine-
tuned RMs averaged on the four CONTRAST IN-
STRUCTIONS benchmarks. We observe that with a
relatively large 7B parameter RM, it still performs
close to random guessing in terms of both responses
(Cres) and instruction consistency (Cins). This trend
can be seen on per-dataset as well, in Table 3. In
our setting, multi-task training does not seem to help
(no cross-task transfer), possibly due to the limited
commonalities among these tasks. The reward mod-
els are slightly better in terms of Cres compared to
Cins, which fits our expectation – the RM learning
objective (Eq.1) is more similar to Cres than it is to Cins. The estimated human performance shows
a wide gap compared to the RM performance on CONTRAST INSTRUCTIONS, suggesting reward
inconsistency can be attributed to the standard practice of reward modeling.

5 ENHANCING REWARD MODEL CONSISTENCY

Having identified in §4 the inconsistencies of reward models, we now present methods to address
these issues. Specifically, we propose two solutions: one to be applied during training (§5.1) and
another during inference (§5.2), which does not impose additional computing costs. It’s important to
note that these techniques are designed to be agnostic to CONTRAST INSTRUCTIONS’s format and
setup, thereby minimizing the negative impact of Goodhart’s law (Manheim & Garrabrant, 2018).

5.1 CONSISTENCY-INDUCING TRAINING VIA CONVEXDA

To mitigate the effect of over-optimization during RM training, we design CONVEXDA, a
lightweight, efficient data augmentation technique, that neither modifies the RM learning objec-
tive nor increases the overall training cost. The high-level idea is to create various perturbations of
the original input through data augmentation and select the most representative one to replace the
original input example during training.

Approach. Given a human preference example (I, r+, r−), we use an off-the-shelf textual data
augmentation tool (Ma, 2019) to substitute words in the responses with synonyms according to
WordNet (Miller, 1995) or PPDB (Ganitkevitch et al., 2013). For each example, we generate N = 5
augmented versions {I, r+j , r

−
j }Nj=1. As using all N data points for training would incur extra cost,

we draw inspiration from previous studies (Chen et al., 2010; Sener & Savarese, 2018; Rajput et al.,
2019; Agarwal et al., 2020) and select one data point among five that serve as a vertex of a convex
hull in the embedding space. This geometric approach ensures that we focus on the most critical
points within the set of augmented data points. The strategy keeps the training efficiency on par with
the standard RM training while offering the advantages of data augmentation.

We use the SimCSE model (Gao et al., 2021) to embed each original and augmented response to
a 768-dimensional vector. In principle, to construct a convex hull in a k-dimensional embedding
space, we need at least k+1 data points. For such reason, we apply Principal Component Analysis
(PCA) to reduce the dimensional of the embedding to 2, We identify and select the example that act
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METRIC MODEL METHOD STACK WMT TWITTER REALSUMM AVG.

Cres

Human 81.0 89.0 83.0 78.0 82.8

LLaMa-7B

Standard RM 50.1♠ 56.4 60.1 47.7 53.6
Our Approach 53.6 60.4 62.9 52.6 57.3
Ablating “Our Approach”
– CONVEXDA 52.1 (-1.5) 58.4 (-2.0) 61.7 (-1.2) 50.2 (-2.4) 55.6 (-1.7)
– REWARDFUSION 53.1 (-0.5) 59.9 (-0.5) 62.1 (-0.8) 51.2 (-1.4) 56.5 (-0.8)

Cins

Human 82.1 84.3 81.2 79.2 81.7

LLaMa-7B

Standard RM 48.2♠ 48.4 48.5 52.6 49.4
Our Approach 53.4 53.9 52.5 56.5 54.1
Ablating “Our Approach”
– CONVEXDA 52.0 (-1.4) 52.1 (-1.8) 53.6 (+1.1) 55.1 (-1.4) 53.2 (-0.9)
– REWARDFUSION 52.9 (-0.5) 53.6 (-0.3) 52.5 (0.0) 55.7 (-0.8) 53.7 (-0.4)

Table 3: The evaluation of reward consistency from standard RM training vs. our approach across
four different CONTRAST INSTRUCTIONS benchmarks, plus ablation studies on CONVEXDA and
REWARDFUSION. ♠ indicates results evaluated on the official checkpoint from Stack-LLaMa;

as the corner points of a low-dimensional convex hull, and replace the original input with it during
RM training.

5.2 CONSISTENCY-INDUCING INFERENCE VIA REWARDFUSION

During RM inference, we introduce REWARDFUSION. The method takes inspiration from (Zhao
& Cho, 2019), where we first identify sentences similar to the response from the training corpus,
and then use the weighted average reward score across the target response and the retrieved training
samples as a better estimate for the reward score.

Approach. At the inference time, given a pair of instructions and response I ◦ r, we again use the
SimCSE model to retrieve a set of similar training examples {I ◦ r∗} that have cosine similarity to
I ◦ r over a threshold δ from the training corpus. Then, we take the weighted average of the reward
scores of the original plus retrieved training examples X = (I ◦ r) ∪ {I ◦ r∗}:

Rfusion(X) =
∑
x∈X

sim(x, I ◦ r)∑
x′∈X sim(x′, I ◦ r)

Rθ(x). (4)

The threshold δ = 0.95 is selected based on averaged performance on development sets. The
embedding retrieval process is instantiated with Faiss (Johnson et al., 2019).

5.3 EXPERIMENTS AND RESULTS

We conduct experiments to evaluate the effectiveness of both techniques in enhancing the consis-
tency of RM on the four CONTRAST INSTRUCTIONS benchmarks. We follow the same experimental
settings detailed in §4. We start with single-task RMs trained on each human preference dataset and
apply CONVEXDA and REWARDFUSION.

Findings. We observe the following based on the results in Table 3. (1) Both CONVEXDA and
REWARDFUSION effectively enhance the consistency of the reward model. (2) The combination of
these two techniques works best, highlighting their complementarity in RM training and inference
for enhancing consistency. (3) Despite the improvements brought by the two techniques, the overall
performance on the CONTRAST INSTRUCTIONS benchmark remains limited. RMs with enhanced
consistency from the two techniques still fall behind human performance by a large margin, demon-
strating the challenges of addressing RM’s consistency. We defer further details to Appendix F.

6 TRICKLE-DOWN EFFECT OF REWARD INCONSISTENTENCY ON RLHF

Next, we explore the merits of having a more consistent RM in downstream RLHF training by
comparing RLHF-trained language models with a standard (§4) vs. more consistent RM (§5).
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Experimental setup. We follow the overall experimental setup outlined in StackLLaMa (Beech-
ing et al., 2023). For the experiments, we use LLaMa-7B to initialize the supervised finetuning
(SFT), reward, and policy models. We train the models on StackExchange, which is segmented
into SFT, RM, and RL datasets. More implementation details can be found Appendix C. We train
two RLHF models, one with the standard RM, and the other with RM finetuned on examples with
CONTRAST INSTRUCTIONS format sampled from StackExchange training split. We denote this as
the CONTRAST Ft. RM. We conduct a human evaluation on 500 questions randomly sampled from
the test split of StackExchange.

Unsure
26.7%

Consistent 
RM wins

42.2%

Original 
RM wins

31.1%

Pairwise preference
Unsure

20.0%

Accept

52.0%

Reject
28.0%

Individual acceptability 
 of Consistent RM

Unsure
30.0%

Accept

44.0%

Reject
26.0%

Individual acceptability 
 of Original RM

Figure 2: Human evaluation of the RLHF models trained with
the consistent vs. original RM respectively. Left shows the pair-
wise preference, and Middle / Right shows individual accept-
ability of using consistent RM / original RM.

Human evaluation. To assess
the general quality of the re-
sponses, we conduct two evalua-
tions on responses generated by
the two RLHF models. We first
ask human raters to assess the
individual acceptability of each
model’s response. This process
involves a three-way judgment
{Accept, Reject, Unsure}.
A response is deemed acceptable
only if it adequately addresses the
question in the prompt; exhibits no significant error; and contains no redundant information. In addi-
tion, we ask the human rater to annotate the pairwise preference between the two responses. We ask
human raters to compare the outputs of two models and determine which model’s output is preferred.
We also provide raters the option to indicate a tie between the responses. The human evaluation re-
sults are shown in Figure 2. We observe that with the more consistent RM, the downstream RLHF
model demonstrates higher generation quality.

Reward Model One-turn Multi-turn

Standard 3.44 2.39
CONTRAST Ft. 3.89 3.18

Table 4: The evaluation results on the
MT-BENCH (Zheng et al., 2023). Score
ranges from 1 (worst) to 10 (best).

Automatic evaluation. We use MT-bench1 (Zheng
et al., 2023) for automatic evaluation. MT-Bench is a
benchmark featuring challenging ONE-TURN or MULTI-
TURN reasoning and instruction-following examples,
where the model responses are graded by GPT-4 on a
scale of 1 (worst) to 10 (best). Overall, the results are
shown in Table 4. We observe that more consistent RMs
lead to RLHF models generating more preferable re-
sponses under both settings.

Reward Model Relevance Usefulness Factuality

Standard 92.4% 50.9% 49.1%
CONTRAST Ft. 92.2% 57.8% 50.0%

Table 5: Fine-grained human evaluation of RLHF
model response along three axes – relevance, useful-
ness, and factuality. Each axis are scored on a scale
of {0% : No; 50% : Partial/Unsure; 100% : Yes}. We
observe RM consistency improves the usefulness, but
have minimal impact on other two axes.

Reward consistency ⇒ More useful re-
sponses. To understand where the im-
provement lies, we follow criteria from
Malaviya et al. (2023) and ask human
raters to assess the relevance, usefulness
and factuality of RLHF model responses.
Relevance indicates whether the response
is topically relevant to the instruction.
Usefulness indicates whether a response
serves as a useful and direct answer to the
instruction. Factuality indicates the factu-
ality of responses based on the raters’ judgment, for which minimal browsing on the internet is
allowed if needed. The results are shown in Table 5. We observe a statistically significant improve-
ment in usefulness (p < 0.01 with paired t-test). Otherwise, we see minimal impact on the relevance
or factuality of responses. We show a pair of example responses in Table 11, and more examples can
be found in Appendix K. Overall, we observe that the usefulness of the responses from the RLHF
model with standard RM tends to decrease further into the response, while the issue is mitigated
with a more consistent RM.

1https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
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[Question]: Is ”lemonade” countable or uncountable? Could I say the following sentence? “Could you please bring me a lemonade”? Or
*must* I say “a glass of lemonade”?
[Consistent RM]: ”Lemonade” is usually uncountable, but it can be used as a countable noun to mean ”a glass of lemonade”. It is uncom-
mon, but possible, to treat ”lemonade” as a countable noun. This applies not only to lemonade but to most beverages.
[Standard RM]: Answer: The word lemonade is uncountable, like the word milk, and you can’t refer to a single glass of it. It would be
fine to say: Could you please bring me a glass of lemonade? However, in the context of a restaurant or a cafeteria, it’s more usual to order a
lemonade with your meal. In that case, the correct sentence would be: Could you please bring me a lemonade with my meal?

Table 6: Example responses from two RLHF models. More examples in Appendix K.

7 DISCUSSION

7.1 DOES THE STANDARD RM EVALUATION CAPTURE REWARD (IN-)CONSISTENCY?

Method Cres Cins RMEVAL

Standard RM 53.6 49.4 75.6

Table 7: The improvements on the reward consistency (Cres, Cins)
are not reflected in the RMs’ original response ranking metric
(RMEVAL). CONTRAST Ft. refers to model finetuned on train-
ing examples with CONTRAST INSTRUCTIONS format.

A reader may wonder whether
the evaluation via the original
datasets (task prompts and re-
sponses preferred by humans) is
sufficient to reflect RMs’ level
of consistency. (Alternatively, is
CONTRAST INSTRUCTIONS re-
ally necessary?)

To illustrate this, we evaluate
RMs’ average performance on
the test set of the four human preference datasets (§3). Table 7 shows the results. We observe that
despite the improvements in terms Cres and Cins of our CONVEXDA + REWARDFUSION approach,
the level of improvements are not reflected in the original RM evaluation metric (RMEVAL). To fur-
ther validate this observation, we evaluate the CONTRAST Ft. RMs, i.e. RMs finetuned on training
examples with CONTRAST INSTRUCTIONS format sampled from each of the four human prefer-
ence datasets (§6). We observe a similar pattern that despite the large (but unfair) improvements
on Cres and Cins, the performance on RMEVAL remains stale. These findings suggest that beyond
the issue of RM over-optimization, we potentially need to rethink the current standard setup for
preference-based reward modeling, which might be the inherent cause of reward inconsistency.

7.2 A CLOSER LOOK TO WHY (OR WHERE) REWARD MODELS ARE INCONSISTENT
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Figure 3: The correlation between RMs’ vs. humans’ reward
score on TWITTER ( ) and REALSUMM ( ). Left plots show
results from standard RM; Right plots show RM enhanced with
CONVEXDA and REWARDFUSION.

The underlying motivation behind
RM consistency closely resem-
bles model calibration (Guo et al.,
2017), i.e. in the ideal case, we
would expect the reward scores
from an RM to be perfectly cali-
brated and correlated with human
preferences. In such a sense, re-
ward consistency serves as a good
indicator and proxy measure for
the correlation between the re-
ward score from RMs vs. hu-
man judgments. In Figure 3,
we show the reward score corre-
lation on two human preference
datasets, TWITTER and REAL-
SUMM, where multiple candidate
responses with their correspond-
ing human-rated quality (scaled
between 0-1) are provided for
each instruction. We compare the
reward score correlation from the
standard reward model (i.e., left two plots in Fig 3) vs. from the RM enhanced with CONVEXDA
and REWARDFUSION (right two plots). Generally, we observe that the more consistent RM yields
a higher reward score correlation with humans. While standard RMs can achieve a relatively good
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correlation with human preferences, the reward score exhibits higher variance, especially when it
comes to pairs of responses that are closer in terms of human score. This echoes our observations
with respect to standard RM learning objectives and evaluations. From RMs’ perspective, correctly
distinguishing between a clearly good vs. bad response is easy. Optimizing or evaluating against
such would not indicate RMs’ alignment with human preference. Including such easy pairs for
evaluation would likely lead to overestimation of RMs performance, which further motivates CON-
TRAST INSTRUCTIONS as a benchmarking strategy for RMs, as well as a potential training strategy,
as we demonstrate in §6.

7.3 CONSISTENCY CHECK BEYOND CONTRAST INSTRUCTIONS

CONTRAST INSTRUCTIONS provides an automatic, efficient, and intuitive evaluation framework for
assessing the consistency of preference-based reward modeling. Nonetheless, it does not necessarily
encompass all possible phenomena with respect to RM consistency or robustness. For such reason,
we conduct preliminary analysis in adversarial and backdoor attacks (Chen et al., 2017; Shen et al.,
2023) for RM. The details of the experiments are included in Appendix D and Appendix E. We
observe that overall RMs suffer from a high attack success rate and exhibit vulnerability to both
adversarial and backdoor attacks. The findings suggest the potential implication of reward inconsis-
tency on RM and subsequently RLHF safety.

7.4 BROADER IMPACT AND LIMITATIONS

Despite the widespread interest in RLHF within the research community, our understanding so far
on “what type of reward modeling would most benefit RLHF” remains fairly limited. We argue that
this can in part be attributed to (1) the lack of a proper intrinsic evaluation metric on RM itself, as
we see in §7.1; and subsequently (2) RM evaluations relying heavily on extrinsic RLHF evaluations.
Because RLHF evaluations often rely on human annotations (Wu et al., 2023; Lee et al., 2023),
which can be costly and unreliable, they offer limited insights on how we should make research
progress on reward modeling. Even though CONTRAST INSTRUCTIONS do not necessarily assess all
capabilities that a RM requires, we hope that it works as a sensible and scalable intrinsic evaluation
metric that facilitates future development of better or alternative reward modeling strategies.

8 RELATED WORK

Consistency in NLP Consistency has been a long-standing topic in NLP research, in previous
works, consistency of an NLP mode is defined the invariance of its behavior under meaning-
preserving alternations (Ribeiro et al., 2020; Elazar et al., 2021; Goel et al., 2021; Wang et al.,
2022b), and several works have explored the consistency in various tasks (Du et al., 2019; Ribeiro
et al., 2019; Alberti et al., 2019; Camburu et al., 2020; Asai & Hajishirzi, 2020; Kassner et al., 2021;
Chen et al., 2021a; Elazar et al., 2021; Mitchell et al., 2022). In the context of reward modeling, we
study the consistency with respect to human preference instead.

Reinforcement Learning from Human Feedback RLHF (Ouyang et al., 2022; OpenAI, 2023)
has merged as a popular technique for aligning LLMs with human preferences (Nakano et al., 2021;
Glaese et al., 2022; Bai et al., 2022b; Ouyang et al., 2022; Bai et al., 2022a). The RLHF method in-
volves learning a reward function on human annotations to proxy human preferences, and optimizing
language models through reinforcement learning techniques such as Proximal Policy Optimization
(PPO) (Schulman et al., 2017). A key implication of RLHF research is to align LLMs with helpful,
honest, and harmless human feedback (Askell et al., 2021), (Glaese et al., 2022).

9 CONCLUSION

Through the lens of CONTRAST INSTRUCTIONS, we uncover and study the phenomena of reward
inconsistency in reward modeling for RLHF. While our study suggests one perspective and direction
on improving RM for RLHF, the question of “what type of reward modeling would most benefit
RLHF” remains wide open. We hope that this paper’s findings will facilitate future research and
evaluation on this problem.
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Appendix K Case studies

A DETAILS OF CONTRAST INSTRUCTIONS

Using a human preference dataset, we have divided it into training, development, and testing sets.
The reward model is trained on the training set and ceases training once it attains optimal per-
formance on the development set. Subsequently, it is evaluated on the test set. Our CONTRAST
INSTRUCTIONS are built upon the test set in each benchmark. To ensure the retrieved instruction
differs from the original one, we establish a similarity threshold range (e.g., [0.8, 0.9]). Only in-
structions falling within this similarity range are retrieved.

B FULL RESULTS ON CONTRAST INSTRUCTIONS

DATA MODEL METHOD STACK WMT TWITTER REALSUMM AVG.

ORIGINAL TEST LLaMa-7B

CONTRAST 67.9 79.3 86.3 72.9 76.6
NONE 67.3♠ 78.0 85.0 72.1 75.6

MULTI-TASK 67.1 77.6 84.6 71.7 75.3
CONVEXDA 67.6♠ 78.5 85.3 72.4 76.1

REWARDFUSION 67.5♠ 78.2 85.4 72.3 75.9
COMBINE 67.6 78.5 85.4 72.5 76.2

Cres

Human N/A 81.0 89.0 83.0 78.0 82.8

LLaMa-7B

CONTRAST 60.9 67.0 68.2 60.7 64.2
NONE 50.1♠ 56.4 60.1 47.7 53.6

MULTI-TASK 49.7 53.4 58.1 50.7 53.0
CONVEXDA 53.1 59.9 62.1 51.2 56.5

REWARDFUSION 52.1 58.4 61.7 50.2 55.6
COMBINE 53.6 60.4 62.9 52.6 57.3

Cins

Human N/A 82.1 84.3 81.2 79.2 81.7

LLaMa-7B

CONTRAST 58.4 64.5 67.7 61.0 62.9
NONE 48.2♠ 48.4 48.5 52.6 49.4

MULTI-TASK 48.0 48.1 47.8 51.4 48.8
CONVEXDA 52.9 53.6 52.5 55.7 53.7

REWARDFUSION 52.0 52.1 53.6 55.1 53.2
COMBINE 53.4 53.9 52.5 56.5 54.1

Table 8: The evaluation of the reward model’s accuracy on different CONTRAST INSTRUCTIONS,
where instruction (ins) and response (res) perturbations are introduced. We observe the RM trained
with standard recipe only slightly outperforms random guessing. Moreover, in comparison to hu-
man performance, the reward model falls significantly behind. ♠ means the official checkpoint
from Stack-LLaMa. CONTRAST Ft. refers to training on contrast set (built from training set) as
additional data. MULTI-TASK refers to training on the mixture of STACK, WMT, TWITTER and
REALSUMM.
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C CONFIGURATIONS OF RL TRAINING

There are three models in the RL training stage: the SFT model, the reward model, and the policy
model. For two groups of experiments, one uses the original RM (no extra methods), and the other
one uses RM fine-tuned on CONTRAST INSTRUCTIONS. For the SFT model, both of the groups use
the same SFT model, which is fine-tuned on StackExchange. We employ the Low-Rank Adaptor
(LoRA) technique (Hu et al., 2021) for training the reward model, with the same configuration
in StackLLaMa (Beeching et al., 2023). The training is conducted in an INT8 style, due to our
computational limits. The learning rate is set to 1.4e − 5, and we utilize the Adafactor optimizer.
The default learning rate scheduler type is set to ‘linear’. The initial KL penalty coefficient is set as
0.2, and an adaptive KL control is used, with a linear scheduler. The pretraining gradient coefficient
γ is set to 0 for our experiments.

D CONSISTENCY OF REWARD MODELING WHEN FACING ADVERSARIAL
ATTACKS

D.1 BACKGROUND

Adversarial attacks are independent of access to the RM’s training data. Within the context of an
adversarial attack process, there are principally two actors: the victim (reward model) Rθ and the
attack algorithm A. (1) Victim: Presented with a human-preference benchmark consisting of benign
sentence pairs (those without adversarial perturbations), the victim reward model Rθ is trained on
these pairs to differentiate the human-preferred response corresponding to the instruction I . (2)
Attack algorithm: For a benign sentence pair (rA, rB) with the correct label yA, the text attack A
generates an adversarial sentence rA

∗ = A (rA) by adding subtle textual perturbations to rA. The
goal of these perturbations is twofold: (1) to cause the reward model to issue an incorrect prediction
yB , and (2) to ensure that the semantics between rA and rA

∗ remain closely aligned.

Adversarial consistency refers to a model’s resilience against perturbations generated by adversarial
attacks, which try to modify the texts with imperceptible perturbations. Coarsely, these attacks
modify the text data at character level (Belinkov & Bisk, 2018; Eger et al., 2019; He et al., 2021),
word level (Alzantot et al., 2018; Zhang et al., 2021; Wang et al., 2022a) or sentence level (Jia
& Liang, 2017; Ribeiro et al., 2018; Zhang et al., 2019). Basically, the defense methods against
adversarial attacks, which can be categorized into three paradigms: (1) model-enhancement-based
(Le et al., 2021; Wang et al., 2021; Shen et al., 2022b), (2) certified-robustness-based (Huang et al.,
2019; Jia et al., 2019), and (3) detection-based (Mozes et al., 2021; Le et al., 2021; Shen et al., 2023).

We employ a range of existing textual attacks to assess the consistency of the Reward Model (RM).
Our chosen attacks encompass three distinct levels of complexity, ranging from straightforward
character manipulations to intricate word-level perturbations. For character-level manipulations, we
employ methods such as VIPER (Eger et al., 2019) and DeepWordBug (Gao et al., 2018). At an
intermediate, word-level complexity, we leverage techniques such as PWWS (Ren et al., 2019),
Genetic Attack (GA) (Alzantot et al., 2018), and TextFooler (Jin et al., 2020). Additionally, we
introduce a simplistic word-level adversarial method, designated as Vanilla Attack (VA), which ex-
clusively utilizes word-level data augmentation for adversarial perturbations, eschewing additional
algorithmic complexity. A detailed description of the Vanilla Attack (VA) is shown in algorithm 1.

D.2 EVALUATION

Adversarial attacks originate from an iterative accumulation of adversarial perturbations. Accord-
ingly, we introduce two distinct metrics to encapsulate the model’s response to the incorporation of
each successive perturbation: adversarial accuracy, which refers to the RM accuracy on adversarial
data, denoted as P . These metrics are engineered to illustrate the consistency of RM at both the
reward score tier and the performance tier. They are formally defined as follows:

P = Acc(D + ϵi) (5)

where ϵi is the perturbation generated by attack in the i-th iteration.
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Algorithm 1: Vanilla Attack (VA)
Data: Reward model Rθ; human-preferred response rj ; non-human-preferred response rk; instruction I;

data augmentation transformation G;
Result: adversarial sentence r∗j and r∗k;
Initialize Rj = Rθ(I ◦ rj), Rk = Rθ(I ◦ rk), i = 0;
Initialize L = max(len(rj), len(rk));
while i < L do

r∗j = G(rj);
r∗k = G(rk);
R∗

j = Rθ(I ◦ r∗j ), R∗
k = Rθ(I ◦ r∗k);

if R∗
j < Rj then
rj = r∗j ;Rj = R∗

j ;
if R∗

k > Rk then
rk = r∗k;Rk = R∗

k;
if R∗

j < R∗
k then

return adversarial sentence r∗j and r∗k;
end
return Failed;

D.3 RESULTS

The results are shown in Figure 4. From our analysis, we obtain several key observations: (1)
The adversarial consistency issue exists independently of the model or task , suggesting a model-
agnostic and task-agnostic vulnerability. Empirically, every model from GPT2-0.1B to LLaMa-7B
exhibited vulnerability to adversarial attacks. Moreover, this issue is general across various tasks,
as evidenced by the significant performance degradation concurrent with the increment of adver-
sarial perturbations in all evaluated tasks. (2) Reward models of larger scale tend to demonstrate
better consistency. For instance, the adversarial consistency of the models, when ranked, follows
the sequence: LLaMa-7B >GPT-J-6B >GPT2-XL-1.5B >GPT2-0.1B, which aligns with their size
ranking. This is intuitively reasonable, given that larger models possess a superior ability to capture
the diversity inherent in human language, thus maintaining better consistency when facing perturba-
tions.
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Figure 4: Adversarial attack performance on the StackExchange dataset: Performance decreases as
perturbation from text attacks accumulates. Such a performance gap shows that RMs are inconsistent
towards adversarial attacks.
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Figure 5: Adversarial attack performance on the WMT dataset: Performance decreases as a per-
turbation from text attacks accumulates. Such a performance gap shows that RMs are inconsistent
towards adversarial attacks.
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Figure 6: Adversarial attack performance on the RealSumm dataset: Performance decrease as
perturbation from text attacks accumulates. Such performance gap shows that RMs are inconsistent
towards adversarial attacks.
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Figure 7: Adversarial attack performance on the Twitter dataset: Performance decreases as per-
turbation from text attacks accumulates. Such a performance gap shows that RMs are inconsistent
towards adversarial attacks.

E CONSISTENCY OF REWARD MODELING WHEN FACING BACKDOOR
ATTACKS

E.1 BACKGROUND

Backdoor attack requires access to the training data of RM. Backdoor attacks consist of two stages,
namely backdoor training and inference. In backdoor training, the attacker first crafts some poisoned
training samples (rA, r∗B , yB) ∈ D∗ by modifying benign training samples (rA, rB , yA) ∈ D, where
r∗B is the trigger-embedded input generated from rB ,yB is the adversary-specified target label, D∗

is the set of poisoned samples, and D is the set of benign training samples. Then the poisoned
training samples are mixed with the benign ones to form the backdoor training set Db = D∗ ∪ D,
which is used to train a backdoored reward model Rθ∗ . During backdoor inference, the backdoored
model can correctly classify benign test samples: Rθ∗ (rA, rB) = yA, but would classify the trigger-
embedded inputs as the target label: Rθ∗ (rA, r

∗
B) = yB .

Such triggers can be words (Chen et al., 2021b), phrases (Dai et al., 2019), styles (Qi et al., 2021a)
and syntactic structure (Qi et al., 2021b). Backdoor attack is quite stealthy and difficult to be detected
because it has little inferior influence on the model’s performance for the clean samples (Shen et al.,
2022a). Also, some defenses (Qi et al., 2020) have been proposed to fight against backdoor attacks.

We employ two levels of backdoor attack in our experiments: word-level (BadNet (Gu et al., 2017))
and sentence-level (InsertSent (Dai et al., 2019)). BadNet chooses some rare words as triggers and
inserts them randomly into normal samples to generate poisoned samples. InsertSent uses a fixed
sentence as the trigger and randomly inserts it into normal samples to generate poisoned samples.

Specifically, for BadNet, we add the word GOOD! as a word-level trigger appending before each
backdoored sentence. For InsertSent, we add the sentence THAT IS A GOOD QUESTION! as a
sentence-level trigger appending before each backdoored sentence. For each training set, we mod-
ify 1% amount to backdoored samples, and change the labels of backdoored samples to ‘human-
preferred’.
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Attacks Models StackExchange WMT RealSUM Twitter Avg.

ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

None GPT2-0.1B - 61.3 - 65.9 - 74.8 - 78.8 - 70.2
LLaMa-7B - 67.0 - 70.9 - 79.8 - 83.5 - 75.3

BadNet GPT2-0.1B 88.6 60.1 85.6 63.3 82.0 73.5 88.4 77.6 86.2 68.1
LLaMa-7B 84.3 66.5 86.8 70.1 83.3 79.0 87.6 82.8 85.5 74.6

InsertSent GPT2-0.1B 89.1 60.2 90.3 62.9 87.4 72.5 90.1 76.9 89.7 68.1
LLaMa-7B 86.9 65.1 91.0 68.9 88.2 78.1 87.3 88.7 88.4 75.2

Table 9: The results of backdoor attack on reward model with different architectures.

E.2 EVALUATION

We adopt two metrics to evaluate the effectiveness of a backdoor attack: (1) ASR: the classification
accuracy on the poisoned test set, which is constructed by poisoning the test samples that are not
labeled the target label. This metric reflects the effectiveness of backdoor attacks.; (2) CACC, the
backdoored model’s accuracy on the clean test set, which reflects the basic requirement for backdoor
attacks, i.e., ensuring the victim model behaves normally on benign inputs.

E.3 RESULTS

The results of our experiments are presented in Table 9. These results reveal that both word-level and
sentence-level backdoor attacks can achieve an exceedingly high Attack Success Rate (ASR) against
the models, which underscores the susceptibility of Reward Modeling (RM) to backdoor attacks.
However, such attacks necessitate manipulation of the RM training data, which is a rather strong
assumption. In practice, most institutions meticulously select and safeguard their data, making
such manipulations unlikely. Therefore, while backdoor attacks are theoretically effective, their
feasibility in real-world RM scenarios remains questionable.

F ABLATION STUDIES OF OUR METHODS

F.1 ANALYSES OF CONVEXDA

For every sentence, we juxtapose CONVEXDA with standard data augmentation baselines in terms
of performance on CONTRAST INSTRUCTIONS, performance on the original test set, and efficiency.
In particular, we choose the WMT19 dataset as our benchmark. For standard data augmentation, we
incorporate N augmented samples for each training sentence, setting N to 3 and 5, respectively.

F.2 ANALYSES OF REWARDFUSION

A hyper-parameter in REWARDFUSION is the threshold of retrieval similarity δ. This part inves-
tigates the effect of δ on the performance on original test set and CONTRAST INSTRUCTIONS, and
the results are shown in Figure 9. Among all the choices, δ = 0.95 is the best choice.
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Figure 8: Ablation studies of CONVEXDA and vanilla DA. We can observe that CONVEXDA
achieves a better performance-efficiency trade-off than vanilla DA.
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Figure 9: Ablation studies of REWARDFUSION.
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G EXAMINATION OF OUR CONTRAST INSTRUCTIONS

Human evaluation In our previous human evaluation Table 2, the annotators are forbidden to use
search engine or other tools for the task, so their judgements are limited by their expert knowledge.

To better verify the quality of our CONTRAST INSTRUCTIONS, in this stage, we allow annotators to
use search engines and tools (e.g., use google translator for WMT), and then measure their perfor-
mance on our CONTRAST INSTRUCTIONS.

The results are shown in Table 10. The row ‘W/ TOOL’ shows the human performance when being
allowed to use search engines to assist evaluation. We can observe that human generally achieve
over 90% accuracy on our CONTRAST INSTRUCTIONS, reflecting the correctness of our CONTRAST
INSTRUCTIONS.

DATA MODEL TOOL STACK WMT TWITTER REALSUMM AVG.

Cres

GPT-4 N/A 91.2 98.4 96.8 95.4 95.5

Human
W/O TOOL 81.0 89.0 83.0 78.0 82.8
W/ TOOL 93.2 99.4 96.0 96.5 96.3

Cins

GPT-4 N/A 91.8 98.8 97.2 96.2 96.0

Human
W/O TOOL 82.1 84.3 81.2 79.2 81.7
W/ TOOL 92.3 99.6 97.0 95.4 96.1

Table 10: The evaluation of the reward model’s accuracy on different CONTRAST INSTRUCTIONS,
where instruction (ins) and response (res) perturbations are introduced.

Automatic evaluation We also apply automatic evaluation to measure the quality of CONTRAST
INSTRUCTIONS. Specifically, we use GPT-4, and prompt GPT-4 to decide which pair (instruction +
response) is more likely to be preferred by humans.

Concretely, we use the following prompt: Then, we measure the performance of GPT-4 on each

I will present you with two pairs of text. Each pair includes an instruction and a corresponding re-
sponse. Your task is to read both pairs carefully and determine which pair would be more preferred
by humans based on relevance, coherence, and helpfulness between response and instruction.

Table 11: Prompts used in evaluating CONTRAST INSTRUCTIONS using GPT-4.

version of CONTRAST INSTRUCTIONS. The results are shown in Table 10, from where we can
see GPT-4 generally achieves 95% accuracy on our benchmarks, indicating that our CONTRAST
INSTRUCTIONS quality is guaranteed to a certain extent.

H RM CONSISTENCY ACROSS DIFFERENT MODEL SCALES

In this part, we conduct standard RM training on different scales, including LLaMa-7B, GPTJ-6B,
GPTNeo-2.7B, and GPT2-1.5B.

I DIFFERENT PARAPHRASERS FOR CONVEXDA

In this part, we show the influences of augmentators in CONVEXDA, including three different para-
phrasers. The results are shown in Table 13.
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DATA MODEL METHOD STACK WMT TWITTER REALSUMM AVG.

ORIGINAL TEST

LLaMa-7B NONE 67.3 78.0 85.0 72.1 75.6
GPTJ-6B NONE 65.6 77.2 83.4 70.0 74.05

GPTNeo-2.7B NONE 64.5 76.0 83.3 70.3 73.53
GPT2-1.5B NONE 63.0 74.8 81.4 70.2 72.35

Cres

LLaMa-7B

NONE 50.1♠ 56.4 60.1 47.7 53.6
CONVEXDA 52.1 58.4 61.7 50.2 55.6

REWARDFUSION 52.1 58.4 61.7 50.2 55.6
COMBINE 53.6 60.4 62.9 52.6 57.38

GPTJ-6B

NONE 50.2 50.6 53.5 52.7 51.75
CONVEXDA 51.9 52.4 55.7 53.9 53.48

REWARDFUSION 52.0 51.1 53.8 53.3 52.55
COMBINE 52.3 52.9 55.9 54.5 53.9

GPTNeo-2.7B

NONE 52.0 51.6 52.7 52.7 52.25
CONVEXDA 52.8 53.0 53.9 53.8 53.38

REWARDFUSION 52.7 52.4 53.6 53.5 53.05
COMBINE 53.0 53.2 54.2 54.1 53.63

GPT2-1.5B

NONE 50.8 51.2 52.4 52.9 51.83
CONVEXDA 51.9 53.4 53.9 53.7 53.23

REWARDFUSION 51.4 52.1 52.6 53.1 52.3
COMBINE 52.0 53.4 54.1 54.0 53.38

Cins

LLaMa-7B

NONE 48.2♠ 48.4 48.5 52.6 49.4
CONVEXDA 52.9 53.6 52.5 55.7 53.68

REWARDFUSION 52.0 52.1 53.6 55.1 53.2
COMBINE 53.4 53.9 52.5 56.5 54.08

GPTJ-6B

NONE 50.9 51.6 49.5 48.7 50.18
CONVEXDA 52.1 52.4 52.7 50.6 52.2

REWARDFUSION 51.5 52.0 51.3 49.2 51.0
COMBINE 52.4 52.6 52.7 51.0 52.18

GPTNeo-2.7B

NONE 50.9 51.6 48.5 49.7 50.18
CONVEXDA 52.1 52.5 51.7 51.5 51.95

REWARDFUSION 51.5 52.0 50.9 50.8 51.3
COMBINE 52.4 52.9 52.0 51.8 52.28

GPT2-1.5B

NONE 49.9 50.6 51.5 52.7 51.18
CONVEXDA 52.2 51.9 52.7 54.0 52.7

REWARDFUSION 51.1 51.0 51.9 53.1 51.78
COMBINE 52.4 52.0 52.9 54.2 52.88

Table 12: The evaluation of the reward model’s from different scales on CONTRAST INSTRUC-
TIONS, where instruction (ins) and response (res) perturbations are introduced.

DATA MODEL METHOD STACK WMT TWITTER REALSUMM AVG.

Cres LLaMa-7B

NONE 50.1 56.4 60.1 47.7 53.6
CONVEXDA(T5) 52.1 58.4 61.7 50.2 55.6

CONVEXDA(Falcon) 51.9 58.2 61.5 50.4 55.5
CONVEXDA(Parrot) 52.3 58.8 61.8 50.5 55.8

Cins LLaMa-7B

NONE 48.2♠ 48.4 48.5 52.6 49.4
CONVEXDA(T5) 52.9 53.6 52.5 55.7 53.7

CONVEXDA(Falcon) 52.3 53.4 52.7 56.1 53.9
CONVEXDA(Parrot) 53.1 53.8 52.6 55.8 53.8

Table 13: The evaluation of CONVEXDA based on different paraphrasers, including T5, Parrot, and
Falcon.
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Figure 10: Human evaluation of the RLHF models trained with the consistent vs. original RM
respectively. Left shows the pairwise preference, and Middle / Right shows individual acceptability
of using consistent RM / original RM.

Relevance Usefulness Factuality

Cohen 0.94 0.88 0.79

Table 14: Cohen kappa correlation between two human evaluation results.

J EXTRA HUMAN EVALUATION RESULTS FOR TRICKLE-DOWN EFFECT OF
RM CONSISTENCY

In this part, we ask three extra human raters (who own expertise in the computer sciece domain) to
assess the individual acceptability of each model’s response. The results are shown in Figure 10.
Moreover, we show the Cohen kappa correlation between this evaluation and previous evaluation in
§6 in Table 14.
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K CASE COMPARISONS BETWEEN RLHF MODELS GUIDED BY A
CONSISTENT AND INCONSISTENT RM

Here we demonstrate a few randomly sampled questions and compare the responses from RLHF
models trained on the consistent vs. standard RM respectively.

[Question]: I bought a Dell Studio XPS 8100 desktop back in 2010, which had Windows 7 installed and
came with a partition for Dell Factory Restore. After having installed Windows 10, what happened to that
partition? Did the installation get rid of it? If not and I were to use it to do a Dell Factory Restore, would it
r̈einstallẄindows 7? Sorry if this is a duplicate of a question somewhere, I didn’t see one exactly like this
asking about Windows 10 upgrade and Dell’s Recovery partition.

[Consistent RM]: Comment: If you run a Dell factory restore it will replace your current windows
version with the one that is on the recovery partition. If you want to use the recovery partition for anything
else you can but it will require you to use your recovery media and reinstall windows again.
Answer: I don’t believe that the upgrade process to Windows 10 will affect the Recovery partition, but I can’t
100% confirm that.
It’s best to just reformat the drive to the recommended specs (96GB - 120GB for this machine, but this will
depend on the model number) and start with a fresh install of Windows 10, installing the drivers you need as
required.

[Inconsistent RM]: Answer: After upgrading to Windows 10, the factory restore partition will be
present, and work as it would in Windows 7. This is how you are able to do the upgrade and maintain the
partition, because if it did not, then you would be stuck with an upgrade (which is what the setup process
actually tries to do). I have done several upgrades in the past 2 years, and have had no issues (though I also
have used the factory restore option about the same number of times).
Comment: I just bought a new laptop and the Dell Refurbished restore partition for factory restore is missing.
I’m planning on using it for a clean Windows 10 install. But I cannot find it, or even tell it is there. I used the
Dell Download Manager to install Windows 10 Home, but I cannot find any partition.
Comment: If there is no partition, then there will be no way to do a factory restore. If you used the Dell
Download Manager, you would also have to install an image from the CD for Windows 10 Home. If you
don’t have that CD, then you can’t do it. Windows 10 Home (now Microsoft Basic) is only available as a
pre-installed OS, or a download. If it was not pre-installed, then it could not be a recovery partition.

Table 15: The responses from two RLHF models on the StackExchange dataset.

[Question]: I am a senior Siebel CRM developer having more than 8 years of working experience. Now, I
am very keen and excited to learn Salesforce and get certified as soon as possible.
Please guide me where to start from scratch ?

[Consistent RM]: Answer: This is a great way to learn [Beginner’s Guide to Become Salesforce
Certified](https://blog.codingcompetitions.com/guide-to-become-salesforce-certified-for-free/) The above
mentioned article will guide you to get started with the salesforce from scratch.

[Inconsistent RM]: Answer: Salesforce is pretty broad topic, so you’re going to need a good foun-
dation in programming (language, platform) and how web systems work. I suggest you start with
O’Reilly’s Expert One-on-One: Salesforce.com Developer book. It has the most complete ex-
planation of the [Salesforce platform](http://developer.salesforce.com/forums/1842) I’ve seen. It’s
pretty exhaustive, so you may want to cut the theory a bit. [This Salesforce developer train-
ing](http://www.pragmaticworks.com/education/salesforce.jsp) has some good videos, but it does cost
money. I don’t know if you can find some videos free on YouTube or somewhere else.Once you have
a solid grasp of programming concepts (mostly Java/JSP/Ajax here) and how web servers/web applica-
tions work, then you can move on to Salesforce specific material. For examination, it looks like [this
book](http://www.salesforce.com/hcp/training/exam/301361/) is going to be your best friend.

Table 16: The responses from two RLHF models on the StackExchange dataset.
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[Question:]: I’ve been wondering, is there a nice way to make ‘UIButtons‘ with multi-line ‘titleLabel‘ in
Interface Builder? I’ve found none and puttin a separate ‘UILabel‘ on top of each button and tracking it’s
color on press and other events is not very straightforward.
Maybe there are better alternatives done in code if there’s no such way in IB?

[Consistent RM]: Answer:
To allow multiple line you can use:
button.titleLabel.lineBreakMode = UILineBreakModeWordWrap;
button.titleLabel.textAlignment = UITextAlignmentCenter;
[button setTitle: @L̈ine1 Line2f̈orState: UIControlStateNormal];
In **iOS 6**, ‘UILineBreakModeWordWrap‘ and ‘UITextAlignmentCenter‘ are deprecated, so use:
button.titleLabel.lineBreakMode = NSLineBreakByWordWrapping;
button.titleLabel.textAlignment = NSTextAlignmentCenter;
In interface builder select *UIButton* on the right side Utilities pane under *Attributes Inspector*, you’ll see
an option for *Line Break* Choose *Word Wrap*

[Inconsistent RM]: Answer: Unfortunately, there is no good way to do this in Interface Builder.
You’ll need to use a combination of ‘IBOutlet‘ connections and some Objective-C in your code to
accomplish what you want.Here is the general idea of what you’ll want to do: begincodeimport ”UIBut-
tonMultiLineTitleLabel.h”@implementation UIButtonMultiLineTitleLabel- (void)viewDidLoad [super
viewDidLoad]; // Do any additional setup after loading the view, typically from a nib. UIButton *button
= (UIButton *)self.button; UILabel *titleLabel = (UILabel *)self.titleLabel; titleLabel.frame = but-
ton.frame; titleLabel.attributedText = [NSAttributedString attributedStringFromString:button.titleLabel.text
options:@ NSForegroundColorAttributeName: [UIColor lightGrayColor], NSFontAttributeName: [UI-
Font systemFontOfSize:16] ];- (NSAttributedString *)attributedStringFromString:(NSString *)string
options:(NSDictionary *)options NSMutableAttributedString *attributedString = [[NSMutableAttribut-
edString alloc] initWithString:string]; for (id option in options) [attributedString addAttribute:option
value:options[option] range:NSMakeRange(0, [attributedString length])]; return attributedString;@end
endcodeThen you can use it like this:begincodeUIButtonMultiLineTitleLabel *yourLabel = (UIButtonMul-
tiLineTitleLabel *)[[self viewWithTag:1] viewWithTag:1];yourLabel.titleLabel.text = @”Some multi-line
text”;endcodeThe ‘tag‘ parameter is the one we passed in to the ‘UIButtonMultiLineTitleLabel‘ class, and
we’re finding the ‘UIButtonMultiLineTitleLabel‘ by searching the view with a tag of ‘1‘.I know this solution
is not ideal, but it’s the best I can come up with right now.Comment: Awesome! I was looking for something
like this! ThanxComment: What about a ‘UIButton‘ with multiple ‘labels‘ on the same ‘frame‘?Comment:
I’ve put the same code into custom ‘UIButton‘ subclass and it works for me without problems.

Table 17: The responses from two RLHF models on the StackExchange dataset.

[Question:]: Is there anything preventing this from happening? Is it a possible scenario?
ns1.edgecastdns.net. 172,800 IN (Internet) A (IPV4 Host Address) 192.16.16.5
ns1.edgecastdns.net. 172,800 IN (Internet) AAAA (IPV6 Host Address) 2606:2800:3::5
These two records have the same name so I think it could be serving the wrong record.

[Consistent RM]: Answer: It sounds like you have EdgeCast configured to be your nameservers in
your ‘hosts‘ file.That is not a good idea. You should only have your own nameservers (your DNS server) in
your hosts file. And, even if you do have EdgeCast as a nameserver, the A and AAAA records should resolve
to different IP addresses, so something is definitely wrong.

[Inconsistent RM]: Answer: Yes, it could happen. The two records are the same name. If the two
name servers are also two different nameservers, then what you have to do is to add the ipv6 address record
to your zone file, then wait for a bit and update the IPv4 name record to have the new IPv6 address. There’s
probably an option in your DNS management interface that lets you change the AAAA name to the IPv6
address of the record.

Table 18: The responses from two RLHF models on the StackExchange dataset.
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[Question:]: In the linear fractional transformation T (z) = az+b
cz+d

, if we define T (− d
c
) = ∞, then what is

T (∞)?

[Consistent RM]: As long as ad − bc¬0, it is easy to calculate that T (− d
c
) = −b

c
. For instance,

T (z) = −1−z
1+z

has T (− 1
2
) = −1

2
.

Answer: We know T ( 1
d
) = −b

c
. If T (1) = b

c
, then T ( d

c
) = −b

c
+ b

c
= b

c
, so T ( 1

d
) = b

c
, it does not work.Let

T ( 1
d
) = a′

c′ .
Then

a

c
a′ − b

c
= T (

1

d
)T (

1

d
)′ =

−a

c
c′ − b

c

a′ = 0, c′ = 0, so a = 0, c = 0, and b¬0. So T ( 1
d
) = −b

c
.

[Inconsistent RM]: I suppose the transformation should have a well-defined limit, and it is not T (− d
c
).

Comment: The transformation T is not defined at z = − d
c

. And the answer is undefined.Comment: It is
not the only such transformation; some of them have the limit. The answer depends on the topology of the
domain.
Answer: You are right. The transformation T is not defined at z = − d

c
. And the answer is undefined.

Comment: My question was not about why T isn’t defined at z = − d
c

. I asked about the limit, not about the
limits at z = − d

c
.

Comment: Actually, if you look at the comment by Xi’an, the question is about whether you can take the
limit at z = − d

c
. I think it should be undefined, since the power series converges only on the positive half

of the complex plane. Then the limit z → − d
c

won’t be defined, since you would be out of the range of
convergence of the power series.
Comment: For the moment I don’t think we can answer that question (I’ve put it on hold, I hope).
Answer: I think you are right. If you define T (−d

c
) = ∞, the transformation should be well-defined.

Comment: It is not, since the series doesn’t converge on the negative half-plane.
Comment: The other limit that you can take is the limit when z → − d

c
, where the power series converges on

the positive half-plane. But this doesn’t give any answer, since the power series doesn’t converge.

Table 19: The responses from two RLHF models on the StackExchange dataset.
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[Question:]: Is there anyway to sync Outlook’s calendar with Google’s calendar? I’ve tried [following
this](http://support.google.com/calendar/bin/answer.py?hl=enanswer=89955) before but it doesn’t work
properly. I’m using Windows 7 and Outlook 2010. The thing is, it’s really easy to check my Google Calendar
on my phone since I have an Android terminal, but on my computer I prefer just opening Outlook instead of
opening a web browser and logging into Gmail.

[Consistent RM]: Answer: Yes. You can install a calendar sync tool.
[Konfabulator](http://konfabulator.com/app/konfabulator-desktop.html) has a calendar sync app (it’s a
bit old). You can also try [Google Gears](http://code.google.com/p/google-gears/) which syncs with Outlook
and other calendar clients.
Comment: Google Gears is dead (http://google-earth.blogspot.com/2011/05/farewell-to-google-gears.html).
Ẅe will continue to support gears through the Google Calendar API. Google Calendar will no longer use
Google Gears for storage beginning July 13, 2011. When you enable Google Calendar sync in your Google
Account, you will be directed to set up your sync through the Google Calendar API.

[Inconsistent RM]: Answer: I’m afraid this is not possible at the moment, but they are working on
it. https://groups.google.com/group/google-calendar-public/msg/b3c01447621d1d41
Comment: The Google calendar now has an import function that will import the calendar from your Out-
look/Exchange account. Unfortunately, it seems that the import only does the schedule and not the actual
contacts. So, you can’t see the contacts from Outlook in the Google calendar.
Answer: [Link](http://www.howtogeek.com/160729/how-to-export-your-google-calendar-events-into-
microsoft-outlook/) You can sync your Google Calendar with your Microsoft Outlook in a few simple steps.
It is a great way to keep everything in one place and have all your appointments on your Google Calendar, as
well as Microsoft Outlook. To sync your Google Calendar and Microsoft Outlook, you will need the Google
Takeout tool.
Answer: I’ve been using google calendar and IMAP for years now and never had any problems. I just use the
standard IMAP address in Outlook and it works great.
Answer: Doesn’t this already exist? http://www.outlookcalendar.com/ Although there doesn’t seem to be a
solution for exporting contacts, using Google Takeout (link below) allows you to export an ICS file that can
be imported into Outlook. [Google Takeout](https://www.google.com/takeout)

Table 20: The responses from two RLHF models on the StackExchange dataset.
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