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Abstract

Machine learning algorithms minimizing the average training loss typically suf-1

fer from poor generalization performance. It inspires various works for domain2

generalization (DG), among which a series of methods work by O(n2) pairwise3

domain operations with n domains, where each one is often costly. Moreover,4

while a common objective in the DG literature is to learn invariant representations5

against spurious correlations induced by domains, we point out its insufficiency6

and highlight the importance of alleviating spurious correlations caused by objects.7

Based on the observation that diversity helps mitigate spurious correlations, we8

propose a Diversity boosted twO-level saMplIng framework (DOMI) to efficiently9

sample the most informative ones among a large number of domains and data10

points. We show that DOMI helps train robust models against spurious correlations11

from both domain-side and object-side, substantially enhancing the performance12

of five backbone DG algorithms on Rotated MNIST and Rotated Fashion MNIST.13

1 Introduction14

The effectiveness of machine learning algorithms that minimize the average training loss relies on the15

IID hypothesis. However, distributional shifts between test and training data are usually inevitable.16

Under such circumstances, models trained by minimizing the average training loss are prone to sink17

into spurious correlations. These misleading heuristics only work well on some data distributions18

but can not be generalized to others that may appear in the test set. In domain generalization (DG)19

tasks, the data distributions are denoted as different domains. The goal is to learn a model that can20

generalize well to unseen ones after training on several domains. While lots of methods have been21

derived to efficiently achieve this goal and show good performance, there are two main drawbacks.22

Scalability. With an unprecedented amount of applicable data nowadays, many datasets contain a23

tremendous amount of domains, massive data in each domain, or both. For instance, DrugOOD (Ji24

et al., 2022) is an out-of-distribution dataset curator and benchmark for AI-aided drug discovery.25

Datasets of DrugOOD contain hundreds to tens of thousands of domains. In addition to raw data with26

multitudinous domains, domain augmentation, leveraged to improve the robustness of models in DG27

tasks, can also lead to a significant increase in the number of domains. For example, HRM (Liu et al.,28

2021) generates heterogeneous domains to help exclude variant features, favoring invariant learning.29

Under such circumstances, training on the whole dataset in each epoch is computationally prohibitive,30

especially for methods training by pairwise domain operations, of which the computational complexity31

is O(n2) with n training domains.32

Objective. Numerous works in the DG field focus entirely on excluding or alleviating domain-side33

impacts. A general assumption in the DG field is that data in different domains share some “stable”34

features to form causal correlations. And a large branch of studies holds that the relationship between35
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these “stable” features and the outputs is domain-independent given certain conditions (Long et al.,36

2015; Hoffman et al., 2018; Zhao et al., 2018, 2019; Mahajan et al., 2021). We state that this objective37

is insufficient, and a simple counterexample is given as follows. We highlight the importance of38

mitigating spurious correlations caused by the objects for training a robust model.39
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Figure 1: The training set of the counterexample. Cats are mainly silver British
shorthair (body color of which is silvery white), rarely golden British shorthair
(tan), and lions are all tan. As for the background, most lions are on the grassland
while most cats are indoors.

Suppose our learning task40

is training a model to dis-41

tinguish between cats and42

lions. The composition of43

the training set is shown44

in Figure 1, and the do-45

main here refers to the46

images’ backgrounds. In47

this example, the correla-48

tion between features cor-49

responding to the body50

color of the objects and51

class labels is undoubtedly52

independent of domains.53

Moreover, it helps get high accuracy in the training set by simply taking the tan objects as li-54

ons and the white ones as cats. Unfortunately, if this correlation is mistaken for the causal correlation,55

the model is prone to poor performance once cat breed distribution shifts in the test set.56

To tackle these two issues, we propose a diversity boosted two-level sampling framework named DOMI57

with the following major contributions: 1) To our best knowledge, this is the first paper to take impacts58

from the object side into account for achieving the goal of DG. 2) We propose DOMI, a diversity-59

boosted two-level sampling framework to select the most informative domains and data points for60

mitigating both domain-side and object-side impacts. 3) We demonstrate that DOMI substantially61

enhances the test accuracy of the backbone DG algorithms on two benchmarks.62

2 Methods63

We introduce our method DOMI by firstly presenting two key observations.64

Observation 1. Diverse domains of data help exclude spurious correlations.65

Consider a dataset Dn = {D1
, D

2
, ..., D

n} which is a mixture of data D
d
= {(xd

i , y
d
i )}nd

i=1 where d66

is one domain of the ground set D (∣D∣ = n), xd
i and y

d
i are the i

th data and label from domain d67

respectively, and nd is the number of data points in Dd. Suppose we now have dataset Dk consisting68

of k domains. On Dk, the distribution of data is P k(X,Y ). A “good” set denoted by Ck is a set69

containing “good” correlations that get high accuracy on Dk. The set of causal correlations is C.70

C ⊆ Ck since causal correlations can definitely get good performance but “good” correlations for the71

k domains may not be held in other domains, i.e., spurious correlations. The goal is to exclude as72

many spurious correlations as possible.73

Given another domain dk+1 to form dataset Dk+1 together with the former k domains. The corre-74

sponding data distribution and the “good” set are P k+1(X,Y ) and Ck+1, respectively. If P k+1(X,Y )75

is close to P
k(X,Y ), then most of the correlations in Ck will still be “good” for Dk+1 and thus76

preserved in Ck+1. Nevertheless, if dk+1 is a heterogeneous domain that can significantly change the77

distribution of data, then the “good” set after being constrained would be obviously smaller than the78

original one, i.e., ∣Ck+1∣ << ∣Ck∣, showing that diverse domains help exclude spurious correlations79

and training on which helps obtain robust models.80

We formally derive Proposition 1 to support Observation 1 that diversity helps mitigate spurious81

correlations, based on which DOMI is a diversity boosted sampling framework and the sampling82

scheme to obtain a heterogeneous subset is a critical part of DOMI. Determinantal Point Process (DPP)83

(Kulesza et al., 2012) sampling is a powerful diversity sampling method. Based on the similarity84

matrix (DPP kernel) among the samples, a draw from a DPP yields diversified subsets. Thus we85

incorporate DPP sampling into DOMI. As one option for the diversity sampling method in DOMI, DPP86
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sampling can also be substituted with other sampling methods, which will be left as an interesting87

future direction.88

2.1 invDANN89

Domain-Adversarial Neural Networks (DANN) proposed by Ganin et al. (2016) is composed by90

Featurizer, Classifier, and Discriminator. Featurizer extracts features of data samples, Classifier91

learns to classify class labels of data, and Discriminator learns to discriminate domains. DANN set a92

gradient reversal layer between Featurizer and Discriminator to ensure Featurizer captures object-side93

features. Using the architecture of DANN, we let Classifier learn to classify domain labels while94

Discriminator learns to discriminate class labels. As an inverse version of DANN, invDANN trains a95

model whose Featurizer extracts only domain-side features, which serves as an important component96

of the proposed method DOMI.97

Observation 2. Excluding domain-induced spurious correlations is insufficient for achieving OOD98

generalization under the setting of DG.99

Figure 2 shows a structural causal model (SCM) that describes the data-generating process for the100

Object Domain

𝑌 (Classes) 𝑋 (Pixels)

ሶ𝑥 ො𝑥 ҧ𝑥

Figure 2: The Structural Causal
Model for the data-generating pro-
cess with a node x̂ leading to object-
induced spurious correlations.

domain generalization task with object-side spurious correlations.101

The SCM divides data into two parts: domain-side and object-102

side. x of domain-side is the reason for domain-induced spurious103

correlations. For the object-side, the feature is further divided into104

ẋ (causal features) and x̂ where x̂ is the reason for object-induced105

spurious correlations, just like the body color of objects in the106

lion-cat example. The three parts together make up the observed107

data. Thus even if we exclude all the domain-induced spurious108

correlations, i.e., entirely remove the effect from x, we may still109

obtain object-induced spurious correlations resulting from x̂.110

As Observation 2 shows that excluding only domain-induced spu-111

rious correlations is insufficient, we select diverse data batches112

among the selected domains to help mitigate object-induced spuri-113

ous correlations in the level-two sampling. In the level-two-sampling, since we do not have available114

labels just like domain labels in the level-one-sampling, it is infeasible to utilize invDANN again to115

train a featurizer. So we instead use an ERM model since ERM is prone to taking shortcuts and116

learning spurious correlations (Zhang et al., 2022). Zhang et al. (2022) also leverages an ERM model117

to infer the spurious attributes in the unsupervised DG setting. Moreover, since domains attained by118

the level-one sampling contain diverse data with respect to the domain side, ERM can avert learning119

domain-induced spurious correlations. Combining these two, the ERM model is prone to relying on120

object-induced spurious correlations and thus can extract their informative representations. Then121

a similarity matrix between data batches is constructed with respect to this information. Based on122

which DPP sampling selects the data batches helping exclude object-induced spurious correlations.123

2.2 DOMI: Diversity Boosted Two-level Sampling124

Figure 3 shows the sampling procedure of DOMI, a diversity boosted two-level sampling framework.125

We present the details in Algorithm 1.126

Ground set of domains

Random sampling

Level-one-sampling

Batches inside sampled 
domains

InvDANN

featurizer1

Initial model

featurizer2

ERM

Level-two-sampling

Figure 3: Illustration of the sampling procedure of DOMI. The solid arrow indicates the actual sampling flow,
while the dotted arrow is used to demonstrate the difference between random sampling and DOMI.
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Algorithm 1: Sampling Procedure of DOMI
Input: The whole training dataset:

T = [{(xd
i , y

d
i )}nd

i=1 for d ∈ D]
the proportion of domains (β) and batches (δ) to be
sampled

1 Level-one-sampling
2 Train an invDANN featurizer fθ on a randomly

sampled subset of T ;
3 for d in D do
4 featd ← 0⃗ ;
5 for i from 1 to nd do
6 featd ← featd + fθ(xd

i ) ;

7 featd ← featd ⋅
1

nd
;

8 Initialize similarity matrix Ld = 0∣D∣×∣D∣ ;

9 for di in D do
10 for dj in D do
11 Ld[i][j] = ∥featdi − featdj∥2 ;

12 Obtain Ω = DPP(Ld, β ⋅ ∣D∣) = [{(xd
i , y

d
i )}nd

i=1 for
d ∈ D], (D ⊂ D, ∣D∣ = β ⋅ ∣D∣) ;

13 Level-two-sampling
14 Divide Ω into R = [{(xb

i , y
b
i )}ni=1 for b ∈ B] ;

15 Train an ERM featurizer fθ̂ on R;
16 for b in B do
17 Compute featb in the same way as computing

featd in Level-one-sampling;

18 Computing similarity matrix Lb ;
19 Return S = DPP(Lb, δ ⋅ ∣B∣) ;

3 Experiments127

We have investigated the performance of DOMI with five backbone DG algorithms on two simulated128

benchmarks (Rotated MNIST and Rotated Fashion MNIST), which show that DOMI can help substan-129

tially achieve higher test accuracy. Due to space constraints, and experimental settings, more results130

and analyses are deferred to Appendix C.1.131

Baselines. For each one of the backbone algorithms, we set the baseline as training on domains132

selected by the random sampling scheme and denote it as level0, compared to the level-one-sampling133

of DOMI and the full version of DOMI represented as level1 and level2, respectively. The proportion134

of minibatches selected in level-two-sampling (δ) is a hyperparameter valued from 0 to 1. When δ135

equals 1, level2 shrinks to level1.136

Results and analysis Table 1 shows the empirical results and we make the following observations:137

Strong performance across datasets and algorithms. Considering results on 2 datasets and 5 backbone138

DG algorithms, level1 gives constant and apparent improvement compared to level0. While level2139

may lead to slower growth in accuracy at the initial part of training as shown in Figure 6 because of140

using a smaller number of minibatches, it keeps outperforming level1 and level0 at later epochs. The

Table 1: Average test accuracy. We repeat the experiment for 5 times on FISH and 20 times on the other
algorithms with random seeds.

Dataset Sampling scheme DANN MatchDG FISH MMD CORAL

Rotated MNIST
level0 74.5 81.5 65.2 84.2 85.6
level1 76.5 ↑ 2.0 83.6 ↑ 2.1 66.5 ↑ 1.3 87.2 ↑ 3.0 89.2 ↑ 3.6

level2 78.6 ↑ 4.1 84.2 ↑ 2.7 66.6 ↑ 1.4 87.7 ↑ 3.5 89.6 ↑ 4.0

Rotated Fashion MNIST
level0 40.3 38.2 33.2 39.0 38.7
level1 42.8 ↑ 2.5 39.7 ↑ 1.5 34.5 ↑ 1.3 41.8 ↑ 2.8 40.8 ↑ 2.1

level2 43.5 ↑ 3.2 40.7 ↑ 2.5 35.8 ↑ 2.6 42.8 ↑ 3.8 42.1 ↑ 3.4

141

gap between test accuracy and maximal accuracy. During training we observe that the test accuracy142

first rises to the peak value and then begins to decline along with the increase of validation accuracy.143

This reduction indicates a certain degree of overfitting to spurious correlations. Thus we further144

record the peak value of the test accuracy in each experiment and denote it as maximal accuracy. The145

distribution of test accuracy and maximal accuracy on MatchDG under different sampling schemes146

is shown in Figure 5. While the test accuracy of level0 scatters, that of level2 centers, and level2147

shrinks the gap between test accuracy and maximal accuracy.148
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A Theoretical analysis213

Preliminaries. Consider the universal set of domains D, where each domain d ∈ D corresponds214

to a distribution Pd over X × Y , with X being the space of inputs and Y that of outputs. Our goal215

is to find a predictor f ∶ X → Ŷ while we can only access the domains in Dtr where Dtr ⊂ D.216

We measure the quality of a prediction with a loss function ℓ ∶ Ŷ × Y → R≥0; and the quality of a217

predictor by its population loss on domain d ∈ D, given by Ld(f) ≔ E(x,y)∼Pd
[ℓ(f(x), y)].218

Definition 1 (Correlation). We define a correlation as a predictor f = ω ◦ ϕ where ϕ ∶ X → Z is a219

data representation and ω
∗ ∶ Z → Y is a classifier. The causal correlation f

∗ satisfies ϕ∗ elicits220

a invariant predictor (Arjovsky et al., 2019) on D: ω∗ simultaneously optimal for all domains, i.e.,221

∀d ∈ D, ω
∗
∈ argminω∶Z→YLd(ω ◦ ϕ

∗).222

Notably, Definition 1 requires that ϕ and ω are unrestricted in the space of all (measurable) functions.223

However, we learn ϕ and ω being restricted to only access domains in Dtr, a small subset of D. For224

this to be feasible, it is natural to add a restriction that ϕ ∈ Φ and ω ∈ Ω for suitable classes Φ of225

functions mapping X → Z and W of functions mapping Z → Ŷ .226

Assumption 1. argminω∶Z→YLd(ω ◦ ϕ) = {ω∣Ld(ω ◦ ϕ) ≤ δ}, where δ > 0 is a constant.227

Definition 2. Consider a domain set Ds, on which the set of invariant predictors, I(Ds), is the set228

of all predictors f satisfies following:229

• f = ω ◦ ϕ with (ω, ϕ) ∈ Ω × Φ;230

• for all d ∈ Ds, ω ∈ argminω̄∶Z→YLd(ω̄ ◦ ϕ).231

Lemma A.1. Based on Definition 1 and Definition 2, we can trivially derive: for any nonempty set232

D̄ ⊆ D, f
∗
∈ I(D̄).233

Definition 3 (Diversity). We use Integral Probability Metric (Müller, 1997) to measure the diversity234

between domains. For domain d and d̄, the diversity is defined as:235

Div(Pd, Pd̄) = Div(Pd, Pd̄,G) = sup
g∈G

∣EPd
[g(x, y)] − EPd̄

[g(x, y)]∣

Where G is a class of bounded functions. When we let g(x, y) = ℓ(f(x), y) and G = F = Ω×Φ, the236

diversity is:237

Div(Pd, Pd̄) = Div(Pd, Pd̄,Ω,Φ) = sup
ω∈Ω,ϕ∈Φ

∣EPd
[ℓ(ω ◦ ϕ(x), y)] − EPd̄

[ℓ(ω ◦ ϕ(x), y)]∣

= Div(Pd, Pd̄,F) = sup
f∈F

∣Ld(f) − Ld̄(f)∣

Consider we have a domain set Dk = {d1, d2..., dk} and the corresponding I(Dk) = {f1, f2..., fm}.238

And now we get one more domain dk+1 to form Dk+1 . According to Lemma A.1, the causal239

correlation f
∗
∈ I(Dk+1), so a informative domain dk+1 which helps exclude spurious correlations240

leads to ∣I(Dk+1)∣] < m.241
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Proposition 1 (Diverse domains help exclude spurious correlations). If dk+1 satisfies that:242

max
d∈Dk,fi∈I(Dk)

Div(dk+1, d) + Ld(fi) ≤ δ, then I(Dk) = I(Dk+1).243

Proof. Without loss of generality, we first conduct analysis on ft of I(Dk). For ft:244

max
d∈Dk

∣Ldk+1
(ft) − Ld(ft)∣ + Ld(ft) ≤ max

d∈Dk

Div(dk+1, d) + Ld(ft)

max
d∈Dk

Div(dk+1, d) + Ld(ft) ≤ max
d∈Dk,fi∈I(Dk)

Div(dk+1, d) + Ld(fi) ≤ δ

When
• Ldk+1

(ft) − Ld(ft) < 0 ∶

Ldk+1
(ft) < Ld(ft) ≤ δ

• Ldk+1
(ft) − Ld(ft) ≥ 0 ∶

Ldk+1
(ft) = max

d∈Dk

Ldk+1
(ft) − Ld(ft) + Ld(ft) = max

d∈Dk

∣Ldk+1
(ft) − Ld(ft)∣ + Ld(ft) ≤ δ

Ldk+1
(ft) ≤ δ, we get ft ∈ I(Dk+1) for any t ∈ {1, 2...,m}, thus I(Dk) = I(Dk+1)245

B The Simulated Dataset246

Table 2: The simulated dataset of the toy example. From these 12 data points, we sample 6 for
training.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

X1 0 0 0 0 0 0 0 0 0 1 1 1
X2 0 0 0 0 0 0 1 1 1 0 1 1
X3 0 0 0 0 1 1 1 1 1 1 1 1
X4 0 0 0 1 0 1 1 1 0 0 1 1

Y 0 0 0 0 0 0 1 1 1 1 1 1

C Experimental Details247

C.1 Settings and results248

Datasets. To satisfy the setting of a large number of domains, we extend the original simulated249

benchmarks on MNIST and Fashion MNIST by Piratla et al. (2020) from rotating images 15° through250

75° in intervals of 15° to intervals of 1° in the training set, i.e., 61 domains in total. And we get test251

accuracy on the test set which rotates images either 0° or 90°. Moreover, while the original datasets252

rotate the same images for different degrees, we extend them to fit the real cases in DG tasks. We253

generate indices using different random seeds to select images from MNIST and Fashion MNIST254

for each domain before rotating. Appendix D gives examples to show how spurious correlations can255

occur in the two datasets.256

Backbones. We take MatchDG (Mahajan et al., 2021), FISH (Shi et al., 2021), CORAL (Sun257

& Saenko, 2016), MMD (Li et al., 2018) and DANN (Ganin et al., 2016) as backbone algorithms.258

The former four algorithms work by pairwise domain operations, leading to O(n2) computational259

complexity with n domains and thus prohibitive to be scaled to DG tasks with multitudinous domains.260

It is essential for them to sample the most informative domains. We further incorporate DANN as261

one of the backbone algorithms since DOMI can not only efficiently select domains by its first level262

of sampling but can help deal with circumstances where each domain contains massive data by the263

second level of sampling.264
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Hyperparameters. For DANN, the training epochs are set to be 50. MatchDG is a two-phase265

method, and in our experiment, we set 30 epochs of training for phase 1 and 25 epochs for phase266

2. While level1 gets higher accuracy on Rotated MNIST and level2 shows better performance on267

Fashion MNIST, they all outperform level0, i.e., randomly sampling. The training epochs of FISH268

are set to be 5. Each epoch contains 300 iterations and we observe test accuracy every 30 iterations.269

And in Figure 6 we slightly abuse epoch to mean the time we obtain test accuracy. Unlike MatchDG270

and DANN, fish needs to sample domains in each iteration instead of training on one list of domains.271

Sampling domains in each iteration will result in great computational overhead compared to randomly272

sampling. Thus we just sample 30 domain lists containing diverse domains using level-one-sampling273

of DOMI and repeatedly train the model on these domain lists(one list for one iteration) for level1.274

As for level2, we further utilize level-two sampling to sample data batches of each domain in the275

domain lists for training. The former 3 DG algorithms utilize SGD optimizer with a learning rate of276

0.01, weight decay 5 × 10
−4, and momentum 0.9. The training epochs of MMD and CORAL are277

set as 30. These two algorithms leverage Adam optimizer with a learning rate of 0.001 and weight278

decay of 0. All five algorithms use the Resnet18 model. Within each backbone algorithm, we keep279

factors including learning rate, batch size, choice of the optimizer, and model architecture the same280

for level0, level1 and level2 to highlight the effect of different sampling schemes. It’s worth noting281

that we do no comparison between the backbone algorithms since we do not conduct meticulous282

hyperparameter tuning for them.283

Model selection. During training, we use a validation set to measure the model’s performance. The284

test accuracy of the model is updated after an epoch if it shows better validating performance. That is,285

we save the model with the highest validation accuracy after the training procedure, obtain its test286

accuracy, and report results. For Rotated MNIST and Rotated Fashion MNIST, data from only source287

domains (rotation degree is from 15 ° to 75 °) are used to form the validation set.288

Empirical results Figure 5 show test accuracy and maximal accuracy among 20 times of repeated289

experiments with random seeds leveraging different sampling levels on Rotated Fashion MNIST290

and Rotated MNIST. Among training epochs, the test accuracy rises to the peak value and then291

declines along with the increase of validation accuracy. In this figure, maximal accuracy represents292

the peak value. Each tiny circle represents one time of the experiment, of which the vertical location293

corresponds to the accuracy value. The horizontal line inside each box indicates the mean value.294

The choice of δ. A smaller δ helps efficiently mitigate strong object-induced spurious correlations295

and speed up training, but when the impact from the object side is weak, a small δ leads to a waste of296

training data. In the experiment, we observe that a relatively small δ is more beneficial for Rotated297

Fashion MNIST while a large δ works better on Rotated MNIST. Figure 4 shows the results of298

different δ.299
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(b) Rotated MNIST
Figure 4: Average test accuracy of 20 experiments with random seeds during 50 epochs with different
δ on Rotated Fashion MNIST and Rotated MNIST of DANN. δ = 1.0 corresponds to DOMI with only
level one.
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(h) MMD on Rotated Fashion MNIST
Figure 5: Boxplot of test accuracy and maximal accuracy among 20 repeated experiments with
random seeds leveraging different sampling levels on Rotated Fashion MNIST and Rotated MNIST.
Among training epochs, the test accuracy rises to the peak value and then declines with the increase
of validation accuracy. In this figure, maximal accuracy represents the peak value. Each tiny circle
represents one time of the experiment, of which the vertical location corresponds to the accuracy
value. The horizontal line inside each box indicates the mean value.
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(a) Rotated Fashion MNIST
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(b) Rotated MNIST
Figure 6: Average test accuracy of 5 experiments with random seeds during 50 epochs under different
sampling schemes of FISH.

C.2 Experiments on iwildcam300

WILDS (Koh et al., 2021) is a curated collection of benchmark datasets representing distribution301

shifts faced in the wild. As one dataset in WILDS, iwildcam contains photos of wild animals and 324302

different camera traps are taken as domains. The data of iwildcam is extremely unbalanced, while part303

of the domains contains less than 20 photos, some domains contain over 2000 ones. In the original304

experiments of Shi et al. (2021), iwlidcam is divided into batches in each domain. FISH samples 10305

batches from different domains for training in each iteration. The sampling probability of one batch306

in a domain is proportional to the number of batches left in this domain. This sampling scheme is307

taken as level0 here and we refer to the result of (Shi et al., 2021). In each iteration, level1 samples308

10 batches based on DPP using invDANN, level2 first samples 10 batches in the level-one-sampling309

and among them selects 6 batches in the level-two-sampling. Under the same setting in the original310

experiments, the results on iwildcam of FISH are shown in Table 3 .311

Table 3: Macro F1 score of FISH on iwildcam under three sampling schemes
level0 level1 level2

Iwildcam 22.0 22.8 23.4

312

Although DOMI gets a higher Macro F1 score, it leads to a much larger computational overhead since313

it needs to do sampling in each iteration. Moreover, for DANN and MatchDG, Macro F1 of diverse314

domains may be significantly lower than randomly sampled domains because of the unbalanced315

data, i.e., the diverse domains may contain much fewer data compared to the randomly sampled316

domains. It would be significant future work to tackle the issues of extremely imbalanced data and317

computational overhead for algorithms that need to do sampling for multi-times.318

D How can spurious correlations occur in the two datasets?319

It’s much easier to differentiate the rotation degree than to discriminate the objects. This can be320

empirically verified since it only needs about 30 epochs for a model to achieve over 98% validation321

accuracy of classifying 61 different degrees while 50 epochs to achieve no more than 97% and322

88% validation accuracy of classifying 10 different objects on rotated MNIST and Fashion MNIST,323

respectively. Thus if a certain class label is closely associated with a certain rotation degree in the324

training set, recognizing objects by actually recognizing the rotation degree can be a shortcut and325

domain-induced spurious correlation, just like classifying cats and lions using the background in the326

toy example. As for object-induced spurious correlation, on rotated MNIST, the handwriting is the327

feature of the object, however, it can also be the spurious correlation. For example, in Figure 7, let’s328

focus on the number “1” and “7”. After training on Figure 7a, can the model correctly recognize “1”329

in Figure 7b instead of wrongly taking it as “7”?330
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(a) Hypothetical training set (b) Hypothetical test set
Figure 7: Two figures to illustrate the impact of object-induced spurious correlations on MNIST.

On Fashion MNIST, assume we take the data in Figure 8 as the training set. The majority of the331

data points for Shirt are darker than Coat. When differentiating between Shirt and Coat, a model332

can simply take the bright ones as coats and the dark ones as shirts to obtain high training accuracy.333

However, what if the color of the Shirt and Coat is similar in the test set?334

Thus our proposed framework set two levels of sampling to mitigate the impacts of domain-side and335

object-side, the sampling is, in fact, a rebalance procedure of data.

Figure 8: The figure to illustrate the impact of object-induced spurious correlations on Fashion
MNIST.

336
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