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Abstract

Collective action against algorithmic systems, which enables groups to promote1

their own interests, is poised to grow. Hence, there will be growth in the size and2

the number of distinct collectives. Currently, there is no formal analysis of how3

coordination challenges within a collective can impact downstream outcomes, or4

how multiple collectives may affect each other’s success. In this work, we aim to5

provide guarantees on the success of collective action in the presence of both co-6

ordination noise and multiple groups. Our insight is that data generated by either7

multiple collectives or by coordination noise can be viewed as originating from8

multiple data distributions. Using this framing, we derive bounds on the success9

of collective action. We conduct experiments to study the effects of noise on col-10

lective action. We find that sufficiently high levels of noise can reduce the success11

of collective action. In certain scenarios, large noise can sink a collective suc-12

cess rate from 100% to just under 60%. We identify potential trade-offs between13

collective size and coordination noise; for example, a collective that is twice as14

big but with four times more noise experiencing worse outcomes than the smaller,15

more coordinated one. This work highlights the importance of understanding nu-16

anced dynamics of strategic behavior in algorithmic systems.17

1 Introduction18

As large platforms (social media, e-commerce) grow, groups within them find it increasingly im-19

portant and necessary to act strategically (e.g., by changing ratings) in these platforms to get their20

desired outcome. From delivery drivers coordinating to earn higher wages [SHMD24], to fans pro-21

moting their favorite artist [XZF+25, Nug21], to protesting controversial businesses [Pay24], this22

type of strategic behavior is poised to grow. Strategic behavior ultimately affects the downstream23

data distributions used to train models. As the incentive to participate increases, we need a more24

nuanced understanding of the impacts on a system; this includes both understanding what happens25

with multiple distinct collectives acting on a system as well as considering how internal collective26

dynamics may impact outcomes. These factors will all impact the downstream data distribution.27

However, currently, there are no tools or analytical frameworks that incorporate these factors (coor-28

dination noise, multiple collectives) to assess their impact on the success of collective action.29

In classical collective action problems related to managing common-pool resources, Ostrom notes30

that smaller, more homogeneous groups are more effective at overcoming barriers to collective ac-31

tion [Ost90]. She finds that a clear organizational structure and well-defined roles are crucial—one32

possible interpretation is that smaller groups can more readily and faithfully implement and coor-33

dinate their actions. An analogy in the computational world is “noise”: unwanted modifications34

or deviations from intended behavior (e.g., signal processing). This “noise” can result from poor35

coordination and may reduce effectiveness.36
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In algorithmic settings, collective action is mediated through strategic data modifications to influence37

model behavior. These changes in data distribution can have significant downstream ramifications.38

[HMMDZ23] provided theoretical bounds on the success of collective action in the case of a sin-39

gle, unified collective. The collective modifies their data (e.g., by inserting a watermark), which is40

then used in training. The learning algorithm observes a distribution P: a mixture of data induced41

by the collective’s action (P1) and the underlying data distribution P0. These bounds help iden-42

tify the conditions under which collective action may be more successful. However, this analysis43

assumes perfect coordination within the collective. [KVKS25] developed a framework to identify44

the factors affecting collective action involving multiple collectives, using simulations to illustrate45

several outcomes. However, they do not provide any theoretical bounds on success based on the data46

distributions induced by each collective. A formal understanding of how both noise and multiple47

collectives interact is key to understanding real-world algorithmic collective action.48

In this work, we provide new guarantees on algorithmic collective action in both the presence of49

noise and multiple distinct collectives. We do this by introducing multiple distributions that feed the50

ultimate observed data distribution P . Instead of considering just a mixture of P0 and P1, we study51

how the addition of P2 affects a collective’s success. Importantly, the source of these distributions52

can vary: it could occur from multiple distinct collectives or because of coordination challenges53

within a single collective inducing a new, second data distribution.54

A collective that is highly coordinated is one where the size of P2 is small and similar to P1, while55

ones with less cohesion have a larger gap between P1 and P2. Multiple collectives can be analyzed56

as behavior coming from two distinct distributions. Our contributions are as follows:57

Theoretical bounds with multiple distributions: We are the first to establish the lower bounds for58

the success of collective action in the presence of multiple distributions. Prior work has either only59

analyzed a single distribution coming from a single collective or provided empirical outcomes with60

multiple collectives [KVKS25, HMMDZ23]. We are able to relate this bound to the similarity of61

the distributions and collective size. This approach can effectively handle many different scenarios:62

including when there’s a fraction of a collective performing actions imperfectly or when multiple63

distinct collectives are acting upon a system.64

Empirical impact of noise: We study the impact of noise in collective action. Prior work65

[HMMDZ23] has only shown outcomes with perfectly coordinated collectives. We find that differ-66

ent types of noise can impact the success of collective action and find in some situations, smaller,67

less noisy groups perform better than larger groups with more noise.68

We first present a formulation of the algorithmic collective action problem. We establish bounds on69

the success of collective action with multiple distributions. Our experiments extend [HMMDZ23]70

by considering a text classification task with noise. We find scenarios where noise sinks success a71

task from nearly 100% without noise to under 60%. We discuss possible trade-offs in size and noise72

where small groups with less noise (0.25% collective size with 10% noise) outperform larger ones73

with more noise (0.5% with 40% noise), which can inform organizers of collective action.74

2 Related Work75

Collective action against algorithms has been documented in contexts such as ridesharing [Lei21,76

WAC21, WVM21, JGV21, Has20] and in data campaigns aimed at promoting pro-social out-77

comes [MF22, VH21, VLT+21, WED22]. [SHMD24] provides a specific computational model78

for the delivery driver case, which can be used to analyze incentives and outcomes in these scenar-79

ios. [XZF+25, XFS+25] examine some of the real-world structures involved in promoting online80

collective action, such as what motivates certain users to act as organizers. They also discuss prac-81

tical challenges in influencing online marketplaces, including coordinating across different types of82

devices and teaching users how to engage effectively with the platform to achieve a specific goal.83

The concept of noise has been used to simulate communication challenges in agent-based model-84

ing [WSLA13, ASJCB02, BBG23] and in modeling bounded rationality [Kah03, Con96, Qui07].85

However, it has not been studied in the context of online collective action.86

Other work has examined collective action in algorithmic settings. [HMMDZ23] first examines87

how different types of strategies can enable small collectives to have a substantial impact on clas-88

sification outcomes. [BMD24] extends this analysis to examples involving recommender sys-89
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tems. [BDFSS24] examines how the specifics of the learning algorithm impact collective action.90

[KVKS25] empirically analyzes the interaction between two collectives. None of these works, how-91

ever, offer formal guarantees for successful collective action involving multiple data distributions.92

Our work offers a more comprehensive theoretical understanding of realistic strategic dynamics.93

3 Problem Formulation94

Here we first will describe collective action as described by [HMMDZ23]. We will then extend this95

scenario to include a second distribution. For convenience, Appendix A summarizes the notation.96

3.1 Algorithmic Collective Action with One Distribution97

We consider the case where a firm wishes to deploy a classifier f trained on some data. Let f :98

X → Y . We define a classifier to be ϵ1 suboptimal under a distribution P1 if there exists a P ′ with99

TV (P1, P
′) ≤ ϵ1 such that f = argmaxy∈Y P ′(y|x) where TV is the total variation distance.100

The firm’s goal is to minimize the loss with respect to some objective function. The data they train101

on exists in Z = X ×Y representing the features X and labels Y . For our purposes, we can think of102

every data point z ∈ Z as belonging to an individual. A collective wishes to work together in order103

to create a specific outcome on this classifier for a certain set of inputs which we formalize below.104

Consider the base distribution P0 on Z . We define P1 to be the distribution induced by the collec-105

tive’s intended action. This is operationalized by strategy, h1 : Z → Z where h1 ∈ H the set of106

all available strategies. Examples of potential strategies may include watching a video for a certain107

amount of time, giving a specific review score, etc. In implementing this strategy, the collective108

wishes to create an association between the specific inputs to a target label y∗.109

The collective plants a “signal”, which is done via function g1 : X → X which takes some original110

input x ∼ P0 and modifies it. Examples may include adding certain words to text, adding a water-111

mark to a video, or reviewing an extra product on a marketplace. This planted signal is intended to112

create the association between the set of inputs generated by g1(x) and a target label y∗.113

In some situations, it may also be possible for the collective to act on both the input data (X ) and
potentially the output label (Y). For the feature-label strategy, members can each change their
feature and label. For thefeature-only strategy, they can only change their features. These strategies,
using h1 and signal g1, induce the collective’s distribution P1. Let α1 be the fraction of users
participating in the collective. We can write the distribution seen by the learning algorithm as a
mixture of the distribution of the collective’s data and the unmodified data.

P = α1P1 + (1− α1)P0

Where P1 represents the distribution of h1(z) where z ∼ P0. The collective’s objective is to
associate the signal g1 with the target y∗. The success rate can be written as

S(α1) = Pr
x∼P0

[f(g1(x)) = y∗]

Success also depends on how the signals generated by the collective conflict or compete with data
present in the underlying distribution. Let X1 = {g1(x) : x ∈ X} the signal set. We define this as
suboptimality gap of X1 on distribution P0 for a target y∗ as

∆0
1(y

∗) = max
x∈X1

(max
y∈Y

P0(y|x)− P0(y
∗|x))

We also use P0(X1) to refer to the background overlap of signal set X1 - intuitively, this represents114

how common the modified input X1 is in the background distribution P0 Based on these defini-115

tions, [HMMDZ23] finds a lower bound on the success for this classifier in the single, perfectly116

coordinated collective for both the feature-label strategy and the feature-only strategy, restated here.117

Theorem 1 (Feature-label). [HMMDZ23] The success rate of a collective with size α1 on a ϵ1
classifier with target y∗1 with signal set X1 is bounded below by

S(α1) ≥ 1− 1− α1

α1
P0(X1)

(1− ϵ1)∆
0
1(y

∗
1) + ϵ1

1− 2ϵ1
118
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Theorem 2 (Feature-only). [HMMDZ23] The success rate of a collective with size α1 on a ϵ1-
suboptimal classifier with target y∗1 with distribution X1 where there exists a p such that P0(y

∗|x) ≥
p,∀x ∈ X is bounded below by

S(α1) ≥ 1− 1− (1− ϵ1)p− ϵ1α

(1− ϵ1)pα− ϵ1α
P0(X1)

119

However, these theorems do not consider a second distribution. We first develop our multiple distri-120

bution setup, which we will use to expand beyond the above bounds.121

3.2 Collective Action with Multiple Distributions122

Here, we extend beyond [HMMDZ23] by considering another data distribution. This may arise from123

internal coordination challenges or a separate collective.124

We consider distribution P2 induced by a strategy h2. h2 can be completely distinct from h1 or can125

represent a noisy version of h1 (e.g h2(z) = h1(z)+δ). P2 is the distribution of h2(z), z ∼ P0. For126

example, suppose a collective aims to create an association between a word A existing at the top of127

a document and being rated as an important user y∗. Members could mistakenly use a similar word128

B instead of A or place A at the end of the text instead – this would be represented by P2.129

We can write the final distribution observed by the learning model as

P = α1P1 + α2P2 + (1− α)P0

where α1 represents the fraction of people who implemented collective one’s strategy, α2 represents130

a separate group’s interactions. This can arise because the correct “action” was not properly shared131

with all group members, people getting confused about what exactly to do and not executing faith-132

fully, or potential infiltrators within the group. We let α = α1 + α2 is the total fraction of people133

attempting to implement some strategy. We can also equivalently consider r = α1

α1+α2
= α1

α as the134

fraction of people implementing the correct strategy.135

Suppose a collective that wants to plant a single g(x) where x ∈ X Let the signal set X1 = {g1(x) :136

x ∈ X ). Another group implements another signal, which may be a noisy version of g1. Let g2137

represent the set of signals produced by the second group. X2 = {g2(x) : x ∈ X}.138

The presence of another distribution requires us to expand upon our definition of suboptimality to
consider, across any two distributions, how often the signals from set Xi are present on the distribu-
tion Pj . Our expanded definition of suboptimality is:

∆j
i (y

∗) = max
x∈X∗

i

(max
y∈Y

Pj(y|x)− Pj(y
∗|x))

Intuitively, this measures how “confusing” signals from Xi looks to Pj when targeting y∗.139

4 Multiple Distributions and Success of Collective Action140

Based on our expanded definitions, we can quantify the impact that multiple distributions have on141

the effectiveness of a collective. We consider both the feature-label strategy and the feature-only142

strategy. Both are important to study, as in different contexts, collectives may be able to alter both143

their input features and labels, or just their features. We state the theorems for two distributions here144

and defer the proofs and generalization to n distributions to the Appendix E. While earlier work145

focused on a single, perfectly coordinated collective, we quantify how either internal disruptions146

or the presence of a second collective affects the original group’s success. Conceptually, the proofs147

follow by considering the new mixture distribution and the interaction between the new distributions.148

For the feature-label strategy, we have the following result (see Appendix C for full proof):149

Theorem 3 (Feature-label with two distributions). Consider distribution P1 and P2 which are dis-
tributed according to h1(x) and h2(x) respectively, where x ∼ P0. Let y∗1 be the target class. Then
success for the first collective against an ϵ1 classifier to be lower bounded by

S(α1) ≥ 1− α2

α1
P2(X1)

(1− ϵ1)∆
2
1(y

∗
1) + ϵ1

1− 2ϵ1
− 1− α

α1
P0(X1)

(1− ϵ1)∆
0
1(y

∗
1) + ϵ1

1− 2ϵ1
150
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Figure 1: Relationship between ∆1
2(y

∗
1), P2(X1) and success bound. We fix α1+α2 = 0.3 and vary

the proportion r. We fix ϵ1 = 0, ∆1
0 = 0.01, and P0(X1) = 0.01

Compared with Theorem 1, Theorem 3 introduces another term that describes the relationship be-151

tween P1 and P2 independently of the relationship between P0 and P1. It consists of the cross-signal152

overlap between signal set X1 on distribution P2 the suboptimality gap of the target y∗1 of signal set153

X1 and P2. (∆2
1(y

∗
1)) and the relative sizes of said groups α2

α1
. Figure 1 illustrates these relationships.154

If we consider the distributions as coming from two collectives with differing objectives, we can155

also write down the success bound for the second collective as well.156

Corollary 3.1. If we consider P2,X2 as coming from a 2nd collective with (potentially) distinct157

objective, we can write the probability of success as158

S(α2) ≥ 1− α1

α2
P1(X2) ·

(1− ϵ2)∆
1
2(y

∗
2) + ϵ2

1− 2ϵ2
− 1− α

α2
P0(X2)

(1− ϵ2)∆
0
2(y

∗
2) + ϵ2

1− 2ϵ2

For the feature-only strategy we have the following result (Appendix D for full proof)159

Theorem 4 (Feature-only with two distributions). Consider distribution P1 and P2 which are
distributed by h1(x) and h2(x) respectively, where x ∼ P0. Suppose there exist a p such that
P0(y

∗|x) ≥ p,∀x ∈ X . Then success for the first collective against an ϵ1 classifier (against P ∗
1 ) is

lower bounded by

S(α1) ≥ 1− α2

α1
· P2(X

∗
1 ) ·∆2

1(y
∗)(1− ϵ1)

p(1− ϵ1)− ϵ1
− 1− α

α
P0(X1) ·

(1− p)(1− ϵ1) + ϵ1
p(1− ϵ1)− ϵ1

160

In this bound we see the same P2(X1)∆
1
2(y

∗
1)α2(1− ϵ1) term which captures the cross-signal over-161

lap, suboptimality gap and collective size.162

These theorems illustrate how and to what extent the presence of a second distribution can hinder163

the first collective. If we consider the second distribution to be a noisy variation of the first one,164

this helps relate the noise characteristics to the success rate. For a second collective, these bounds165

provide insights into which scenarios collectives may be simultaneously successful or hindering166

each other. We examine these implications in Section 7.1.167

5 Experimental Setup168

To demonstrate the empirical implications, we study the case of noisy collective action. We extend169

[HMMDZ23] experiment on resume classification. We use the resume dataset introduced by [JT21]170

to finetune a BERT-based model for a multilabel prediction task. The goal for the classifier is to171

predict which set of careers someone is suited for based on the text in the resume. Members of the172

collective intend to plant a signal in their resume to get the resume classified to some target class173

y∗ inserting a specific character in a certain pattern. The intended signal in this case is to place this174

specific character every 20 words (full details in Appendix B).175

We vary r, the proportion of users who perform an imperfect collective action by performing a noisy176

variation. Specifically, we consider the following types of noise variations.177
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Correct Character Usage The collective attempts to place a specific character into the resume.178

A noisy variation involves using a different character. We consider variations where the wrong179

character is sampled across a small subset (Random-Subset), as well sampled randomly across all180

possible characters (Random-Full).181

Modification Location The collective intended action to place their character every 20 words. A182

noisy variation places the character in arbitrary locations (Displaced).183

These choices are motivated by considering “benign” ways a group of people may misinterpret184

instructions. If the intended instruction is “Place character ‘A’ every 20 words”, some users may185

focus more on the 20 words part and not use the right character, or some users may focus on using186

“A” and not place it every 20 words. We define the full set of variations in Table 1.187

We also consider the context in which the noise occurs.188

Noised Input For feature-label strategy, it is possible that the noise only gets applied in the input189

feature or gets applied to the feature as well as the label.190

Target’s Underlying Frequency The target class underlying frequency (in P0) has shown to191

play some impact in algorithmic collective action, especially with the feature only strategy192

[HMMDZ23]. We test a high frequency label (Software Developer) as well as a low frequency193

label (Database Administrator) as the target class.194

Based on these factors, we ask the following questions.195

RQ1: Does the frequency of noise (larger r’s) affect success more than noise variation?196

RQ2: What class of strategies are more sensitive to noisy behaviors: feature-label or feature-only?197

RQ3: How does the background frequency (P0)of the target class affect sensitivity to noise?198

Variation Name Variation Description

Baseline All members use the same characters and place every 20 words
Random-Subset Some members insert a different character than the signal character,

chosen from a small, fixed subset, placed every 20 words.
Random -Full Some members insert a different character than the signal character,

chosen from a large, fixed subset, placed every 20 words.
Displaced-Original Some members place the collective’s signal character at arbitrary

places in the text
Displaced-Full Some members place insert a randomly picked character from a large

subset at arbitrary places in the text.

Table 1: List of variations for noise deviations

6 Results199

We finetune distilbert-based-uncased [SDCW19] for five epochs with default hyperparame-200

ters using Hugging Face transformer library [WDS+20]. For the feature-label strategies, we vary α,201

the percent of users in the collective from 0− 1%. For the feature only strategies, we vary α’s from202

[0%, 50%].We consider noise rates r from [0%, 50%] (hence α1 = rα). Noise variations for input203

text is detailed in Table 1. For noising labels, the label is changed uniformly at random across all204

possible labels. We measure success by calculating how often the target class (y∗1) is predicted for205

text that has the desired modification x∗ in the test set. All figures are shown with a one standard206

deviation region shaded.207

6.1 RQ1: Different Noise Variations208

Here we consider the several types of noise variations (as described in Table 1). As a reminder,209

these different noise variations change how the different members of the collective may incorrectly210
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Figure 2: Comparison of different noise variations for different collective sizes. The x-axis here
is the total collective size, measured by the percentage of the total population is participating. The
y-axis is the success rate of causing resumes with the “true” signal to be classified to the target class.
The black dashed line represents success rate without noise. The strategy is feature-label where
noise is only applied to the features. We observe that making more characters for mistakes leads to
lower success (Random-Subset vs Random-Full and Displaced-Original vs Displaced-Full)

implement a strategy. The x-axis represents the collective size while the y-axis show the collective’s211

success criteria. Figure 2 shows how different noise variations result in different efficacies, both for212

low levels of noise (Figure 2a) and higher levels (Figure 2b). We find that different levels of noise213

have more of an impact when the collective size is relatively small; for sufficiently high levels of214

participation, all variants perform similarly and comparable to the baseline even with noise. At this215

lower levels, there is a sensitivity to the set of “wrong” characters to choose from: the Random-216

Subset strategy performs better than the Random-Full strategy. We see displacement while keeping217

the original character performs better than the Random-Subset - which keeps the placement consis-218

tent. For this specific model, this may imply that it is more sensitive to character coordination than219

the specific placement. We also find that across the different noise types, the size of the collective220

seems can overcome noise.221

6.2 RQ2: Feature-Label vs Feature-Only222

Here we examine how noise affects success for the feature-label vs feature-only strategy. We fix223

a level of participation and examine how success changes as noise increases. Figure 3 shows the224

decline in success for feature-label and feature-only strategies as a function of the percentage of the225

collective subject to noise. We examine three cases, a feature-label scenario where noise is applied226

to both the feature and the label (Figure 3a), a feature-label scenario where noise is applied to just227

the feature (Figure 3b) and the feature-only scenario (Figure 3c).228

In Figure 3a we see with moderate levels of participation (0.5%) that noise has a major impact (from229

nearly 100% success rate to below 60%). Even at higher levels of participation (1%) we see, at the230

high end, noise impacting success. However, in Figure 3b, we see relative robustness to noise at231

the higher levels of participation (0.5% and above). The impact of noise in the feature-only strategy232

is a more gradual decline (comparisons are not apples to apples because the feature-only strategy233

requires higher participation levels for comparable success). Overall, noise that affects labels has a234

more significant impact on a collective’s success.235

6.3 RQ3: Impact of Baseline Frequency236

Here, we examine how noise impacts target classes that appear more frequently in the P0 distribution237

compared to less commonly seen ones. Figure 4 shows the impact for feature-label strategies. We238

find that, counterintuitively, at higher levels of participation (e.g 0.25% and above) low baseline239

classes are less susceptible to noise. The opposite holds true in Figure 5, where the high frequency240

target class sees some change (some positive/some negative) with the presence of noise, the low241

frequency target class is mostly negatively affected by noise. This could be since, unlike in the242

feature-label strategy, the feature-only strategy cannot boost the presence of a target class in the243

training data ; diluting the signal with noise may more directly impact success.244
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Figure 3: Impact of noise (Random-Subset) on different strategies. We consider various levels of
noise for differing levels of participation. Each curve represents a fixed level of participation. The
x-axis is the percentage of that group subject to noise. The left represents the feature-label strategy
subject to noise on both the features and the labels. The middle represents the feature-label strategy
where only the features are subject to noise. The right figure shows the feature-only strategy. We find
that when noise affects both the feature and label, the decline in success is significant - especially at
lower levels of participation. When noise just affects the inputs, the declines are more modest.
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Figure 4: Interaction between underlying frequency and susceptibility to noise (Random-subset) for
feature-label strategy. Here we see for moderate levels of participation (0.25% and above), the low
baseline scenario is more robust to noise.

7 Discussion245

7.1 Analysis on Multiple Collectives246

[KVKS25] examined how two distinct collectives with different objectives impact each other’s effi-247

cacy – in short, when the same signal set is being used to target different classes, both collective’s248

success rate is greatly reduced. This can be explained by the suboptimality gap (∆2
1(y

∗
1)) and the249

cross-signal overlap (P2(X1)). This overlap will be high since the two groups use the same signal.250

Because they are targeting two different classes, the suboptimality gap may also be large. They also251

find a case where two collectives, with different target classes and different character usage, still252

sinks both of their success rates. This can also be explained by the cross-signal overlap - if these253

character modifications look sufficiently “close” to each other, this term may be large and cause254

conflicts.255

7.2 Trade-offs on Size and Noise256

As strategic behavior on algorithmic systems continues to grow, understanding how deviations from257

a single, unified collective impact on a group’s objective is crucial for both organizers of collective258

action and system developers. [XZF+25] observes the heterogeneity of members of a fan collective259

in terms of the actions available (e.g based on device type), as well as the detailed instructions they260

must give to others, which provides room for misinterpretation. This is also similar to parts of a261

collective action framework mentioned in [KVKS25] regarding the action availability and collective262

construction (i.e how the group is organized).263
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Figure 5: Impact of noise (Random-subset) on the feature-only strategy. Compared to the feature-
label strategy, both the high and low frequencies cases are impacted by noise across differing par-
ticipation levels. The high frequency case, however, sees more gradual declines in the success rate
compared to the low frequency case.

This theoretical analysis can also be used to help define how and where organizers can place re-264

sources. In particular, organizers can try to determine whether increasing the size of the collective265

(α1) is worth the trade-off in potentially increasing cross signal overlap, P2(X1), or suboptimality266

gap, ∆2
1(y

∗
1). This trade-off has a traditional analogy in managing common pool resources [Ost90]:267

the importance of smaller, homogeneous groups to overcome barriers in collective action. We see268

it is possible that a smaller group with less noise may be able to outperform a larger group. In269

Figure 3a we observe a collective of size 0.25% with 10% noise rate outperforms a collective of270

size 0.5% at 40% noise rate. Noise here can be used to characterize a group’s coordination effi-271

ciency. Different types of collectives and algorithmic systems might exhibit trade-offs between size272

and minimizing noise (if such a trade-off exists). For organizers of collective action knowledge of273

these characteristics can help to decide whether resources should be allocated to expand the total274

collective size or to more tightly coordinate within a small group.275

7.3 Broader Impacts276

Algorithmic collective action can generally be used when there’s a difference between the goals of277

those who generate data and are affected by models and those who train and deploy them. Our278

aim is to continue the work on promoting socially valuable use cases of collective action ([FS22,279

AHJ+22]); however, we recognize that there could be malicious use cases. We believe that model280

developers should be aware of the strategic behavior that can lead to different data distributions.281

7.4 Limitations and Future Work282

We assumed that we could easily segregate between distributions. In some cases, this may be more283

natural (multiple collectives) while in others (benign noise) may be difficult to do in practice. We284

also considered a limited set of “noise” variations on a small set of data. Future work could explore285

more ecologically motivated types of deviations, including non-independent noise and adversarial286

actions. We also only considered a small classification task, different types of learning paradigms287

may be affected by noise differently – this would be an important avenue for future work.288

8 Conclusion289

We investigated the role of multiple distributions on the success of collective action. We derived290

lower bounds on the success rate in relation to the cross-signal overlap and suboptimality gap. We291

empirically evaluated noise in collective action. We found that noise variation matters, and that292

noise that affects labels more severally impacts collective action. We note that, for organizers, un-293

derstanding the trade-offs between group size and the potential noise is important; different systems294

and types of actions may push organizers to invest more in effective coordination in a small group295

vs expansion. As strategic interest on algorithmic systems grows, both developers of algorithms296

and organizers of collective action must be aware of the potential that differing distributions has on297

system outcomes.298
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A Notation Table391

We use considerable notation for defining relationship between collectives. Here we provide a con-392

cise table for referencing these symbols.393

Symbol Description

TV (·, ·) Total variation distance between two distributions
ϵ1 Suboptimality of the classifier
f Classifier trained on the mixture distribution
X The entire feature space
Y The set of labels
Z The space of all training data X × Y
P Observed mixture distribution
P0 Base (non-strategic) data distribution
P1 Distribution induced by collective one’s intended strategy
P2 Distribution induced by noise or a second collective’s behavior
h1, h2 Strategies applied by collectives or noisy actors
g1, g2 Signal planting functions that modify the input x
α1, α2 Fraction of population following strategy h1, h2 respectively
α Total participating fraction: α = α1 + α2

r Proportion of correctly aligned members: r = α1

α

X1,X2 Signal set induced by g (e.g X1 = {g1(x) | x ∈ X})
Pi(Xj) Cross-signal overlap of Pi on signal set Xj

∆j
i (y

∗) Suboptimality gap for Xi under Pj

S(α1) Success probability for collective one
y∗1 Target class label for collective one

Table 2: Summary of notation used in the paper.

B Experimental Details394

As described in the main body we finetune a distilbert-based-uncased [SDCW19] for five395

epochs with default hyperparameters using Hugging Face transformer library [WDS+20]. This396

experimental setting is the same as [HMMDZ23, KVKS25]. The resume dataset from [JT21] was397

split into 20,000 training points and 5,000 test points. The default or baseline strategy was to place398

a specific character (in this case the ‘{’ character) every 20 words. We evaluated on targeting the399

‘Software Developer’ class, except for the ‘low frequency class’ where the target was ‘Database400

Administrator.’401

During training, each training point is select with a probability r (the noise fraction) to be affected402

by a specific noise condition. If the point was selected to be noised, the noise would be applied to403

the text, and, for certain contains, the label as well.404

Random-Subset: Instead of the intended character, a character from the list [U+2E18, ‘!’, ‘?’, ‘·’]405

was selected uniformly at random to be used.406

Random-Full: Same as above, but the character chosen was from the set of all single characters in407

the vocabulary of the tokenizer.408

Displaced-Original: Keep the intended character, but instead of placing every 20 words, choose409

uniformly at random (5-30 instances) places to insert the character.410

Displaced-Full: Combine the character selection of Random-Full with the placement behavior of411

Displaced-Original.412
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To evaluate whether the signal was planted successfully, for each data point in the test set, we applied413

the “true” signal and evaluated whether the trained classifier would predict the target class. We used414

the top-one accuracy as done in [HMMDZ23] as the metric of success.415

All experimental conditions were run 15 times. Experiments were run on a ppc64le based cluster416

with V100 Nvidia GPUs. Each iteration took 30− 40 minutes to complete.417

C Proof of Theorem 3418

We restate the theorem here:419

Theorem. Consider distribution P1 and P2 which are distributed according to h1(x) and h2(x)
respectively, where x ∼ P0. Let y∗1 be the target class. Then success for the first collective against
an ϵ1 classifier to be lower bounded by

S(α1) ≥ 1− α2

α1
P2(X1)

(1− ϵ1)∆
2
1(y

∗
1) + ϵ1

1− 2ϵ1
− 1− α

α1
P0(X1)

(1− ϵ1)∆
0
1(y

∗
1) + ϵ1

1− 2ϵ1

Proof. We follow the same proof strategy as [HMMDZ23].420

We consider the multiple distributions present the overall data distribution P P0 base distribution;421

P1 group 1’s distribution; P2 group 2’s distribution422

We write the mixture distribution as :423

P(x, y∗1) = α1P1(x, y
∗
1) + α2P2(x, y

∗
1) + (1− α)P0(x, y

∗
1) (1)

We also define the suboptimality gap on distribution i for signal set j and target label y∗424

∆j
i (y

∗) = max
x∈X∗

i

(max
y∈Y

Pj(y|x)− Pj(y
∗|x)) (2)

We define the suboptimality gap for a specific point x as425

∆j
i,x(y

∗) = max
y∈Y

Pj(y|x)− Pj(y
∗|x) (3)

Our goal is to find, for which value of α1 can we guarantee the model to classify a point x ∈ X1 to426

the target class y∗1427

First consider an ϵ = 0 classifier. If the model f classifies any point x ∈ X to y∗1 , it must mean that428

P(y∗1 |x) > P(y1|x) or equivalently P(x, y∗1)− P(x, y1) > 0 for every y1 ̸= y∗1 .429

In this strategy, both the features and labels are changed. Since P1 is the distribution which correctly430

performs the intended collective action, every point x∗
1 ∈ X1 maps to y∗1 . Therefore we can simplify431

and get432

P(x, y∗1) = α1P1(x) + α2P2(x, y
∗
1) + (1− α)P0(x, y

∗
1)

Now, for y ̸= y∗1 we have433

P(x, y) = α1P1(x, y) + α2P2(x, y) + (1− α)P0(x, y)

Given P1 maps everything to y∗1 and nothing else this first term is 0 so we can write simplify to434

P(x, y) = α2P2(x, y) + (1− α)P0(x, y)

So we can write P(x, y∗1)− P(x, y) > 0 as435

α1P1(x) + α2P2(x, y
∗
1) + (1− α)P0(x, y

∗
1)− (α2P2(x, y) + (1− α)P0(x, y)) > 0

After rearranging we have436
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α1P1(x) ≥ α2P2(x) ∗ (P2(y|x)− P2(y1|x)) + (1− α)P0(x)(P0(y|x)− P0(y
∗
1 |x))

This must hold true for any y so we can replace the rhs terms by ∆j
i,x(y

∗), in other words we have437

a sufficient condition for the size of α1 as438

α1 ≥ P2(x)

P1(x)
α2∆

2
1,x(y

∗
1) +

P0(x)

P1(x)
(1− α)∆0

1,x(y
∗
1)

S(α) = Pr
x∼P1

{f(x) = y∗1}

≥ Pr
x∼P1

{
α1 ≥ P2(x)

P1(x)
α2∆

2
1,x(y

∗
1) +

P0(x)

P1(x)
(1− α)∆0

1,x(y
∗
1)

}

= E
x∼P1

1

{
α1 ≥ P2(x)

P1(x)
α2∆

2
1,x(y

∗
1) +

P0(x)

P1(x)
(1− α)∆0

1,x(y
∗
1)

}

= E
x∼P1

1

{
1− P2(x)

P1(x)

α2

α1
∆2

1,x(y
∗
1)−

P0(x)

P1(x)

1− α

α1
∆0

1,x(y
∗
1) ≥ 0

}

≥ E
x∼P1

[
1− P2(x)

P1(x)

α2

α1
∆2

1,x(y
∗
1)−

P0(x)

P1(x)

1− α

α1
∆0

1,x(y
∗
1)

]
1− α2

α1
Ex∼P1

[P2(x)

P1(x)
∆2

1,x(y
∗
1)

]
− 1− α

α1
Ex∼P1

[P0(x)

P1(x)
∆0

1,x(y
∗
1)

]
≥ 1− α2

α1
P2(X1)∆

2
1(y

∗
1)−

1− α

α1
P0(X1)∆

0
1(y

∗
1)

With the final line using the fact that the delta we max over all x’s439

Now for distribution where TV (P, P ′) ≤ ϵ1. By Lemma 11 in [HMMDZ23] we have that440

P ′(y∗|x) > P ′(y|x) when P(y∗|x) > P(y|x) + ϵ1
1−ϵ1

441

We than write this as
P(y∗1 |x)P(x) > P(y|x)P(x) +

ϵ1
1− ϵ1

P(x)

Following the same steps, procedure as before we get442

α1 > α2
P2(x)

P1(x)

(
(1− ϵ1)∆

1
2(y

∗
1) + ϵ1

1 + 2ϵ1

)
+(1− α)

P0(x)

P1(x)

(
(1− ϵ1)∆

1
0(y

∗
1) + ϵ1

1 + 2ϵ1

)
Computing the S(α1) again we get the condition we get443

S(α1) ≥ 1− α2

α1
P2(X1) ·

(1− ϵ1)∆
1
2(y

∗
1) + ϵ1

1− 2ϵ1
− 1− α

α1
P0(X1)

(1− ϵ1)∆
1
0(y

∗
1) + ϵ1

1− 2ϵ1

444

D Proof of Theorem 4445

We restate the theorem:446

Theorem (Feature-only with two distributions). Consider distribution P1 and P2 which are dis-
tributed by h1(x) and h2(x) respectively, where x ∼ P0. Suppose there exist a p such that
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P0(y
∗|x) ≥ p,∀x ∈ X . Then success for the first collective against an ϵ1 classifier (against P ∗

1 ) is
lower bounded by

S(α1) ≥ 1− α2

α1
· P2(X

∗
1 ) ·∆2

1(y
∗)(1− ϵ1)

p(1− ϵ1)− ϵ1
− 1− α

α
P0(X1) ·

(1− p)(1− ϵ1) + ϵ1
p(1− ϵ1)− ϵ1

Proof. Similar to Theorem 3, we start with the ϵ = 0. We require that, for any x∗ ∈ X1 that447

P(y∗1 |x∗) > P(y|x∗) ∀y ̸= y∗1 . This is equivalent to P(x∗, y∗1) > P(x∗, y) Our goal is find a448

sufficient condition for α1449

We get a lower bound for P(x∗, y∗) by writing the mixture distribution as.

P(x∗, y∗) = α1P1(x
∗, y∗) + α2P2(x

∗, y∗) + (1− α)P0(x
∗, y∗) ≥ αP1(x

∗, y∗) + α2P2(x
∗, y∗)

where α = α1 + α2450

We also have when y ̸= y∗1 that

P(x∗, y) = α1P1(x
∗, y) + α2P2(x

∗, y) + (1− α)P0(x
∗, y) = α2P2(x

∗, y) + (1− α)P0(x
∗, y)

Hence if
α1P1(x

∗, y∗) + α2P2(x
∗, y∗) ≥ α2P2(x

∗, y) + (1− α)P0(x
∗, y)

than P(x∗, y∗) > P(x∗, y)451

Rearranging we have

α1P1(x
∗, y∗) ≥ α2P2(x

∗, y)− α2P2(x
∗, y∗) + (1− α)P0(x

∗, y)

α1P1(x
∗, y∗) ≥ α2P2(x

∗)(P2(y|x∗)− P2(y
∗|x∗)) + (1− α)P0(y|x∗)P0(x

∗)

α1 ≥ α2P2(x
∗)(P2(y|x∗)− P2(y

∗|x∗))
P1(x∗, y∗)

+ (1− α)
P0(y|x∗)P0(x

∗)
P1(x∗, y∗)

For our bound on α1 we seek to maximize the rhs. We can do this by upper bounding P2(y|x∗) −452

P2(y
∗|x∗)) by the suboptimality gap ∆2

1. By assumption we have that P0(y
∗|x) ≥ p for all x ∈ X453

and hence P0(y|x∗) ≤ 1 − p. For the denominator we note that P1(x
∗, y∗) ≥ P0(g

−1(x∗), y∗) ≥454

pP0(g
−1(x∗) Using this lowerbound in the denominator we get our required alpha must be at least455

α1 ≥ α2 ·
P2(x

∗)∆2
1

pP0(g−1(x∗))
+ (1− α)

(1− p)P0(x
∗)

pP0(g−1(x∗))

To compute the success rate we have

S(α) = Prx∼P∗
0
{f(g(x)) = y∗}

S =
∑

x∗∈X1

Pr
x∼P∗

0

{f(g(x)) = y∗|x ∈ g−1(x∗)}Prx∈P0{x ∈ g−1(x∗)}

S =
∑

x∗∈X1

1{f(x∗) = y∗}P0(g
−1(x∗))}

For a given fixed x∗ we have

1

{
f(x∗) = y∗

}
≥ 1

{
α1 ≥ α2 ·

P2(x
∗)∆2

1

pP0(g−1(x∗))
+ (1− α)

(1− p)P0(x
∗)

pP0(g−1(x∗))

}

= 1

{
1− α2

α1
· P2(x

∗)∆2
1

pP0(g−1(x∗))
− (1− α)

α1

(1− p)P0(x
∗)

pP0(g−1(x∗))
> 0

}
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≥ 1− α2

α1
· P2(x

∗)∆2
1

pP0(g−1(x∗))
− (1− α)

α1

(1− p)P0(x
∗)

pP0(g−1(x∗))

Computing the summation we get456

Prx∼P∗
0
{f(g(x)) = y∗}

= 1−
∑

x∗∈X1

α2

α1
· P2(x

∗)∆2
1

pP0(g−1(x∗))
· P0(g

−1
1 (x∗))−

∑
x∗∈X1

(1− α)

α1

(1− p)P0(x
∗)

pP0(g−1(x∗))
· P0(g

−1
1 (x∗))

≥ 1− α2

pα1
P2(X1)∆

2
1 −

(1− α) · (1− p)

pα1
P0(X

∗)

Which gives us the ϵ = 0 case.457

When considering ϵ > 0, we again cite Lemma 11 in [HMMDZ23], that: P(x∗, y∗) > P(x∗, y) +458
ϵ

1−ϵP(x∗)459

Expanding all terms out with the mixture distribution we have

P(x∗, y) = αP1(x
∗, y∗)+α2P2(x

∗, y∗)+(1−α1−α2)P0(x
∗, y∗) ≥ αP1(x

∗, y∗)+α2P2(x
∗, y∗)

Plugging this into our expression we have460

αP1(x
∗, y∗)+α2P2(x

∗, y∗) > α2∗P2(x
∗, y)+(1−α)P0(x

∗, y)+
ϵ

1− ϵ
(αP1(x

∗)+α2P2(x
∗)+(1−α)P0(x

∗))

Using conditionals we can rewrite this as461

α1P1(y
∗|x∗)P1(x

∗) + α2P2(y
∗|x∗)P2(x

∗) >

α2 ∗P2(y|x∗)P2(x
∗)+ (1−α)P0(y|x∗)P0(x

∗)+
ϵ

1− ϵ
(α1P1(x

∗)+α2P2(x
∗)+ (1−α)P0(x

∗))

Rearranging with α1 we get462

α1 > α2
P2(x

∗)
P1(x∗)

· (P2(y|x∗)− P2(y
∗|x∗))

P1(y∗|x∗)− ϵ
1−ϵ

+ (1− α)
P0(x

∗)
P1(x∗)

·
(P0(y|x∗) + ϵ

1−ϵ )

(P1(y∗|x∗)− ϵ
1−ϵ )

We note that P2(y|x∗)−P2(y
∗|x∗) can be upper bounded by ∆2

1(y
∗) We can also upper bound and463

lower bound the numerators and denominators with the following expressions464

P1(x
∗) ≥ P0(g

−1(x∗)) as every point x∗ for P1 is mapped from some point in P0 and likewise465

P1(y
∗|x∗) ≥ P0(y

∗|g−1
1 (x∗)) ≥ p From the support of P0(y

∗
1 |x) ≥ p we have P0(y|x∗) ≤ 1 − p466

for y ̸= y∗1467

All together we get468

α1 > α2
P2(x

∗)

P0(g
−1
1 (x∗))

· ∆2
1(y

∗)
p− ϵ

1−ϵ

+ (1− α)
P0(x

∗)

P0(g
−1
1 (x∗))

·
(1− p+ ϵ

1−ϵ )

(p− ϵ
1−ϵ )

With this we can compute the expected value as above469

For a given fixed x∗ we have

1

{
f(x∗) = y∗

}
≥ 1

{
α1 > α2

P2(x
∗)

P0(g
−1
1 (x∗))

· ∆
2
1(y

∗)
p− ϵ

1−ϵ

+ (1−α)
P0(x

∗)

P0(g
−1
1 (x∗))

·
(1− p+ ϵ

1−ϵ )

(p− ϵ
1−ϵ )

}
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= 1

{
1− α2

α1

P2(x
∗)

P0(g
−1
1 (x∗))

· ∆2
1(y

∗)
p− ϵ

1−ϵ

− 1− α

α1

P0(x
∗)

P0(g
−1
1 (x∗))

·
(1− p+ ϵ

1−ϵ )

(p− ϵ
1−ϵ )

> 0

}

≥ 1− α2

α1

P2(x
∗)

P0(g
−1
1 (x∗))

· ∆2
1(y

∗)
p− ϵ

1−ϵ

− 1− α

α1

P0(x
∗)

P0(g
−1
1 (x∗))

·
(1− p+ ϵ

1−ϵ )

(p− ϵ
1−ϵ )

Plugging back in we get470

Prx∼P∗
0
{f(g(x)) = y∗}

= 1−
∑

x∗∈X1

α2

α1

P2(x
∗)

P0(g
−1
1 (x∗))

· ∆
2
1(y

∗)
p− ϵ

1−ϵ

·P0(g
−1
1 (x∗))−

∑
x∗∈X1

1− α

α1

P0(x
∗)

P0(g
−1
1 (x∗))

·
(1− p+ ϵ

1−ϵ )

(p− ϵ
1−ϵ )

·P0(g
−1
1 (x∗))

≥ 1− α2

α1
· P2(X

∗) ·∆2
1(y

∗)
p− ϵ

1−ϵ

− 1− α

α
P0(X

∗) ·
1− p+ ϵ

1−ϵ

p− ϵ
1−ϵ

≥ 1− α2

α1
· P2(X

∗) ·∆2
1(y

∗)(1− ϵ)

p(1− ϵ)− ϵ
− 1− α

α
P0(X

∗) · (1− p)(1− ϵ) + ϵ

p(1− ϵ)− ϵ

471

E Extension to many collectives472

We can extend the mixture distribution to include an arbitrary number of distributions. This can be
written as

P =

n∑
i=1

αiPi + (1− α)P0

where α =
∑n

i=1 αi473

By following the same procedure in Appendix C we provide a claim for success for collective one474

against an arbitrary number of distributions.475

Theorem 5. The success of collective action for the feature-label strategy against many distributions
is lower bounded by

S(α1) ≥ 1− 1− α

α1
P0(X1)

(1− ϵ1)∆
1
0(y

∗
1) + ϵ1

1− 2ϵ1
−

n∑
i=2

αi

α1
Pi(X1) ·

(1− ϵ1)∆
1
i (y

∗
1) + ϵ1

1− 2ϵ1

Proof. We repeat the same expansion in Appendix C for an arbitrary number of distributions.

P =

n∑
i=1

αiPi + (1− α)P0

The rest follows the same procedure, as each additional mixture term can be handled independently.476

477

We can do the same for feature-only strategies.478

Theorem 6. The success of collective action for the feature-only strategy against many distributions
is lower bounded by

≥ 1− 1− α

α
P0(X

∗) · (1− p)(1− ϵ) + ϵ

p(1− ϵ)− ϵ
−

n∑
i=2

αi

α1
· Pi(X1) ·∆i

1(y
∗
1)(1− ϵ)

p(1− ϵ)− ϵ

Proof. We repeat the same expansion in Appendix D for an arbitrary number of distributions with479

the same expansion of the mixture distribution and the rest follows the same procedure, as each480

additional mixture term can be handled independently.481
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NeurIPS Paper Checklist482

The checklist is designed to encourage best practices for responsible machine learning research,483

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-484

move the checklist: The papers not including the checklist will be desk rejected. The checklist485

should follow the references and follow the (optional) supplemental material. The checklist does486

NOT count towards the page limit.487

Please read the checklist guidelines carefully for information on how to answer these questions. For488

each question in the checklist:489

• You should answer [Yes] , [No] , or [NA] .490

• [NA] means either that the question is Not Applicable for that particular paper or the491

relevant information is Not Available.492

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).493

The checklist answers are an integral part of your paper submission. They are visible to the494

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it495

(after eventual revisions) with the final version of your paper, and its final version will be published496

with the paper.497

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-498

ation. While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No]499

” provided a proper justification is given (e.g., ”error bars are not reported because it would be too500

computationally expensive” or ”we were unable to find the license for the dataset we used”). In501

general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased502

in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your503

best judgment and write a justification to elaborate. All supporting evidence can appear either in the504

main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,505

in the justification please point to the section(s) where related material for the question can be found.506

IMPORTANT, please:507

• Delete this instruction block, but keep the section heading “NeurIPS Paper Check-508

list”,509

• Keep the checklist subsection headings, questions/answers and guidelines below.510

• Do not modify the questions and only use the provided macros for your answers.511

1. Claims512

Question: Do the main claims made in the abstract and introduction accurately reflect the513

paper’s contributions and scope?514

Answer: [Yes]515

Justification: The claims in the abstract and introduction are backed by results and the516

discussion.517

Guidelines:518

• The answer NA means that the abstract and introduction do not include the claims519

made in the paper.520

• The abstract and/or introduction should clearly state the claims made, including the521

contributions made in the paper and important assumptions and limitations. A No or522

NA answer to this question will not be perceived well by the reviewers.523

• The claims made should match theoretical and experimental results, and reflect how524

much the results can be expected to generalize to other settings.525

• It is fine to include aspirational goals as motivation as long as it is clear that these526

goals are not attained by the paper.527

2. Limitations528

Question: Does the paper discuss the limitations of the work performed by the authors?529

Answer: [Yes]530
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Justification: There is a separate Liminations section that discusses them.531

Guidelines:532

• The answer NA means that the paper has no limitation while the answer No means533

that the paper has limitations, but those are not discussed in the paper.534

• The authors are encouraged to create a separate ”Limitations” section in their paper.535

• The paper should point out any strong assumptions and how robust the results are to536

violations of these assumptions (e.g., independence assumptions, noiseless settings,537

model well-specification, asymptotic approximations only holding locally). The au-538

thors should reflect on how these assumptions might be violated in practice and what539

the implications would be.540

• The authors should reflect on the scope of the claims made, e.g., if the approach was541

only tested on a few datasets or with a few runs. In general, empirical results often542

depend on implicit assumptions, which should be articulated.543

• The authors should reflect on the factors that influence the performance of the ap-544

proach. For example, a facial recognition algorithm may perform poorly when image545

resolution is low or images are taken in low lighting. Or a speech-to-text system might546

not be used reliably to provide closed captions for online lectures because it fails to547

handle technical jargon.548

• The authors should discuss the computational efficiency of the proposed algorithms549

and how they scale with dataset size.550

• If applicable, the authors should discuss possible limitations of their approach to ad-551

dress problems of privacy and fairness.552

• While the authors might fear that complete honesty about limitations might be used by553

reviewers as grounds for rejection, a worse outcome might be that reviewers discover554

limitations that aren’t acknowledged in the paper. The authors should use their best555

judgment and recognize that individual actions in favor of transparency play an impor-556

tant role in developing norms that preserve the integrity of the community. Reviewers557

will be specifically instructed to not penalize honesty concerning limitations.558

3. Theory assumptions and proofs559

Question: For each theoretical result, does the paper provide the full set of assumptions and560

a complete (and correct) proof?561

Answer: [Yes]562

Justification: We state the assumptions in the text and provide the full proof in the technical563

appendix.564

Guidelines:565

• The answer NA means that the paper does not include theoretical results.566

• All the theorems, formulas, and proofs in the paper should be numbered and cross-567

referenced.568

• All assumptions should be clearly stated or referenced in the statement of any theo-569

rems.570

• The proofs can either appear in the main paper or the supplemental material, but if571

they appear in the supplemental material, the authors are encouraged to provide a572

short proof sketch to provide intuition.573

• Inversely, any informal proof provided in the core of the paper should be comple-574

mented by formal proofs provided in appendix or supplemental material.575

• Theorems and Lemmas that the proof relies upon should be properly referenced.576

4. Experimental result reproducibility577

Question: Does the paper fully disclose all the information needed to reproduce the main578

experimental results of the paper to the extent that it affects the main claims and/or conclu-579

sions of the paper (regardless of whether the code and data are provided or not)?580

Answer: [Yes]581

Justification: We provide the high level details in the main body and the detailed version in582

the Appendix. We aim to release the code upon acceptance.583
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Guidelines:584

• The answer NA means that the paper does not include experiments.585

• If the paper includes experiments, a No answer to this question will not be perceived586

well by the reviewers: Making the paper reproducible is important, regardless of587

whether the code and data are provided or not.588

• If the contribution is a dataset and/or model, the authors should describe the steps589

taken to make their results reproducible or verifiable.590

• Depending on the contribution, reproducibility can be accomplished in various ways.591

For example, if the contribution is a novel architecture, describing the architecture592

fully might suffice, or if the contribution is a specific model and empirical evaluation,593

it may be necessary to either make it possible for others to replicate the model with594

the same dataset, or provide access to the model. In general. releasing code and data595

is often one good way to accomplish this, but reproducibility can also be provided via596

detailed instructions for how to replicate the results, access to a hosted model (e.g., in597

the case of a large language model), releasing of a model checkpoint, or other means598

that are appropriate to the research performed.599

• While NeurIPS does not require releasing code, the conference does require all sub-600

missions to provide some reasonable avenue for reproducibility, which may depend601

on the nature of the contribution. For example602

(a) If the contribution is primarily a new algorithm, the paper should make it clear603

how to reproduce that algorithm.604

(b) If the contribution is primarily a new model architecture, the paper should describe605

the architecture clearly and fully.606

(c) If the contribution is a new model (e.g., a large language model), then there should607

either be a way to access this model for reproducing the results or a way to re-608

produce the model (e.g., with an open-source dataset or instructions for how to609

construct the dataset).610

(d) We recognize that reproducibility may be tricky in some cases, in which case au-611

thors are welcome to describe the particular way they provide for reproducibility.612

In the case of closed-source models, it may be that access to the model is limited in613

some way (e.g., to registered users), but it should be possible for other researchers614

to have some path to reproducing or verifying the results.615

5. Open access to data and code616

Question: Does the paper provide open access to the data and code, with sufficient instruc-617

tions to faithfully reproduce the main experimental results, as described in supplemental618

material?619

Answer: [Yes]620

Justification: Code will be open sourced if accepted as well as provided to reviewers in a621

supplemental section.622

Guidelines:623

• The answer NA means that paper does not include experiments requiring code.624

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/625

public/guides/CodeSubmissionPolicy) for more details.626

• While we encourage the release of code and data, we understand that this might not627

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not628

including code, unless this is central to the contribution (e.g., for a new open-source629

benchmark).630

• The instructions should contain the exact command and environment needed to run to631

reproduce the results. See the NeurIPS code and data submission guidelines (https:632

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.633

• The authors should provide instructions on data access and preparation, including how634

to access the raw data, preprocessed data, intermediate data, and generated data, etc.635

• The authors should provide scripts to reproduce all experimental results for the new636

proposed method and baselines. If only a subset of experiments are reproducible, they637

should state which ones are omitted from the script and why.638
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• At submission time, to preserve anonymity, the authors should release anonymized639

versions (if applicable).640

• Providing as much information as possible in supplemental material (appended to the641

paper) is recommended, but including URLs to data and code is permitted.642

6. Experimental setting/details643

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-644

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the645

results?646

Answer: [Yes]647

Justification: We provide them in the Appendix.648

Guidelines:649

• The answer NA means that the paper does not include experiments.650

• The experimental setting should be presented in the core of the paper to a level of651

detail that is necessary to appreciate the results and make sense of them.652

• The full details can be provided either with the code, in appendix, or as supplemental653

material.654

7. Experiment statistical significance655

Question: Does the paper report error bars suitably and correctly defined or other appropri-656

ate information about the statistical significance of the experiments?657

Answer: [Yes]658

Justification: We provide 1 STD error bars to all plots.659

Guidelines:660

• The answer NA means that the paper does not include experiments.661

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-662

dence intervals, or statistical significance tests, at least for the experiments that support663

the main claims of the paper.664

• The factors of variability that the error bars are capturing should be clearly stated (for665

example, train/test split, initialization, random drawing of some parameter, or overall666

run with given experimental conditions).667

• The method for calculating the error bars should be explained (closed form formula,668

call to a library function, bootstrap, etc.)669

• The assumptions made should be given (e.g., Normally distributed errors).670

• It should be clear whether the error bar is the standard deviation or the standard error671

of the mean.672

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-673

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of674

Normality of errors is not verified.675

• For asymmetric distributions, the authors should be careful not to show in tables or676

figures symmetric error bars that would yield results that are out of range (e.g. negative677

error rates).678

• If error bars are reported in tables or plots, The authors should explain in the text how679

they were calculated and reference the corresponding figures or tables in the text.680

8. Experiments compute resources681

Question: For each experiment, does the paper provide sufficient information on the com-682

puter resources (type of compute workers, memory, time of execution) needed to reproduce683

the experiments?684

Answer: [Yes]685

Justification: We provide the GPU and architecture that was used and the time per itera-686

tions.687

Guidelines:688

• The answer NA means that the paper does not include experiments.689
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,690

or cloud provider, including relevant memory and storage.691

• The paper should provide the amount of compute required for each of the individual692

experimental runs as well as estimate the total compute.693

• The paper should disclose whether the full research project required more compute694

than the experiments reported in the paper (e.g., preliminary or failed experiments695

that didn’t make it into the paper).696

9. Code of ethics697

Question: Does the research conducted in the paper conform, in every respect, with the698

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?699

Answer: [Yes]700

Justification: We abide by all ethical considerations in conducting this research.701

Guidelines:702

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.703

• If the authors answer No, they should explain the special circumstances that require a704

deviation from the Code of Ethics.705

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-706

eration due to laws or regulations in their jurisdiction).707

10. Broader impacts708

Question: Does the paper discuss both potential positive societal impacts and negative709

societal impacts of the work performed?710

Answer: [Yes]711

Justification: We mention some of the socially important use cases of this work in the712

introduction, and in the Discussion we mention that, while we intend for this analysis to713

improve social impacts, we recognize, that with any data driven system, there are potential714

negative ramifications.715

Guidelines:716

• The answer NA means that there is no societal impact of the work performed.717

• If the authors answer NA or No, they should explain why their work has no societal718

impact or why the paper does not address societal impact.719

• Examples of negative societal impacts include potential malicious or unintended uses720

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations721

(e.g., deployment of technologies that could make decisions that unfairly impact spe-722

cific groups), privacy considerations, and security considerations.723

• The conference expects that many papers will be foundational research and not tied724

to particular applications, let alone deployments. However, if there is a direct path to725

any negative applications, the authors should point it out. For example, it is legitimate726

to point out that an improvement in the quality of generative models could be used to727

generate deepfakes for disinformation. On the other hand, it is not needed to point out728

that a generic algorithm for optimizing neural networks could enable people to train729

models that generate Deepfakes faster.730

• The authors should consider possible harms that could arise when the technology is731

being used as intended and functioning correctly, harms that could arise when the732

technology is being used as intended but gives incorrect results, and harms following733

from (intentional or unintentional) misuse of the technology.734

• If there are negative societal impacts, the authors could also discuss possible mitiga-735

tion strategies (e.g., gated release of models, providing defenses in addition to attacks,736

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from737

feedback over time, improving the efficiency and accessibility of ML).738

11. Safeguards739

Question: Does the paper describe safeguards that have been put in place for responsible740

release of data or models that have a high risk for misuse (e.g., pretrained language models,741

image generators, or scraped datasets)?742
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Answer: [NA]743

Justification: No such risk744

Guidelines:745

• The answer NA means that the paper poses no such risks.746

• Released models that have a high risk for misuse or dual-use should be released with747

necessary safeguards to allow for controlled use of the model, for example by re-748

quiring that users adhere to usage guidelines or restrictions to access the model or749

implementing safety filters.750

• Datasets that have been scraped from the Internet could pose safety risks. The authors751

should describe how they avoided releasing unsafe images.752

• We recognize that providing effective safeguards is challenging, and many papers do753

not require this, but we encourage authors to take this into account and make a best754

faith effort.755

12. Licenses for existing assets756

Question: Are the creators or original owners of assets (e.g., code, data, models), used in757

the paper, properly credited and are the license and terms of use explicitly mentioned and758

properly respected?759

Answer: [NA]760

Justification: Not applicable.761

Guidelines:762

• The answer NA means that the paper does not use existing assets.763

• The authors should cite the original paper that produced the code package or dataset.764

• The authors should state which version of the asset is used and, if possible, include a765

URL.766

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.767

• For scraped data from a particular source (e.g., website), the copyright and terms of768

service of that source should be provided.769

• If assets are released, the license, copyright information, and terms of use in the pack-770

age should be provided. For popular datasets, paperswithcode.com/datasets has771

curated licenses for some datasets. Their licensing guide can help determine the li-772

cense of a dataset.773

• For existing datasets that are re-packaged, both the original license and the license of774

the derived asset (if it has changed) should be provided.775

• If this information is not available online, the authors are encouraged to reach out to776

the asset’s creators.777

13. New assets778

Question: Are new assets introduced in the paper well documented and is the documenta-779

tion provided alongside the assets?780

Answer: [NA]781

Justification: None generated.782

Guidelines:783

• The answer NA means that the paper does not release new assets.784

• Researchers should communicate the details of the dataset/code/model as part of their785

submissions via structured templates. This includes details about training, license,786

limitations, etc.787

• The paper should discuss whether and how consent was obtained from people whose788

asset is used.789

• At submission time, remember to anonymize your assets (if applicable). You can790

either create an anonymized URL or include an anonymized zip file.791

14. Crowdsourcing and research with human subjects792
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Question: For crowdsourcing experiments and research with human subjects, does the pa-793

per include the full text of instructions given to participants and screenshots, if applicable,794

as well as details about compensation (if any)?795

Answer: [NA]796

Justification: Not applicable797

Guidelines:798

• The answer NA means that the paper does not involve crowdsourcing nor research799

with human subjects.800

• Including this information in the supplemental material is fine, but if the main contri-801

bution of the paper involves human subjects, then as much detail as possible should802

be included in the main paper.803

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-804

tion, or other labor should be paid at least the minimum wage in the country of the805

data collector.806

15. Institutional review board (IRB) approvals or equivalent for research with human807

subjects808

Question: Does the paper describe potential risks incurred by study participants, whether809

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)810

approvals (or an equivalent approval/review based on the requirements of your country or811

institution) were obtained?812

Answer: [NA]813

Justification: Not applicable.814

Guidelines:815

• The answer NA means that the paper does not involve crowdsourcing nor research816

with human subjects.817

• Depending on the country in which research is conducted, IRB approval (or equiva-818

lent) may be required for any human subjects research. If you obtained IRB approval,819

you should clearly state this in the paper.820

• We recognize that the procedures for this may vary significantly between institutions821

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the822

guidelines for their institution.823

• For initial submissions, do not include any information that would break anonymity824

(if applicable), such as the institution conducting the review.825

16. Declaration of LLM usage826

Question: Does the paper describe the usage of LLMs if it is an important, original, or827

non-standard component of the core methods in this research? Note that if the LLM is used828

only for writing, editing, or formatting purposes and does not impact the core methodology,829

scientific rigorousness, or originality of the research, declaration is not required.830

Answer: [NA]831

Justification: Not applicable832

Guidelines:833

• The answer NA means that the core method development in this research does not834

involve LLMs as any important, original, or non-standard components.835

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)836

for what should or should not be described.837
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