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ABSTRACT

Statistical data heterogeneity is a significant barrier to convergence in federated
learning (FL). While prior work has advanced heterogeneous FL through better
optimization objectives, these methods fall short when there is extreme data het-
erogeneity among collaborating participants. We hypothesize that convergence
under extreme data heterogeneity is primarily hindered due to the aggregation of
conflicting updates from the participants in the initial collaboration rounds. To
overcome this problem, we propose a warmup phase where each participant learns
a personalized mask and updates only a subnetwork of the full model. This per-
sonalized warmup allows the participants to focus initially on learning specific
subnetworks tailored to the heterogeneity of their data. After the warmup phase, the
participants revert to standard federated optimization, where all parameters are com-
municated. We empirically demonstrate that the proposed personalized warmup
via subnetworks (FedPeWS) approach improves accuracy and convergence speed
over standard federated optimization methods.

1 INTRODUCTION

Federated learning (FL) is a distributed learning paradigm where participants collaboratively train a
global model by performing local training on their data and periodically sharing local updates with
the server. The server, in turn, aggregates the local updates to obtain the global model, which is
then transmitted to the participants for the next round of training (McMahan et al., 2017). While
FL preserves data confidentiality by avoiding collating participant data at the server, statistical
heterogeneity between local data distributions is a significant challenge in FL (Kairouz et al., 2021).
Several attempts have been made to tackle heterogeneity via federated optimization algorithms (Wang
et al., 2019; Khaled et al., 2019; Li et al., 2020c;b; Karimireddy et al., 2020; Tupitsa et al., 2024;
Sadiev et al., 2022; Beznosikov et al., 2021), dropout (Horvath et al., 2021; Alam et al., 2022), and
batch normalization (Li et al., 2021d).

Consider the scenario where multiple hospitals collaborate to learn a medical image classification
model that works across imaging modalities and organs, where the data from each hospital pertains
to a different modality (e.g., histopathology, CT, X-ray, ultrasound, etc.) and/or organ (e.g., brain,
kidney, colon, etc.). Most of the existing heterogeneous FL algorithms fail when there is such
extreme data heterogeneity among collaborating participants, especially when the model is learned
from scratch (with random initialization). The main reason for this failure is the high degree of
conflicts between the local updates during the initial collaboration rounds. While enforcing a strong
regularization constraint on the local updates (Li et al. (2020b)) can partially alleviate this problem, it
dramatically slows down local learning and hence, convergence speed.

In this work, we explore an alternate approach to minimize the initial conflicts between heterogeneous
participants by allowing participants in FL to initially train a partial subnetwork using only their
local datasets. This warmup phase enables the participants to focus first on learning their local data
well before engaging in broader collaboration. Thus, our proposed approach can be summarized as
follows (see Figure 1). Initially, each participant uses a personalized binary mask tailored to their
data distributions, allowing them to first learn their local data distributions and optimize their local
(sparse) models. During this warmup phase, participants transmit only their masked updates to the
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Figure 1: Conceptual illustration of training personalized subnetworks in federated learning.

server, and this process continues for a certain number of collaboration rounds. At the end of the
warmup phase, the participants switch to standard federated optimization methods for subsequent
collaboration. Our contributions are as follows:

1. We introduce a novel concept in federated learning, termed as personalized warmup via
subnetworks (FedPeWS), which helps the global model to generalize to a better solution in
fewer communication rounds. This is achieved through a neuron-level personalized masking
strategy that is compatible with other FL optimization methods.

2. We propose an algorithm to identify suitable subnetworks (subset of neurons) for each
participant by simultaneously learning the personalized masks and parameter updates. The
proposed algorithm does not make any assumptions regarding the data distributions and
incorporates a mask diversity loss to improve the coverage of all neurons in the global model.

3. For simple cases involving a small number of participants with known data distributions, we
show that it is possible to skip the mask learning step and use fixed masks (that partition the
network) determined by the server. We refer to this variant as FedPeWS-Fixed.

4. We empirically demonstrate the efficacy of the FedPeWS approach under both extreme non-
i.i.d. and i.i.d. data scenarios using three datasets: a custom synthetic dataset, a combination
of MNIST and CIFAR-10 datasets, and a combination of three distinct medical datasets
(PathMNIST, OCTMNIST and TissueMNIST).

2 RELATED WORK

Collaborative Learning. FL is a distributed learning paradigm that addresses data confidentiality
concerns (Kairouz et al., 2021), particularly in environments where data can not be centralized due
to regulatory or practical reasons (Albrecht, 2016). One of the seminal FL algorithms, FedAvg
(McMahan et al., 2017), involves participants training models locally on their data and periodically
transmitting their model parameters to a central server. The server averages these parameters to update
the global model, which is then redistributed to the participants for further local refinement. FedAvg
has inspired a plethora of variants and extensions aimed at enhancing performance (Karimireddy
et al., 2020; Li et al., 2020b; Mishchenko et al., 2022), scalability (Guo et al., 2023; Al-Shedivat
et al., 2021), communication efficiency (Ullah et al., 2023; Rahimi et al., 2023; Isik et al., 2023),
privacy/confidentiality (Tastan & Nandakumar, 2023; Choquette-Choo et al., 2021; Ullah et al., 2023),
robustness (Li et al., 2019), and fairness (Xu et al., 2021; Jiang et al., 2023; Tastan et al., 2024).
For example, strategies such as weighted averaging or adaptive aggregation have been proposed
to accommodate the non-i.i.d. nature of distributed data sources − a scenario where data is not
identically distributed across all participants, which can significantly hinder model performance (Li
et al., 2020b; Wang et al., 2020b; Karimireddy et al., 2020; Li et al., 2021d; Wang et al., 2020a).
Specifically, FedProx (Li et al., 2020b) addresses data heterogeneity by integrating a proximal term
into the FedAvg framework. There is also a body of work that focuses on addressing the heterogeneity
problem through personalization-based approaches, utilizing local-centric objectives (Gasanov et al.,
2022; Hanzely et al., 2023; Yoon et al., 2021; Li et al., 2021c).
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Independent Subnet Training. Independent subnet training (IST) is a variant of distributed learning
that focuses on enhancing model personalization and reducing communication overhead by training
separate subnetworks for different participants (Yuan et al., 2022). IST distributes neurons of a fully
connected neural network disjointly across different participants, forming a group of subnets. Then,
each of these subnets is trained independently for one or more local SGD steps before synchronization.
In every round, after broadcasting the server weights, each participant gets updated neurons to focus
on, and the local subnet training continues. This approach led to different works along the line of
using subnetwork training for efficiency (Horvath et al., 2021; Jiang et al., 2022; Diao et al., 2021;
Nader et al., 2020; Alam et al., 2022; Li et al., 2021a; Mozaffari et al., 2021) in FL. In our work, we
adopt IST’s core principle of selecting neurons rather than focusing on weight values, which in turn
narrows the search space. A key distinction between our method and IST lies in how the neurons are
selected and the necessity of covering all neurons. Whilst IST typically involves random sampling
of masks in each training round by the server and full coverage of neurons, we do not randomly
sample neurons; instead, we use a learnable mask for each participant that is trained along with the
parameters, and we relax the assumption of full coverage of neurons.

Finding Subnetworks in FL. Another relevant idea is the Lottery Ticket Hypothesis (LTH) (Frankle
& Carbin, 2019), which attempts to identify subnetworks within a larger network. LTH is a model
personalization technique, which focuses on sparsifying the network to create a smaller-scale version
that improves per-round communication efficiency. In contrast to LTH, our method is directed towards
training a shared global model and simultaneously improving convergence speed (reducing number of
communication rounds). After LTH, there has been a growing interest in finding sparse and trainable
networks at initialization (Mellor et al., 2021; Ji et al., 2021; Li et al., 2020a). Recently, in (Isik et al.,
2023), sparse networks were found inside the main model to increase communication efficiency in
FL. The proposed FedPM method focuses on finding a subnetwork by freezing the model weights
and training for masks on a weight level, in contrast to IST, which works on a neuron level. FedPM
utilizes the sigmoid function to obtain probability values from unbounded mask scores and then uses
Bernoulli sampling to obtain binary masks. We use a similar approach in our FedPeWS algorithm to
learn the neuron-level personalized masks.

3 PRELIMINARIES

Our goal is to minimize a sum-structured federated learning optimization objective:

x⋆ ← argmin
x∈Rd

[
f(x) :=

1

N

N∑
i=1

fi(x)

]
, (1)

where the components fi : Rd → R are distributed among N local participants and are expressed in a
stochastic format as fi(x) := Eξ∼Di

[
Fi(x, ξ)

]
. Here,Di represents the distribution of ξ at participant

i ∈ [N ] := {1, . . . , N}. This problem encapsulates standard empirical risk minimization as a
particular case when each Di is represented by a finite set of ni elements, i.e., ξi = {ξ1i , . . . , ξ

ni
i }. In

such cases, fi simplifies to fi(x, ξi) =
1
ni

∑ni

j=1 Fi(x, ξ
j
i ). Our approach does not impose restrictive

assumptions on the data distribution Di. In fact, we specifically focus on the extreme heterogeneous
(non-i.i.d.) setting, whereDi ̸= Di′ ,∀ i ̸= i

′
and the local optimal solution x⋆

i ← argminx∈Rd fi(x)
might significantly differ from the global minimizer of the objective function in Equation 1.

We are especially interested in the supervised classification task and letMx : Z → Y be a classifier
parameterized by x. Here, Z ⊆ RD and Y = {1, 2, . . . ,M} denote the input and label spaces,
respectively, D is the input dimensionality, M is the number of classes, and d represents the number
of parameters in the modelM. We set Fi(x, ξ

j
i ) = L(Mx(z

j
i ), y

j
i ), where L is an appropriate loss

function and ξji := (zji , y
j
i ) is a labeled training sample such that zji ∈ Z and yji ∈ Y . Furthermore,

we mainly focus on the cross-silo FL setting (N is small).

Federated Averaging (FedAvg). A common approach for solving Equation 1 in the distributed
setting is FedAvg (McMahan et al., 2017). This algorithm involves the participants performing
K local steps of stochastic gradient descent (SGD) and communicating with the server over T
communication rounds. The server initializes the global model with x0

g and broadcasts it to all

3
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Algorithm 1 FedPeWS (For FedPeWS-Fixed variant, the steps highlighted in green are omitted
and instead the server sets mt

i = mi, ∀ t ∈ [W ].)

Input: Number of collaboration rounds T , number of warmup rounds W , number of local steps K,
local learning rate ηℓ, global learning rate ηg , mask learning rate ηs, λ (mask diversity weight)

1: Initialize x0
g and s0g , compute θ0g = σ(s0g)

2: for t = 1, . . . , T do
3: if t > W then // Use all parameters after warmup
4: Set mt

i = 1, i.e., mi(ℓ) = 1, ∀ ℓ ∈ [d]
5: end if
6: Server sends global model xt−1

g and global mask probability θt−1
g to all clients i ∈ [N ]

7: for client i ∈ [N ] in parallel do
8: Initialize local model xt,0

i ← xt−1
g

9: st,0i ← s0g if t = 1 else st,0i ← st−1,K
i endif

10: for k = 1, . . . ,K do
11: Procedure I: Freeze model weights xt,k−1

i

12: Optimize over s: Ls = fi

(
xt,k−1
i ⊙ G

(
st,k−1
i

)
, ξt,k−1

i

)
− λ∥σ

(
st,k−1
i

)
− θt−1

g\{i}∥
2
2

13: Update: st,ki ← st,k−1
i − ηs∇sLs

14: Procedure II. Freeze mask score vector st,ki

15: Optimize over x : Lx = fi

(
xt,k−1
i ⊙ G

(
st,ki

)
, ξt,k−1

i

)
16: Update: xt,k

i ← xt,k−1
i − ηℓ∇xLx

17: end for
18: Compute mt

i = G(s
t,K
i ) and upload xt

i ← xt,K
i , mt

i to server
19: end for

20: xt
g = xt−1

g − ηg

(
xt−1
g −

∑
i∈[N ] x

t
i ⊙mt

i∑
i∈[N ] m

t
i

)
21: end for

participants, which is then used to initialize the local models, i.e., x1,0
i = x0

g . In each communication
round, the updates from the participants are averaged on the server and sent back to all participants.
For a local step k ∈ [K], communication round t ∈ [T ], and participant i ∈ [N ], the local and global
iterates are updated as:

xt,k
i = xt,k−1

i −ηℓ∇fi
(
xt,k−1
i , ξt,k−1

i

)
, xt

i = xt,K
i , and xt

g = xt−1
g −ηg(x

t−1
g − 1

N

N∑
i=1

xt
i), (2)

where ηℓ and ηg are the local and global learning rates, respectively. The server then broadcasts the
updated global model xt

g to all participants, which is then used to reinitialize the local models as
xt+1,0
i = xt

g .

In the FedAvg algorithm, the number of communication rounds necessary to achieve a certain
precision is directly proportional to the heterogeneity measure (Li et al., 2020c). Notably, this
relationship holds true in convex settings; however, in non-convex scenarios, the algorithm may
either not converge or may converge to a suboptimal solution. Stemming from this observation, our
objective is to reduce the number of requisite communication rounds to achieve convergence, while
simultaneously achieving a better solution.

4 PROPOSED FEDPEWS METHOD

The core idea of the proposed FedPeWS method is to allow participants to learn only a personalized
subnetwork (a subset of parameters) instead of the entire network (all parameters) during the initial

4
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Participant 1

Participant 2

Globally Aggregated
Parameters

Communication Round 1

Participant 1

Participant 2

Globally Aggregated
Parameters

Communication Round 2

Figure 2: Illustration of the proposed FedPeWS algorithm for two participants, which aggregates
partial subnetworks (xt

i ⊙mt
i) during the warmup phase to obtain a shared global model xt

g . Here, xt
i

and mt
i denote the local model and personalized mask of the ith participant in the tth round.

warmup phase. Let mi ∈ {0, 1}d be a binary mask vector denoting the set of parameters that are
learned by participant i, i ∈ [N ]. Note that mi(ℓ) = 1 indicates that the ℓth element of xi is selected
for learning (value 0 indicates non-selection), ℓ ∈ [d]. Thus, during the warmup phase, the objective
in FedPeWS is to learn the parameters x along with the personalized masks mi, i.e.,

min
x,{mi}i∈[N]

1

N

N∑
i=1

fi(x⊙mi), (3)

⊙ denotes element-wise multiplication. Note thatMx⊙mi
denotes the personalized subnetwork of

participant i. When personalized masks are employed, the update rules can be modified as:

xt,k
i = xt,k−1

i − ηℓ∇fi
(
xt,k−1
i ⊙mt

i, ξ
t,k−1
i

)
and xt

g = xt−1
g − ηg(x

t−1
g −

∑
i∈[N ] x

t
i ⊙mt

i∑
i∈[N ] m

t
i

). (4)

The obvious questions regarding the FedPeWS method are: (i) how to learn these personalized masks
mi? and (ii) what should be the length of the warmup period?

Identification of personalized subnetworks: It is not straightforward to directly optimize for the
personalized binary (discrete) masks mi in Equation 3. Hence, we make the following design choices.
Firstly, personalized masks are learned at the neuron-level and then expanded to the parameter-level.
Following IST (Yuan et al., 2022), masks are specifically applied only to the hidden layer neurons,
while the head and tail neurons remain unaffected. However, unlike IST, the neuron-level masks
are not randomly selected in each collaboration round. Instead, we learn real-valued personalized
neuron-level mask score vectors si ∈ Rh, which in turn can be used to generate the binary masks.
Here, h denotes the number of hidden neurons in the classifierM and h ≪ d. A higher value of
element si(ℓ), ℓ ∈ [h], indicates that the ℓth neuron is more likely to be selected by participant i. Let
G : Rh → {0, 1}d be the mask generation function that generates the binary parameter-level masks
mi from neuron-level mask score vectors si, i.e., mi = G(si). G consists of three steps. Firstly, we
convert si into probabilities by applying a sigmoid function, i.e., θi = σ(si), where θi ∈ [0, 1]h is the
mask probability vector and σ is the sigmoid function. Next, binary neuron masks m̃i are obtained by
sampling from a Bernoulli distribution with parameter θi, i.e., m̃i(ℓ) ∼ Bernoulli(θi(ℓ)), ∀ ℓ ∈ [h].
Finally, these binary neuron masks can be directly mapped to the binary parameter-level mask mi,
i.e., if a neuron is selected, all the weights associated with the selected neuron are also selected. Thus,
Equation 3 can be reparameterized as:

min
x,{si}i∈[N]

1

N

N∑
i=1

fi(x⊙ G(si)). (5)

The above equation can be optimized alternatively for the mask score vectors si and the parameters
x. The participants first optimize for the mask scores while the model parameters xt,k

i are frozen

5
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(Procedure I), and then switch to optimizing the model parameters while freezing the mask scores
(Procedure II). In the mask training step (Procedure I), the optimization objective is defined as:

Ls = fi

(
xt,k
i ⊙ G

(
st,ki

)
, ξt,k−1

i

)
− λ∥σ

(
st,ki

)
− θtg\{i}∥

2
2; st,k+1

i ← st,ki − ηs∇sLs, (6)

where ∇s indicates that the gradient is w.r.t. mask score vector s, ηs is the local learning rate
for updating s, θtg is the global mask probability at round t, θtg\{i} is the global mask probability
excluding the probability mask of the current participant i, and λ is the weight assigned to the mask
diversity measure (second term). It is important to note that the personalized masks may not cover all
neurons in the network. Maximizing the mask diversity measure encourages personalized masks to
deviate as much as possible from the global mask, which facilitates better coverage of all the neurons
in the global model. The diversity measure has an upper bound due to the sigmoid function:

∥σ
(
st,ki

)
− θtg\{i}∥

2
2 ≤ h. (7)

Given the difficulty in calculating ∇sLs directly due to the discrete nature of Bernoulli sampling,
we employ the straight-through estimator (STE) (Bengio et al., 2013) to approximate the gradients,
which does not compute the gradient of the given function and passes on the incoming gradient as if
the function was an identity function.

During Procedure II, the optimization function for the model weights is expressed as:

Lx = fi

(
xt,k
i ⊙ G

(
st,ki

)
, ξt,k−1

i

)
; xt,k+1

i ← xt,k
i − ηℓ∇xLx, (8)

where ∇x indicates that the gradient is w.r.t. weights x. The FedPeWS algorithm alternates between
these two procedures for W rounds, where W is the number of warmup rounds. At this point, the
warmup stops and the participants switch to standard training for (T −W ) collaboration rounds. This
approach ensures that each participant effectively contributes to the FL process while also tailoring
the learning to their specific data distributions. The number of warmup rounds W (or the proportion
of warmup rounds τ = W

T ) is a key hyperparameter of the FedPeWS algorithm, along with the
weight λ assigned to the mask diversity loss. While it would be ideal to have a principled method to
select these hyperparameters, we use a grid search to tune them, which is currently a limitation.

Use of fixed subnetworks: When the number of participants is small and the data distributions of
the participants are known apriori, the server can partition the full model into subnetworks of the
same depth and assign a fixed subnetwork to each participant, i.e., mt

i = mi, ∀ t ∈ [W ]. Participants
transmit only the masked updates back to the server during warmup, which then aggregates these
masked parameters and redistributes them in their masked form. For the sake of utility, the server can
design personalized masks such that the union of these masks covers all the neurons. This variant
of FedPeWS is referred to as FedPeWS-Fixed and follows the same algorithm in Algorithm 1,
except for the omission of the highlighted (green) steps.

5 EXPERIMENTS AND RESULTS

5.1 DATASETS AND NETWORK ARCHITECTURE

Synthetic Dataset. To effectively evaluate the performance of the proposed algorithm, we generated
a custom synthetic dataset that simulates the extreme non i.i.d. scenario. This dataset encompasses
four classes, each characterized by four 2D clusters determined by specific centers and covariance
matrices. Note that the clusters from different classes interleave each other as shown in Figure 3. For
this dataset, we utilize a neural network consisting of five fully-connected (FC) layers, each followed
by ReLU activation functions, except the last layer. To enhance the dataset complexity and aid FC net-
work learning, we transform these 2D points into 5D space using the transformation [x, y, x2, y2, xy],
based on their (x, y) coordinates. We generate two versions of this dataset, Synthetic-32K and
Synthetic-3.2K, depending on the number of data points in the training set. The former has 32000
samples, with each class containing 8000 data points, while the latter has ten times fewer data points.

6
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Figure 3: Samples from the custom synthetic dataset.

CIFAR-MNIST. We integrate two dis-
tinct datasets, CIFAR-10 (Krizhevsky
et al., 2009) and MNIST (LeCun, 1998),
to explore how different clients might
adapt when faced with disparate data
sources. CIFAR-10 comprises of 32× 32
pixel images categorized into 10 object
classes. MNIST, typically featuring 28×
28 pixel images across 10 digit classes, is
upscaled to 32 × 32 pixel to standardize
dimensions with CIFAR-10. We compile
a balanced dataset by randomly selecting
400 samples from each class for the train-
ing set and 200 samples for the test set
from the combined pool of 20 classes. This setup aims to simulate a FL environment where multiple
clients handle significantly varied data types. For this dataset, we employ a convolutional neural
network comprising four convolutional layers, each having a kernel size of 3 and padding of 1,
followed by max pooling. This is succeeded by a fully connected layer. This architecture was used
because of its simplicity and widespread use in the literature (Yuan et al., 2022; Isik et al., 2023).

{Path-OCT-Tissue}MNIST. We amalgamate three distinct medical datasets: PathMNIST, OCTM-
NIST, and TissueMNIST (Yang et al., 2023), to develop a universal medical prognosis model capable
of recognizing various tasks using a single model. The datasets contain 9, 4, and 8 classes, respec-
tively, totaling to 21 classes. For this dataset, we utilized the same architecture and training details
described in the CIFAR-MNIST dataset.

5.2 EXPERIMENTAL SETUP

Dataset partitioning. For scenarios with a smaller number of collaborators (N = 2, 3, 4), we
manually partition the training dataset to tailor the data distribution to specific participants. In the
N = 2 scenario, we partition as follows: (i) For the Synthetic dataset, encompassing both Synthetic-
32K and Synthetic-3.2K, even-numbered classes are assigned to participant 1, while odd-numbered
classes are allocated to participant 2. (ii) For the CIFAR-MNIST combination, all CIFAR-10 samples
are assigned to participant 1, with MNIST samples allocated to participant 2. In the N = 3 scenario,
the {Path-OCT-Tissue}MNIST dataset is partitioned into three splits corresponding to the individual
datasets, with PathMNIST assigned to participant 1, OCTMNIST to participant 2, and TissueMNIST
to participant 3. For the N = 4 scenario, the synthetic dataset is divided so that each class is
exclusively allocated to one of the four participants.

For scenarios with a larger number of participants (N ≥ 10), we employ a Dirichlet distribution to
partition the training set. This approach utilizes a concentration parameter α to simulate both homoge-
neous and heterogeneous data distributions (Yurochkin et al., 2019; Li et al., 2021b; Lin et al., 2020;
Wang et al., 2020a). We experiment with various values of α, specifically α ∈ {0.1, 0.5, 1.0, 2.0, 5.0},
to explore the effects of dataset heterogeneity (lower α values) and homogeneity (higher α values)
on the model performance. This methodological diversity allows us to comprehensively assess our
approach under varying data conditions. Results for large N (> 100) are reported in the appendix.

Training details. In federated optimization, we primarily benchmark against the FedAvg algorithm
(McMahan et al., 2017), a standard approach in federated learning. However, our algorithm is
designed to be versatile, functioning as a ‘plug-and-play’ solution that is compatible with various
other optimizers. To demonstrate this adaptability, we also conduct experiments using FedProx (Li
et al., 2020b), showcasing our method’s capabilities across different optimization frameworks. For
our experiments, we fix the local learning rate ηℓ = 0.001 in the Synthetic-32K dataset case, and we
set ηℓ = 0.01 for other experiments. Also, the mask learning rate is fixed ηs = 0.1. Furthermore,
we vary the global learning rate ηg ∈ {0.1, 0.25, 0.5, 1.0} to observe the differences in optimization
behavior between the baseline and our proposed methods. Additionally, we employ two distinct
batch sizes {32, 8} for Synthetic-32K and Synthetic-3.2K, respectively. For experiments involving
the CIFAR-MNIST and {Path-OCT-Tissue}MNIST datasets, we standardize the batch size to 64.
We conduct our experiments on NVIDIA RTX A6000 GPUs on an internal cluster server, with each
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Table 1: The required number of collaboration rounds to reach target accuracy υ % and the final
accuracy after T rounds. The results are averaged over 3 seeds. × indicates that the algorithm cannot
reach target accuracy υ within T rounds and NA means that it reaches υ only in one random seed.

Dataset / Batch size Synthetic-32K, 32 Synthetic-3.2K, 8

Parameters {ηg/λ/τ} {1.0/5.0/0.125} {0.5/2.0/0.2} {0.25/1.0/0.1875} {0.1/2.0/0.1}
Target accuracy υ(%) 99 90 75 99

No. of rounds to
reach target accuracy

FedAvg 148± 3.79 199± NA × 371± NA

FedPeWS 115± 7.21 182± 6.81 286± 7.93 301± 10.59

Final accuracy after
T collaboration rounds

FedAvg 99.94± 0.05 91.40± 7.25 67.64± 0.90 97.33± 3.89

FedPeWS 99.96± 0.01 99.49± 0.60 83.50± 3.52 99.66± 0.19

Figure 4: Results of the experiments on Synthetic-{32, 3.2}K datasets with batch sizes {32, 8},
with different global learning rates ηg ∈ {1.0, 0.5, 0.25, 0.1} and communication rounds T ∈
{200, 250, 400, 500}. Refer to Table 1 for the corresponding numbers. In all the above scenarios,
FedPeWS converges faster to a better solution compared to FedAvg.

run utilizing a single GPU. The execution time for each run is capped at less than an hour, which
indicates the maximum execution time rather than the average. All results are averaged over three
independent runs and the average accuracy is reported on the global test dataset.

5.3 EXPERIMENTAL RESULTS

Figure 5: Visualization of validation accuracy and
loss on the Synthetic-32K dataset with N = 4 par-
ticipants and a global learning rate ηg = 1.0.

Our experimental analysis focuses on assessing
the performance of our proposed FedPeWS al-
gorithm within the FL framework. The key
findings from our studies are as follows: (i)
The FedPeWS approach demonstrates a signif-
icant reduction in the number of communica-
tion rounds required to achieve target accuracy
while also enhancing the final accuracy post-
convergence. (ii) The FedPeWS algorithm is
robust across different levels of data hetero-
geneity. (iii) In scenarios where full knowledge
of the participant data distributions is available,
the server can employ the FedPeWS-Fixed
method (Figure 6). While the FedPeWS-Fixed variant shows competitive effectiveness comparable
to our primary FedPeWS algorithm, the latter offers broader applicability in real-world settings.

Improved communication efficiency and accuracy. We initially report the required number
of communication rounds to reach the target accuracy and the final accuracy after T communica-
tion rounds for the synthetic dataset in Table 1. The results underscore that the incorporation of
a personalized warmup phase in a federated setup significantly reduces the required number of
communication rounds across all tested scenarios. Notably, in specific instances, such as with the
Synthetic-32K dataset and ηg = 0.25, the conventional FedAvg algorithm does not meet the target
accuracy within the T communication rounds. Conversely, in scenarios where ηg ∈ {0.25, 0.1},
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(a) CIFAR-MNIST dataset. (b) {Path-OCT-Tissue}MNIST dataset.

Figure 6: Results for experiments on (a) the CIFAR-MNIST and (b) {Path-OCT-Tissue}MNIST
datasets with a communication budget of T = 300. (a) Left: Participant 1 has MNIST data samples;
Participant 2 has CIFAR-10 data samples. (a) Right: Ablation study for λ and τ parameters on
CIFAR-MNIST (see Table 6). (b) Left: Each of N = 3 participants holds unique dataset samples
from {PathMNIST, OCTMNIST, TissueMNIST} pool. (b) Right: Ablation study for λ and τ on the
respective dataset (see Table 7). The first column (τ = 0.0) corresponds to the FedAvg algorithm.
The last row presents results for the FedPeWS-Fixed algorithm.

Figure 7: Top: illustration of number of samples per class allocated to each client, that is indicated
by dot sizes, for different concentration α values. Bottom: visualization of the experiments on
CIFAR-MNIST dataset with N = 10 participants with different levels of heterogeneity.

FedAvg only achieves the target accuracy in one of the seeds, exhibiting suboptimal performance
in the other two runs. From Figure 4, it is evident that our proposed FedPeWS algorithm surpasses
FedAvg in both communication efficiency and accuracy.

We also consider a more extreme data heterogeneity scenario with N = 4 participants, depicted in
Figure 5, where FedAvg completely fails by reaching only 58.4 ± 2.33%, whereas our FedPeWS
approach reaches 91.13±3.55% accuracy by significantly outperforming the base optimizer (FedAvg)
with a gain of 32.72%. It is crucial to highlight that in this experiment, we set λ = 0.0, effectively
not enforcing diversity as outlined in Equation 6. This approach focuses solely on optimizing the
masks using the first loss component, which depends only on the data distributions of each participant.
This shows that, in specific scenarios, we can learn the personalized masks (Procedure I) without the
need to adjust the λ parameter, while still achieving a better performance than the base optimizer.

Sensitivity to λ and τ parameters. Figure 6 showcases the results of experiments on the CIFAR-
MNIST dataset with N = 2 participants and {Path-OCT-Tissue}MNIST dataset with N = 3
participants. The left-side plots of Figures 6a and 6b, which depict the performance of the global
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Table 2: The required number of collaboration rounds to reach target accuracy υ % using FedProx
algorithm and the final accuracy after T rounds. The results are averaged over 3 seeds. × indicates
that the algorithm cannot reach target accuracy υ within T rounds.

Dataset / Batch size Synthetic-32K, 32 Synthetic-3.2K, 8

Parameters {ηg/λ/τ} {1.0/0.1/0.125} {0.5/0.1/0.2} {0.25/1.0/0.1875} {0.1/1.0/0.1}
Target accuracy υ(%) 99 90 75 99

No. of rounds to
reach target accuracy

FedProx 138± 13.22 × × 362± 20.00

FedPeWS 115± 5.29 211± 16.52 314± 27.83 344± 27.30

Final accuracy after
T collaboration rounds

FedProx 99.95± 0.02 82.43± 7.98 69.26± 6.03 99.92± 0.06

FedPeWS 99.96± 0.01 98.40± 1.84 90.40± 3.91 99.92± 0.07

Figure 8: Comparison of our proposed method and FedProx (Li et al., 2020b) on Synthetic-{32,
3.2}K datasets. Refer to Table 2 for the corresponding numbers.

model (averaged over 3 runs), demonstrate that our method consistently achieves higher accuracy.
The right side figures feature heatmap plots that annotate the global model accuracy obtained varying
λ ∈ {0, 0.1, 0.3, 0.5, 1, 2, 5, 10, 100, 1000} and τ ∈ {0.0, 0.2, 0.4, 0.5, 0.6, 0.8} parameters. An
additional row labeled (λ = −) represents the FedPeWS-Fixed approach, where user(server)-
defined fixed masks are employed. In this method, we simply split the full network into N partitions,
with each partition assigned to a participant (for detailed instructions on setting masks, please see
Section B.2 in the appendix). The results indicate that our approach has a low sensitivity to variations
in λ and τ . For more detailed insights, please refer to Tables 6 and 7 in the appendix.

Varying degrees of heterogeneity. Figure 7 demonstrates that our FedPeWS approach consistently
outperforms FedAvg, with gains directly related to the degree of data heterogeneity. The figure clearly
shows that the advantage of using our method is more pronounced under conditions of high data
heterogeneity. As heterogeneity levels decrease, our method becomes comparable to FedAvg.

FedProx. We also present results using the FedProx optimizer on Synthetic-32K and Synthetic-3.2K
datasets in Figure 8 and Table 2, employing global learning rates ηg = {1.0, 0.5, 0.25, 0.1}. Note that
we adapt Algorithm 1 to incorporate the FedProx algorithm as the base optimizer, instead of FedAvg.
We selected the best performing proximal term scaler 0.01 after tuning and evaluating different values
from a set of potential values {0.001, 0.01, 0.1, 0.5}, based on the findings in (Li et al., 2020b). The
results demonstrate that FedPeWS outperforms FedProx in terms of both communication efficiency
and final accuracy across the tested scenarios, except the last scenario (Synthetic-3.2K dataset with
batch size 8 and ηg = 0.1), where the performance of FedPeWS is comparable to that of FedProx.

6 CONCLUSION

In this work, we introduced a novel concept called personalized warmup via subnetworks for
heterogeneous FL − a strategy that enhances convergence speed and can seamlessly integrate with
existing optimization techniques. Results demonstrate that the proposed FedPeWS approach and
achieves higher accuracy than the relevant baselines, especially when there is extreme statistical
heterogeneity. Limitations of FedPeWS include the need to tune two additional hyperparameters (no.
of warmup rounds and mask diversity weight) and the lack of theoretical convergence analysis.
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A RELATED WORK

Table 3 shows the comparison of our proposed approach to the existing literature.

Table 3: Comparison of approaches for handling data heterogeneity in federated learning.

Shared
Global Model

Level of Mask
Personalization

Learnable
Mask

Learnable
Parameters

FedPM (Isik et al., 2023) ✓ parameter-level ✓ ×
IST (Yuan et al., 2022) ✓ neuron-level × (random) ✓
LTH (Frankle & Carbin, 2019) × parameter-level × (pruned) ✓
FedWeIT (Yoon et al., 2021) × parameter-level ✓ ✓
FjORD (Horvath et al., 2021) ✓ parameter-level × (slimmed) ✓

FedPeWS (ours) ✓ neuron-level ✓ ✓

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 NETWORK ARCHITECTURE DETAILS

The network for the synthetic dataset (detailed in Section 5.2) consists of five fully connected (FC)
layers, each followed by ReLU activation functions, except for the last layer. We provide the details
of this architecture in Table 4.

Table 4: Architecture for synthetic dataset models used in the experiments.

Layer Input FC1 FC2 FC3 FC4 FC5

Dimensions [5] [5, 32] [32, 64] [64, 128] [128, 32] [32, 4]

The network for the CIFAR-MNIST and {Path-OCT-Tissue}MNIST datasets includes three convolu-
tional layers followed by max pooling, and a fully connected layer. The details of this architecture is
provided in Table 5.

Table 5: Architecture for CIFAR-MNIST dataset models. Every convolutional layer is followed by a
max pooling layer with kernel size 2 and stride 2.

Layer Input Conv1 Conv2 Conv3 Flatten FC

Dimensions [3, 32, 32] [3, 32, 3, 3] [32, 64, 3, 3] [64, 128, 3, 3] [2048] [2048, 20]

B.2 FIXED MASK GENERATION

Figure 9 illustrates how we design masks for FedPeWS-Fixed experiments in scenarios with
N = 2 participants. For cases involving N = 4 participants, the full networkMx (classifierM pa-
rameterized with x) is divided into four subnetworks, vertically, with each subnetwork corresponding
to one of the participants. As such, we vertically partition the hidden neurons in the network into
N groups (subnetworks) and design the mask to assign each group to one participant, ensuring no
overlap. This design choice is based on the assumption that classes held by each participant are highly
heterogeneous, thus preventing any intersection in the masks. This setting is specifically tailored for
the FedPeWS-Fixed method and doesn’t necessitate performing optimization over the masks mi,
they are kept fixed.
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Subnetwork 1 - Subnetwork 2 - 

Output Layer

Input Layer

Hidden Layers

Full Network - 

Figure 9: Illustration of manual mask setting in the FedPeWS-Fixed method. The left figure
illustrates the complete network with all neurons active and full connections. The middle figure
represents subnetwork 1, utilizing only the left portion of the full network, where m1 corresponds to
this left side. Conversely, the right figure indicates the part of the network used for subnetwork 2.
This setting is employed in all experiments involving N = 2 participants.

C EXPERIMENTAL RESULTS

C.1 WALL-CLOCK TIME VS. ACCURACY

Figure 10 illustrates the wall-clock time versus accuracy results, which correspond to Figure 4 in the
main paper. From this comparison, FedPeWS demonstrates a slightly improved performance over
FedAvg in terms of wall-clock time in two of the four scenarios. However, it underperforms slightly
in the remaining two scenarios, with only a marginal increase in time. This variance is attributed to
the alternation between training masks and weights during the warm-up phase, impacting the time
efficiency.

Figure 10: Wall-clock time vs. accuracy plot corresponding to Figure 4 of the main paper.

C.2 FEDPEWS-FIXED . MASK LENGTH STUDY

In this section, we explore the impact of mask length on the performance of the FedPeWS-Fixed
method with parameter W = 120(τ = 0.4) using the CIFAR-MNIST dataset. We examine two
scenarios for splitting the network into two subnetworks:

1. |m1| < |m2|: 75% of the mask is assigned to Participant 2, 25% to Participant 1.
2. |m1| = |m2|: equal sized masks are assigned to each participant.

Figure 11 displays the validation accuracy over T = 300 communication rounds for both scenarios.
The leftmost plot shows the accuracy of the global model, while the middle and rightmost plots the
accuracy for each of the participants. Both mask length scenarios converge to a comparable accuracy
levels, with a marginal difference of 0.5% higher accuracy in the scenario where |m1| < |m2|. This
is likely due to the larger mask size, which aids in learning the more complex CIFAR-10 dataset held
by Participant 2.
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Figure 11: Mask length study using FedPeWS-Fixed method on CIFAR-MNIST dataset.

C.3 SENSITIVITY ANALYSIS

In this section, we detail the sensitivity analysis of the λ and τ parameters conducted on the CIFAR-
MNIST dataset (Table 6) and the {Path-OCT-Tissue}MNIST dataset (Table 7). This analysis
particularly includes the standard deviation of the accuracy achieved by the tested algorithms after T
communication rounds and over three independent evaluations. Results with the best performance
are highlighted in green.

Table 6: Ablation study of the parameters λ and τ on the CIFAR-MNIST dataset with N = 2
participants over three independent runs. The first column (τ = 0.0) corresponds to the FedAvg
algorithm. The last row (−) presents results for the FedPeWS-Fixed algorithm.

Proportion of warmup rounds τ = W/T

λ(↓), τ(→) τ = 0.0 (FedAvg) τ = 0.2 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.8

0.0

71.23± 0.71

68.01± 0.88 66.01± 0.48 65.96± 1.03 65.40± 1.95 65.77± 0.41

0.1 68.77± 1.09 70.39± 1.00 70.61± 1.17 69.48± 0.37 70.36± 2.06
0.3 70.86± 0.23 73.00± 0.65 73.91± 0.71 73.26± 0.46 73.02± 1.05
0.5 71.43± 0.56 74.17± 0.91 73.84± 0.12 73.66± 0.88 75.05± 0.45
1.0 72.26± 0.54 74.46± 0.44 74.54± 0.76 74.91± 0.42 73.81± 0.87
2.0 72.61± 0.79 73.68± 0.17 75.35± 0.50 74.76± 0.54 74.46± 0.56
5.0 72.60± 0.45 75.22± 0.33 75.00± 0.74 75.01± 0.71 73.96± 1.60

10.0 72.29± 0.48 74.97± 0.65 74.31± 0.95 74.03± 0.30 71.91± 2.69
100.0 71.64± 0.47 72.92± 0.39 73.96± 0.65 73.13± 0.73 72.43± 3.55

1000.0 71.58± 0.53 73.18± 0.73 73.32± 1.70 73.87± 1.16 72.52± 1.92

− 72.72± 0.44 75.22± 0.19 75.05± 0.42 72.51± 3.89 73.77± 0.20

Table 7: Ablation study of the parameters λ and τ on the combination of {Path-OCT-Tissue}MNIST
datasets with N = 3 participants over three independent runs. The first column (τ = 0.0) corresponds
to the FedAvg algorithm. The last row (−) presents results for the FedPeWS-Fixed algorithm.

Proportion of warmup rounds τ = W/T

λ(↓), τ(→) τ = 0.0 (FedAvg) τ = 0.2 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.8

0.0

52.25± 0.57

53.04± 2.08 50.35± 0.61 47.83± 1.04 47.89± 1.17 46.80± 1.76

0.1 52.52± 1.79 51.72± 0.63 49.83± 1.83 48.83± 2.51 47.50± 1.07
0.3 52.74± 1.75 54.36± 0.80 51.07± 0.25 50.94± 2.22 50.62± 1.91
0.5 54.30± 2.08 54.42± 1.43 52.02± 2.53 51.43± 1.60 48.97± 0.80
1.0 54.89± 0.72 53.59± 1.40 51.49± 1.19 50.29± 2.70 52.21± 1.02
2.0 54.75± 1.12 54.45± 1.78 53.02± 0.45 52.26± 1.81 52.49± 0.49
5.0 54.91± 0.91 54.99± 0.90 52.41± 0.45 52.95± 1.49 52.53± 1.35

10.0 55.12± 1.16 55.03± 1.39 52.85± 0.95 50.82± 3.03 52.27± 1.11
100.0 54.22± 1.74 52.31± 2.55 52.10± 0.87 49.52± 4.34 51.46± 2.92

1000.0 53.45± 1.65 53.82± 2.16 51.16± 1.92 51.30± 2.02 51.19± 1.05

− 53.69± 0.77 51.78± 0.44 50.24± 1.88 51.12± 0.72 49.87± 1.23
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For the CIFAR-MNIST dataset, the preferred values of λ that yield optimal outcomes range within
{2.0, 5.0, 10.0}, and for τ , the values are {0.4, 0.5}. A similar pattern is observed in the {Path-OCT-
Tissue}MNIST dataset experiment, with a small difference, in which it shows a preference for fewer
warmup rounds (τ ∈ {0.2, 0.4}) and demonstrates optimal performance with the same set of λ values.
This consistency across different datasets indicates robustness in the parameter settings for achieving
high accuracy.

C.4 LARGE NUMBER OF PARTICIPANTS

Although our primary focus is on the cross-silo setting, we extend our study to include a large-
scale scenario involving 200 participants on the CIFAR-MNIST dataset. We adopt a Dirichlet
partition strategy with concentration parameter α = 0.5 and implement this scenario with a partial
participation rate of 0.1. The outcomes of this experiment, as depicted in Figure 12, indicate a
superior performance compared to the conventional FedAvg algorithm, thereby further substantiating
the validity and effectiveness of our proposed method. The parameters set for FedPeWS are: τ = 25
and λ = 0.5.

Figure 12: Visualization of global model performance with N = 200 participants with a partial
participation rate of 0.1. Smoothing is applied as a running average with a window size of 5. A
learning rate scheduler is implemented at rounds 200 and 400 with a learning rate decay factor of 0.1.

D NEURON ACTIVATIONS

In this section, we examine the extent to which neurons in each layer are activated. Our study uses
the Synthetic-32K dataset and the FedPeWS-Fixed method (with parameter = 50). The vertical
dashed line (W = 50) indicates the point at which participants switch to using full masks.

Figure 13 displays the neuron activations, measured as the sum of activations over a batch of samples
randomly selected from each participant’s dataset, over T = 250 communication rounds. The top row
shows the outcomes for Participant 1, and the bottom row shows the activations for Participant 2. Each
column corresponds to different fully connected layers (FC1 to FC4) in the network. Observations
are as follows:

1. Before switching (t ≤W ): for Participant i, subnetwork i shows higher activation patterns
in all given FC layers, i ∈ [1, 2], while the other subnetwork exhibits a minimal activation.

2. After switching to full mask (t > W ): (i) there is a noticeable increase in activations for
both participants upon switching to using full masks, (ii) Participant 1 with its originally
initialized subnetwork 1, shows a substantial increase in activations compared to subnetwork
2 across all layers. The same pattern is obesrved for Participant 2 with subnetwork 2.

These findings suggest that the personalized warmup strategy helps the network learn which paths to
follow when specific data points are fed into the network. This supports the superiority of our method
and corroborates the claims made in the main paper.
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Figure 13: Neuron activation study on the Synthetic-32K dataset with a global learning rate ηg = 1.0.
The experiment uses the FedPeWS-Fixed method with parameter W = 50, indicated by the
vertical dashed line, marking the switch to full masks by each participant.
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