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Abstract

The effective detection of generated images is crucial to mitigate potential risks
associated with their misuse. Despite significant progress, a fundamental challenge
remains: ensuring the generalizability of detectors. To address this, we propose
a novel perspective on understanding and improving generated image detection,
inspired by the human cognitive process: Humans identify an image as unnatural
based on specific patterns because these patterns lie outside the space spanned by
those of natural images. This is intrinsically related to out-of-distribution (OOD)
detection, which identifies samples whose semantic patterns (i.e., labels) lie outside
the semantic pattern space of in-distribution (ID) samples. By treating patterns of
generated images as OOD samples, we demonstrate that models trained merely
over natural images bring guaranteed generalization ability under mild assumptions.
This transforms the generalization challenge of generated image detection into
the problem of fitting natural image patterns. Based on this insight, we propose a
generalizable detection method through the lens of ID energy. Theoretical results
capture the generalization risk of the proposed method. Experimental results
across multiple benchmarks demonstrate the effectiveness of our approach. Code
is available at https://github.com/dav-joy-thon/DEnD-Detection.

1 Introduction

In recent years, the development of generative AI has achieved significant breakthroughs. Specifically,
diffusion-based generative technologies [22, 44, 10, 56] demonstrate revolutionary progress in the
field of image synthesis. Advanced generative models, including Stable Diffusion [56], DALL-E
3 [50], Midjourney [41], and FLUX [29], enable users to generate highly realistic images through
simple text prompts. Furthermore, the advanced video generation model, Sora [47], can produce
high-definition, highly realistic videos and even simulate some physical effects. However, this rapid
technological progression is not without its potential risks and challenges. The misuse of generated
images for fraudulent purposes by malicious actors has sown seeds of doubt regarding the veracity of
information in media sources. Therefore, it is crucial to develop an effective generated image detector
with strong generalization capabilities to address these emerging threats.

In the realm of generated image detection, the majority of existing approaches are based on training
binary classifiers [69, 68, 64]. For instance, DIRE [69] employs diffusion reconstruction error as
an indicator to train a binary classifier. AEROBLADE [55] introduces a training-free approach
that leverages the reconstruction error of an autoencoder to detect images generated by the Latent
Diffusion Model (LDM) [56]. Unfortunately, AEROBLADE is limited to detecting LDM-generated
images and necessitates access to the autoencoder used for image generation. These methods,
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however, confront a fundamental challenge: ensuring the generalizability of the constructed detector.
In practical scenarios, generative models with unknown underlying architectures are frequently
encountered, making the generalization challenge especially pronounced.

To address the generalization challenge, we revisit the process by which humans detect generated
images. Humans who have only seen natural images can distinguish generated images with distinctive
features. This could be attributed to the perception that the pattern of the generated image lies outside
the space spanned by natural image patterns. In this regard, this out-of-space operation is also utilized
in detecting out-of-distribution (OOD) data. Namely, OOD detectors should distinguish samples
with semantic patterns, i.e., labels, that lie outside the semantic pattern space of in-distribution (ID)
samples. The process by which humans recognize a generated image aligns with the principles
of out-of-distribution (OOD) detection [73]. Humans have only seen natural images (ID) but can
recognize generated images (OOD), and models have only seen ID samples but can detect OOD
samples. This raises a fundamental yet under-explored question: can a model that has only seen
natural images be used to detect generated images?

In this work, we propose a novel perspective: examining generated image detection through the lens
of OOD detection. In this context, the pattern of natural images is regarded as ID data, while the
pattern of generated images is OOD data. Building on the learnability theory of OOD detection [12],
we study the generalizability of generated image detection, showing that models trained over natural
images bring guaranteed generalization ability of generated image detection under mild assumptions.
However, generated image detection relies on the disjoint space of specific patterns, while OOD
detection focuses on the disjointed space of semantic labels for ID and OOD data. Namely, OOD
detection can utilize classifiers trained on the label space of ID data, but generated image detection
cannot use the classifiers trained for semantic labels.

To address this challenge, we draw inspiration from density-based and energy-based OOD detection.
These methods highlight that the energy (density) of ID data is lower (higher) than that of OOD data.
This is because models are trained to minimize (maximize) ID data’s energy (density). Thus, we
follow previous work and redefine the energy on ID data for generated image detection. Inspired by
the seminal work in [61], we reveal that self-supervised models such as DINOv2 [48] exhibit latent
capabilities 2 to discern pattern discrepancies between generated and natural images. Our theoretical
results show that the learning objective of self-supervised models [34] is essentially to minimize
the differential energy score of ID data, i.e., natural images. Based on this insight, we propose a
novel framework, termed differential energy-based detection (DEnD), to discern generated images
leveraging a pretrained self-supervised model, which demonstrates strong generalization capabilities.

Extensive experiments demonstrate that our method exhibits superior generalizability compared
to training-based methods [69, 68, 64], and outperforms the state-of-the-art (SOTA) training-free
methods. Our main contributions can be summarized as follows:

• We propose a novel view to understand and improve generated image detection by consider-
ing the natural image pattern as ID data and the generated image pattern as OOD data. In this
context, we prove that models trained over natural images bring guaranteed generalization
ability of generated image detection under mild assumptions.

• Drawing inspiration from energy-based OOD detection, we propose a novel framework
termed differential energy-based detection (DEnD) to discern generated images, with theo-
retical guarantees on its generalizability.

• Comprehensive experimental results demonstrate that our DEnD framework not only sur-
passes the SOTA training-free method but also outperforms most training-based detectors.
Moreover, our method exhibits remarkably strong generalization capabilities when faced
with inaccessible generative models, e.g., Sora.

2 Related Work

Advanced Generative Models. Generative models have gained significant attention in recent years
due to their ability to produce high-quality synthetic images. Generative Adversarial Networks
(GANs) [16, 2, 26, 24] laid the groundwork for image generation. Following the advent of GANs,

2A detailed explanation of this insight is provided in Appendix A.
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(a) Illustration of our approach (b) Energy score (c) Differential energy score

Figure 1: (a): We propose a score-based framework DEnD for generated image detection, where
natural images exhibit lower differential energy scores and vice versa. (b): Directly detecting with
energy-based OOD detection method yields suboptimal performance. (c): Inspired by the training
objective of self-supervised learning, we porpose to detect generated images with differential energy
score, which demonstrates strong generalization capabilities (see Appendix B for more details).

diffusion-based generative technologies [22, 44, 10] demonstrate revolutionary progress in the field
of image synthesis. Recent advanced generative models such as Stable Diffusion [56], DALL-E
3 [50], Midjourney [41] and FLUX [29] demonstrate capabilities in creating detailed images from
textual descriptions, marking a significant leap forward in generative capabilities.

Generated Images Detection. Early efforts on generated image detection primarily focused on
color cues [39] and saturation cues [40]. However, with the emergence of ProGAN [15] and the
diffusion model [22], these characteristics have become unreliable for detection purposes. Meanwhile,
numerous frequency-based detection methods [28, 13, 58, 32] have also emerged. Mainstream
training-based methods primarily focus on training a binary classifier network. CNNspot [68] for
instance, manages to generalize a binary classifier trained on ProGAN to other architectures through
the use of specific data augmentation techniques. DIRE leverages the reconstruction error from
diffusion models to train classifiers. Nevertheless, training-based methods are often constrained by
limited generalizability and the high costs associated with training. To mitigate these challenges,
training-free methods have emerged. AEROBLADE computes the reconstruction error using an
autoencoder in latent diffusion models to detect generated images, but its effectiveness is limited
to LDMs. ZED [8] employs a lossless encoder pre-trained on natural images and leverages the
coding cost gap to detect generated images. RIGID [20] exploits the differing robustness of real and
AI-generated images to tiny noise perturbations within the representation space of vision foundation
models. FSD [43] extracts forensic microstructures from images and models the distribution of real
images using a Gaussian mixture model. On the foundation of these previous works, we revisit
the generated image detection task through the lens of OOD detection and implement the DEnD
framework, which demonstrates superior generalization capabilities with theoretical guarantees.

Energy-based OOD Detection. Out-of-Distribution (OOD) detection is a critical area of research
that focuses on identifying data samples that differ significantly from the training distribution.
Conventional approaches rely on confidence scores derived from softmax outputs [21]. However,
neural networks can yield arbitrarily high softmax confidence for inputs that are substantially distant
from the training data [42]. Energy-based OOD detection [33], on the other hand, maps each input to
a scalar value that is lower for in-distribution (ID) data and higher for OOD data, thereby achieving
superior performance. Theoretically, [12] has established the necessary conditions for the learnability
of OOD detection and provided several sufficient conditions that characterize the learnability of OOD
detection in specific practical scenarios. This theoretical foundation underpins our approach.

3 Preliminary

In this section, inspired by the human cognitive process, we formulate the generated image detection
as an OOD detection task (see Sec. 3.1) and outline the primary objective of our paper (see Sec. 3.2).

3.1 Formulation

In this part, we elaborate on how to formulate generated image detection as an OOD detection task.
Given a feature space of natural and generated images X ⊂ Rd and two pattern spaces Tn := {1} to
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represent the pattern of natural images, Tg := {2} to represent the pattern of generated images. We
consider natural images as ID data and generated images as OOD data. Consequently, we have an
ID joint distribution DXnTn over X × Tn, where Xn ∈ X and Tn ∈ Tn are random variables. We
also have an OOD joint distribution DXgTg

, where Xg ∈ X and Tg ∈ Tg are random variables. In
empirical observations, natural and generated images are mixed in arbitrary and unknown proportions:

DXT := (1− πout)DXnTn
+ πoutDXgTg

, (1)

where the constant πout ∈ [0, 1) is an unknown class-prior probability. We can only observe the
marginal distributions:

DX := (1− πout)DXn
+ πoutDXg

. (2)
we define a subset of the function space as the hypothesis space H ⊂ {h : X → {1, 2}}. 1 represents
the natural images, and 2 represents the generated images. h is called the hypothesis function. We
explore the existence of a hypothesis space H, such that for any joint distribution DXT belonging to
the density-based space Dµ,b

XT (see Appendix C.2), it satisfies generalizability (see Appendix C.1).

3.2 Objective

Our design objective can be described as follows: Using model f trained over data S to design a
detector g, such that for any test data x drawn from the mixed marginal distribution DX , the detector
can differentiate whether the input is natural or generated. We define the differential energy score
λ (see Sec. 4.3). The detector classifies the data with lower scores as natural images and classifies
the data with higher scores as generated images. The training data S := {x1, ...,xn} is drawn
independent and identically distributed from the joint distribution of natural images DXn

.

4 Method

In this section, we first prove that the detector we have modeled in Sec. 3.1 exhibits generalizability
under mild assumptions (see Sec. 4.1). Based on the theory, we then consider an advanced approach in
OOD detection: energy-based OOD detection (see Sec. 4.2). However, experiments reveal that directly
applying energy-based OOD detection yields suboptimal performance. Motivated by this observation
and inspired by the training objectives of self-supervised learning , we present a generalizable training-
free generated image detection framework, DEnD (see Sec. 4.3). We further provide theoretical
guarantees (see Sec. 4.4) for the generalizability of our proposed method, establishing both its
practical effectiveness and theoretical soundness.

4.1 Generalizability of Generated Detector

Despite the completion of our formulation, we cannot ascertain under what circumstances the resulting
detector can generalize. We consider a significant assumption in learning theory—the Realizability
Assumption (see Appendix C.3). This assumption implies that there exists at least one model in the
hypothesis space H that can perfectly fit the training data, i.e., there are no classification errors. Under
this assumption, we have a significant lemma derived from the learnability of OOD detection [12]:

Lemma 4.1 Given a density-based space Dµ,b
XT , if µ(X ) < +∞, the Realizability Assumption holds,

then when H has finite Natarajan dimension [59], OOD detection is learnable in Dµ,b
XT for H.

In our formulation, the generalizability of the detector and the learnability of OOD detection are
equivalent. Therefore, we have derived several conditions for the detector’s generalizability:

• µ(X ) < +∞, i.e., the feature space has a finite measure.
• An appropriate hypothesis space H is selected that satisfies the Realizability Assumption.
• The hypothesis space H we selected has a finite Natarajan dimension. This indicates that the

model’s complexity is controlled and that it is capable of generalizing well to unseen data.

4.2 Energy-based Detection

Since we have theoretically validated that the detector formulated as an OOD detection task is
generalizable under mild assumptions, we consider whether we can simply and directly apply OOD
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detection methods to effectively detect generated images. We consider an advanced method in OOD
detection: energy-based OOD detection [33] 3.

We consider a discriminative neural classifier q(x) : RD → RK , which maps input x ∈ RD to logits.
The energy-based OOD detection defines the free energy function E(x; q) over x ∈ RD as:

E(x; q) = −τ · log
K∑
i

eqi(x)/τ . (3)

qi(x) indicates the i-th index of q(x). The temperature coefficient τ is treated as a hyperparameter.

Since the logit corresponding to the i-th label qi(x) can be expressed as qi(x) = (f(x),wi), we can
rewrite the free energy function as:

E(x) = −τ · log
K∑
i

e(f(x),wi)/τ , (4)

where f(x) : RD → Rd indicates the feature extracted from the input x and wi ∈ Rd indicates the
weight corresponding to the i-th label. We use (a,b) to denote the inner product of vectors a and b.
[33] theoretically prove that a model trained with negative log-likelihood (NLL) loss will push down
energy for in-distribution data points. In the actual detection process, inputs with higher energies are
naturally considered as OOD inputs and vice versa.

Unfortunately, our experiments reveal that both natural and generated images exhibit indistinguishable
energy distributions (see Figure 1b), making it difficult for the detector to differentiate. This limitation
arises because energy-based ood detection is typically derived from semantic label classifiers trained
with NLL loss, whereas the discrepancy between natural and generated images manifests through
divergences in high-level patterns rather than simplistic semantic label mismatches. To address this
challenge, we propose replacing semantic label classifiers with models that capture non-label global
patterns and redefine an energy function aligned with the model’s training objective.

4.3 Differential Energy-based Detection

As demonstrated in [61], self-supervised models exhibit superior sensitivity to global characteristics
compared to supervised models operating in label spaces. This property endows self-supervised
models with latent capacities to discern pattern discrepancies between generated and natural images.

In self-supervised learning [18], a common approach is as follows: given a feature extractor f(∗)
within a batch of size N , for an anchor x, the positive sample is denoted as: x+ = m(x), where
m(x) indicates the random transformation such as Gaussian blur. The other N − 1 samples are
considered negative samples. Given the training sample x, the loss function can be expressed as:

− log
e(fθ(x),fθ(x

+))/τ)∑N
i=0 e

(fθ(x),fθ(xi))/τ
, (5)

where the notation x0 = x+ denotes the positive sample resulting from the random transformation.

In the context of self-supervised learning, each negative sample xi is regarded as a distinct class
within the discriminative model. Consequently, the features of the negative samples f(xi) are akin to
the weights wi corresponding to their respective classes. By combining Equation 4 and Equation 5,
we redefine our energy function 4 as follows:

E(x; f) =

N∑
i=0

e(f(x),f(xi))/τ . (6)

The sum is for one positive sample and N negative samples. In the self-supervised model f(∗) trained
on ID data, the training objective can be expressed as:

min
θ

Ex∼PID,m∼ME(x; fθ). (7)

3Discussions on additional OOD detection approaches are provided in Appendix E.
4Energy function discussed hereafter adhere to the specific formulation presented in this section.
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In our framework, the random transformation function m(∗) is treated as a random variable, which is
drawn from a defined probability distribution M. This distribution encapsulates the likelihood of
various transformations being applied to the data.

We sample k points from the random transformation distribution M. Each sampled point represents
a transformation function mi(∗). The training objective can be rewritten as:

min
θ

Ex∼PID

[
1

k

k∑
i

Emi(x; fθ)

]
. (8)

The notation Emi
denotes the energy resulting from the random transformation mi(∗).

Figure 2: Impact of sampling frequency from
M on DEnD’s performance.

Therefore, for the energy of x within the ID distribu-
tion, we can deduce 5 that for any ϵ > 0:

1

k

k∑
i

|E(x; f)− E(mi(x); f)| < ϵ. (9)

As depicted in Figure 2, in our experiments, we tested
on ImageNet [9] with sampling from the random
transformation distribution M at 1, 3, 5, 10, and
15 times. To strike a balance between accuracy and
computational cost, we opted for a single sampling.

Hence, we can deduce that for any ϵ > 0 any ID data
x, i.e., natural images, the following holds:

|E(x; f)− E(m(x); f)| < ϵ. (10)

Based on this approach, we obtained the differential energy score as follows:

λ(x; f,m) = |E(x; f)− E(m(x); f)| . (11)

As derived in Equation 10, the training objective of self-supervised models can be formulated as
minimizing the differential energy scores for ID data (natural images). Consequently, for x drawn
from the in-distribution (ID), which corresponds to natural images, λ(x; f,m) is relatively small, as
shown in Figure 1c. Given the discrimination ability of the differential energy score, we employ it in
generated image detection:

g(x; γ,m, f) =

{
1(natural) if λ ≤ γ,

2(generated) if λ > γ,
(12)

where γ is the threshold 6 and f denotes the pre-trained self-supervised model. In practice, we employ
the powerful self-supervised Vision Transformer (ViT) model DINOv2 (see Appendix I.2 for detailed
selection of self-supervised models), which is pretrained on an exceedingly vast dataset of natural
images. Images that exhibit higher differential energy scores are classified as generated, while those
with lower differential energy scores are classified as natural.

4.4 Generalizability of DEnD

In this section, building upon Sec. 4.1, we theoretically ground the Differential Energy-based
Detection (DEnD) framework, demonstrating its generalizability for generated image detection.

In Sec. 4.1, we state that to ensure the detector’s generalizability, the hypothesis space must satisfy
the Realizability Assumption. Therefore, we first validate that our proposed DEnD adheres to this
assumption. Our method designs H∗ comprising a score-based classifier (see Figure 1a):

hγ(x) =

{
1 if λ(x; f,m) ≤ γ.

2 if λ(x; f,m) > γ.
(13)

5See Appendix D for complete derivation.
6For more detailed explanations regarding the threshold, please refer to Appendix F.
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Table 1: The performance of various detectors on ImageNet. The bolded text represents the best
performance, and the underlined text represents the second-best performance.

Models
ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT Average

Methods
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC (↑) AP (↑)

Training-based Methods
CNNspot 62.25 63.13 63.28 62.27 63.16 64.81 62.85 61.16 85.71 84.93 74.85 71.45 68.41 68.67 61.83 62.91 60.98 61.69 67.04 66.78
UnivFD 83.37 82.95 79.60 78.15 80.35 79.71 82.93 81.72 93.07 92.77 87.45 84.88 85.36 83.15 85.19 84.22 90.82 90.71 85.35 84.25
DIRE 51.82 50.29 53.14 52.96 52.83 51.84 54.67 55.10 51.62 50.83 50.70 50.27 50.95 51.36 55.95 54.83 52.58 52.10 52.70 52.18
NPR 85.68 80.86 84.34 79.79 91.98 86.96 86.15 81.26 89.73 84.46 82.21 78.20 84.13 78.73 80.21 73.21 89.61 84.15 86.00 80.84
DRCT 90.26 90.07 85.74 83.85 90.24 89.88 88.27 89.06 95.87 94.99 86.89 86.12 89.11 88.39 92.38 92.41 94.44 94.47 90.36 89.92

Training-free Methods
AEROBLADE 55.61 54.26 61.57 56.58 62.67 60.93 85.88 87.71 44.36 45.66 47.39 48.14 47.28 48.54 67.05 67.69 48.05 48.75 57.87 57.85
RIGID 87.00 85.29 81.22 77.90 74.60 69.51 70.22 67.17 87.81 86.23 85.54 84.39 86.58 86.41 90.66 89.89 89.94 88.41 83.73 81.69
DEnD (ours) 96.94 95.74 90.15 86.80 91.03 88.52 81.74 77.86 99.85 99.87 98.10 97.53 97.47 96.24 99.19 98.78 98.84 98.63 94.81 93.33

Table 2: The performance of various detectors on LSUN-BEDROOM. The bolded text represents the
best performance, and the underlined text represents the second-best performance.

Models
ADM DDPM iDDPM Diffusion GAN Projected GAN StyleGAN Unleashing Transformer Average

Methods
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC (↑) AP (↑)

Training-based Methods
CNNspot 64.83 64.24 79.04 80.58 76.95 76.28 88.45 87.19 90.80 89.94 95.17 94.94 93.42 93.11 84.09 83.75
UnivFD 71.26 70.95 79.26 78.27 74.80 73.46 84.56 82.91 82.00 78.42 81.22 78.08 83.58 83.48 79.53 77.94
DIRE 57.19 56.85 61.91 61.35 59.82 58.29 53.18 53.48 55.35 54.93 57.66 56.90 67.92 68.33 59.00 58.59
NPR 75.43 72.60 91.42 90.89 89.49 88.25 76.17 74.19 75.07 74.59 68.82 63.53 84.39 83.67 80.11 78.25
DRCT 74.59 71.37 85.45 84.98 87.17 86.99 94.19 94.16 95.96 95.67 93.92 94.66 89.51 89.07 88.68 88.13

Training-free Methods
AEROBLADE 57.05 58.37 61.57 61.49 59.82 61.06 47.12 48.25 45.98 46.15 45.63 47.06 59.71 57.34 53.85 54.25
RIGID 69.76 68.31 88.35 88.82 84.15 84.54 91.85 92.28 92.65 93.18 78.09 76.54 91.94 92.28 85.25 85.13
DEnD (ours) 85.14 82.24 97.16 96.07 95.46 93.96 99.22 99.06 99.45 99.32 96.75 95.72 99.17 98.84 96.05 95.03

The design of DEnD exploits the property that f results in relatively low λ(x; f,m) for natural
images and high values for generated images, driven by the training objective of the self-supervised
models. This separation underpins the following theorem:

Theorem 4.2 If there exists a threshold γ′ ∈ R satisfying:

sup
x∈suppDXn

λ(x; f,m) < γ′ < inf
x∈suppDXg

λ(x; f,m), (14)

the hypothesis space H∗ fulfills the Realizability Assumption, where supp means the support set.

The proof is detailed in Appendix C.4. The theorem demonstrates that, owing to the discriminative
power of our method, the differential energy scores between natural and generated images are separa-
ble and the Realizability Assumption holds. This provides critical assurance for the generalizability
of our method. Building on the adherence of DEnD to the Realizability Assumption, we further
establish the Generalizability Theorem for our proposed DEnD:

Theorem 4.3 Given the hypothesis space H∗ with finite Natarajan dimension, the DEnD framework
is generalizable in Dµ,b

XT for H∗.

The proof is provided in Appendix C.5. This theorem highlights DEnD’s ability to leverage the
differential energy score in its design, ensuring generalizability in theoretical settings. From a practical
perspective, as mentioned in the section 5, our method achieves excellent generalization capabilities,
which align consistently with our theoretical analysis. Both aspects conclusively highlight the
generalizability of our approach.

5 Experiments

In this section, we conduct a series of experiments to evaluate generated image detectors within
practical scenarios that involve unknown generative models. The experimental results demonstrate
that our approach holds significant advantages. (Ablation Studies can be found in Appendix I).

5.1 Setup

Datasets. We evaluate the performance of generated image detectors on two commonly used datasets:
ImageNet [9] and LSUN-BEDROOM [74]. For ImageNet, the generated images are generated
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Table 3: Performance (%) of various detectors on GenImage. All training-based methods were trained
on images generated by SD V1.4.

Models

Methods Midjourney SD V1.5 ADM GLIDE Wukong VQDM BigGAN Avg ACC(%)
Training-based Methods

ResNet-50 54.90 99.70 53.50 61.90 98.20 56.60 52.00 68.11
DeiT-S 55.60 99.80 49.80 58.10 98.90 56.90 53.50 67.51
Swin-T 62.10 99.80 49.80 67.60 99.10 62.30 57.60 71.19
CNNspot 52.80 95.90 50.10 39.80 78.60 53.40 46.80 58.63
Spec 52.00 99.20 49.70 49.80 94.80 55.60 49.80 64.41
F3Net 50.10 99.90 49.90 50.00 99.90 49.90 49.90 64.22
GramNet 54.20 99.10 50.30 54.60 98.90 50.80 51.70 65.66
DIRE 60.20 99.80 50.90 55.00 99.20 50.10 50.20 66.49
UnivFD 73.20 84.00 55.20 76.90 75.60 56.90 80.30 71.73
LaRE 66.40 87.10 66.70 81.30 85.50 84.40 74.00 77.91
DRCT 94.63 99.82 61.78 65.92 99.91 74.88 58.81 79.39
GenDet 89.60 96.10 58.00 78.04 92.80 66.50 75.00 79.49

Training-free Methods
AEROBLADE 80.30 86.89 67.20 81.57 83.74 51.10 52.53 71.90
RIGID 82.07 68.53 73.33 86.23 68.80 80.63 93.13 78.96
DEnD (ours) 89.44 71.88 94.46 99.07 76.27 96.61 97.84 89.37

Table 4: The performance of various detectors on Sora.

Methods
CNNspot UnivFD NPR DRCT AEROBLADE RIGID DEnD (ours)Models

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

Sora 52.85 53.29 77.06 80.69 51.92 50.25 82.53 82.28 57.13 58.00 84.22 81.98 87.35 90.57
Open Sora 50.14 51.38 67.05 68.67 50.25 51.84 81.79 80.11 55.79 62.37 73.12 75.56 90.79 93.40
Average 51.50 52.84 72.06 74.68 51.09 51.05 82.16 81.20 56.46 60.19 78.67 78.77 89.07 91.99

with ADM [10], ADM-G, LDM [56], DiT-XL2 [51], BigGAN [2], GigaGAN [24], StyleGAN [26],
RQ-Transformer [30], and MaskGIT [5]. For LSUN-BEDROOM, generated images are generated
with ADM, DDPM [22], iDDPM [44], Diffusion Projected GAN [70], Projected GAN [70], Style-
GAN [26] and Unleashing Transformer [1]. To demonstrate the superiority of our method in more
realistic scenarios involving unknown generative models, we evaluate the detectors on two general and
comprehensive benchmarks : GenImage [79] and AIGCDetectBenchmark [77]. GenImage includes
Stable Diffusion V1.4 [56], Stable Diffusion V1.5 [56], GLIDE [45], VQDM [17], Wukong [72], Big-
GAN, ADM, and Midjourney [41]. AIGCDetectBenchmark [77] includes ProGAN [25], StyleGAN,
BigGAN, StarGAN [7], GauGAN [49], StyleGAN2 [27], WFIR [71], ADM, Glide, Midjourney,
Stable Diffusion V1.4, Stable Diffusion V1.5, VQDM, Wukong, DALL-E2 [54]. To demonstrate
the generalizability of our method on unavailable generative models, we also evaluate detectors on
Sora [47]. The details and sources of the datasets can be found in Appendix G.

Evaluation Metrics. We follow in the footsteps of pioneering researchers and adopt the Average
Precision (AP) and the Area Under the Receiver Operating Characteristic Curve (AUROC) as our key
evaluation metrics. In certain experiments, to ensure comparability with established baselines, we
also include accuracy (ACC) as an additional evaluation metric.

Baselines. We utilize both training-based and training-free methods as baselines. For training-based
methods, we take DIRE [69], CNNspot [68], UnivFD [46], DRCT [6], and NPR [64] as baselines.
For some baselines, we get the results reported in their papers, including Frank [14], Durall [11],
Patchfor [4], F3Net [52], SelfBland [60], GANDetection [38], LGrad [65], ResNet-50 [19], DeiT-
S [66], Swin-T [35], Spec [75],FreDect [13], Fusing [23], LNP [32], GenDet [78], LaRE2 [37], and
GramNet [36]. For training-free methods, we take AEROBLADE [55] and RIGID [20] as baselines.

Experimental Details. In our experiments, we employ the powerful pre-trained self-supervised
model DINOv2 [48]. We adopted the DINOv2 ViT-L/14 model, recognized for its optimal balance
between speed and performance. We set the batch size N = 128 and temperature coefficient τ = 0.6,
which show the best performance (see Appendix I.1). Regarding the selection of m(x), we employ
Gaussian noise with a mean of 0 and a variance of 0.04 (see Appendix H).
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Table 5: Performance (%) on AIGCDetectBenchmark. All training-based methods were trained on
images generated by ProGAN.

Methods Models

ProGAN StyleGAN BigGAN StarGAN GauGAN StyleGAN2 WFIR ADM Glide Midjourney SDv1.4 SDv1.5 VQDM Wukong DALLE2 Avg ACC(%)

CNNSpot 100.00 90.17 71.17 94.60 81.42 86.91 91.65 60.39 58.07 51.39 50.57 50.53 56.46 51.03 50.45 70.78
FreDect 99.36 78.02 81.97 94.62 80.57 66.19 50.75 63.42 54.13 45.87 38.79 39.21 77.80 40.30 34.70 64.03
Fusing 100.00 85.20 77.40 97.00 77.00 83.30 66.80 49.00 57.20 52.20 51.00 51.40 55.10 51.70 52.80 68.38
LNP 99.67 91.75 77.75 99.92 75.39 94.64 70.85 84.73 80.52 65.55 85.55 85.67 74.46 82.06 88.75 83.84
LGrad 99.83 91.08 85.62 99.27 78.46 85.32 55.70 67.15 66.11 65.35 63.02 63.67 72.99 59.55 65.45 75.34
DIRE 95.19 83.03 70.12 95.47 67.79 75.31 58.05 75.78 71.75 58.01 49.74 49.83 53.68 54.46 66.48 68.68
UnivFD 99.81 84.93 95.08 95.75 99.47 74.96 86.90 66.87 62.46 56.13 63.66 63.49 85.37 70.93 50.75 78.43

DEnD (ours) 98.88 90.24 97.08 90.95 98.54 88.33 97.25 95.37 98.25 83.17 71.99 72.27 97.68 76.71 90.65 89.82

5.2 Main Results

Comparison with Existing Methods. As shown in Tables 1 and 2, compared to the training-based
methods on LSUN-Bedroom and ImageNet, our method is more generalizable and performs better
against most generative models, showing significant improvement at the overall level and reflecting
the superiority of our generalizable training-free method. Compared to the training-free methods
AEROBLADE and RIGID, our method shows substantial improvement against most of generative
models. While RIGID employs a noise-based approach based on empirical observation, we derive
our approach from the training objectives of self-supervised models. This foundational perspective
enabled us to design a more effective differential energy score, achieving better performance. Fur-
thermore, as shown in Table 3 and Table 5, when faced with more advanced and complex generative
models, training-based methods generally perform poorly against generative models that were not
seen during the training process. In contrast, our method has excellent generalization capabilities and
performs significantly better than existing training-based methods. However, due to limitations in the
pre-trained model’s representational capabilities, our method experiences performance degradation
when dealing with certain high-fidelity images, notably those from Stable Diffusion. We posit that
this limitation could be alleviated by adopting models with enhanced representational capabilities.

Discussion on Generalization Capabilities. Our method demonstrates significant improvements in
generalization performance. From a training perspective, conventional training-based approaches
often suffer from overfitting issues. As shown in Table 5, models trained on ProGAN exhibit
satisfactory performance only when tested on other GAN-generated samples. In contrast, our training-
free method inherently avoids overfitting risks. From a theoretical perspective, given the variability
of different generative architectures, the patterns of generated images can be highly diverse. This
complexity presents significant challenges for training-based methods. In contrast, our method regards
the patterns of all generated images as OOD data, maintaining strong generalization capabilities
across various generative models. Furthermore, our method provides theoretical guarantees of
generalizability, a distinctive advantage absent in existing approaches.

Evaluation on Sora. Sora and other video generative models are often of unknown architectures,
making the detection of these novel and unknown models more challenging. As demonstrated in
Table 4, our experiments on Sora reveal that our approach achieves strong generalization capa-
bilities, attaining competitive performance even when tested on generative models with unknown
architectures—a critical advantage absent in existing methods.

5.3 Robustness Evaluation

In practical scenarios, detectors are frequently confronted with degraded images. For example,
lossy compression may induce artifacts, and noise is typically generated during transmission over
communication channels. Following previous works [55], we evaluate the robustness of our detector
against such prevalent conditions, encompassing assessments of JPEG compression, Gaussian noise,
and Gaussian blur. These experiments are conducted on the ImageNet dataset.

As shown in Figure 3, DEnD demonstrates superior performance across various types of image
degradation, reflecting strong robustness. In contrast, other training-based methods often show
unsatisfactory performance. This advantage can be credited to the inherent generalization capabilities
of our approach, which are underpinned by a solid theoretical foundation, allowing it to consistently
classify degraded ID data (natural images) as ID data (natural images).
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(a) (b) (c)

Figure 3: The performance of detectors when faced with degraded images. (a): JPEG with quality q.
(b): Gaussain noise with standard deviation σ. (c): Gaussain blur with standard deviation σ.

6 Limitations

1) In this work, we formulate generated image detection as an OOD detection task and propose a novel
framework inspired by energy-based OOD detection. While our current approach prioritizes energy-
based OOD detection, we explicitly acknowledge the potential viability of alternative advanced OOD
detection strategies. Future work will focus on exploring the applicability of other OOD detection
strategies. 2) Extensive experiments demonstrate that our method achieves superior performance,
which is attributed to our approach with theoretical guarantees. Nevertheless, limited by the training
set scope, pre-trained models often fail to realize the full potential of our framework, especially
when encountering a real data distribution shift (See Appendix J). In future work, we will attempt to
fine-tune the model to attain improved generalizability.

7 Conclusion

In this paper, drawing inspiration from the human cognitive ability to discern generated images, we
propose a novel perspective on understanding and improving generated image detection: formulating
it as an OOD detection task. On this basis, we elucidate the feasibility of employing models
trained entirely on natural images for generated image detection. To operationalize this insight, we
introduce Differential Energy-based Detection (DEnD), a training-free and generalizable framework
for generated image detection. Extensive experiments demonstrate that our approach excels on
common benchmarks. Moreover, our method exhibits excellent generalization capabilities, effectively
handling generative models with unknown architectures, such as Sora. More broadly, our work not
only contributes theoretically but also provides a generated image detection method with superior
effectiveness and generalization capabilities, addressing the growing crisis of image forgery.
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A The Discriminative Capacity of Self-Supervised Models

Figure 4: t-SNE visualization of features ex-
tracted by DINOv2.

Previous work [61] highlights that evaluation met-
rics for generative models, such as those based on
Inception-V3 [63]—a model trained via supervised
learning in label space—primarily focus on category-
related semantic information but exhibit insensitivity
to features like texture and shape. This limitation
also explains why common OOD detection methods
trained in label space underperform. [61] emphasizes
that self-supervised models, particularly DINOv2,
trained on large-scale datasets capture representation
spaces that better reflect global, label-agnostic seman-
tic differences between generated and natural images.
When designing generative model evaluation metrics,
replacing Inception-V3 with self-supervised models
like DINOv2 aligns with human evaluation. This
observation underscores DINOv2’s capability to dis-
cern pattern-level discrepancies between natural and
generated images. However, directly applying self-
supervised model’s representation spaces for generated image detection is infeasible (see Figure 4).
Compared to evaluating generative models, generated image detection tasks demand higher dis-
criminative power from models. Therefore, building upon the representation spaces learned by
self-supervised models, we must further develop algorithmic approaches (our DEnD framework) to
achieve effective generated image detection.

B Details of Figure 1

For Figure 1b and Figure 1c, the natural images are from ImageNet and the generated images are
generated by ADM. To facilitate visualization and comparison, we normalize the x-axis values to the
range [0, 1]. For the y-axis, increased density within the distribution is positively correlated with a
higher incidence rate of frequency.

C Details of The Generalizability of Detectors

C.1 Generalizability of the Detector.

We set Tall = Tn ∪ Tg. Given a loss function ℓ : Tall × Tall → R≥0 satisfying that ℓ(t1, t2) = 0 if
and only if t1 = t2 and any h ∈ H, then the risk with respect to DXT is:

RD(h) := E(x,t)∼DXT
ℓ(h(x), t). (15)

The α-risk is:
Rα

D(h) := (1− α)Rn
D(h) + αRg

D(h),∀α ∈ [0, 1], (16)

where Rn
D(h) := Ex∼DXn

ℓ(h(x), 1), and Rg
D(h) := Ex∼DXg

ℓ(h(x), 2). Following the definition
of learnability in OOD detection [12], we define the generalizability of the detector as follows:

Definition C.1 Given a domain space DXT and a hypothesis space H ⊂ {h : X → Tall} , we
say the generated images detector is generalizable in DXT for H, if there exists an algorithm A :
∪+∞
n′=1(X ×T )n

′ → H and a monotonically decreasing sequence ϵcons(n′), such that ϵcons(n′) → 0,
as n′ → +∞, and for any domain DXT ∈ DXT ,

ES∼Dn′
XnTn

[
RD(A(S))− inf

h∈H
RD(h)

]
≤ ϵcons(n

′). (17)

And we say it is strong generalizable when the following equation holds for ∀α ∈ [0, 1] :

ES∼Dn′
XnTn

[
Rα

D(A(S))− inf
h∈H

Rα
D(h)

]
≤ ϵcons(n

′). (18)
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In the real world, the distribution of natural images and the distribution of generated images are
unknown given that πout can be any value in [0, 1). Therefore, strong generalizability is more
aligned with real-world scenarios. In [12], Lemma C.2 indicates that generalizability and strong
generalizability are equivalent in certain spaces. Our discussion primarily focuses on these spaces.

Lemma C.2 If for any domain DXT ∈ DXT and any α ∈ [0, 1) we have:

Dα
XT := (1− α)DXnTn

+ αDXgTg
∈ DXT , (19)

then Equation 17 and Equation 18 are equivalent in domain space DXT .

C.2 Density-based Space.

Definition C.3 For any DXT ∈ Dµ,b
XT , there exists a density function f with 1/b ≤ f ≤ b in suppµ

and 0.5 ∗DXn
+ 0.5 ∗DXg

=
∫
fdµ, where µ is a measure defined over X .

C.3 Realizability Assumption

Assumption C.4 A domain space DXT and hypothesis space H satisfy the Realizability Assumption,
if for each domain DXT ∈ DXT , there exists at least one hypothesis function h∗ ∈ H such that
RD(h∗) = 0.

C.4 Proof of Theorem 4.2

We prove that there exists h∗ ∈ H∗ such that RD(h∗) = 0 for any DXT ∈ Dµ,b
XT , if there exists

γ′ ∈ R such that:

sup
x∈supp(DXn )

λ(x; f,m) < γ′ < inf
x∈supp(DXg )

λ(x; f,m). (20)

We define h∗ = hγ′ ∈ H∗:

hγ′(x) =

{
1 if λ(x; f,m) ≤ γ′.

2 if λ(x; f,m) > γ′.
(21)

The risk is:

RD(h∗) = (1− πout)Ex∼DXn
ℓ(h∗(x), 1) + πoutEx∼DXg

ℓ(h∗(x), 2). (22)

For x ∼ DXn
, λ(x; f,m) < γ′, so h∗(x) = 1, hence E(x)∼DXn

ℓ(h∗(x), 1) = 0. For x ∼ DXg
,

λ(x; f,m) > γ′, so h∗(x) = 2, hence Ex∼DXg
ℓ(h∗(x), 2) = 0. Thus:

RD(h∗) = (1− πout) · 0 + πout · 0 = 0. (23)

We have completed this proof.

C.5 Proof of Theorem 4.3

For the model f sufficiently trained on ID data, according to Equation 10 we can obtain that for any
ϵ > 0 and for any ID data x:

λ(x; f,m) < ϵ. (24)

Therefore, we posit that under ideal conditions the sufficiently trained model satisfies:

sup
x∈suppDXn

λ(x; f,m) < γ′ < inf
x∈suppDXg

λ(x; f,m). (25)

From Theorem 4.2, we can deduce that the Realizability Assumption holds in the DEnD framework.

Hence, by Lemma 4.1, we can deduce that in the density-based space Dµ,b
XT , if µ(X ) < +∞, and the

DEnD hypothesis space H∗ has finite Natarajan dimension, then the score-based detector within the
DEnD framework is generalizable, which is Theorem 4.3.
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D Derivation from Equation 8 to Equation 9

Since the feature extractor f(x) is normalized (∥f(x)∥ = 1), the energy function is bounded:

E(x; f) =

N∑
i=0

e(f(x),f(xi))/τ ≤ (N + 1)e1/τ = B. (26)

That is to say:
E(x; f) ≤ B, E(m(x); f) ≤ B. (27)

Therefore:
|E(x; f)− E(m(x); f)| ≤ 2B. (28)

The training objective in Equation 8 can be expressed as:

min
θ

Ex∼PID [
1

k

k∑
i

Emi
(x; fθ)]. (29)

After sufficient training, the model ensures that:

Ex∼PID

[
1

k

k∑
i

Emi
(x; f)

]
≤ B − δ, (30)

where δ > 0. Therefore:

Ex∼PID

1

k

k∑
i

[|E(x; f)− E(mi(x); f)|] ≤ 2(B − δ). (31)

Since the optimization objective uniformly applies to all x ∼ PID, the above inequality holds for all
natural images. Thus, for any ϵ > 0, choosing δ = B − ϵ/2 ensures:

1

k

k∑
i

[|E(x; f)− E(mi(x); f)|] ≤ ϵ ∀x ∼ PID. (32)

That is, Equation 9.

Table 6: Comparison on detecting with different scores.

Scores
DEnD (ours) E(x) E(m(x))Datasets

AUROC AP AUROC AP AUROC AP

ImageNet 94.81 93.33 66.38 58.76 66.78 59.64

Although our results (Equation 30 and Equation 31) indicate that both E(x) and E(m(x)) can be
minimized during training, the close proximity between the distributions of natural images and
generated images leads our experiments (see Table 6) to demonstrate that simply reducing the energy
of ID data (natural images) to B−δ is insufficient. During the training process, self-supervised models
not only minimize the energy of ID data but also enforce the proximity between E(x) and E(m(x)).
From this insight, we define the differential energy score, which imposes comprehensive requirements
on both E(x) and E(m(x)), thereby serving as a more discriminative score. Theoretically, the
differential energy score on ID data can be minimized to 2B − 2δ. Consequently, the self-supervised
model outputs lower differential energy scores for natural images while yielding higher scores for
generated images. Experimental results demonstrate that the differential energy score achieves
superior performance.
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Table 7: Comparison on detecting with different OOD detection approaches.

OOD detection approaches
DEnD (ours) Energy ViM KNNDatasets

AUROC AP AUROC AP AUROC AP AUROC AP

ImageNet 94.81 93.33 46.36 55.12 60.38 66.11 52.12 55.95

E Discussions on Additional OOD Detection Approaches

In Sec. 4.3, we validate and explain the limitations of directly applying the energy-based OOD
detection method. By grounding our approach in the training objective of self-supervised learning,
we redefine the energy score and introduce our differential energy score. While Sec. 4.2 focuses
on one specific OOD detection method, we do not dismiss the potential effectiveness of other
approaches. We further evaluate other advanced OOD detection methods, such as KNN [62] and
ViM [67]. All methods are trained on LSUN-Bedroom and tested on ImageNet. Experimental results
in Table 7 demonstrate that directly applying OOD detection methods designed for label spaces
is infeasible for generated image detection. This is because the distinction between natural and
generated images lies in high-level patterns rather than simple semantic label differences. Therefore,
we adopt category-agnostic self-supervised models and refine the energy score to achieve superior
detection performance.

F Details of The Threshold

In our experiments, we directly computed the differential energy scores between natural and generated
data separately, employing AUROC and AP as evaluation metrics. The assessment process does
not involve threshold selection. To clarify our methodology, Equation 12 explicitly adopts the
discrimination threshold formulation.

For experiments requiring accuracy-based evaluation, it is quite difficult to manually determine a
suitable threshold through visual observation for two large datasets. To find an optimal threshold, we
randomly separated 2,000 natural and generated images as a validation set (with no overlap with the
test set) and used an algorithm to identify the optimal threshold in the validation set. This threshold
was then applied to calculate the accuracy on the test set.

G Details of the Datasets

IMAGENET. The source of the dataset can be found at https://github.com/layer6ai-labs/
dgm-eval. We resize the image to 224 × 224 resolution as input. The real images are provided
by [9]. The generated images include:

• ADM, FID = 11.84.

• ADMG, FID = 5.58.

• BigGAN, FID = 7.94.

• DiT-XL-2, FID = 2.80.

• GigaGAN, FID=4.16.

• LDM, FID=4.29.

• StyleGAN-XL, FID=2.91.

• RQ-Transformer, FID=9.71.

• Mask-GIT, FID=5.63.

LSUN-BEDROOM. The source of the dataset can be found at https://github.com/
layer6ai-labs/dgm-eval. We resize the image to 224 × 224 resolution as input. The real
images are provided by [74]. The generated images include:
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• ADM, FID=2.20.

• DDPM, FID=5.18.

• iDDPM, FID=4.54.

• StyleGAN, FID=2.65.

• Diffusion-Projected GAN, FID=1.79.

• Projected GAN, FID=2.23.

• Unleashing Transformers, FID=3.58.

GenImage. The source of the dataset can be found at https://github.com/GenImage-Dataset/
GenImage. We resize the image to 224× 224 resolution as input. The images are provided by [79].
The generated images include:

• Midjourney.

• SD V1.4.

• SD V1.5.

• ADM.

• GLIDE.

• Wukong.

• VQDM.

• BigGAN.

Sora. To demonstrate the generalizability of our method on generative models with unknown
architectures, we collect Sora [47] generated videos and sample them to obtain images. We collect
the official demonstration videos and extract frames to obtain 5,000 images. Additionally, we utilize
the open-source OpenSora [76] project to generate 100 videos, from which we also extract frames
to get another 5,000 images. We use these images as generated images, and we randomly select
5,000 images from LAION [57] as natural images. We resize the images to 224× 224 resolution. We
employ these images to evaluate the generalizability of our method and compare them with baselines.

H Random Transformation Distribution

Table 8: DEnD’s performances on datasets with different transformations.

Transformations
Gaussian filter Gaussian noise random rotate salt and pepper noiseDatasets
AUROC AP AUROC AP AUROC AP AUROC AP

ImageNet 92.82 91.09 94.81 93.33 88.57 90.04 92.12 91.15
LSUN 94.54 93.11 96.05 95.03 64.21 60.06 92.10 90.07
Genimage 79.85 76.96 93.04 90.32 89.29 85.32 89.57 85.33

In our experiments, we evaluate diverse random transformation strategies m(x) used to generate
positive samples during self-supervised model training, including adding Gaussian noise, apply-
ing Gaussian filter, adding salt-and-pepper noise, and rotating at random angles. Each of these
transformations demonstrated robust performance, indicating their effectiveness in our study.

Our approach is highly adaptable, demonstrating commendable effectiveness with a variety of com-
mon random transformations. To complement our findings, we compared the average performance of
some common image transformations across these datasets (see Table 8). In our Gaussian filtering,
we set the σ = 0.7. In the Gaussian noise, we set the mean = 0, std = 0.04. In random rotation, we
set the rotation angle to randomly select between (−10◦, 10◦). In salt and pepper noise, we set the
probability of adding salt noise and pepper noise to both be 10−4. Overall, adding Gaussian noise
shows superior average performance. Consequently, we employed Gaussian noise in our experiments.
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I Ablation Studies

I.1 Temperature Coefficient and Batch Size Selection

Table 9: DEnD’s performance across varying temperature coefficients.

Temperature coefficient
t = 0.4 t = 0.6 t = 1.0 t = 5.0Datasets

AUROC AP AUROC AP AUROC AP AUROC AP

ImageNet 93.33 92.10 94.81 93.33 94.41 92.77 94.52 92.80

Regarding the temperature coefficient, our experiments (see Table 9) demonstrate that it has minimal
impact on the results. Specifically, different values within a reasonable range do not lead to significant
performance variations.

Table 10: DEnD’s performance across varying batch sizes.

Batch sizes
N = 16 N = 64 N = 128 N = 256Datasets

AUROC AP AUROC AP AUROC AP AUROC AP

ImageNet 89.53 86.22 93.30 92.81 94.81 93.33 94.11 92.49

As for batch size selection, our experiment (see Table 10) reveals that larger values of N gener-
ally improve effectiveness but also increase computational complexity. To balance accuracy and
computational efficiency, we ultimately adopted N=128 in our experiments.

I.2 The Selection of Self-supervised Models

Table 11: Comparison on detecting with different self-supervised models.

Self-supervised models
DINO CLIP DINOv2Datasets

AUROC AP AUROC AP AUROC AP

ImageNet 69.21 66.87 75.42 80.21 94.81 93.33

We also experimented with self-supervised models, such as DINO [3] and CLIP [53]. The results
(see Table 11) demonstrate that other self-supervised models significantly underperform compared to
DINOv2. Our method relies not only on the discriminative power of our differential energy score
but also on the representational capability of the adopted self-supervised model. Unlike DINO and
CLIP, DINOv2 better captures global pattern-level differences. These results align with [61], which
states that DINOv2 usually focuses on the image structure as a whole while still identifying objects
of importance—a capability lacking in other self-supervised models. Consequently, [61] employs
DINOv2’s representational space for generated image evaluation. Similarly, to better characterize
pattern-level discrepancies between natural and generated images, our DEnD framework adopts a
pre-trained DINOv2 model.

J Further Discussion

Our method operates on the premise that the self-supervised model is pre-trained on an extensive and
diverse corpus of real images, thus ensuring lower differential energy scores for all natural images (ID
data). In practice, we employ DINOv2 ViT-L/14, pre-trained on the LVD-142M [48] dataset, which
is designed to cover as many natural image domains as possible. Although extensive experiments
confirm our method’s outstanding performance, and its theoretical foundation—regarding the patterns
of all generated images as OOD data—enables generalization to unseen architectures, we observe
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Table 12: The performance of detectors under real data distribution shift. We investigate the impact
of different real data sources, keeping the generated images sources consistent with Table 1.

Methods
RIGID DEnD (ours)Real Data

AUROC AP AUROC AP

ImageNet 83.73 81.69 94.81 93.33
COCO 67.58 65.07 89.84 88.61

a key limitation. As shown in Table 12, when we evaluated our method using COCO [31] as the
source of natural images—a dataset exhibiting a potential distribution shift from the training set of
DINOv2—we observed a noticeable performance degradation. This observation is consistent with
our theoretical framework, as the self-supervised model is optimized to minimize the differential
energy score only for real data from distributions encountered during training. We also observed that
RIGID, another training-free method that also leverages DINOv2, suffers an even more significant
performance drop. This underscores the limitations stemming from the scope of DINOv2’s training
data. As part of our future work, we plan to fine-tune our model on larger and more diverse real-world
datasets to further enhance detection performance.

K Compute Resources

As a training-free method, our approach exhibits minimal computational overhead, which stands
as one of the key advantages of this work. All experiments were conducted on a single NVIDIA
GeForce RTX 4090 GPU with 24 GB memory. With a batch size of 128, the inference speed is
approximately 0.5 seconds per batch.

L Broader Impacts

This article proposes a novel approach for detecting generated images, offering an effective solution
to identify and mitigate the proliferation of synthetic media. Our work contributes to reducing
the spread of misinformation through synthetic content, with significant potential societal benefits.
We recognize that generated images give rise to ethical concerns, particularly regarding privacy
protection and consent issues. The proposed method addresses these challenges by establishing a
reliable detection framework. This research not only advances the field of generated image detection,
but also represents a critical step toward preserving digital media integrity in the AI era.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose a novel perspective to understand AI-generated image detection
through the lens of OOD detection and introduce a generalizable training-free generated
image detection method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The proofs of our theories can be found in the supplemental material. The
lemmas are referenced properly.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our experimental settings are provided in the paper. More experimental details
can be found in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code will be provided as soon as possible when the paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Most details are provided in Sec. 5.1. The rest are provided in the supplemental
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our approach follows previous settings and does not require reporting error
bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources are provided in Appendix K.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts are provided in Appendix L.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

11

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In our paper, we have carefully acknowledged the creators or original owners
of all assets used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The code and other assets will be released with documentation when the paper
is accepted.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is only for editing (e.g., grammar, spelling, word choice).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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