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ABSTRACT

Face recognition (FR) stands as one of the most crucial applications in computer
vision. The accuracy of FR models has significantly improved in recent years
due to the availability of large-scale human face datasets. However, directly us-
ing these datasets can inevitably lead to privacy and legal problems. Generating
synthetic data to train FR models is a feasible solution to circumvent these issues.
While existing synthetic-based face recognition methods have made significant
progress in generating identity-preserving images, they are severely plagued by
context overfitting, resulting in a lack of intra-class diversity of generated images
and poor face recognition performance. In this paper, we propose a framework
to Unleash Inherent capabilities of the model to enhance intra-class diversity for
synthetic face recognition, shortened as UIFace. Our framework first trains a dif-
fusion model that can perform sampling conditioned on either identity contexts or
a learnable empty context. The former generates identity-preserving images but
lacks variations, while the latter exploits the model’s intrinsic ability to synthesize
intra-class-diversified images but with random identities. Then we adopt a novel
two-stage denoising strategy to fully leverage the strengths of both types of con-
texts, resulting in images that are diverse as well as identity-preserving. Moreover,
an attention injection module is introduced to further augment the intra-class vari-
ations by utilizing attention maps from the empty context to guide the sampling
process in ID-conditioned generation. Experiments show that our method signifi-
cantly surpasses previous approaches with even less training data and half the size
of synthetic dataset. More surprisingly, the proposed UIFace even achieves com-
parable performance of FR models trained on real datasets when we increase the
number of synthetic identities.

1 INTRODUCTION

Face Recognition (FR) is one of the most successful computer vision applications. Recent years
have witnessed incredible improvements in the accuracy of FR models. This can be attributed to the
advancements in model architectures (Boutros et al., 2022b; He et al., 2016; Huang et al., 2017),
margin-based loss functions (Boutros et al., 2022a; Kim et al., 2022; Deng et al., 2019; Wang et al.,
2018b; Huang et al., 2020), and more importantly, the availability of large-scale face datasets (Guo
et al., 2016; Huang et al., 2008; Kemelmacher-Shlizerman et al., 2016; Zhu et al., 2021; Sengupta
et al., 2016; Zheng & Deng, 2018; Zheng et al., 2017; Moschoglou et al., 2017; Cao et al., 2018),
which contain millions of identities with rich variations in age, pose and expression.

However, these large-scale datasets are often collected directly from the Internet, without the ex-
plicit consent of individuals, which inevitably leads to privacy and legal issues (Regulation, 2016).
Moreover, these datasets severely suffer from challenges about noisy labels (Wang et al., 2018a;
2019) and imbalanced class distribution (Liu et al., 2019; Yi et al., 2014). In other words, images
with the same label may belong to different individuals, and there is a significant disparity in the
number of images among different identities. These drawbacks limit the further application of real
face datasets.
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CASIA-Real

IDiff-face

Ours
a) samples from different datasets b) quantitative comparison of dataset diversity c) accuracy of the FR models

Figure 1: a) Visualization of samples from different datasets. Samples from the real face dataset
CASIA exhibit variations in attributes such as pose, expression and illumination. However, when we
synthesize face data using previous method IDiff-Face (Boutros et al., 2023), the generated images
show poor diversity, more specifically, similar expressions and poses, which is caused by identity
overfitting. In contrast, our method can generate a wider variety of images, thereby enhancing the
accuracy of the trained FR model. b) Quantitative comparison of dataset diversity. We apply
LPIPS and Improved Recall to measure the diversity of different datasets. A higher value indicates
better diversity. c) Quantitative comparison of final accuracy of the FR models.

Generating synthetic data of non-existent identities to train FR models is a feasible solution to the
above issues as suggested by DeAndres-Tame et al. (2024), and there have already been some ex-
plorations in this field. The initial methods (Shen et al., 2018; Deng et al., 2020) employ Generative
Adversarial Networks (Goodfellow et al., 2020) to generate synthetic face data and utilize the disen-
tangled latent space to enhance the controllability. However, GAN-based methods have been shown
to generate only a limited number of unique identities (Kim et al., 2023), leading to poor general-
ization of the trained FR models. Recently, diffusion models have made significant advancements
in image generation (Song et al., 2020a; Dhariwal & Nichol, 2021; Song et al., 2020b; Rombach
et al., 2022). Some diffusion-based methods (Wang et al., 2024; Li et al., 2024; Boutros et al., 2023;
Papantoniou et al., 2024; Zhang et al., 2024) have been proposed for identity-preserving face gener-
ation, which is achieved by conditioning the denoising process with identity contexts, i.e., identity
features extracted from the pretrained FR models (Deng et al., 2019; Boutros et al., 2022a). It has
been demonstrated that diffusion-based methods are capable of generating a greater variety of unique
identities compared to GAN-based methods (Kim et al., 2023), showing a highly promising poten-
tial for real applications. Yet, a high-quality human face dataset does not just imply a large number
of identities but also requires good intra-class diversity. Specifically, the synthetic face images need
to exhibit variations in attributes such as expression, illumination and pose.

While existing methods have made significant progress, they still suffer from context overfitting
(Boutros et al., 2023). More specifically, a fixed identity context not only determines the identity
of generated images but also limits their the variations of identity-irrelevant attributes, resulting in
insufficient intra-class diversity. As illustrated in Figure 1a, previous methods often exhibit reduced
diversity of synthetic images, i.e., lack of variations in expression and pose, compared to real-world
dataset. To further demonstrate this issue, following Kim et al. (2023) and Papantoniou et al. (2024),
we utilize LPIPS (Zhang et al., 2018) and Improved Recall (Kynkäänniemi et al., 2019) to quanti-
tatively measure the intra-class diversity of datasets. As shown in Figure 1b, the diversity of the
synthetic dataset generated by previous approach significantly lags behind that of the real dataset
CASIA-Webface (Yi et al., 2014), resulting in poor performance of the trained FR model (Figure
1c). Although methods such as Contextual Partial Dropout (Boutros et al., 2023), style condition
extractor (Kim et al., 2023) and paired data generation (He et al., 2024) have been proposed to alle-
viate this issue, they either rely on complex network designs or require the introduction of additional
training data, and still have a significant performance gap compared to real data-based methods.
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Intuitively, the model inherently possesses the ability to generate diverse images because the real
data used to train the generative model contains rich intra-class variations. However, when it comes
to a specific identity context, such inherent capability is limited by context overfitting. Therefore,
in this paper, we propose a novel framework to unleash model inherent capabilities to enhance
intra-class diversity for synthetic face recognition, shortened as UIFace. Specifically, we first train
a diffusion model that can perform sampling conditioned on either specific identity contexts or a
learnable empty context. When conditioned on a specific identity context, the model generates
identity-preserving images but with poor diversity due to context overfitting. On the other hand,
when conducting sampling conditioned on the empty context, the model can fully leverage its in-
herent capabilities to synthesize various images but with random identities. This is because during
training, we allow the empty context to generate all the images in the dataset. To exploit the strengths
of both type of contexts to synthesize images that are diverse as well as identity-preserving, we
adopt a novel two-stage denoising strategy. Our key observation is that in the early stages of denois-
ing, the model restores identity-irrelevant contents, while in the later stage the model recovers the
identity-relevant details (Section 3.2). Thus, in the first stage, the diffusion model performs denois-
ing conditioned on the empty context for unleashing its intrinsic ability to generate large intra-class
variations. In the second stage, the model generates identity-preserving details based on given iden-
tity conditions. Such a two-stage strategy takes the advantage of the inherent ability to enhance
the diversity of conditional generation. Moreover, we propose an adaptive partitioning strategy to
adaptively determine the boundary of these two stages for each sample based on the difference be-
tween adjacent cross-attention maps. To fully harness the diversity of empty context-conditioned
generation, we propose an attention injection module to use the attention maps from unconditional
denoising to guide the condition denoising process, which further leverages model’s inherent ability
while maintaining ID-consistency.

In summary, our contributions are as follows:

• We propose a novel two-stage synthetic face recognition framework. By allowing the learn-
able empty context and identity contexts to dominate different stages of the denoising pro-
cess, our method can fully leverage model’s inherent capabilities to achieve intra-class-
diversified image generation while keeping identity-preserving.

• We propose an adaptive partitioning strategy to adaptively determine the boundaries of two
stages for different samples and an attention injection module to utilize attention maps from
unconditional generation to guide the conditional generation. These designs can further
unleash model’s inherent ability to enhance the intra-class variations of synthesized images.

• Experimental results show that our method outperforms the existing state-of-the-art meth-
ods with a significant margin using less training data. We surpass the current state-of-the-art
methods even when synthesizing less than half of the number of synthetic dataset. When
further increasing the number of identities, the proposed UIFace can surprisingly achieve
comparable performance with those FR models trained on real datasets.

2 RELATED WORK

2.1 FACE RECOGNITION

Face recognition involves identifying or verifying a person from an enrolled dataset. With the con-
tinuous improvement of network architectures (He et al., 2016; Boutros et al., 2022b; Huang et al.,
2017) and the introduction of novel loss functions (Boutros et al., 2022a; Deng et al., 2019; Huang
et al., 2020; Wang et al., 2018b; Kim et al., 2022), the accuracy of face recognition models has made
remarkable advancements in recent years. More importantly, the improvement in performance is
also attributed to large-scale face datasets (Huang et al., 2008; Cao et al., 2018; Zhu et al., 2021;
Guo et al., 2016; Kemelmacher-Shlizerman et al., 2016) as well as datasets tailored to address spe-
cific challenges (Zheng & Deng, 2018; Zheng et al., 2017; Sengupta et al., 2016; Moschoglou et al.,
2017). Nevertheless, these datasets are collected directly from the Internet without explicit individ-
ual consent, leading to inevitable privacy and legal concerns. Moreover, they are suffered from noisy
labels and the long-tail problem (Yi et al., 2014). The above issues need to be carefully considered
before using these datasets.
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A minimal impact on intra-class similarity

different intervals using identity contexts

Figure 2: Effects of different denoising timesteps on identity. The x-axis represents timestep
intervals where identity contexts are used as conditions. The empty context is used as a substitute
in timesteps that not covered in intervals. The y-axis represents the intra-class similarity of the
generated face images. The maximum denoising timestep T is set to 1000.

2.2 FACE IMAGE SYNTHESIS

Image generation models have made remarkable progress, allowing the synthesis of high-quality
human face images. GAN-based methods (Brock, 2018; Choi et al., 2018; Karras, 2017; Karras
et al., 2019; 2020; Yin et al., 2017) are successful pioneers among them. They achieve identity-
preserving face generation by decoupling identity and attributes (Bao et al., 2018), or introducing
additional classifiers and discriminators (Shen et al., 2018). DiscoFaceGAN (Deng et al., 2020)
introduces a more fine-grained decoupled latent space to enable precise control of synthesized faces.
Recently, diffusion models (Song et al., 2020a; Ho et al., 2020; Dhariwal & Nichol, 2021; Song
et al., 2020b; Rombach et al., 2022) have made significant advances in the field of image synthesis.
Some methods (Zhang et al., 2024; Wang et al., 2024; Li et al., 2024) have achieved high-fidelity
identity-preserving image generation with text and ID-conditioned diffusion model.

2.3 FACE RECOGNITION WITH SYNTHETIC DATASET

Replacing real datasets with synthetic face datasets can address the legal and class imbalance is-
sues. SynFace (Qiu et al., 2021) applies DiscoFaceGAN (Deng et al., 2020) to synthesis identity-
consistent data for training FR models. DCFace (Kim et al., 2023) proposes an diffusion-based
method that employs decoupled style and identity encoders to generate dual conditions and demon-
strates that DDPM (Ho et al., 2020) can generate more unique identities than GAN-based methods,
which is crucial for improving the accuracy of FR models. Some works (Boutros et al., 2023; Papan-
toniou et al., 2024) continue to enhance the quality of synthetic datasets, narrowing the performance
gap between FR models trained on synthetic and real data. Nevertheless, as depicted in Figure 1,
existing methods still suffer from context overfitting, resulting in insufficient diversity in synthetic
datasets. While some approaches (Boutros et al., 2023; Kim et al., 2023; He et al., 2024) have been
suggested to address this challenge, they often depend on intricate network architectures or neces-
sitate extra training data. In contrast, this paper explores to unleash model’s inherent capabilities to
intra-class-diversified image generation for synthetic-based face recognition.

3 METHOD

Overview. The aim of synthetic face recognition is to generate synthetic face data for training FR
models, thereby addressing the inherent issues of real datasets collected directly from the Internet,
as discussed in Section 1. Formally, given the training dataset {xi}Ni=1, we follow previous works
(Papantoniou et al., 2024; Boutros et al., 2023) to utilize a pre-trained FR model F to extract the
identity context ci = F(xi) for each image, resulting in extended dataset {xi, ci}Ni=1. Subsequently,
we train a conditional diffusion model G that can perform sampling conditioned on either specific
identity contexts ci or en empty context ce (Section 3.1). Then we elucidate the crucial observation
that in the initial sampling stage, the model restores identity-irrelevant contents, whereas in the later
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stage2: conditional denoising

z𝑇 z𝑇−1 z𝑡0
𝑐𝑒

z𝑡0−1

z𝑡0−1

Attention Injection

stage1: unconditional denoising

synthetic dataset𝑐

UNet
backbone

empty 
context

identity 
context

unconditional 
denoising

conditional 
denoising

Adaptive
Stage 

Partition

Figure 3: Overview of proposed UIFace. We propose a two-stage denoising strategy to unleash the
intrinsic capability of the model to generate diverse images. In the first stage, the model performs
unconditional denoising based on the empty context ce. In the second stage, the model restores
identity-relevant details conditioned on specific identity contexts c. We further propose an adaptive
stage partition strategy to determine the boundary of these two stages t0 and an attention injection
module to enhance diversity of synthetic dataset while maintaining identities.

stage it recovers details that determine the identity (3.2). Next, we introduce the two-stage denoising
strategy to generate synthetic face images that simultaneously preserve identity and exhibit diversity
(Section 3.3). Then, we propose an attention injection mechanism to further enhance the quality
of the synthetic images (Section 3.4). Lastly, we present details about synthetic dataset generation
(Section 3.5). The framework overview is shown in Figure 3.

3.1 PRELIMINARY

Latent Diffusion Model (Rombach et al., 2022) employs a denoising process to approximate the
distribution of latent representations z of real images x. A Variational Autoencoder E is first applied
to map the images to a lower-dimensional latent space z = E(x). The images are progressively
corrupted by adding Gaussian noise according to a predefined schedule during training. Formally,

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, (1)

where t and z0 stand for the diffusion timestep and clean latent representation respectively. The
reverse process (also known as the sampling process) is defined by the following equation

zt−1 = µθ(zt, t, c) =
1

√
αt

(
zt −

1− αt√
1− ᾱt

ϵθ(zt, t, c)

)
. (2)

where c is the textual condition. The optimization of the UNet (Ronneberger et al., 2015) backbone
ϵθ is achieved by recovering the random noise ϵ and minimizing the following loss

L = Ezt,t,c,ϵ∼N (0,I)

[
∥ϵ− ϵθ(zt, t, c)∥22

]
. (3)

In synthetic-based face recognition, c is the identity context extracted from a pre-trained FR model.
Our method introduce an additional learnable empty context ce. During training iterations, the
identity context c is probabilistically replaced with ce. Thus, ce can be used to generate images of
any identities present in the training data. When training finished, the model can generate identity-
preserving images conditioned on any given c, or random face images conditioned on ce.

3.2 EFFECTS OF DIFFERENT DENOISING TIMESTEPS ON IDENTITY

In this subsection, we present our observations about effects of different sampling timesteps on
identity. For this purpose, we inject identity contexts as sampling conditions in different timestep
intervals and calculate the intra-class similarity of generated images, which is based on the distance
of features from a pre-trained FR model just as the standard metric in this field. As depicted in Figure
2, during the initial sampling phase (for larger t values), employing identity contexts as conditions
exhibits minimal enhancement in the intra-class similarity of synthesized images, while condition
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the denoising process in the later timesteps (for smaller t values) can rapidly improve the intra-class
similarity. It implies that the model recovers identity-irrelevant contents at early sampling stage
and restores identity-relevant details in later stage. Based on these observations, we propose a two-
stage denoising strategy to unleash the inherent diversity of the model while maintaining the identity
consistency of generated images.

3.3 TWO-STAGE DENOISING STRATEGY

As mentioned in the Section 1, previous synthetic-based methods suffer from the overfitting of
identity context c, leading to poor diversity of generated face images and degenerated face recogni-
tion performance. To address this issue, we propose a two-stage denoising strategy to unleash the
model’s inherent capabilities to enhance intra-class diversity. According to the observations from
Section 3.2, we instruct the model to perform sampling conditioned on the empty identity ce in the
early stage, which helps to introduce greater intra-class variations. In the later stage, we condition
the sampling process with specific identity context c to generate identity-relevant details. This strat-
egy results in synthesized images that are both diverse and identity-preserving. The overall formula
is as follows,

zt−1 =


1√
αt

(
zt − 1−αt√

1−ᾱt
ϵθ(zt, t, ce)

)
if t ∈ [t0, T ],

1√
αt

(
zt − 1−αt√

1−ᾱt
((w + 1)ϵθ(zt, t, c)− wϵθ(zt, t, ce))

)
if t ∈ [0, t0],

(4)

where t0 serves as the boundary between the two stages and w is the scale of classifier-free guidance
(Ho & Salimans, 2022). Next we further introduce an adaptive partitioning strategy to assign a
unique boundary t0 for each sample.

Adaptive partitioning strategy. We observed that the cross-attention maps between UNet fea-
tures and identity context exhibit significant variations during the early sampling timesteps when
the model has not yet started focusing on details that determine the identity. And a decrease of
temporal difference in cross-attention maps signifies the focus of sampling process shifting towards
identity-relevant details in images (See A.3 for further details). Thus we propose an adaptive parti-
tion strategy based on the temporal differences of cross-attention maps. Specifically, let ht denote
the normalized cross-attention map between the learnable empty context ce and the UNet features at
timestep t and dt denote the difference of adjacent cross-attention maps. The boundary t0 for each
sample is determined as follows,

dt = ∥ht+1 − ht∥2, t0 = min{t : (dt+1 > th) and (dt < th)} (5)

where th is a hyperparameter. We interpolate the cross-attention maps of each layer to the same
resolution, then average and normalize them across the spatial dimensions to get the final ht. The
attention maps mentioned later in this paper are obtained in a similar manner.

3.4 ATTENTION INJECTION

To further enhance the quality of synthesized images by leveraging the inherent diversity of the
empty context ce, we propose an attention injection module in the second sampling stage to directly
use the attention maps of ce to guide the conditional generation. Let hc

self and hc
cross represent

the self-attention map of UNet features in conditional denoising and cross-attention map between
UNet features and identity context c respectively. Similarly, let hce

self and hce
cross denote the attention

maps in unconditional generation. A naive approach is to directly copy the corresponding attention
maps. Nevertheless, experimental results indicate that directly substituting the cross-attention map
has a considerable impact on identity and quality of the generated images (Section 4.3). Thus, we
introduce a novel injection strategy to leverage the cross-attention map hce

cross from ce. Specifically,
we normalize hc

cross using the mean and variance of hce
cross along the spatial dimensions. The

formula is as follows,

µc, σc = mean(hc
cross), std(h

c
cross), µce , σce = mean(hce

cross), std(h
ce
cross), (6)

hc
cross =

hc
cross − µc

σc
∗ σce + µce . (7)

As for the self-attention map, we adopt direct replacement as hc
self = hce

self because we found that
the self-attention of UNet features affects identity-irrelevant attributes of the synthesized images.

6
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Table 1: Comparisons with state-of-the-art synthetic-based face recognition methods. Face
verification accuracy (%) on difference benchmarks.

Method Num of imgs (IDs × imgs/ID) LFW CFP-FP CPLFW AGEDB CALFW Average
CASIA-Real ~0.5M( 10.5K × 47) 99.43 97.27 90.18 94.78 93.58 95.05

SynFace 0.5M(10k × 50) 91.93 75.03 70.43 61.63 74.73 74.75
DigiFace 0.5M(10k × 50) 95.4 87.4 78.87 76.97 78.62 83.45
DCFace 0.5M(10k × 50) 98.55 85.33 82.62 89.70 91.60 89.56

IDiff-Face 0.5M(10k × 50) 98.0 85.47 80.45 86.43 90.65 88.20
Arc2Face 0.5M(10k × 50) 98.81 91.87 85.16 90.18 92.63 91.73

UIFace (ours) 0.5M(10k × 50) 99.27 94.29 89.58 90.95 92.25 93.27
DigiFace 1.2M(10k × 72 + 100k × 5) 96.17 89.81 82.23 81.10 82.55 86.37
DCFace 1.2M(20k × 50 + 40k × 5) 98.58 88.61 85.07 90.97 92.82 91.21

Arc2Face 1.2M(20k × 50 + 40k × 5) 98.92 94.58 86.45 92.45 93.33 93.14
UIFace (ours) 1.0M(20k × 50) 99.22 95.03 90.42 92.45 93.18 94.06

Experimental results demonstrate that the proposed attention injection module, which handles self
and cross-attention differently, achieves identity preservation while further harnessing the inherent
ability of diffusion model to enhance the diversity of the synthesized images.

3.5 SYNTHETIC-BASED FACE RECOGNITION

To generate synthetic dataset with non-existent identities, first we follow the previous method
(Boutros et al., 2023) to generate non-existent face images using an additional unconditional face
generation model and extract their identity contexts using the pre-trained FR model (Boutros et al.,
2022a). Then we adopt the strategy from Kim et al. (2023) to filter out similar identity contexts using
cosine distances to ensure inter-class discrepancy. Subsequently, we utilize these identity contexts
as conditions to generate images using our method. Last, we train new FR models on these synthetic
data from scratch and report the final FR accuracy on real dataset.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training and testing dataset. We train our diffusion model on CAISA-Webface (Yi et al., 2014)
dataset containing about 500k face images of 10575 real identities of celebrities directly grabbed
from the web, which show large variations of attributes such as pose, illumination, and facial ex-
pressions. We evaluate the final synthetic-based FR models on the five most commonly used real
datasets, LFW (Huang et al., 2008), CFP-FP (Sengupta et al., 2016), CPLFW (Zheng & Deng,
2018), AgeDB (Moschoglou et al., 2017) and CALFW (Zheng et al., 2017). These datasets include
images with varying ages, poses, and facial expressions, which allow to comprehensively measure
the generalization capabilities of FR models.

Implementation details. Our diffusion model is trained using an Adam (Kingma, 2014) optimizer
with a learning rate of 1e-4. The experiments are conducted on 8 NVIDIA V100 GPUs with a
batch size of 64, and the training is conducted for a total of 250k iterations. During the training
process, we randomly replaced c with the empty context ce at a probability of 20%. As for training
synthetic-based FR models, We adopt an IR50 as backbone with ArcFace loss (Deng et al., 2019)
for 40 epochs. The scale of classifier-free guidance is set to 1 and th is 0.005. You can find more
details about our experiments in A.1.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

In this subsection, we compare our method with other synthetic-based face recognition methods. The
results are shown in Table 1. As shown in the table, our method significantly outperforms previous
approaches in the average metrics across the five datasets. Moreover, our method maintains superior
performance even when synthesizing fewer than half the number of face images compared to pre-
vious methods. Notably, previous state-of-the-art method Arc2Face (Papantoniou et al., 2024) even
uses more datasets and higher resolution images to train the generative model. We attribute the supe-
riority of our method to our two-stage denoising strategy and attention injection mechanism, which

7
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Table 2: Ablation studies. Face verification accuracy (%) on difference benchmarks and diversity
metrics of synthetic datasets from diffent settings.

Method LPIPS ImRecall LFW CFP-FP CPLFW AGEDB CALFW Average
baseline 0.5270 53.99 98.98 92.57 87.0 88.42 90.7 91.53
baseline + 2-stage-fixed 0.5302 57.92 98.83 92.94 88.37 89.1 91.15 92.08
baseline + 2-stage-adaptive 0.5346 62.35 99.05 94.13 88.93 89.92 91.48 92.70
baseline + attn 0.5338 61.98 99.17 92.73 88.12 89.47 91.75 92.25
baseline + 2-stage-adaptive + attn 0.5592 71.96 99.27 94.29 89.58 90.95 92.25 93.27

can unleash the potential of diffusion model to synthesize images with enhanced diversity, thereby
enabling the FR model to have better generalization capabilities on real datasets. By increasing the
number of identities, our approach even outperforms the FR model trained on CAISA-Webface on
the CPLFW dataset and achieves comparable performance in the average accuracy.

4.3 ABLATION STUDIES

In this subsection we further investigate the effectiveness of each design of proposed UIFace in
synthetic face recognition. The results are shown in Table 2.

Impact of two-stage denoising. We first build a baseline method based on the vanilla single-stage
sampling strategy (baseline) for synthetic-based face recognition. To validate the effectiveness of
proposed two-stage sampling, we first employ a naive two-stage sampling process based on fixed
stage partition (t0 = 500, 2-stage-fixed). As shown in Table 2, the naive two-stage design with fixed
partition has already demonstrated a significant performance improvement compared to the baseline
in both the diversity of the generated dataset and the accuracy of the FR model. We attribute this to
our observations in Section 3.2 so that such two-stage strategy can unleash the model’s potential for
intra-class-diversified image generation, leading to improved face recognition accuracy.

Impact of adaptive partitioning strategy. Moreover, we validate the effectiveness of the proposed
adaptive partition by incorporating it into the baseline method (2-stage-adaptive). As shown in Table
2, the proposed adaptive partitioning significantly outperforms the fixed partitioning method. Such
adaptive partition strategy not only eliminates the need of manual hyperparameter tuning but also
allows for the allocation of different stage boundaries for each sample, especially considering that
the partition preferences may vary across different samples.

Figure 4: visualization results of different attention injection strategies (Top: unconditional genera-
tion; Middle: attention injection with vanilla replacement; Bottom: the proposed attention inject).

Figure 5: Genuine and imposter comparisons.
(Left: baseline; Mid: UIFace; Right: CASIA).

Impact of the proposed attention injection.
We first visualize the synthesized images us-
ing the proposed attention injection compared
to images generated using vanilla attention map
replacement. As shown in Figure 4, directly re-
placing the attention map will greatly degener-
ate the quality and identity of the synthesized
images, while the proposed attention injection

8
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can effectively utilize the diversity from unconditional generation as well as maintain identity-
preserving. Then we augment the baseline model with the proposed attention injection method
(attn). A significant improvement can be observed in Figure 2, in both the diversity of synthetic
datasets and the accuracy of the FR model. This is because we enhance the intra-class variations
with the model’s inherent ability in unconditional diverse image generation. Combining our adaptive
two-stage strategy and attention injection leads to the best diversity and performance improvement.

Discussion about identity consistency. Intuitively, the two-stage sampling strategy proposed in this
paper may reduce the intra-class identity similarity of the generated images since the empty context
ce stands for "random identities", which is also of great significance in synthetic face recognition.
In fact, there is a trade-off between intra-class diversity and intra-class identity consistency in this
task. And our designs, including the discussion in Section 3.2, the use of classifier-free guidance in
the second stage (Section 3.3) and the different treatment of self and cross-attention maps in Section
3.4, have sought to maximize intra-class diversity while preserving identity consistency as much as
possible. To demonstrate this, we conduct genuine and imposter comparisons, a common metric in
face recognition that measures the similarity between data points of the same individual and different
individuals. As shown in Figure 5 and Table 2, our method has improved both intra-class identity
similarity and style diversity compared to the baseline method.

Figure 6: Visualization results of IDiff-Face (odd rows) and UIFace (even rows).

4.4 QUALITATIVE RESULTS

The qualitative results of IDiff-Face (Boutros et al., 2023) and proposed UIFace are shown in Figure
6. We randomly sample identity contexts and used both methods to generate synthetic face images.
It is evident from the figure that the images generated by IDiff-Face exhibit a lack of variations
in attributes such as expression, illumination and pose, which is caused by context overfitting as
discussed in Section 1. In contrast, our proposed UIFace employs a two-stage denoising strategy
to unleash the model’s inherent capability, thereby enhancing intra-class diversity in the generated
images (more expression changes, facial rotations and lighting variations).

5 CONCLUSION

We introduce UIFace, a novel synthetic face recognition framework that leverages a two-stage de-
noising strategy to unleash inherent model capabilities to enhance intra-class diversity of synthetic
face dataset. Moreover, we propose an adaptive partitioning strategy and an attention injection
method to further improve intra-class diversity while maintaining identity-preserving. Extensive
experiments demonstrate that UIFace outperforms existing methods in multiple benchmarks even
using less training data and fewer identity number.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua. Towards open-set identity
preserving face synthesis. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 6713–6722, 2018.

Fadi Boutros, Naser Damer, Florian Kirchbuchner, and Arjan Kuijper. Elasticface: Elastic margin
loss for deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, pp. 1578–1587, June 2022a.

Fadi Boutros, Patrick Siebke, Marcel Klemt, Naser Damer, Florian Kirchbuchner, and Arjan Kuijper.
Pocketnet: Extreme lightweight face recognition network using neural architecture search and
multistep knowledge distillation. IEEE Access, 10:46823–46833, 2022b.

Fadi Boutros, Jonas Henry Grebe, Arjan Kuijper, and Naser Damer. Idiff-face: Synthetic-based face
recognition through fizzy identity-conditioned diffusion model. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 19650–19661, 2023.

Andrew Brock. Large scale gan training for high fidelity natural image synthesis. arXiv preprint
arXiv:1809.11096, 2018.

Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew Zisserman. Vggface2: A dataset for
recognising faces across pose and age. In 2018 13th IEEE international conference on automatic
face & gesture recognition (FG 2018), pp. 67–74. IEEE, 2018.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Star-
gan: Unified generative adversarial networks for multi-domain image-to-image translation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8789–8797,
2018.

Ivan DeAndres-Tame, Ruben Tolosana, Pietro Melzi, Ruben Vera-Rodriguez, Minchul Kim, Chris-
tian Rathgeb, Xiaoming Liu, Aythami Morales, Julian Fierrez, Javier Ortega-Garcia, et al. Frcsyn
challenge at cvpr 2024: Face recognition challenge in the era of synthetic data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3173–3183, 2024.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
loss for deep face recognition. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 4690–4699, 2019.

Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin Tong. Disentangled and controllable
face image generation via 3d imitative-contrastive learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 5154–5163, 2020.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 12873–12883, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. Ms-celeb-1m: A dataset
and benchmark for large-scale face recognition. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III 14, pp. 87–
102. Springer, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Zecheng He, Bo Sun, Felix Juefei-Xu, Haoyu Ma, Ankit Ramchandani, Vincent Cheung, Siddharth
Shah, Anmol Kalia, Harihar Subramanyam, Alireza Zareian, et al. Imagine yourself: Tuning-free
personalized image generation. arXiv preprint arXiv:2409.13346, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. Labeled faces in the wild:
A database forstudying face recognition in unconstrained environments. In Workshop on faces
in’Real-Life’Images: detection, alignment, and recognition, 2008.

Yuge Huang, Yuhan Wang, Ying Tai, Xiaoming Liu, Pengcheng Shen, Shaoxin Li, Jilin Li, and
Feiyue Huang. Curricularface: adaptive curriculum learning loss for deep face recognition. In
proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5901–
5910, 2020.

Tero Karras. Progressive growing of gans for improved quality, stability, and variation. arXiv
preprint arXiv:1710.10196, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020.

Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel Miller, and Evan Brossard. The megaface
benchmark: 1 million faces for recognition at scale. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4873–4882, 2016.

Minchul Kim, Anil K. Jain, and Xiaoming Liu. Adaface: Quality adaptive margin for face recogni-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 18750–18759, June 2022.

Minchul Kim, Feng Liu, Anil Jain, and Xiaoming Liu. Dcface: Synthetic face generation with dual
condition diffusion model. In Proceedings of the ieee/cvf conference on computer vision and
pattern recognition, pp. 12715–12725, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

Zhen Li, Mingdeng Cao, Xintao Wang, Zhongang Qi, Ming-Ming Cheng, and Ying Shan. Pho-
tomaker: Customizing realistic human photos via stacked id embedding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8640–8650, 2024.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
scale long-tailed recognition in an open world. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 2537–2546, 2019.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stylianos Moschoglou, Athanasios Papaioannou, Christos Sagonas, Jiankang Deng, Irene Kotsia,
and Stefanos Zafeiriou. Agedb: the first manually collected, in-the-wild age database. In proceed-
ings of the IEEE conference on computer vision and pattern recognition workshops, pp. 51–59,
2017.

Foivos Paraperas Papantoniou, Alexandros Lattas, Stylianos Moschoglou, Jiankang Deng, Bernhard
Kainz, and Stefanos Zafeiriou. Arc2face: A foundation model of human faces. arXiv preprint
arXiv:2403.11641, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Haibo Qiu, Baosheng Yu, Dihong Gong, Zhifeng Li, Wei Liu, and Dacheng Tao. Synface: Face
recognition with synthetic data. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 10880–10890, 2021.

Protection Regulation. Regulation (eu) 2016/679 of the european parliament and of the council.
Regulation (eu), 679:2016, 2016.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Soumyadip Sengupta, Jun-Cheng Chen, Carlos Castillo, Vishal M Patel, Rama Chellappa, and
David W Jacobs. Frontal to profile face verification in the wild. In 2016 IEEE winter confer-
ence on applications of computer vision (WACV), pp. 1–9. IEEE, 2016.

Yujun Shen, Ping Luo, Junjie Yan, Xiaogang Wang, and Xiaoou Tang. Faceid-gan: Learning a
symmetry three-player gan for identity-preserving face synthesis. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 821–830, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Fei Wang, Liren Chen, Cheng Li, Shiyao Huang, Yanjie Chen, Chen Qian, and Chen Change Loy.
The devil of face recognition is in the noise. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 765–780, 2018a.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei
Liu. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5265–5274, 2018b.

Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, and Anthony Chen. Instantid: Zero-shot identity-
preserving generation in seconds. arXiv preprint arXiv:2401.07519, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xiaobo Wang, Shuo Wang, Jun Wang, Hailin Shi, and Tao Mei. Co-mining: Deep face recognition
with noisy labels. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 9358–9367, 2019.

Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face representation from scratch. arXiv
preprint arXiv:1411.7923, 2014.

Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, and Manmohan Chandraker. Towards large-pose
face frontalization in the wild. In Proceedings of the IEEE international conference on computer
vision, pp. 3990–3999, 2017.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Shilong Zhang, Lianghua Huang, Xi Chen, Yifei Zhang, Zhi-Fan Wu, Yutong Feng, Wei Wang,
Yujun Shen, Yu Liu, and Ping Luo. Flashface: Human image personalization with high-fidelity
identity preservation. arXiv preprint arXiv:2403.17008, 2024.

Tianyue Zheng and Weihong Deng. Cross-pose lfw: A database for studying cross-pose face recog-
nition in unconstrained environments. Beijing University of Posts and Telecommunications, Tech.
Rep, 5(7):5, 2018.

Tianyue Zheng, Weihong Deng, and Jiani Hu. Cross-age lfw: A database for studying cross-age
face recognition in unconstrained environments. arXiv preprint arXiv:1708.08197, 2017.

Zheng Zhu, Guan Huang, Jiankang Deng, Yun Ye, Junjie Huang, Xinze Chen, Jiagang Zhu, Tian
Yang, Jiwen Lu, Dalong Du, et al. Webface260m: A benchmark unveiling the power of million-
scale deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10492–10502, 2021.

A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS

For the generative model, we first use a pretrianed autoencoder VQGAN (Esser et al., 2021) from
official repository of Stable Diffusion (Rombach et al., 2022) to map the input images to latent space
of 3 × 32 × 32. Then a UNet backbone with four resolution levels is implemented to predict the
groundtruth noise in latent space. During trainig iterations, we apply a cossine annealing learning
rate scheduler (Loshchilov & Hutter, 2016) in PyTorch (Paszke et al., 2019) and maintain an Ex-
ponential Moving Average (EMA) model with a momentum of 0.999 as the final generative model.
As for reverse process, we use DDIM (Song et al., 2020a) to accelerate the sampling process with a
skip step of 20. Both training and sampling are conducted on 8 V100 GPUs.

For the recognition model, our implementation is based on the official repository of TFace
(https://github.com/Tencent/TFace) and IDiff-Face (Boutros et al., 2023). Dur-
ing training, we use the Adam optimizer and a step-wise descending learning rate schedule of
[0.1, 0.01, 0.001, 0.0001]. We also apply data augmentation strategy from AdaFace (Kim et al.,
2022) with a probability of 0.2. The training of all FR models in this paper is conducted on 8 V100
GPUs.

For evaluation, we use a pretrained inception model (Szegedy et al., 2016) to extract embeddings
of synthetic images to calculate ImprovedRecall (Kynkäänniemi et al., 2019) and a VGG-Net (Si-
monyan & Zisserman, 2014) to calculate LPIPS (Zhang et al., 2018) in this paper. For Improve-
dRecall, we randomly sampled 10k × 50 images from the same 10k identities, with a nearest neigh-
bor parameter K set to 10. For LPIPS, we compute the average intra-class similarity of images from
100 randomly sampled identities.
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A.2 PERFORMANCE GAP BETWEEN METHODS SYNTHETIC-BASED AND REAL
DATASET-BASED METHODS.

Although synthetic-based face recognition methods can circumvent some issues about privacy, legal-
ity, and class imbalance, the performance gap between synthetic-based and real data-based methods
exists due to distribution differences of real and synthetic datasets. We show this performance gap
in Table 3. As shown in the table, our method achieves results closest to real data-based FR model,
even with just half the size of the synthetic dataset compared to previous methods. When the num-
ber of synthetic identities is further increased to 20k, we even achieve competitive face recognition
accuracy (~1%) against the real-based method.

A.3 ADDITIONAL ANALYSIS ABOUT dt

As mentioned in Section 3.3, our adaptive partition strategy is based on temporal difference of cross-
attention maps {dt = ht+1 − ht}. As shown in Figure 7, {dt} stays high values during the early
stage of denoising, which implies that cross-attention maps change rapidly and model restores those
identity-irrelevant contents such as facial rotations, illumination and backgrounds at the first stage.
Then only after the cross-attention maps remain stable (low dt values) does the model begin to
recover those identity-related details (as shown in Figure 7 right). These observations illustrate our
motivation why we adopt the adaptive partition strategy based on dt.

𝒅_𝒕𝑡 = 𝑇 𝑡 = 0

Figure 7: Left: dt plot. Right: Visualization of images and cross-attention maps during denoising
process.

Table 3: Comparisons with state-of-the-art synthetic-based face recognition methods on Real-
Syn performance gap. We calculate performance gap between synthetic-based and real dataset-
based methods as (REAL - SYN)/SYN.

Method Num of imgs (IDs × imgs/ID) Average Performance gap
CASIA-Real ~0.5M( 10.5K × 47) 95.05 0.0%

SynFace 0.5M(10k × 50) 74.75 27.2%
DigiFace 0.5M(10k × 50) 83.45 13.9%
DCFace 0.5M(10k × 50) 89.56 6.1%

IDiff-Face 0.5M(10k × 50) 88.20 7.8%
Arc2Face 0.5M(10k × 50) 91.73 3.6%

UIFace (ours) 0.5M(10k × 50) 93.27 1.9%
DigiFace 1.2M(10k × 72 + 100k × 5) 86.37 10.0%
DCFace 1.2M(20k × 50 + 40k × 5) 91.21 4.2%

Arc2Face 1.2M(20k × 50 + 40k × 5) 93.14 2.0%
UIFace (ours) 1.0M(20k × 50) 94.06 1.1%
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CASIA
identities

Unseen
identities

Figure 8: More visualization results of IDiff-Face (odd rows) and our UIFace (even rows) using
either CASIA-Webface identity contexts or unseen identity contexts.

A.4 MORE QUALITATIVE RESULTS

We provide a more visualization comparison between IDiff-Face and our method in Figure 8.
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