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Abstract

Effective modeling of drug response requires a
multi-scale framework that bridges molecular per-
turbations with cellular viability. While emerg-
ing biological foundation models offer promise
for cross-scale transfer, they are not explicitly
designed to capture chemical-induced perturba-
tions across omics and chemical modalities. Here,
we present Condition-Specific Gene-Gene Atten-
tion (CSG2A), a multi-modal transfer learning
framework that integrates transcriptomic profiles
with compound structure and treatment condi-
tions (e.g., dosage, time) to model drug responses
at multiple scales. CSG2A is first pretrained
on large-scale drug-induced gene expression per-
turbation dataset to learn condition-aware gene
interaction patterns through its gene-gene atten-
tion module, guided by interactome network pri-
ors. It is then transferred to cell viability dataset,
achieving state-of-the-art performance in cell line
drug response prediction. Case studies support
the biological interpretability of the learned at-
tention maps, aligning with known drug mecha-
nisms. CSG2A also generalizes to patient-level
prediction on TCGA, demonstrating its poten-
tials in cross-scale transfer and offering promis-
ing directions for developing multi-modal foun-
dation models in drug response. The source
code for the CSG2A network is available at:
github.com/eugenebang/CSG2A.
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1. Introduction
Predicting drug response plays a pivotal role in cancer treat-
ment and personalized medicine. Drug response can be
defined at multiple levels of perturbation, including the gene
(transcriptome) level, cell line (in vitro) level, and patient
(clinical) level. At the transcriptomic level, the task involves
predicting perturbed gene expression profiles in response to
chemical treatments (Zhu et al., 2021; Hetzel et al., 2022).
Cell line-level drug response prediction utilizes basal gene
expression profiles and chemical information to predict cell
viability measures like inhibitory concentration 50 (IC50)
values (Garnett et al., 2012), while patient-level prediction
aims to distinguish responders from non-responders (Ding
et al., 2016; Huang et al., 2020). Integrative modeling of this
multi-scale flow of drug-induced perturbation, from gene to
cell then systemic scale, may be an approach to precision
medicine, addressing the scarce data on the patient level.

However, most existing drug response prediction models
overlook the potential of this multi-scale integration, often
restricting their focus to a single biological level. A key
challenge in modeling such trans-level drug response lies in
bridging the gap between gene-level perturbations and cell-
level phenotypic outcomes. Recent advances in attention-
based architectures and biological foundation models have
demonstrated success in transferring knowledge from large-
scale omics data to disease- and population-levels (Chen
et al., 2024; Shen et al., 2025; Brixi et al., 2025). However,
these models are primarily designed for modality integration
within omics or to vision domains, and are not explicitly
tailored to capture chemical perturbation dynamics.

In response, we introduce a novel approach to bridge the
gap between large-scale gene-level perturbation and cell-
level viability databases, namely LINCS L1000 (Subrama-
nian et al., 2017) and GDSC (Garnett et al., 2012), respec-
tively. Specifically, we employ Attention mechanism to
model chemical-induced gene-gene network perturbations
and adapt a transfer learning approach to learn from the
transcriptomic landscape, transferring knowledge obtained
from gene-level to higher level drug responses (Fig. 1).

Our trans-level transfer learning involves pretraining on
LINCS L1000 dataset, then finetuning on the GDSC dataset.
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Figure 1: Overview and architecture of proposed framework.
(a) Chemical Condition Encoder (CCE): Encodes chemical struc-
ture, dose, and duration into a ‘chemical condition embedding’.
(b) CSG2A Module: Combines chemical and basal gene expres-
sion inputs to compute attention matrix, integrated with PPI to
produce interaction weights θ. (c) Pretraining (LINCS L1000):
CSG2A predicts perturbed gene expression from basal profiles
and chemical conditions. (d) Fine-tuning (GDSC): Adds a scaling
layer and uses pretrained outputs to predict IC50 values.

The key component of our approach is the Condition-
Specific Gene-Gene Attention (CSG2A)–designed to dy-
namically learn gene interactions specific to input condi-
tions, guided by both data and biological network priors.
This procedure enables the our model to adeptly capture
the chemical-induced perturbations in gene interactions,
comprehensively understanding gene-level interactions for
transfer to higher level drug response of cells and patients.

Our CSG2A network, coupled with trans-level transfer

learning strategy, achieves state-of-the-art performance com-
pared to existing drug response prediction models on the
GDSC dataset. Case studies further validate the alignment
of learned condition-specific gene-gene attention with the
known mode of action of drugs, highlighting the inter-
pretability and biological relevance of our model. Addi-
tional experiments demonstrate its adaptability to predict
drug responses in cancer patients from the TCGA dataset.

2. Related Work
2.1. Large-Scale Drug Response Datasets

Gene (Transcriptome) Level: The LINCS Connectivity
Map (CMAP) L1000 (Subramanian et al., 2017) is a large-
scale pharmacogenomics screening dataset from the Library
of Integrated Network-based Cellular Signatures (LINCS).
This dataset contains flow cytometry-based transcriptomic
responses of cell lines to various perturbations, covering
a wide spectrum of chemical treatments, cell types, and
experimental conditions.

Cell Line (in vitro) Level: There are several comprehen-
sive resources for understanding the relationship between
genomic features and drugs at the cell line level: GDSC
(Garnett et al., 2012), CTRP (Rees et al., 2016), CCLE (Bar-
retina et al., 2012), and NCI-60 (Shoemaker, 2006). GDSC,
one of the representative ones, provides drug sensitivity
profiles for a variety of anti-cancer drugs, illustrating how
different cancer cell lines respond to these drugs based on
their genomic features.

Patient (Clinical) Level: The Cancer Genome Atlas
(TCGA) (Weinstein et al., 2013) is a crucial resource that
provides molecular characterization data for patients with
various types of cancer. While TCGA primarily focuses on
understanding the genomic landscape of cancers, it helps
identify therapeutic targets, biomarkers, and patient sub-
groups, ultimately contributing to the development of more
effective and personalized cancer treatments.

2.2. Drug Response Prediction in Multiple Levels

There has been various deep-learning approaches proposed
for predicting drug responses on the cell level including au-
toencoders (Chiu et al., 2019; Rampášek et al., 2019), GNNs
(Nguyen et al., 2021; Shin et al., 2022; Pak et al., 2024), and
other architectures (Deng et al., 2020; Chawla et al., 2022;
Jiang et al., 2022) (Further discussed in Appendix B).

Furthermore, models for predicting transcriptome-level per-
turbation, specifically at the single-cell resolution, has been
gaining attention (Hetzel et al., 2022; Lotfollahi et al., 2023).
However, multi-leveled transfer learning strategy for drug
response prediction from gene level to higher levels has
been rarely explored.
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Table 1: Cell line drug response prediction performances on GDSC dataset with four different partitioning schemes. Model
performances are assessed using RMSE and PCC metrics. The reported values represent averages and standard deviations across 10
cross-validation. The best performance is highlighted in bold, and the second-best performance is underlined. (RMSE: Root Mean Square
Error; PCC: Pearson Correlation Coefficient)

Mixed-set Cell line-blind Drug-blind Disjoint-set
Models RMSE (↓) PCC (↑) RMSE (↓) PCC (↑) RMSE (↓) PCC (↑) RMSE (↓) PCC (↑)

Random Forest 1.212 ± 0.017 0.905 ± 0.003 1.347 ± 0.058 0.881 ± 0.010 2.671 ± 0.579 0.406 ± 0.256 2.906 ± 0.220 0.370 ± 0.138
Support Vector Machine 1.126 ± 0.016 0.918 ± 0.002 1.346 ± 0.062 0.881 ± 0.011 2.268 ± 0.437 0.520 ± 0.177 2.685 ± 0.350 0.450 ± 0.095

GraphDRP (Nguyen et al., 2021) 1.217 ± 0.014 0.904 ± 0.002 1.457 ± 0.050 0.859 ± 0.010 2.354 ± 0.394 0.466 ± 0.163 2.844 ± 0.458 0.356 ± 0.108
PathDNN (Deng et al., 2020) 1.154 ± 0.011 0.928 ± 0.002 1.595 ± 0.076 0.862 ± 0.014 3.257 ± 0.666 0.336 ± 0.271 3.065 ± 0.471 0.383 ± 0.128
Precily (Chawla et al., 2022) 1.138 ± 0.016 0.917 ± 0.002 1.471 ± 0.063 0.856 ± 0.013 2.825 ± 0.400 0.362 ± 0.109 2.765 ± 0.344 0.426 ± 0.093
DRPreter (Shin et al., 2022) 1.104 ± 0.078 0.922 ± 0.011 1.495 ± 0.070 0.852 ± 0.013 2.473 ± 0.360 0.443 ± 0.175 2.745 ± 0.393 0.411 ± 0.148
DeepCoVDR (Huang et al., 2023) 1.019 ± 0.015 0.935 ± 0.002 1.394 ± 0.069 0.875 ± 0.012 2.754 ± 0.245 0.387 ± 0.200 3.001 ± 0.423 0.350 ± 0.139
DeepTTA(Jiang et al., 2022) 0.974 ± 0.010 0.940 ± 0.001 1.352 ± 0.060 0.881 ± 0.011 2.322 ± 0.496 0.502 ± 0.198 2.806 ± 0.512 0.404 ± 0.125

CSG2A (Ours) 0.942 ± 0.011 0.944 ± 0.001 1.342 ± 0.059 0.883 ± 0.010 2.119 ± 0.397 0.611 ± 0.140 2.442 ± 0.304 0.577 ± 0.082

To the best of our knowledge, Dr.VAE (Rampášek et al.,
2019) is the only prior work transferring drug response from
gene expression to cell lines. It employs a VAE pretrained
on L1000 and classifiers for cell-level prediction but trains
separate models per drug, limiting generalization to unseen
drugs and conditions.

3. CSG2A: Condition-Specific Gene-Gene
Attention Network

3.1. Model Architecture Overview

Our model comprises two key components: the Chemi-
cal Condition Encoder (CCE; Fig. 1a) and the Condition-
Specific Gene-Gene Attention (CSG2A; Fig. 1b) network,
which together enable condition-aware modeling of tran-
scriptomic perturbations.

First, the CCE encodes each treatment condition by inte-
grating chemical structure, dosage, and time after exposure.
The chemical structure is processed using a molecular foun-
dational model (Maziarka et al., 2020), while dosage and
time are scaled and projected via linear layers. These three
components are concatenated and passed through a multi-
layer perceptron (MLP), producing a condition embedding
aligned to the dimensionality of the gene space.

This embedding is combined with the basal gene expression
profile to form a condition-specific gene representation. The
CSG2A module applies self-attention over these representa-
tions to compute pairwise gene-gene attention scores, which
capture how genes interact under the given condition. These
scores are further refined using a protein-protein interac-
tion (PPI) adjacency matrix as a biological prior, producing
an attention-informed adjacency matrix used as the weight
matrix in the first linear layer of the network.

The downstream prediction network includes this attention-
weighted linear layer, followed by a non-linear transforma-
tion, dropout, and output layer. By conditioning attention
on both chemical and transcriptomic inputs, the model ex-
plicitly models how drug perturbations influence gene net-

works, improving interpretability and predictive power. The
detailed description of the implementation details can be
found in Appendix A.1.

3.2. Trans-Level Transfer Learning Strategy

Our framework comprises two stages: transcriptomic pre-
training on LINCS L1000 and downstream fine-tuning on
GDSC drug response data. The detailed explanations of
the training strategy and dataset processing are provided in
Appendix A.2 and A.3, respectively.

LINCS Pretraining: We train the model to predict per-
turbed gene expression from basal profiles and chemical
conditions (structure, dosage, treatment time), minimizing
the Mean-Squared Error (MSE) loss between the predicted
and ground truth perturbed gene expression values. This
phase can be interpreted as modeling the transition of tran-
scriptomic cell states given a chemical condition. Central to
this phase is the CSG2A module, which learns condition-
specific gene interactions from transcriptomic data.

Fine-Tuning on GDSC: Using the same inputs, we fine-
tune the model to predict logIC50 values, applying a train-
able scaling layer with learnable mean and standard devia-
tion to bridge dataset differences. All pretrained parameters
are frozen, and bias terms are removed for better transfer-
ability. GDSC lacks dosage/time annotations, so we use
standard values (10µM, 72h), commonly utilized for cell
viability assays, across all experiments.

4. Results
4.1. Performance on Cell Line Drug Response

Prediction with GDSC dataset

We first evaluated the cell-level drug response prediction
performances on the GDSC dataset using 10-fold cross-
validation under four data partitioning schemes aligning
with the comprehensive investigation by Partin et al. (2023):
(1) Mixed-set, where all cell lines and drugs can appear in
both training and test sets; (2) Cell-blind, where test cell
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Figure 2: Performances of CSG2A Network with variations
in each modules. Our attention-based approach, equipped with
LINCS L1000 pretraining, PPI network information and frozen
parameters, shows statistically significant performance enhance-
ments in GDSC dataset mixed-set. (*: paired t-test p-value < 0.05,
****: paired t-test p-value < 1e-4).

lines are unseen during training; (3) Drug-blind, where test
drugs are held out entirely; and (4) Disjoint-set, where nei-
ther drugs nor cell lines overlap between training and test
sets. Performances were assessed in terms of root mean
square error (RMSE) and Pearson correlation coefficient
(PCC) metrics, measuring the distance and correlation be-
tween predicted and true logIC50 values, respectively.

Compared to eight baseline models—including Random
Forest, SVM, and six state-of-the-art deep learning mod-
els—our model consistently achieved the lowest RMSE
and highest Pearson correlation in all partitions. Notably,
CSG2A showed strong generalization in the more challeng-
ing drug-blind and disjoint-set settings, where other deep
models typically degrade in performance due to overfitting.

Additional experiments on the NCI-60 dataset (Shoemaker,
2006) with 50% growth inhibitory concentration (GI50)
prediction also demonstrated the outperformance of our
model compared to baseline models (Appendix C.1.1).

4.2. Pretraining Gene-Gene Attention from
Transcriptomic Landscape Improves Prediction

Our additional experiments revealed the significant impact
of transfer learning from LINCS using our CSG2A network
on enhancing drug response prediction performances. By
removing each component of CSG2A, we observed that
performance was highest when the model was pretrained on
LINCS, and with all parameters frozen during fine-tuning
except the prediction head (Fig. 2). This is contrary to com-
mon practice in transfer learning and suggests that the gene-
gene interactions learned from transcriptomic perturbation
are highly transferable. Removing pretraining, fine-tuning
pretrained weights, omitting PPI priors, or replacing the at-
tention mechanism with a linear model all led to significant
drops in performance. Further discussion are provided in
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Figure 3: Visualization of gene–gene attention scores for
three drugs: fulvestrant, tamoxifen (estrogen inhibitors), and 5-
fluorouracil (DNA replication inhibitor). The pairwise correlation
of the attention matrix is presented below.

Appendix C.1.2.

In addition, we conducted a zero-shot investigation using the
LINCS-pretrained CSG2A network on the GDSC dataset.
By evaluating the Euclidean distance between gene expres-
sions before and after treatment, we observed that the per-
turbed gene expression points of the sensitive group were
significantly farther from the basal gene expression points
compared to the resistant group, demonstrating the capabil-
ity of our LINCS-pretrained model to be capable of under-
standing the perturbation in cellular conditions at the gene
level. Further experimental details and results are provided
in Appendix C.2.

These results highlight the value of condition-specific pre-
training and biological priors for robust, generalizable drug
response prediction.

4.3. Gene Attention Scores and Predicted Expressions
Reflect Drug Mechanisms

To evaluate biological interpretability of CSG2A, we ana-
lyzed condition-specific gene attention maps and predicted
expression profiles for several drugs. The methodological
details of the case studies are provided in Appendix A.6.

Our results show that gene attention maps exhibit higher cor-
relation between drugs with similar mechanisms of action
(MoAs)—notably between fulvestrant and tamoxifen, both
estrogen receptor inhibitors—compared to mechanistically
distinct agents such as 5-fluorouracil (5-FU), a DNA replica-
tion inhibitor (Fig. 3). A more systemic scale investigation
consistently display higher correlation between intra-class
attention maps to inter-class drug pairs (Appendix C.3.1).
Gene set enrichment analysis of the most highly attended
gene pairs further revealed MoA-consistent pathway signa-
tures: estrogen signaling and apoptosis pathways for ful-
vestrant, and DNA damage response pathways for 5-FU
(Appendix C.3.2).

Additionally, we analyzed predicted gene expression pro-
files for drugs, with the up/down-regulated gene sets align-

4



Transfer Learning of Condition-Specific Perturbation in Gene Interactions Improves Drug Response Prediction

Non-Responder Responder

4.0

4.5

5.0

5.5

Pr
ed

ict
ed

 lo
g(

IC
50

)
Dacarbazine

(p-value=0.0004)

Non-Responder Responder

2

0

2

Pr
ed

ict
ed

 lo
g(

IC
50

)

Gemcitabine
(p-value=0.0014)

Non-Responder Responder

4

2

0

Pr
ed

ict
ed

 lo
g(

IC
50

)

Paclitaxel
(p-value=0.0016)

Non-Responder Responder

0

1

2

3

Pr
ed

ict
ed

 lo
g(

IC
50

)

Capecitabine
(p-value=0.0367)

Non-Responder Responder

2.5

0.0

2.5

5.0

Pr
ed

ict
ed

 lo
g(

IC
50

)

Carboplatin
(p-value=0.0464)

Figure 4: Patient response predictions in TCGA dataset. Using the GDSC-finetuned CSG2A, we predicted drug responses in TCGA
patients and significantly distinguished responders from non-responders (p < 0.05) for five drugs.

ing with known targets and downstream pathways (Ap-
pendix C.4). These findings show that CSG2A’s attention
maps and predicted profiles are both predictive and biologi-
cally aligned with drug mechanisms.

4.4. Translation to Patient-level Transcriptome Data

In order to assess the model’s ability to translate its knowl-
edge gained from cell level to patient level, we applied the
GDSC-finetuned models to predict IC50 values for TCGA
patients based on tumor gene expression (Appendix A.5).
Predicted responses were assessed by comparing IC50 dis-
tributions between responders and non-responders.

Among 13 drugs with sufficient patient response data,
CSG2A significantly differentiated responders for 5 drugs
(p < 0.05) and 7 drugs (p < 0.1) through one-sided t-tests,
outperforming DeepTTA and GraphDRP (Fig. 4 and Ap-
pendix C.5). These results highlight the model’s capacity to
transfer knowledge from cell lines to patient-level contexts.

5. Conclusion
In this work, we introduced CSG2A, a condition-specific
attention framework that models drug-induced gene inter-
actions by integrating treatment conditions with transcrip-
tomic data and biological priors. Through a trans-level
transfer learning strategy—pretraining on perturbation pro-
files (LINCS) and fine-tuning on cell viability (GDSC)—our
approach achieves state-of-the-art drug response prediction
with strong generalization, particularly in drug-blind and
disjoint settings. Crucially, freezing pretrained parameters
preserves gene interaction contexts, enhancing performance.
Attention scores and predicted gene expression profiles con-
sistently align with known drug mechanisms, validating both
interpretability and biological relevance. Potential future di-
rections may include extending this approach to single-cell
resolution data, broader patient cohorts, and multi-omics
integration to deepen mechanistic understanding of drug
response.

As we conclude, we believe our work underscores the
promise of transfer learning of drug-induced gene inter-

action perturbation as a multi-modal foundation for robust
and interpretable modeling in precision therapy.
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A. Details in Methodology
Problem Definition We define the problem of predicting chemical-perturbed gene expression profile, denoted as gc, as
the design of a condition-specific prediction model pθ. The predictive framework for the chemical-induced transcriptomic
profile with the condition-specific neural network pθ with parameters θ can be expressed as:

gc = p(θ|c)(g0) = p(θ|g0,S,d,t)(g0).

An essential aspect of this formulation is the explicit dependence of the parameters θ on the set of conditions c = (g0, S, d, t).
Here, g0 represents the basal gene expression profile before compound treatment, S denotes the chemical structure, and d
and t as treatment dose and time, respectively. This formulation establishes a comprehensive framework for the prediction
of chemical-induced gene expression profiles, where the neural network’s behavior is intricately linked to the specific
conditions.

In this section, we first describe the architectural details of our framework (Section A.1), then provide details in the trans-level
transfer learning pipeline for translating from gene-level drug response to cell-level (Section A.2).

A.1. Architectural Details of the Condition-Specific Gene-Gene Attention Network

Chemical Condition Encoder Chemical-induced transcriptomic perturbation results from a biological cascade initiated by
the binding of a chemical to its target proteins. The impact of this perturbation is mainly dictated by the chemical’s structure,
with additional dependencies on exposure dosage and time. Therefore, encoding the chemical condition necessitates
incorporating not only structural information but also dosage and time factors.

To model the chemical condition comprehensively, we introduce a Chemical Condition Encoder (CCE) (Fig. 1a). This
encoder takes structural features S, dosage d, and time t as input for producing a chemical condition representation DS,d,t.

The base component of our chemical structure encoder is the pretrained Molecular Attention Transformer (MAT, (Maziarka
et al., 2020)). MAT is a Transformer-based structure encoder pretrained on a masked entity prediction task with 2 million
compounds from the ZINC15 database (Sterling & Irwin, 2015). We leverage the pretrained weights provided by the authors
throughout our experiments. The dosage and time conditions, scaled by 100µM and 72 hours respectively, are expanded
to 2 dimensions by corresponding linear layers. The concatenated vector of these two expanded vectors and the MAT
representation is then passed on to the final multi-layer perceptron (MLP) layer.

The mathematical representation of the chemical condition DS,d,t ∈ RNgene can be expressed as :

DS,d,t = MLPCCE
(
[MAT(S), d ·Wdose, t ·Wtime]

)
.

Here, [·, ·] refers to the concatenation operation, Wdose,Wtime ∈ R1×2 are linear weights for dosage and time encoding,
respectively, and MLPCCE denotes the final MLP layer.

The overall process generates the final chemical condition representation aligned with the dimension of the number of
genes (Ngene). This representation is further utilized by the Condition-Specific Gene-Gene Attention (CSG2A) module for
modeling the perturbed gene-gene network.

Condition-Specific Gene-Gene Attention Network To predict the chemical-induced gene expression profile, we incorpo-
rate condition-specific gene-gene attention CSG2A values as our neural network parameters θ (Fig. 1b). This network is
designed to capture the intricate relationships between genes in the treatment condition c under the influence of basal gene
expression g0, chemical structure S, dosage d and time t.

The process begins with the basal gene expression profile g0 and chemical representation DS,d,t obtained from the Chemical
Condition Encoder (CCE). Then, the CSG2A module introduces a novel paradigm by treating neural network parameters as
condition-specific gene-gene attention values. This differentiation from conventional neural networks, where parameters are
randomly initialized, enables the model to learn the conditional effects of both gene expression and drugs.

The calculation of attention values involves self-attention on the gene-level condition representation Q(C|g0,S,d,t) ∈ RNgene×h.
This self-attention module allows for the explicit learning of attention scores in a gene-specific manner, which is crucial for
capturing gene expression perturbations effectively. The gene-level condition representation is defined as the sum of the
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basal gene expression representation and the chemical condition representation:

Q(C|g0,S,d,t) = Qg +QD

Qg = Wgene · g0, QD = Wcomp · DS,d,t,

where Wgene and Wcomp ∈ RNgene×1×h represent learnable linear weights for the dimension expansion of gene expression
and chemical condition representations into hidden dimension h. The utilization of a three-dimensional weight tensor
W ∈ RNgene×1×h with distinct weights for each gene ensures that both the input expression value and the context of each
gene are considered during dimension expansion.

Subsequently, the dot product attention score matrix AQC is calculated as αi,j = QCi ·Q⊺
Cj , where αi,j denotes the attention

score between genes i and j. To enhance ability to capture higher-order gene interactions in a biological context and reduce
the search space by providing a starting point of the interactions and the scales, we integrate a PPI adjacency matrix (APPI)
as prior knowledge as: ACSG2A = AQC +APPI.

The calculated attention score matrix directly serves as neural network weights. The first layer of the CSG2A network is a
linear layer with weights equal to ACSG2A. The network further includes an activation layer, a dropout layer, and a final
linear layer. This comprehensive design allows the CSG2A network to effectively capture and leverage condition-specific
gene-gene interactions for precise predictions of perturbed gene expression.

A.2. Trans-Level Transfer Learning Strategy

In order to learn the chemical-perturbed gene network from the transcriptome data and leverage such model for higher level
drug response predictions, we implement a trans-level transfer learning strategy.

LINCS Pretraining In the LINCS Pretraining phase (Fig. 1c), our model focuses on predicting the chemical-induced
transcriptome profile, a crucial step in capturing the intricate dynamics of gene expression alterations under various chemical
conditions. The inputs to this phase consist of the basal gene expression profile and the corresponding chemical structure for
predicting the perturbed gene expression. Notably, our model also takes into account additional factors such as drug dosage
and treatment time, enhancing its capacity to comprehend the nuanced aspects of chemical-induced transcriptomic changes.
During training, our model utilizes Mean-Squared Error (MSE) loss on the perturbed gene expression profile, aiming to
minimize the gap between predicted and actual values.

A key highlight of the LINCS Pretraining phase is the training of the Condition-Specific Gene-Gene Attention (CSG2A)
network. This network plays a pivotal role in learning condition-specific gene-gene interactions, contributing to the accurate
prediction of perturbed gene expression profiles. By leveraging the diverse and extensive gene-level data available in LINCS,
our model adapts to variations in gene expression induced by different chemical conditions. This acquired knowledge plays
a critical role in the subsequent fine-tuning process, ensuring the model’s adaptability and effectiveness in predicting in vitro
drug responses during the later stages of our trans-level transfer learning strategy.

Fine-Tuning on GDSC In the GDSC Fine-tuning phase (Fig. 1d), our model undergoes further refinement to seamlessly
adapt to the in vitro drug response dynamics observed in the GDSC dataset. The inputs for the fine-tuning task is consistent
as the pretraining stage, including the basal gene expression profile and the corresponding chemical condition. However, the
target value shifts to predicting the logIC50 value, a key metric in quantifying the drug sensitivity of cancer cells.

To facilitate a smooth trans-level transfer, accounting for potential batch effects across different datasets, a trainable scaling
layer is strategically introduced. This layer serves as a crucial bridge between the pretrained CSG2A Network and the
GDSC dataset. Notably, we intentionally eliminate all bias terms within the layers of our neural network, enhancing the
adaptability of the transfer process between distinct transcriptomic spaces.

The introduced scalable layer incorporates two learnable latent variables: mean (µ) and standard deviation (σ). By passing
through the scaling equation g′0 = (g0 − µ)/σ, the input basal gene expression profile (g0) is aligned with the pretrained
LINCS space. It is important to note that both the mean and standard deviation values function as latent variables, not having
a preassigned target values. This design choice allows the model to autonomously learn and adapt its scaling parameters,
contributing to its transferability to higher-level drug response tasks. The training target is the logIC50 value, and the model
is optimized to minimize the disparity between predicted logIC50 values and actual values using the MSE loss.
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An empirical observation emphasizes the critical role of the LINCS pretraining phase in learning gene-gene attention,
achieving optimal prediction performance with fully frozen pre-trained parameters. Further details and insights into this
observation are discussed in the Results section.

Lastly, it is important to note that the cell viability data from GDSC does not include information on the specific drug-treated
conditions, such as dosage and treatment time. Therefore, to maintain consistency and align with the GDSC dataset’s data
generation process, we utilized the widely accepted treatment time of 72 hours for IC50 measurement and the dosage at
10uM, commonly used in LINCS L1000 dataset and also cell viability measurements, for all experiments.

A.3. Dataset and Metrics

A.3.1. LINCS L1000 DATASET

We downloaded the LINCS phase 1 data from GEO with accession number GSE92742 (Subramanian et al., 2017). Since
DMSO is used as a control corresponding to the compound, transcriptome data were obtained from the sample treated
with DMSO as basal gene expression. A total of 649 batches containing samples treated with DMSO were obtained, and
from these batches, 202,962 transcriptomic profile of samples treated with compounds were obtained. We utilized the 978
landmark genes that were measured when the LINCS data was produced.

A.3.2. GDSC DATASET

We obtained basal gene expression profile for cell lines from Cell Model Passports (Garcia-Alonso et al., 2018). The
log2FPKM values were transformed into robust z-scores to be used as input at the same level as the LINCS data. The robust
z-score is computed using the following equation:

zi =
xi − median(X)

1.4826 · MAD(X)
,

where MAD indicates the median absolute deviation, X represents the expression values for a gene for all samples in the
data, xi is the expression level of a sample i, and zi is a robust z-score for the gene of sample i. Additionally, the drug
response values (i.e., logIC50) for each cell line were obtained from GDSC (Garnett et al., 2012).

A.3.3. TCGA DATASET

Using the TCGA classification information of cell lines provided by GDSC, transcriptome data of patients corresponding
to tumor samples for 21 cancer types were obtained from UCSC Xena (Goldman et al., 2020). For each cancer type,
GDSC data and TCGA data were batch-corrected using Combat (Johnson et al., 2007) at the log2FPKM level and then
converted to a robust z-score. Curated data on drug treatment and responsiveness in TCGA patients were obtained from the
supplementary data provided in (Ding et al., 2016).

A.3.4. PPI NETWORK

STRING v12.0 (Szklarczyk et al., 2023) was employed as the biological network for prior knowledge to guide the gene-gene
interaction learning process. To ensure the inclusion of confident edges, edges with a combined score greater than 900 were
selected.

A.4. Details on the four data partitioning schemes

Aligning with the comprehensive investigation by Partin et al. (2023), we conducted 10-fold validation in four distinct
data partitioning schemes to evaluate each models’ generalizability to diverse scenarios. The mixed-set scenario (known
cancer and drugs) is commonly employed for its simplicity in analyzing and implementing drug response prediction models.
The cell line-blind scenario (unknown cell lines and known drugs) is for simulating personalized cancer treatment utility,
and the drug-blind scenario (known cancers and unknown drugs) presents challenges in developing novel drugs for cancer
treatment. The disjoint-set scenario (unknown cancers and drugs) is used to assess each models’ capacity to generalize in
the challenging scenarios and its potential application in more clinically relevant settings. The training set comprised 80%
of the data, with 10% allocated to the validation set and 10% to the test set.
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A.5. Prediction of patient drug responsiveness in TCGA data

Using the TCGA(Weinstein et al., 2013) classification information of cell lines provided by GDSC (Garnett et al., 2012),
transcriptome data corresponding to tumor samples for 21 cancer types were obtained from UCSC Xena (Goldman et al.,
2020). The cancer types include BLCA, BRCA, CESC, COAD, ESCA, GBM, HNSC, KIRC, LGG, LIHC, LUAD, LUSC,
MESO, OV, PAAD, PRAD, READ, SKCM, STAD, THCA, and UCEC, with COAD and READ merged into COREAD.

For each cancer type, GDSC and TCGA data were underwent batch correction at the log2FPKM level using Combat
(Johnson et al., 2007). Then, the values were normalized into robust z-scores using the following equation to be used as
input at the same level:

zi =
xi − median(X)

1.4826 · MAD(X)
, (1)

where MAD denotes the median absolute deviation, X represents the expression values for a gene across all samples, xi is
the expression level of a sample i, and zi is the robust z-score for the gene of sample i. To predict IC50 values for TCGA
data, models were trained for each cancer type using GDSC data.

Curated data on drug treatment and responsiveness in TCGA patients were obtained from the supplementary data provided in
(Ding et al., 2016). Patients were divided into two groups: responder (including complete response and partial response) and
non-responder (including stable disease and clinical progressive disease). Within both the responder and the non-responder
groups, 13 drugs with more than 10 samples were identified: cisplatin, capecitabine, 5-fluorouracil, oxaliplatin, leucovorin,
temozolomide, carboplatin, pemetrexed, gemcitabine, docetaxel, dacarbazine, doxorubicin, and paclitaxel.

The TCGA transcriptome data were inputted into the trained models for each cancer type, inferring IC50 values for each
patient and drug pair. Then, one sided t-test was conducted to test the hypothesis that IC50 values in the responder group are
lower than those in the non-responder group.

A.6. Gene set enrichment analysis on condition-specific gene attention scores

The proposed Condition-Specific Gene-Gene Attention (CSG2A) module is designed for capturing the gene-gene interactions
induced by the basal gene expression and chemical treatment condition. The resulting gene-gene attention scores are directly
utilized as neural network parameters for predicting downstream target values, specifically, perturbed gene expression for
LINCS L1000 and IC50 values for GDSC. Here, we describe the procedure adpoted to assess the association between
known drug mechanisms and the gene-gene attention values.

Starting from the test set samples in the GDSC, we extracted the gene-gene attention map of the drugs-of-interest (DOI),
fulvestrant and 5-fluorouracil (5-FU). The test set contained a total of 151 fulvestrant-treated samples and 99 5-FU treated
samples. The attention maps were aggregated by averaging, resulting in a representative attention map for each drug.

After performing absolute operation on the attention scores, we identified the top 1,000 gene-gene attention values for each
drugs as ‘most-perturbed gene interactions’. Then all the genes appearing in the 1,000 pairs are selected as ‘most-perturbed
gene set’, prepared for downstream Gene Set Enrichment Analysis (GSEA). Using the widely-used GSEA tool Enrichr (Xie
et al., 2021), we identified enriched pathways using the pathway annotations from WikiPathways (Agrawal et al., 2024). For
the two DOIs, top 10 pathways ranked by adjusted p-value are identified.

B. Cell-level drug response prediction models
B.1. AutoEncoder-based Models

DeepDR (Chiu et al., 2019) is a AutoEncoder-based deep learning model designed for predicting drug responses in cancer
cells based on mutation and expression profiles. The model, incorporating pre-trained encoders and a drug response predictor
network, demonstrated its effectiveness in predicting drug responses across various cancer types. However, the model does
not use any drug information, making it difficult to use from a new drug development perspective.

Dr.VAE (Rampášek et al., 2019) is the first work to attempt the integration of knowledge from transcriptomic level drug
response for cell line drug response prediction. Utilizing the Variational AutoEncoder framework, the authors pre-trained
models on LINCS L1000 data and applied additional classifiers to predict cell line level drug responses. However, this
model lacks consideration for various chemical treatment conditions. Notably, Dr.VAE trains separate models for each drug
with fixed dosage and time point, limiting its ability to predict responses for drugs and conditions absent from the LINCS
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L1000 dataset.

B.2. Graph Neural-Network Based Models

GraphDRP (Nguyen et al., 2021) introduced a method based on GNNs for drug response prediction by representing drugs
as molecular graphs and cell lines as binary vectors of genomic aberrations. It demonstrated the efficacy of graph-based
representations in enhancing drug response prediction. However, since 1D convolutional layers are employed to learn cell
line representation, interactions between genes cannot be taken into account.

DRPreter (Shin et al., 2022) is an interpretable model utilizing graph neural networks to predict anticancer drug response.
DRPreter incorporates domain knowledge on biological pathways, employs a transformer to detect relationships between
pathways and drugs, while also providing insights into the mechanism of action. However, bias can occur when only
information about specific pathways and their associated genes is utilized. Also, the fixed structure of pathways limit the
model in learning chemical-induced perturbation in gene-gene interaction level.

B.3. Other Approaches

PathDNN (Deng et al., 2020) proposed a pathway-guided deep neural network (DNN) model to predict drug sensitivity in
cancer cells. The model, incorporating biological pathway information, demonstrated improved interpretability, highlighting
its potential for enhancing understanding and prediction of drug sensitivity in cancer treatment. However, due to the
model’s reliance on the drug’s target information as inputs, it becomes challenging to apply it to drugs lacking such target
information.

Precily (Chawla et al., 2022) utilizes a simple DNN that takes pathway scores processed from gene expression profiles and
integrates them with drug descriptors, providing insights into the biological mechanisms influencing drug resistance.

DeepTTA (Jiang et al., 2022) integrates transformer-based drug representation learning with a feed-forward network for
predicting anti-cancer drug responses using transcriptomic data and drug chemical substructures. However, the model
structure mainly focuses on drugs and does not account for interactions between genes.

DeepCoVDR (Huang et al., 2023) utilizes a graph transformer to encode chemical compounds and feed-forward layers to
encode cell-lines. Then, a cross-attention module integrates compound embedding and cell-line embedding by considering
their interaction. DeepCoVDR then predicts IC50 value using the representations of the compound, cell-line, and interaction
features.

C. Additional Experimental Results
C.1. Performance on Cell Line Drug Response Prediction

First, we applied our framework and compared with other state-of-the-art models in predicting cell line drug responses
of the GDSC dataset. Aligning with the comprehensive investigation by Partin et al. (Partin et al., 2023), our evaluation
encompassed a 10-fold cross-validation, employing four distinct data partitioning schemes further detailed in Section A.4

Among the eight comparison models in our evaluation, two were machine learning algorithms—Random Forest (RF) and
Support Vector Machines (SVM). These models utilized Morgan molecular fingerprints and gene expression values as input
features. Additionally, six deep learning methods (GraphDRP, PathDNN, Precily, DRPreter, DeepCoVDR, and DeepTTA)
were included in the comparative analysis.

Performance metrics were assessed in terms of root mean square error (RMSE) and Pearson correlation coefficient (PCC),
measuring the distance and correlation between predicted and true logIC50 values, respectively.

Remarkably, our proposed model demonstrated state-of-the-art performance across all four partitioning schemes, exhibiting
significant improvements, particularly in challenging drug-blind and disjoint-set scenarios (Table 1). While existing deep
learning approaches have shown improved performances in mixed-set settings, they often exhibit a lack of generalizability,
leading to noticeable decreases in performance in harsh split settings. This phenomenon may stem from the widely-observed
overfitting tendency of deep learning models, allowing conventional machine learning algorithms to outperform them.
However, our CSG2A network consistently achieved the best performances in all splits, indicating the robust generalizability
of our condition-specific pretraining approach to challenging validation settings.
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Additional experiments on the NCI-60 dataset (Shoemaker, 2006) with cell-level 50% growth inhibitory concentration
(GI50) prediction also demonstrated the outperformance of the CSG2A network compared to baseline models (Table C.1.1).
These results underscore the adaptability of our model in diverse application contexts, especially in the challenging grounds
of drug discovery.

C.1.1. PERFORMANCES ON CELL LINE DRUG RESPONSE PREDICTION WITH NCI-60 DATASET

Additional validation on NCI-60 dataset (Shoemaker, 2006) retrieved from the supplementary data by Chen & Zhang
(2021)1. Unlike the GDSC dataset, the processed NCI-60 provides drug sensitivity data in the form of the 50% growth
inhibitory concentration (GI50). We evaluated the performance of our method alongside existing drug response prediction
methods, and our method showed superior performance (Table 2).

Table 2: Drug Response Performances on the NCI-60 dataset. The best performance is highlighted in bold, and the second-best
performance is underlined. (RMSE: Root Mean Square Error; PCC: Pearson Correlation Coefficient)

Models RMSE (↓) PCC (↑)
RF 0.833 ± 0.032 0.403 ± 0.067
SVM 0.835 ± 0.034 0.403 ± 0.073
DRPreter 0.860 ± 0.029 0.327 ± 0.123
GraphDRP 0.838 ± 0.021 0.390 ± 0.051
DeepCoVDR 0.812 ± 0.021 0.482 ± 0.044
DeepTTA 0.773 ± 0.028 0.548 ± 0.043
CSG2A 0.759 ± 0.022 0.564 ± 0.031

C.1.2. ABLATION STUDIES

Our additional experiments reveal the significant impact of transfer learning from LINCS using our CSG2A network
on enhancing drug response prediction performances. Fig. 2 illustrates the model performances of our model on GDSC
mixed-set in RMSE, based on the variations on the inclusion of pretraining and freezing.

An intriguing finding is that our model achieved its best performance when pretrained on LINCS, and the model parameters
were frozen during fine-tuning. Importantly, our analysis exposes a statistically significant drop in performance (paired t-test
p-value < 0.05) on 10CV rounds when layers were fine-tuned (mean RMSE 0.951) compared to the frozen CSG2A network
(mean RMSE 0.942). This is contrary to the conventional trend in transfer learning for deep models, where fine-tuning the
parameters typically improves performance. This suggests that the gene-gene interactions learned from the transcriptomic
landscape hold substantial value, and losing this context during fine-tuning does not contribute to performance improvement.

Moreover, pretrained models consistently exhibited superior performances compared to non-pretrained models, surpassing
even the fine-tuned unfrozen model (mean RMSE 0.985). This indicates the importance of LINCS pretraining in capturing
the dynamics of gene-gene network perturbation, emphasizing its role in boosting predictive capabilities. We also observed
a statistically significant decrease in performance when the PPI network information was not integrated into the attention
score matrix (mean RMSE 0.945), emphasizing the importance of informative prior knowledge.

Lastly, the performance comparison between the CSG2A network and a plain linear prediction model, which does not
perform attention but just adds the chemical condition representation and the basal gene expression, empirically demonstrates
the importance of utilizing the attention module for best performance.

Overall, these observations underscore the success of our trans-level transfer learning strategy with attention module,
highlighting the effective integration of knowledge from transcriptomic landscape to enhance predictions for cell line-level
drug responses.

C.2. Zero-shot Prediction of Drug Response from Inferred Perturbed Gene Expression

To evaluate the zero-shot prediction capabilities of the LINCS-pretrained model on cell-level data, we utilized the GDSC
dataset without any additional fine-tuning. Our central hypothesis was that drug-sensitive cells, undergoing phenotypic
changes from uncontrolled proliferation to cell cycle arrest or death (correlating with lower IC50 values), would exhibit

1https://github.com/Jinyu2019/Suppl-data-BBpaper
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Figure 5: Zero-shot prediction of drug response from perturbed gene expression. (a) The zero-shot prediction framework based on
inferred perturbed gene expression using the LINCS-pretrained CSG2A network. (b) Distribution of Euclidean distance for each response
group. Statistical tests have verified that the resistant group exhibited significantly closer proximity to the basal gene expression, as
evidenced by a one-sided t-test yielding a p-value of 5.1E-97. (c) Distribution of IC50 vs Euclidean distance correlations. The distribution
of Among the 803 cell lines, 756 cell lines (94.1%) showed negative correlations between the Euclidean distance and the logIC50 value of
the samples from the corresponding cell line. (d) The negative correlation between IC50 and Euclidean distance. The results suggest that
lower the IC50 value, indicating higher sensitivity to the input compound, the greater the distance observed in Euclidean gene expression
space created the LINCS-pretrained CSG2A network. (PCC: Pearson Correlation Coefficient; ****: t-test p-value < 1E-4)

greater changes in gene expression upon treatment compared to resistant cells. This would manifest as a larger Euclidean
distance between basal and perturbed gene expressions.

For each of the 803 cell lines in the GDSC dataset, we first calculated the average logIC50 value. This allowed us to
categorize all samples within a cell line as either ’sensitive’ or ’resistant’ based on whether their individual logIC50 value
fell below or above the cell-line average, respectively.

Next, we computed the Euclidean distance between the basal gene expression (original GDSC value) and the predicted
perturbed gene expression. The perturbed gene expression was inferred by the LINCS-pretrained model under treatment
conditions set to 10 µM for 72 hours, a common setting for IC50 measurements.

We then compared the distribution of Euclidean distances for the sensitive and resistant groups. A one-sided t-test, was
performed to assess the difference in proximity to basal gene expression between the two groups. Furthermore, for each of
the 803 cell lines, we calculated the correlation between the Euclidean distance and the logIC50 value of the samples. This
allowed us to investigate the relationship between drug sensitivity and the magnitude of gene expression perturbation.

Table 3: Distinguishing drug responders from non-responders in TCGA dataset. The table presents the results of evaluating the
GDSC-finetuned CSG2A model’s ability to predict drug responses in patient data from TCGA. Our model outperformed DeepTTA and
GraphDRP in distinguishing responders from non-responders, demonstrating enhanced discriminative power with significant p-values for
five drugs below 0.05 and seven drugs below 0.1. These findings underscore the efficacy of our model in transferring knowledge for
predicting patient responses.

Model Drugs with p <0.05 Drugs with p <0.1
Drugs Count Drugs Count

CSG2A
Dacarbazine, Gemcitabine, Paclitaxel,
Capecitabine, Carboplatin 5 (38.5%)

Dacarbazine, Gemcitabine, Paclitaxel,
Capecitabine, Carboplatin, Docetaxel, Leucovorin 7 (53.8%)

GraphDRP Gemcitabine, Docetaxel, Cisplatin 3 (23.1%) Gemcitabine, Docetaxel, Cisplatin, Leucovorin 4 (30.8%)
DeepTTA Cisplatin, Dacarbazine 2 (15.4%) Cisplatin, Dacarbazine, Docetaxel 3 (23.1%)
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Figure 6: Analysis of Gene-Gene Attention Scores. (a) Visualization of gene-gene attention values for three drugs: fulvestrant,
tamoxifen, and 5-fluorouracil. The pairwise correlation of the attention matrix is presented below. (b) Correlation of gene-gene attentions
among drugs within the same group and across different groups. The correlation within drug pairs from the same group is significantly
higher than those from different groups. (r: Pearson Correlation Coefficient)

C.3. Additional Results on Gene-Gene Attention Score and MoA Investigation

In this section, we showcase a case study that underscores the effectiveness of our model in capturing perturbed gene-gene
interactions aligned with the Mechanism of Action (MoA) of drugs.

C.3.1. SYSTEMIC INVESTIGATION OF ATTENTION MAP SIMILARITIES

In the Results Section 4.3, we have compared the attention maps of estrogen inhibitors (fulvestrant, tamoxifen) to DNA
replication inhibitor (5-FU) and saw the higher correlation of attention scores within estrogen inhibitors compared to
inter-class pairs (Fig. 6a). To provide a more systematic demonstration, we explored the similarity in gene-gene attention
maps concerning the MoA of drugs. Categorizing anti-cancer drugs within the GDSC dataset into groups, such as DNA
cleaving drugs, Cross-linking drugs, Intercalating drugs, Topoisomerase inhibitors, Antimetabolites, Antitubulin drugs, and
Tyrosine kinase inhibitors, we observed that drugs sharing MoA exhibited significantly higher correlation in gene-gene
attention patterns compared to drugs with differing MoAs (Fig. 6b). The average correlation between drugs in different
categories was 0.169, while drug pairs within the same category showed an higher average correlation of 0.338 resulting in
median difference of 0.102, analogous to the fulvestrant–tamoxifen–5-FU case.

C.3.2. GSEA RESULTS OF FULVESTRANT AND 5-FU

We further performed gene set enrichment analysis (GSEA) using test set data treated with either fulvestrant or 5-fluorouracil
(5-FU). The procedures for gene set selection from attention maps and the subsequent enrichment analysis are detailed in
Appendix A.6.

In the case of Fulvestrant, an FDA-approved selective estrogen receptor degrader (SERD), our model highlighted pathways
such as Integrated breast cancer pathway (WP1984) and Apoptosis (WP254) (Alves et al., 2016). These findings intricately
align with Fulvestrant’s MoA, targeting estrogen receptor signaling and exhibiting anti-cancer effects, particularly in breast
cancer (Carlson, 2005). Similarly, 5-FU, recognized as an anti-metabolite regulating nucleotide synthesis essential for
DNA replication (Longley et al., 2003), manifested perturbations in pathways such as DNA damage response (WP707)
(De Angelis et al., 2006) and Apoptosis Modulation by HSP70 (WP384) (Grivicich et al., 2007). The full list of enriched
pathways are listed in Table 4, demonstrating on how the PPI network guides the attention map with biological prior
knowledge.

Overall, these comprehensive analysis reinforces the model’s ability to discern condition-specific gene interactions aligned
with the diverse MoAs of anti-cancer drugs.

C.4. Additional Results on Predicted Gene Expression and MoA Investigation

To further validate the effectiveness of our CSG2A network in translating knowledge from the transcriptome level to the cell
level, we conducted a comprehensive analysis on the predicted chemical-induced gene expression profiles. To achieve this,
we employed two key analyses: Differentially Expressed Gene (DEG) analysis and Gene Set Enrichment Analysis (GSEA).

15



Transfer Learning of Condition-Specific Perturbation in Gene Interactions Improves Drug Response Prediction

Table 4: Attention analysis enrichment results The top 10 enriched pathways on highly perturbed gene sets for fulvestrant and
5-fluorouracil, ranked by adjusted p-value. The table presents the enrichment results using the whole GDSC testset samples. Results
demonstrate the alignment of the enriched pathways with the Mode of Action of the two drugs. (adj. p.: adjusted p-value)

Fulvestrant (151 samples) 5-Fluorouracil (99 samples)
Rank Attention-enriched pathway adj. p. Rank Attention-enriched pathway adj. p.

1 Integrated Cancer Pathway WP1971 2.3e-5 1 DNA damage response WP707 1.5e-3
2 Integrated breast cancer pathway WP1984 2.3e-5 2 Gastrin signaling pathway WP4659 1.5e-3
3 DNA damage response WP707 2.7e-4 3 miRNA regulation of DNA damage response WP1530 1.5e-3

4 ErbB signaling pathway WP673 2.7e-4 4
Apoptosis-related network due to altered
Notch3 in ovarian cancer WP2864 2.2e-3

5 RAC1/PAK1/p38/MMP2 Pathway WP3303 2.7e-4 5 Alzheimer’s disease WP2059 2.5e-3
6 miRNA regulation of DNA damage response WP1530 3.0e-4 6 Apoptosis Modulation by HSP70 WP384 2.8e-3
7 Apoptosis WP254 9.0e-4 7 Unfolded protein response WP4925 5.5e-3

8 Endometrial cancer WP4155 9.0e-4 8
miRNA regulation of p53 pathway in prostate
cancer WP3982 5.5e-3

9 Retinoblastoma gene in cancer WP2446 9.6e-4 9 Apoptosis WP254 1.3e-2
10 Pancreatic adenocarcinoma pathway WP4263 1.5e-3 10 Retinoblastoma gene in cancer WP2446 1.4e-2

Starting with the test set predictions from the GDSC dataset, we utilized our model to predict gene expressions based on the
basal gene expression profile and input compound. Subsequently, we categorized the dataset into two groups based on IC50
values: high-IC50 and low-IC50. We then performed DEG analysis on the resulting gene expression profiles. Focusing on
two most-frequently occurring drugs in the test set, oxaliplatin and fulvestrant, we conducted a gene set enrichment analysis
using the Enrichr (Xie et al., 2021) with Wikipathways (Agrawal et al., 2024) gene sets. The top 5 enriched pathways for the
‘sensitive’ low-IC50 group, based on adjusted p-values, are summarized in Table 5.

Oxaliplatin, a platinum-based chemotherapeutic drug, forms DNA adducts and induces DNA damage for its anti-cancer
effects (Alcindor & Beauger, 2011). The enriched over-expressed pathways from our model’s predicted transcriptomic
profiles include DNA Mismatch Repair (WP531), DNA Replication (WP466), Nucleotide Excision Repair (WP4753), and
G1 to S cell cycle control (WP45), directly align with the known MoA of oxaliplatin. Additionally, the down-regulation of
pathways of Chromosomal and microsatellite instability in colorectal cancer (WP4216) and Pancreatic adenocarcinoma
pathway (WP4263) suggests its potential therapeutic efficacy in these cancers, consistent with the drug’s clinical indications
(Comella et al., 2009; Conroy et al., 2023). The results highlight the capability of CSG2A in capturing and interpreting
complex cellular responses at both genomic and functional pathway levels.

A similar pattern emerges in the case of fulvestrant, a selective estrogen receptor degrader (SERD). First approved by
the FDA in 2002, fulvestrant’s MoA is reflected in the most enriched pathway for the predicted suppressed genes in
the low-IC50 group: Estrogen signaling pathway (WP712). The down-regulation of the Endometrial cancer pathway,
associated with estrogen receptor regulation, further emphasizes the drug’s impact on estrogen-related mechanisms. The
observed over-expression of growth factor pathways including PDFG (WP2526) and VEGF (WP3888), coupled with the
down-regulation of the EGFR inhibitor resistance pathway (WP4806), suggests cellular adaptations in the absence of
estrogen-mediated growth signals. The well-established understanding of the intricate cross-talk between the estrogen
signaling pathway and the PDGF, VEGF, and EGFR pathways (Skandalis et al., 2014; Lee et al., 2001) provides insights
into these observations.

In summary, our analysis of oxaliplatin and fulvestrant showcases that the predicted gene expressions by CSG2A consistently
align with the known MoA of these drugs, demonstrating the model’s capability to capture and interpret complex cellular
responses across both cell-line and transcriptomic levels.

C.5. Additional Results on Translation to Patient-level Transcriptome Data

In order to assess the model’s ability to translate its knowledge gained from the GDSC dataset to predict drug responses in
the context of patient-specific data from TCGA, we leveraged the GDSC-finetuned CSG2A model to predict IC50 values for
various anti-cancer drugs given patients’ basal tumor tissue gene expression profiles (Dataset details in Section A.5). The
assessment relies on the well-established notion that lower IC50 values indicate drug sensitivity, with responders exhibiting
a lower IC50 distribution than non-responders.

As part of the performance assessment, one-sided t-test was employed to compare the lower distribution of predicted IC50
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Table 5: Predicted gene expression enrichment results. Top-5 Enriched pathways on over-expressed and suppressed gene sets for
oxaliplatin and fulvestrant, ranked by adjusted p-value. (adj. p.: adjusted p-value)

Oxaliplatin
Rank Over expressed gene-enriched pathway adj. p. Rank Suppressed gene-enriched pathway adj. p.

1 DNA Mismatch Repair WP531 4.5e-5 1 Chromosomal and microsatellite instability 1.2e-3
2 Retinoblastoma gene in cancer WP2446 9.0e-5 2 Pancreatic adenocarcinoma pathway WP4263 2.2e-3

3 DNA Replication WP466 3.3e-4 3
Apoptosis-related network due to altered
Notch3 in ovarian cancer WP2864 6.6e-3

4 Nucleotide Excision Repair WP4753 3.3e-4 4 EGF/EGFR signaling pathway WP437 6.6e-3
5 G1 to S cell cycle control WP45 1.7e-3 5 Gastrin signaling pathway WP4659 6.6e-3

Fulvestrant
Rank Over expressed gene-enriched pathway adj. p. Rank Suppressed gene-enriched pathway adj. p.

1 PDGF Pathway WP2526 3.1e-3 1 DNA damage response (only ATM dependent) WP710 3.5e-3

2
Mammary gland development pathway
- Puberty (Stage 2 of 4) WP2814 8.9e-3 2 Estrogen signaling pathway WP712 3.5e-3

3
Photodynamic therapy-induced HIF-1 survival
signaling WP3614 8.9e-3 3 Hepatitis B infection WP4666 3.5e-3

4 RAC1/PAK1/p38/MMP2 Pathway WP3303 8.9e-3 4 Endometrial cancer WP4155 1.2e-2
5 VEGFA-VEGFR2 Signaling Pathway WP3888 8.9e-3 5 EGFR Tyrosine Kinase Inhibitor Resistance WP4806 1.9e-2

values between responders and non-responders. The model’s ability to distinguish responders from non-responders was
further evaluated through a comparative analysis with DeepTTA and GraphDRP, also trained on the GDSC dataset.

Among 13 drugs with over 10 responders and non-responders each, our model demonstrated enhanced discriminative power
(Fig. 4 and Table 3). Specifically, it distinguished responses for 5 drugs with p-values below 0.05 and 7 drugs below 0.1. In
contrast, DeepTTA and GraphDRP achieved fewer significant differentiations, with 2,3 and 3,4 drugs below p-values 0.05
and 0.1, respectively. These results underscore the efficacy of our model in transferring knowledge for predicting patient
responses and its outperformance in comparison to existing methods.
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