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Abstract
We introduce a sparsely connected neural network
architecture inspired by Ramanujan graphs, which
achieves performance comparable to dense net-
works. They are constructed from Cayley graphs
of specific algebraic groups or as Ramanujan r-
coverings of the full (k, l) bi-regular bipartite
graph with k + l vertices. This novel method em-
ploys zero-shot, data-independent, deterministic
pruning at initialization, facilitating early identi-
fication of winning lottery tickets. Unlike tradi-
tional methods that rely on iterative processes to
find these tickets, our technique identifies them
at the outset. Our ultimate goal is to construct
sparse, scalable Foundation Models. Experimen-
tal results demonstrate that our proposed architec-
ture achieves competitive accuracy and sparsity
ratios comparable to those obtained by previous
pre-training pruning algorithms.

1. Introduction
Sparse neural architectures are attractive due to their pa-
rameter parsimony and reduced training time. Existence of
sparse high performing subnetworks of a backbone dense
network forms the basis of the well known lottery ticket hy-
pothesis (Frankle & Carbin, 2019). Several approaches have
been directed towards identifying winning lottery tickets
with a minimal effort. Initial research were based on ap-
plying established pruning algorithms on a partially trained
network (Renda et al., 2020; Fischer & Burkholz, 2022).
Recently, a number of approaches has been suggested to
obtain a sparse mask for pruning at initialization (PaI) (Fran-
kle et al., 2020; Wang et al., 2021; Sreenivasan et al., 2022).
These method use the structure of the initialized network,
in a data dependent or independent manner, to prune the
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network to a high sparsity ratio (Sreenivasan et al., 2022;
Lee et al., 2019a;b; Wang et al., 2020; Tanaka et al., 2020).
Most of these techniques are multi-shot, obtaining desired
connectivity structures from a random network initialization.
Zero-shot pruning aims to construct an initialization topol-
ogy without the need for iteration over network structures.
We show that deterministic constructions of Ramanujan ex-
pander graphs can be effectively used for zero-shot pruning.

We propose a deterministic sparse network initialization
technique based on Ramanujan graphs that are constructed
either as Cayley graphs of certain algebraic groups or as
Ramanujan r-coverings of the full (k, l) bi-regular bipartite
graph on k + l vertices. Prior approaches to using Ramanu-
jan expander graphs for PaI have relied mainly on construc-
tions based on iterated magnitude pruning techniques or
generating random graphs. This often leads to the forma-
tion of irregular graph networks that do not strictly adhere
to the rigorous definition of Ramanujan graphs. Our ap-
proach of constructing a deterministic Ramanujan network
circumvents this problem. Ramanujan initializers using
these bipartite graphs suitably represent the fully connected
as well as the convolutional layers.

The sparse networks generated are data independent, struc-
turally pre-defined, with a static mask across the training
iterations. The deterministic construction algorithm does
not introduce unwanted pseudorandomness in the generated
graph, which was a focal point why in a recent work, the
notion of IMDB score was introduced, see (Hoang et al.,
2023).

Experimental results on benchmark image classification
data sets show that Ramanujan sparse network initialization
provides comparable performance with dense networks.

1.1. Related Work

Expander based winning lottery ticket generation has been
studied in (Stewart et al., 2023). The methodology is based
on generating random d-regular graphs for the bipartite lay-
ers. These graphs are Ramanujan with a high probability. A
deep expander sparse network, the X-Net, is presented in
(Prabhu et al., 2018b). It is constructed by sampling d-left
regular graphs from the space of all bipartite graphs. Ra-
manujan graph based sparsity aware network initialization
is proposed in (Esguerra et al., 2023).
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One-shot neural network pruning using spectral sparsifi-
cation is presented in (Laenen, 2023). It is based on the
effective resistance algorithm for obtaining spectrally sparse
bipartite graphs. RadiX-Net (Kepner & Robinett, 2019)
is a deterministic sparse neural architecture with mixed-
radix topologies. It has desirable symmetry properties that
preserves path connectedness and eliminates training bias.
Connectivity properties are used in other graph theoretic
initialization schemes that define an initial sparse network
topology (Vysogorets & Kempe, 2023; Chen et al., 2022;
2023).

2. Research Gap and Contributions
Existing pruning at initialization techniques are often itera-
tive and data dependent. Zero-shot data independent algo-
rithms have advantages in terms of reduced computational
overhead and generalization capabilities. Recently, there
has been a flurry of works on the construction of pruned
sparse networks based on expansion (Prabhu et al., 2018a;
Kepner & Robinett, 2019; Pal et al., 2022; Stewart et al.,
2023; Arnav Kalra et al., 2024). These methods use a ran-
dom network structure and are data dependent. None could
guarantee the following three properties at the same time:
(i) Ramanujan property - allows us to construct the best
possible expanders given a set of vertices and maintaining a
high level of sparsity, (ii) Path-connectedness - a desirable
property for all PaI architectures, and, (iii) High symmetric-
ity (see for instance 3.3 and A.1) - a desirable property for
computational purposes.

The principal contributions of our paper are:

1. Proposing a new technique of zero-shot pruning neural
networks without using any data.

2. We present a deterministic Ramanujan graph construc-
tion technique for initializing sparse neural networks.
To the best of our knowledge, no other work exists
towards this direction.

3. Establishing that training sparse networks directly with-
out previous pruning can work if the sparsification is
done via the use of deterministic Ramanujan graphs.
Previous research have indicated that vanilla training
of sparse random networks are often unsuccessful to
identify winning lottery tickets (Zhou et al., 2019).

4. In most previous works, for the identification of win-
ning lottery ticket, sufficient to reach good general-
ization, is typically determined in an iterative fashion.
However, zero-shot identification is more attractive
(Tartaglione, 2022), which we develop in this work.

Further, identifying the sparse existant pathways and their
trained weights can help in better explainabality and enables
training with reduced computational effort.

3. Formulation of Sparse Neural Ramanujan
Graphs

Definition 3.1 (Bipartite Ramanujan graphs). Let Γ =
(V,E) be a d-regular (d ≥ 3) balanced bipartite graph. Let
the eigenvalues of its adjacency matrix be λn ≤ λn−1 ≤
. . . ≤ λ2 ≤ λ1. Then Γ is said to be Ramanujan iff
|λi| ≤ 2

√
d− 1, for i = 2, . . . , (n− 1).

For an unbalanced (d1, d2)−biregular bipartite graph
(d1, d2 ≥ 3), the condition of being Ramanujan changes to
|λi| ≤

√
d1 − 1+

√
d2 − 1, for i = 2, . . . , (n− 1). We see

that when d1 = d2, it transforms to the usual definition. A
detailed description of Ramanujan graphs can be found in
(Hoory et al., 2006, sec. 5.3).

3.1. Regular Ramanujan graphs

Let p, q ≡ 1(mod 4) be distinct odd primes (the condition
of 1(mod 4) can be removed at the cost of making the anal-
ysis more technical and complicated). The graph Xp,q is
constructed using the following general method.

1. It is a Cayley graph (see Appendix A.1) on the sub-
group of 2 by 2 matrices, PGL2(Fq) where Fq is the
finite field of characteristic q.

2. Consider the equation a20 + a21 + a22 + a23 = p. Ja-
cobi’s four square theorem states that there are p+ 1
solutions to the equation a20 + a21 + a22 + a23 = p with
a0 > 0 odd (i.e., a0 ≡ 1 (mod 2)) and a1, a2, a3 even.
Now, for each such solution (a0, a1, a2, a3) consider

the matrix
(

a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

)
where i is some

fixed solution to i2 = −1 (mod q).

3. Form the generating set S of the Cayley graph to
be the set of these (p + 1) matrices. Thus Xp,q =
Cay(PGL2(Fq), S).

4. The graphs are bipartite iff p is not a quadratic residue
modulo q or in other words the Legendre symbol(

q
p

)
= −1. The bipartite graphs Xp,q will be (p+ 1)-

regular, of size q(q2−1)
2 by q(q2−1)

2 and are Ramanujan
(Lubotzky et al., 1988).

3.2. Construction of the fully connected layers

For the fully connected layers consisting of balanced bipar-
tite graphs, we prune them at initialization in accordance
with the Ramanujan graph structure of LPS. For this we
select a prime q such that q(q2−1)

2 by q(q2−1)
2 is closest to

the size of the original bipartite layer. We then select the
prime p such that the Legendre symbol

(
q
p

)
= −1.
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3.3. Bi-regular Ramanujan graphs and construction of
convolutional layers

Fix a prime q and a q × q cyclic shift permutation matrix
P = [P ]ij with [P ]ij = 1 if j = i − 1 (mod q) and 0
otherwise. Recall that the adjacency matrix of any m× n

bipartite graph can be written as Adj =

(
0m×m Bm×n

BT
m×n 0n×n

)
,

where B is called the bi-adjacency matrix. Define the
bi-adjacency matrix of this bipartite graph to be B =
Iq Iq . . . Iq
Iq P . . . P l−1

Iq P 2 . . . P 2(l−1)

...
Iq P q−1 . . . P (q−1)(l−1)

 where Iq is the q × q

identity matrix and P is as above. B is a q2 × lq matrix
and the bipartite graph is either q2 × lq with bi-regularity
(l, q) or symmetrically lq × q2 with bi-regularity (q, l). The
graphs whose bi-adjacency matrices are represented as B
(or BT ) are Ramanujan, see (Burnwal et al., 2021). The
adjacency matrices constructed from the above graphs are
also high structured being essentially collections of shift
permutation matrices. This structure is lost when we pass to
random constructions. These graphs are explicit realisations
of the Ramanujan r-coverings of the full (k, l) bi-regular bi-
partite graph on k+ l vertices as shown in (Hall et al., 2018,
cor 2.2). For pruning the convolution layers, we utilise the
bi-regular Ramanujan graphs.

4. Experimental Methodology and Results
The goal of our experiments is to study the effectiveness
of deterministic Ramanujan graph based sparse network
initialization.

4.1. Datasets and architectures

The datasets used for the experiments are Cifar-10 and
Cifar-100 (Krizhevsky, 2009). The experiments are per-
formed over a variety of architectures including VGG13,
VGG16, VGG19 (Simonyan & Zisserman, 2014), AlexNet
(Krizhevsky et al., 2012), ResNet18 and ResNet34 (He et al.,
2016) to show the robustness of our method. We proceed
in two parts. In the first part, we prune the intermediate
Fully Connected layers by replacing them with sparse Ra-
manujan Graph which is applicable for VGG13, VGG19
and AlexNet architectures. In the second part, we prune
the whole network including the Convolution layers and the
Fully Connected layers which is applicable for all the archi-
tectures considered in our experiment. The performance of
the dense and the pruned networks are compared in each
case. Finally, we compare the performance of our method
against various state-of-the art PaI algorithms for VGG16
and the ResNet34 architectures. Training parameters for all

of the architectures are same and are summarized in Table 1.
We report accuracy on a randomly split 16% test set for all
the experiments.

Table 1. Training Parameters for the experiment
Hyperparmeters

Epochs 200
Train Batch Size 256
Test Batch Size 128
Learning Rate 0.1

LR Decay, Epoch 10x, [100, 150]
Optimizer SGD

Weight Decay 0.0005
Momentum 0.9

Weight Initialization Kaiming Uniform

4.2. Methods compared

The performance of the pruned networks are compared with
that of corresponding dense networks. We have also com-
pared our method against various pruning at initialization
techniques such as Random (Liu et al., 2022), ERK (Evci
et al., 2020; Mocanu et al., 2018), GraSP (Wang et al., 2020),
and SynFlow (Tanaka et al., 2020). The number of itera-
tions for SynFlow are 100 while for GraSP and ERK it is 1
keeping rest of the hyperparameters same as Table 1.

4.3. Results and discussion

Results for the first part of the experiment where only the in-
termediate fully connected layer is pruned, are summarized
in Table 2 and 3 for the Cifar-10 and Cifar-100 datasets
respectively. It can be observed that the Ramanujan graph
construction allows us to extremely prune the fully con-
nected layer upto 0.43% while still retaining the accuracy
as of the unpruned model.

Table 2. Accuracy of VGG and AlexNet when only the intermedi-
ate fully connected layer is pruned on Cifar-10 dataset

Dataset: Cifar-10

Model
FC layer Size

(Remaining Edge Percentage)
4096× 4096
(Unpruned)

2448× 110
(1.6%)

2448× 30
(0.43%)

VGG13 92% 91% 91%
VGG19 92% 92% 92%
AlexNet 86% 84% 86%

For the second part of the experiment where we prune the
complete network including the convolution layers and the
fully connected layer, we could achieve an overall pruning
percentage of ∼2% for VGG, ∼2.3% for AlexNet and ∼5%
for the ResNet architectures. The accuracy of the models on
the Cifar-10 and Cifar-100 datasets is given in Table 4.
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Table 3. Accuracy of VGG and AlexNet when only the intermedi-
ate fully connected layer is pruned on Cifar-100 dataset

Dataset: Cifar-100

Model
FC layer Size

(Remaining Edge Percentage)
4096× 4096
(Unpruned)

2448× 110
(1.6%)

2448× 30
(0.43%)

VGG13 66% 66% 63%
VGG19 66% 67% 63%
AlexNet 67% 66% 66%

Table 4. Accuracy of various architectures when the complete net-
work is pruned including the Convolution and the FC layers.

Dataset: Cifar-10

Model
Unpruned
accuracy

Pruned
Accuracy

Network
Density

VGG13 92% 90% 1.7%
VGG16 93% 91% 5.3%
VGG19 92% 89% 2.4%
AlexNet 86% 82% 2.3%

ResNet18 87% 86% 5.6%
ResNet34 88% 86% 5.2%

Dataset: Cifar-100

Model
Unpruned
accuracy

Pruned
Accuracy

Network
Density

VGG16 70% 66% 5.3%
ResNet18 55% 54% 5.6%
ResNet34 57% 56% 5.2%

Finally, we compare the performance of the proposed Ra-
manujan sparse network initialization with other state-of-art
pruning at initialization (PaI) techniques. The comparison
of accuracy between various pruning at initialization (PaI)
techniques at network density ∼5% is shown for the VGG16
and ResNet34 architectures in Table 5 and Table 6 on Cifar-
10 and Cifar-100 datasets.

Table 5. Performance of various PaI methods on Cifar-10 dataset
Dataset: Cifar-10

VGG16 (Network Density ∼5.3%)
Method Accuracy

Unpruned 93%
Our Method 91%

Random 89%
ERK 91%

SynFlow 92%
ResNet34 (Network Density ∼5.2%)

Method Accuracy
Unpruned 88%

Our Method 86%
Random 81%

ERK 86%
GraSP 86%

Table 6. Performance of various PaI methods on Cifar-100 dataset
Dataset: Cifar-100

VGG16 (Network Density ∼5.3%)
Method Accuracy

Unpruned 70%
Our Method 66%

Random 60%
ERK 62%

SynFlow 65%
ResNet34 (Network Density ∼5.2%)

Method Accuracy
Unpruned 57%

Our Method 56%
Random 50%

ERK 56%
GraSP 56%

We can observe that our zero-shot method can achieve com-
parable accuracy to other iterative pruning at initialization
techniques. It also significantly outperforms the random
mask initialization. The pruned networks still maintain their
accuracy with a slight reduction of around 1−2% compared
to their unpruned counterparts even at such low remaining
weight percentage.

5. Conclusion and Future Work
We presented a deterministic, data independent, zero-shot
method for constructing sparse neural network structures
which upon weight initialization can be trained to a high
accuracy. Experimental results on popular architectures and
datasets demonstrate that close to unpruned network accu-
racy can be achieved using a very sparse network structure.

With the success of sparse deterministic Ramanujan neu-
ral networks, our further direction of work is to implement
these in the case of transformers and study sparse Ramanu-
jan transformer networks. The proposed deterministic con-
struction technique is expected to significantly reduce the
number of parameters and training time while maintaining
accuracy.
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A. Appendix
A.1. Cayley graph

Let G be a group and let S be a subset of G that is closed under inversion i.e., S = S−1. The corresponding Cayley graph
C(G,S) is a graph with vertex set the elements of G and edge set {(x, xs) : x ∈ G, s ∈ S}.

The adjacency matrix of a Cayley graph is highly symmetric in the sense that it contains more structure than that of adjacency
matrices of general graphs. In fact often for sparse graphs, adjacency lists are stored in the memory. In case of a Cayley
graph, one only needs to store the group elements G and the generating set S (of small size since we are focusing on sparse
expanders), and the adjacency lists can be computed easily. This structural information is lost in case of random expander
based networks.

A.2. Expander graphs and Ramanujan graphs

An expander graph is a structurally sparse graph that has strong connectivity properties. The connectivity can be quantified
in different ways which give rise to different notions of expanders such as vertex expanders, edge expanders and spectral
expanders. These notions are actually interrelated. In the following, a graph Γ = (V,E) is a tuple consisting of a vertex set
V and an edge set E which is a subset of V × V .

A.2.1. COMBINATORIAL EXPANSION

Definition A.1 (vertex Cheeger constant). The infimum of the quantity |δ(X)|
|X| where δ(X) denotes the outer vertex boundary

of X i.e., the set of vertices in Γ which are connected to a vertex in X but do not lie in X as X runs over all non-empty
subsets of V satisfying the condition with |X| ≤ |V |

2 is known as the vertex Cheeger constant and is denoted by h(Γ).
Definition A.2 (edge-Cheeger constant). The edge boundary of a set S, denoted δS, is δS = the set of edges going out
from S to its complement. The edge Cheeger constant of Γ, denoted by h(Γ), is defined as: h(Γ) = min |δS|

D|S| as S satisfies
the following: {S ̸= empty set, |S| ⩽ n

2 } and D is the maximum degree of the graph Γ

The vertex Cheeger constant h(Γ) and the edge Cheeger constant h(Γ) are related by the following equivalence

h(Γ)

D
⩽ h(Γ) ⩽ h(Γ),

where D denotes the maximum degree of the graph (the degree of each vertex is the number of edges going out from the
vertex). This allows one to speak about vertex expansion and edge expansion interchangeably. Having high combinatorial
expansion means having high Cheeger constant, a desirable property for our case.

A.2.2. SPECTRAL EXPANSION

Given a finite undirected graph Γ the eigenvalues λn ⩽ · · · ⩽ λ1 of its adjacency matrix are all real and λ1 ⩽ D with
equality iff the graph is D-regular. The spectra, i.e., the distribution of the eigenvalues convey a lot of information about
the structure of the graphs. For instance, the quantity λ1 − λ2 (also known in the literature as the one sided spectral
gap) quantifies the connectivity and the combinatorial expansion of the graph via the discrete Cheeger-Buser inequality,
discovered independently by (Dodziuk, 1984) and by (Alon & Milman, 1985). A graph Γ = (V,E) is said to be a spectral
expander if the quantities {|λ1| − |λ2|, |λ1| − |λk|} are both bounded away from zero, where k = n − 1 if the graph is
bipartite and k = n otherwise.

A.2.3. DISCRETE CHEEGER–BUSER INEQUALITY

The discrete Cheeger–Buser inequality discovered independently by (Dodziuk, 1984) and by (Alon & Milman, 1985) allows
one to pass from spectral expansion to combinatorial expansion. The inequality states that

h(Γ)2

2
⩽ α2 ⩽ 2h(Γ),

where α2 denotes the second smallest eigenvalue of the normalised Laplacian matrix of Γ and is related to the eigenvalues
of the adjacency matrix via

λi

D
⩽ 1− αi ⩽

λi

d
∀i = 1, 2, . . . , n.
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See (Chung, 2016) for details. From the above, it is easy to check that a high |λ1| − |λ2| ensures a high h(Γ) and vice-versa.
Thus, the two notions of expansion are inter-connected and every spectral expander remains a combinatorial expander. They
are actually equivalent for some classes of graphs, for instance bipartite graphs (as the adjacency spectrum is symmetric
about the origin), variants of algebraic graphs e.g., see (Breuillard et al., 2015; Biswas, 2019; Biswas & Saha, 2021; 2022;
2023) etc.

A.2.4. RAMANUJAN GRAPH BOUNDS, ALON-BOPANNA THEOREM

A d-regular graph is said to be a Ramanujan graph if max{|λ2|, |λk|} ⩽ 2
√
d− 1. In the case of bipartite graphs, λn = λ1

and λn−1 = λ2, hence the previous expression reduces to |λ2| ⩽ 2
√
d− 1. For fixed degree, with the sizes of the graphs

growing larger and larger, these are the best possible expanders, as given by the Alon-Bopanna bound (Alon, 1986; Nilli,
1991).

Theorem A.3 (Alon-Boppana). For every d regular graph on n vertices,

λ ≥ 2
√
d− 1− on(1).

The on(1) term is a quantity that tends to zero for every fixed d as n → ∞.

A.3. Experimental methodology

The q and l values used by the Ramanujan Graph construction for the convolution layers for various architectures is provided
in Table 7.

Table 7. Values of q and l to generate Ramanujan graphs for layers of VGG, AlexNet and ResNet
VGG13 VGG19

Conv Size q l Conv Size q l
[256× 256× 3× 3]× 1 13 177 [256× 256× 3× 3]× 3 13 177
[512× 256× 3× 3]× 1 19 121 [512× 256× 3× 3]× 1 19 121
[512× 512× 3× 3]× 3 19 242 [512× 512× 3× 3]× 7 19 242

Conv to Linear Size q l Conv to Linear Size q l
2448× 25088 47 533 2448× 25088 47 533

AlexNet ResNet18
Conv Size q l Conv Size q l

[384× 256× 3× 3]× 1 19 121 [64× 64× 3× 3]× 4 7 82
[384× 384× 3× 3]× 1 19 181 [128× 64× 3× 3]× 1 11 52
[256× 384× 3× 3]× 1 13 265 [128× 128× 3× 3]× 3 11 104

[256× 128× 3× 3]× 1 13 88
[256× 256× 3× 3]× 3 13 177
[512× 256× 3× 3]× 1 19 121
[512× 512× 3× 3]× 3 19 242

Conv to Linear Size q l
2448× 25088 47 533
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