

000 001 ECO GRAD: ERROR CORRECTING OPTIMIZATION 002 FOR QUASI-GRADIENTS, A VARIABLE METRIC DFO 003 STRATEGY 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 We introduce a *Quasi-Gradient* method using 0th order directional derivatives
014 and quasi-Newton like updates. Empirically, our method reduces d -dependence
015 of zeroth-order problems to an effective $\approx d \cdot m$ factor $1/d \leq m \leq 1$, with only a
016 small linear increase in compute. We show this holds under Lipschitz bounds and
017 on practical tasks. While compressive sensing achieves similar gains with sparse
018 gradients, our approach applies to any gradient geometry. It exploits high cosine
019 similarity and stable gradient norms along neighboring steps, ultimately requiring
020 fewer samples to correct the estimator. Applications include policy optimization,
021 model-free reinforcement learning, function smoothing, evolutionary methods, ef-
022 ficient JVPs (e.g. in JAX), learning from simulation, and related areas. We include
023 a probing framework that leverages convergence bounds to detect when a gradi-
024 ent estimator is no longer aligned with new samples, helping prevent non-descent
025 steps. We also introduce the *ECO estimator* a least-change secant update that
026 results in a specific LMS adaption, which achieves $O(e^{-k/d})$ convergence in gra-
027 dient MSE, while Monte Carlo averaging is sub-exponential $O(\frac{d+1}{d+k+1})$. Finally
028 we provide performance results comparing directional SGD to quasi-GD, alone
029 and with adaptive optimizers. As models grow, our approach bridges the gap
030 between full-gradient methods and large scale derivative free optimization. We
031 hope to motivate further research in quasi-gradient techniques for simulation and
032 exploratory learning.

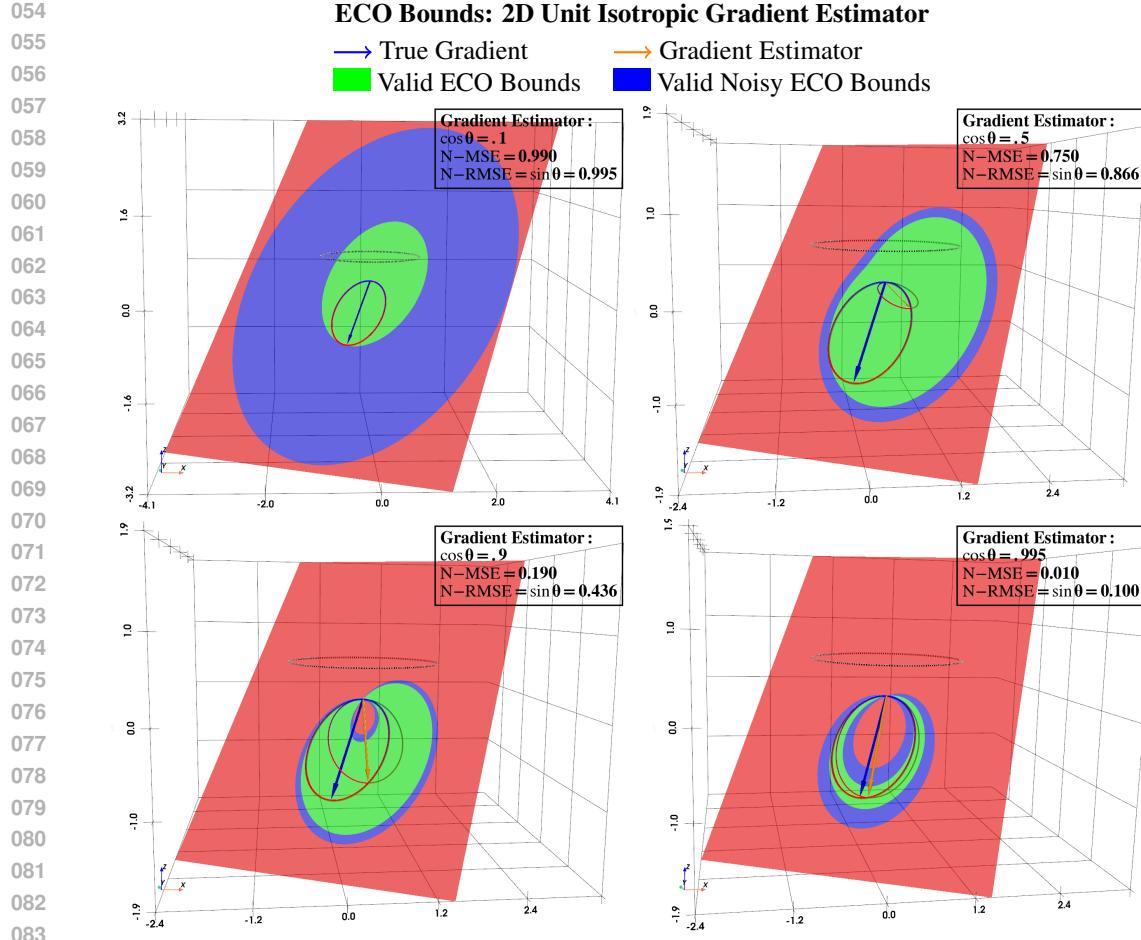
033 1 0TH-ORDER GRADIENT ESTIMATION 034

035 2 DIRECTIONAL DERIVATIVES AND GRADIENT ESTIMATORS 036

037 2.1 DIRECTIONAL DERIVATIVES 038

039 In the standard literature a *Directional Derivative* is defined as $(\nabla f(\mathbf{x}) \cdot \mathbf{u})\mathbf{u}$ or $\langle \nabla f(\mathbf{x}), \mathbf{u} \rangle \mathbf{u}$,
040 [Nesterov & Spokoiny \(2017\)](#), we refer to it as $(v)\mathbf{u}$ for convenience and because $v = \langle \nabla f(\mathbf{x}), \mathbf{u} \rangle$
041 will be utilized separately. It is also known as a *Forward Gradient* and a forward *Jacobian Vector*
042 *Product* [Baydin et al. \(2022\)](#). What remains ambiguous, and we find important to address is defining
043 \mathbf{u} . The most common form is $\mathbf{u} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ this satisfies the definition of Gaussian Smoothing:
044 $\mathbb{E}[(v)\mathbf{u}] = \nabla f(\mathbf{x})$, and can be implemented directly as a form of SGD [Nesterov & Spokoiny \(2017\)](#).
045 The single necessary assumption of *smoothing* is unbiasedness, but there isn't a specification for
046 variance or distribution of \mathbf{u} . Unbiasedness does not mean the distribution of \mathbf{u} can't be biased e.g.
047 Rademacher or Bernoulli, de-biasing can also be performed after sampling [Ye et al. \(2019\)](#). However
048 this can all lead to potentially harmful asymptotics that slow SGD, we continue this discussion here
049 [A.1](#).

050 Smoothing error is generally measured by MSE, but we believe this doesn't capture enough per-
051 spective on gradient estimators. Our approach focuses on cosine similarity and norm separately.
052 MSE can be viewed as capturing two dimensions of error: 1) How large is the angle between the
053 estimator and true gradient? 2) How large is the difference between norms of the estimator and
gradient? Between the two, closer angle (larger cosine) is most expensive and important to estimate



084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Estimators that satisfy [lemma 2.1](#) and [corollary 3.1](#). By calculating the accuracy as a convergence expectation, typically as $\cos \theta$, we can draw precise bounds around where our *Directional Derivatives* can appear relative to our estimate so that they are still feasible on the ring of the true gradient. We see that as the accuracy improves, the feasible region converges to the true gradient ring. If a Directional Derivative landed outside of these bounds at any point, we would know that the true gradient has changed. Plotting code (TBE). The procedure is covered in [section 3](#).

accurately. This is because by selecting the correct distribution, we can calculate the MSE optimal estimate (that determines the norm) for any given $\cos \theta$. Define the uniform unit sphere distribution as $\mathbf{u} \sim \text{Unif}(\mathcal{S}_{d-1})$ where $\mathbf{u} = \mathbf{v}/\|\mathbf{v}\|$, $\mathbf{v} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. We believe \mathbf{u} exhibits a very ideal theoretical perspective as compared to other distributions, because it satisfies what we call a *True Directional Derivative* [lemma 2.1](#). It's also the only fully independent, identically distributed, and uniform variable on \mathcal{S}_{d-1} .

Lemma 2.1. Define $f(\mathbf{x})$ such that $\nabla f(\mathbf{x})$ is continuous, and let $\mathbf{u} \in \mathbb{R}^d$, s.t. $\|\mathbf{u}\| = 1$. Then with $\theta = \angle(\nabla f, (\mathbf{v})\mathbf{u})$

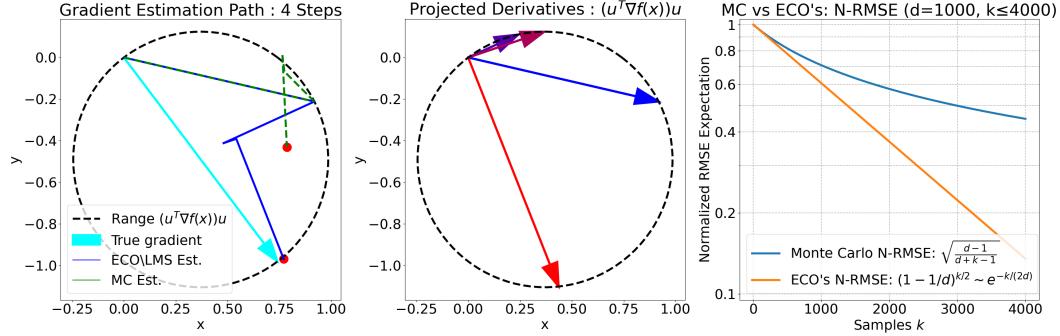
$$\frac{\|\nabla f(\mathbf{x}) - (\mathbf{v})\mathbf{u}\|}{\|\nabla f(\mathbf{x})\|} = \sin \theta, \quad \frac{\|(\mathbf{v})\mathbf{u}\|}{\|\nabla f(\mathbf{x})\|} = \frac{|\mathbf{v}|}{\|\nabla f(\mathbf{x})\|} = \cos \theta, \quad (2.1)$$

And we have $0 \leq \sin \theta \leq 1$, and $0 \leq \cos \theta \leq 1$ [[proof B.1](#)]. These relationships wouldn't exist without $\|\mathbf{u}\| = 1$, and they are the key insight behind how we predict if a gradient estimator ((2.2) or (2.3)) is accurate without having access to $\nabla f(\mathbf{x})$. By the Pythagorean theorem, we know a directional sample that obtains the smallest possible MSE for a given positive $\cos \theta$ will be a true directional derivative. This is why we use $\text{Unif}(\mathcal{S}_{d-1})$ for the methods below, we try to replicate this symmetry as closely as possible. We also now have $\mathbb{E}[(\mathbf{v})\mathbf{u}] = d^{-1}\nabla f(\mathbf{x})$ [[B.3](#)].

For reference $\lim_{d \rightarrow \infty} \text{Unif}(\mathcal{S}_{d-1}) \sim \mathcal{N}(\mathbf{0}, \frac{1}{d}\mathbf{I})$ has a rate of $O(d^{-1/2})$ [[B.6](#)]. When d is large we may even sample directly from $\mathcal{N}(\mathbf{0}, \frac{1}{d}\mathbf{I})$ without an expensive normalization. A brief discussion

108 on finite differences to approximate directional derivatives with high accuracy and exotic estimators
 109 can be found here [A.2](#). For clarity in further sections we say the gradient normalize root mean square
 110 error of our directional derivative: $N\text{-RMSE} = \sin \theta$. We also use $\nabla f(\mathbf{x})$ and \mathbf{g} interchangeably.
 111

112 2.2 GRADIENT ESTIMATORS



127 **Figure 2:** Left plot: path of a Monte Carlo gradient estimator normalized to be MSE minimizing, and ECO’s method.
 128 Center plot: directional derivatives used by the estimators. Right plot: derived convergence rates of Normalized RMSE.

130 When a large parameter count makes other methods difficult, *Monte Carlo Averaging* is a well
 131 known method for estimating the gradient. Even outside of 0th order optimization, it is the primary
 132 method used in batched stochastic sampling; this encompasses alternative gradient estimators such
 133 as policy and natural gradients in RL. We define it for our specific setting as:

$$135 \tilde{\mathbf{g}} = \frac{d}{N} \sum_{k=1}^N (v_k) \mathbf{u}_k, \quad \begin{array}{l} N - \text{Sample size.} \\ d - \text{Problem dimensions.} \end{array} \quad (2.2)$$

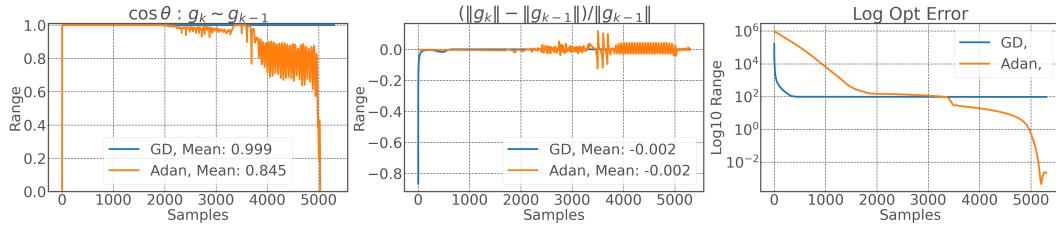
138 It’s commonly understood that Monte Carlo estimation converges to the population mean in
 139 $O(k^{-1/2})$, this is true for the RMSE: $\|\tilde{\mathbf{g}} - \mathbf{g}\|$ of our estimator. While being an unbiased estimator [Duchi et al. \(2014\)](#), it doesn’t produce the (approximately) smallest possible MSE/RMSE for
 140 k samples in expectation. But fortunately [Gao & Sener \(2022\)](#) has already solved this for Gaussian
 141 admitting $\frac{k}{d+k+1}$, our S_{d-1} result is a bit different: $\frac{k}{d+k-1} \tilde{\mathbf{g}}_k = \hat{\mathbf{g}}_k$. With $\|\mathbf{u}\| = 1$ and d multiplier,
 142 it’s evident that $\|\hat{\mathbf{g}} - \mathbf{g}\|/\|\mathbf{g}\| \leq 1$, with $O((\frac{d-1}{d+k-1})^{1/2})$ convergence, [\[proof B.3\]](#).
 143

145 Now we introduce *ECO’s Method*. (We have renamed this method temporarily to hide an author’s identity.)
 146 This is our new application of established methods that achieves [\[proof B.4\]](#) exponential
 147 $O((1 - \frac{1}{d})^{k/2})$ N-RMSE convergence, [figure 2](#). There are many ways to interpret and arrive at this
 148 update. To honor Quasi-Newton methods, we define the secant constraint and variable metric for
 149 Langrange form.

150 **ECO’s Method** [\[Proof B.2\]](#) *Solve* $\min_{\hat{\mathbf{g}}_k} \|\hat{\mathbf{g}}_k - \hat{\mathbf{g}}_{k-1}\|^2$ s.t. $\langle \hat{\mathbf{g}}_k, \mathbf{u} \rangle = v$. *Admits:*

$$152 \hat{\mathbf{g}}_k = \hat{\mathbf{g}}_{k-1} + \frac{(v - \hat{\mathbf{g}}_{k-1}^T \mathbf{u}) \mathbf{u}}{\mathbf{u}^T \mathbf{u}}, \quad \text{iff } \|\mathbf{u}\| = 1. \rightarrow \hat{\mathbf{g}}_k = \hat{\mathbf{g}}_{k-1} + (v - \hat{\mathbf{g}}_{k-1}^T \mathbf{u}) \mathbf{u} \quad (2.3)$$

155 It is already a MSE minimizing estimator, and $N\text{-RMSE} \leq 1$ almost certainly by the results of
 156 [lemma 2.1](#). To attribute the recurrence we may also call it the *Least Change Gradient Estimator*
 157 in a Euclidean sense, equivalent to Broyden’s Method but for gradients instead of the Hessian. It’s
 158 identical to the *N-LMS Update* and uniformly random *Kaczmarz Update* [Gower & Richtárik \(2015\)](#)
 159 with a known optimal learning rate $l = 1$. Going forward we will use these names interchangeably.
 160 For intuition on why ECO’s Method is exponential even though MC and LMS have the same $O(d \cdot k)$
 161 operational dependence, see [discussion A.3](#) where we also mention *Block ECO’s Method* and
 Orthogonal directions. To see how ECO’s Method and MC perform on a static gradient: [figure 4](#).

Figure 3: $d = 100$ Rosenbrock. Lipschitz L at x_0 . LR for GD = $6/L$, Adan = $300/L$ [source].

3 ECOGRAD AND PROBING FRAMEWORK

The *ECOgrad* framework is what we call a Quasi-Gradient method as it improves a gradient estimate at parameter vector \mathbf{x}_k that was already established at previous \mathbf{x}_{k-n} 's. We are motivated by the empirical observation that full gradients remain significantly correlated between descent steps [figure 3](#), even with aggressive learning rates. In Nesterov's analysis of DFO (source) and in other works (sources), we see $O(d/\epsilon)$ or improved bounds with d -dependence. Under Lipschitz optimal, $n = d/\epsilon$ is oracles to achieve ϵ bounds on the stationary point. With $\mathbb{E}[\cos \theta^2] = d^{-1}$ [B.3](#), let $d = 100$ gives us $\mathbb{E}[\cos \theta^2] = .01$, if our method averages $\cos \theta^2 = .1$ without additional queries (this is like ≈ 10 oracle calls for free) we may need only $m \approx 1/10$ of our original n queries to achieve ϵ margin. We might call md the effective dimension size.

To achieve this effect, one strategy would be to naively update the estimator, but this could fall short. Monte Carlo estimation is dependent on k ; as samples are received each has less impact on the estimate leading to stagnation. However *ECO's Method* has exponential convergence and will adapt in time. This effect alone is enough to produce a variance reducing strategy as seen in *SEGA*, that generalizes to eliminate distribution bias and even operate on sub-spaces [Hanzely et al. \(2018\)](#). Yet estimator convergence is still a stationary assumption and depends on the dimension size, it follows that a step must be smaller to allow the method to adapt quickly enough to changes in the gradient. The method may not beat the d -dependent (optimization) lower bound of the underlying sample strategy. When analyzing impacts of large step size or non-characteristic surfaces we find situations that form bad estimates, like non-descent directions leading to oscillation and asymmetrically worsened progress. The next gradient may form a greater than 90 deg angle with the previous, or the norm might reduce significantly (common for stationary points). In both cases, resetting the estimator to zero or reducing its size would result in a faster update to the true gradient and even guarantee a descent direction. Reset and shrinkage has found success already in 2nd order methods [[Ca et al. \(2020\)](#), [Indrapriyadarsini et al. \(2020\)](#)] and is the basis of our strategy.

Seeking a corrective method that works generally, we developed a system that only depends on the gradient estimator and directional derivatives. Empirically we find that avoiding non-descent directions is especially consequential, our strategy aims to preserve *estimator* descent first and then improve MSE or $\cos \theta$ with the same sampling rate. The added benefit is that we can work with other estimators, like Monte Carlo that is convergent under noise.

3.1 BOUNDS AND ECO RATIO

We first begin with the gradient, and enforce [lemma 2.1](#): State $c = (1 - \frac{1}{d})^{k/2}$ if we use ECO's Method and $c = (\frac{d-1}{d+k-1})^{1/2}$ for MSE minimizing Monte Carlo.

Corollary 3.1. Define $\hat{\mathbf{g}}$ such that $c = \sin \angle(\mathbf{g}, \hat{\mathbf{g}})$, and $\|\hat{\mathbf{g}}\|/\|\mathbf{g}\| = \cos \angle(\mathbf{g}, \hat{\mathbf{g}})$ i.e. unit isotropic estimator on \mathcal{S}_{d-1} . And $\|\mathbf{u}\| = 1$ then

$$\frac{|\mathbf{u}^T \hat{\mathbf{g}} - v|}{c \|\mathbf{g}\|} \leq 1 \quad (3.1)$$

Proof B.5. These are the strongest definite bounds on directional derivatives we could find when the estimator also satisfies unit isotropic. This is what [figure 1](#) green area visualizes, more conservative bounds in the 2D scenario may lead to false positives. In many dimensions this is consistent, yet from [B.3](#) we know $\mathbb{E}[\mathbf{u}\mathbf{u}^T] = d^{-1}\mathbf{I}$. So even when $d \gg 1$ it is still possible for a $(v)\mathbf{u}$ to appear up

216 to a residual $= c\|\mathbf{g}\|$, but very unlikely. We rely on the distribution of our samples to state what is
 217 *improbable*, not *impossible*.

218 **Corollary 3.2.** *Proof B.6.* Assume [corollary 3.1](#) then

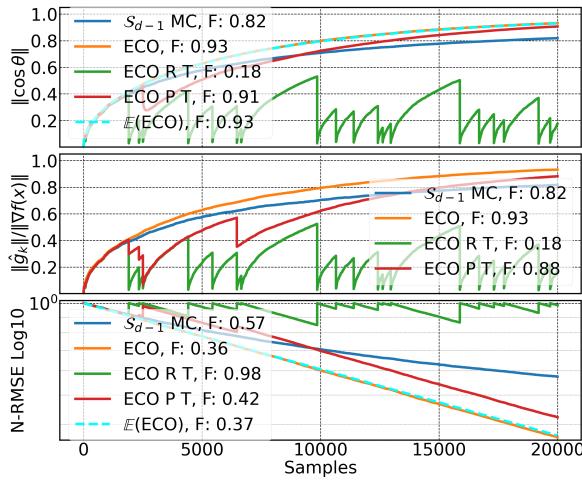
$$\mathbb{E} [|\mathbf{u}^T \hat{\mathbf{g}} - v|^2] = \frac{c^2 \|\mathbf{g}\|^2}{d} \quad (3.2a)$$

$$\mathbb{E}_\alpha [|\mathbf{u}^T \hat{\mathbf{g}} - v|^2] = \frac{c^2 \alpha^2 \|\mathbf{g}\|^2}{d} \quad (3.2b)$$

225 α is the Gaussian two-sided significance level, found in a CI table or by Φ^{-1} . Next by [3.1](#) we
 226 recognize $\|\mathbf{g}\| = \|\hat{\mathbf{g}}\| / \cos \angle(\mathbf{g}, \hat{\mathbf{g}}) = \|\hat{\mathbf{g}}\| / \sqrt{1 - c^2}$. We can even define $\bar{g} = \hat{\mathbf{g}} / \sqrt{1 - c^2}$ as the
 227 *norm error* minimizing estimator.

228 **The ECO Ratio:**

$$\mathcal{M}(v, \mathbf{u}, \hat{\mathbf{g}}, c, \alpha) \models M(v) = \frac{|\mathbf{u}^T \hat{\mathbf{g}} - v| \sqrt{d(1 - c^2)}}{\alpha c \|\hat{\mathbf{g}}\|} \quad (3.3)$$



249 Figure 4: $d = 10^5$, $\alpha_N \approx 3.3$. T - Students's t.
 250 R - Resets. P - Partial resets. F - Final Value.

251 appears trivial, at large d we know $\text{Unif}(\mathcal{S}_{d-1}) \sim \mathcal{N}(\mathbf{0}, \frac{1}{d} \mathbf{I})$. 2) In reality the isotropic assumption of
 252 [corollary 3.1](#) is never exact. We hypothesize that when $\mathbb{E}[\mathbf{u}\mathbf{u}^T] = (d)^{-1}\mathbf{I}$, then $\|\hat{\mathbf{g}}\|/\|\mathbf{g}\|$ is con-
 253 vergent to $\cos \angle(\mathbf{g}, \hat{\mathbf{g}})$ in a approximately t-distributed manner, independent of dimension size. We
 254 provide our evidence in [discussion A.4](#). Because calculating $\alpha \sim t(\nu)$ at each step can be expensive,
 255 we also provide an accurate polynomial interpolate $\alpha_t(\alpha_N, \nu)$ in our repository (source). The DOF
 256 ν represents steps since last reset.

3.2 NOISY ECO RATIO

260 We begin with $\tilde{v}_k = v_k + e_k$. Assume $e_k \sim \mathcal{N}(0, \sigma^2)$ so that: e_k is independent of v_k . $\mathbb{E}[e_k] = 0$.
 261 And $\mathbb{E}[(e_k)^2] = \sigma^2$.

262 **The Noisy ECO Ratio:**

$$\gamma = \frac{\alpha c \|\hat{\mathbf{g}}\|}{\sqrt{d(1 - c^2)}}, \quad \tilde{M}(\tilde{v}) = \sqrt{\frac{(\mathbf{u}^T \hat{\mathbf{g}} - \tilde{v})^2}{\gamma^2 + \sigma^2}} \leq 1 \quad (3.4)$$

263 **Proof B.7.** We see that after adding noise, [Equation \(3.4\)](#) simply contributes a static threshold that
 264 eventually dominates the boundary. It is in root form for consistency but that is not necessary. If we

265 **proof B.6** If $M(v) > 1$ we fail to sup-
 266 port $\hat{\mathbf{g}}$ is a continuing estimator of \mathbf{g} up to
 267 c (our expected estimator N-RMSE (link
 268 to appendix as to why we call it that)), we
 269 set $\hat{\mathbf{g}}_k = (v) \mathbf{u}_k$, $c = \sqrt{1 - d^{-1}}$, and be-
 270 gin to improve $\hat{\mathbf{g}}$ and c again in forward
 271 steps. A benefit of this ratio stems from
 272 it's independence of $\nabla \mathbf{x}$ or the higher
 273 moments of $f(\mathbf{x})$, allowing it to work uncon-
 274 ditionally in many situations. The only re-
 275 quirement is L-smoothness (by $(v) \mathbf{u}$ not
 276 even by $\nabla f(\mathbf{x})$). Under convexity as-
 277 sumptions, parameter count, interactions,
 278 and step size, the optimal α may vary but
 279 this is beyond the scope of our current
 280 work.

281 We conclude by mentioning certain hand-
 282 waving, necessary to achieve our result: 1)
 283 In [Equation \(3.2b\)](#) we assume α is Gaus-
 284 sian but $\mathbf{u} \sim \mathcal{S}_{d-1}$, for small d this ap-
 285 pplies.

270 are using ECO’s Method then a variable learning rate is theoretically optimal, [proof B.8](#). We get the
271 recurrence:

$$272 \hat{\mu}_k = \frac{c_k^2 \|\hat{\mathbf{g}}_k\|^2}{d(1 - c_k^2)}, \quad l_k \approx \frac{\hat{\mu}_k}{\hat{\mu}_k + \sigma_e^2}, \quad c_{k+1}^2 = c_k^2 \cdot (1 - l_k d^{-1}) \\ 273 \hat{\mathbf{g}}_{k+1} = \hat{\mathbf{g}}_k + l_k(v - \hat{\mathbf{g}}_k^T \mathbf{u}_k) \mathbf{u}_k \\ 274$$

275 Note: Updating c_{k+1} is not the same as updating c_{k+1}^2 we need to take the root separately if c_{k+1} is needed.
276

277 σ_e^2 can be estimated adaptively or known at first, it may also help to alter it’s significance by
278 constant factors. Holding σ^2 and $\|\hat{\mathbf{g}}_k\|$ constant we would find that $\lim_{k \rightarrow \infty} c_k \rightarrow n$ where $0 < n < 1$
279 and l_k approaches 0. This is an expected behavior, the LMS filter does not fully converge under
280 noise (source). For moderate noise such as (smoothing) non-smoothness, discontinuous function es-
281 timation, and finite difference stencil error, ECO’s Method should be viable. When noise becomes a
282 significant portion of the true gradient norm, consider: 1) Averaging multiple directional derivatives,
283 or use an over-determined stencil regression. 2) Switch to Monte Carlo Estimation at such point that
284 LMS progress is estimated to be slower. 3) For finite/semi-finite SGD, batch *along dimensions* and
285 not along environment or dataset sections, avoiding noisy updates all together.
286

287 Option 3 is generally unavailable to full gradient methods, but a widely relevant strategy to DFO
288 and ECOgrad. In (ilya and co) show how Gaussian smoothing can be used to achieve similar results
289 to model based methods and policy gradients, while also seeing nearly linear return for additional
290 network resources. In their work parallelization happens over separate gaming environments, then
291 RNG states and directional perturbations v are transferred as scalar values, requiring minimal band-
292 width. This exact strategy can still benefit from our framework while enabling new possibilities.
293 We provide further notes regarding networked asynchronous learning and maximizing compute ef-
294 ficiency when calculating estimators, [discussion A.6](#).

295 3.3 ECOGRAD PARTIAL RESETS

296 During the hypothetical progress of our optimization, the ECO bounds may be violated but with an
297 insignificant tail (just barely). Both statistical anomalies and the true gradient only changes in norm
298 or angle slightly, are possible. To remedy this we introduce a shrinkage method for our existing $\hat{\mathbf{g}}_k$
299 that also relax the ECO bounds. We provide justification for this approach in [discussion A.5](#). We
300 can solve for the partial reset by increasing c and simultaneously shrink $\hat{\mathbf{g}}$ to the norm that would be
301 expected for this increase, such that the ECO Ratio is < 1 . n references new values, and the iteration
302 k is arbitrary. Our *Reset Boundary* equation:

$$303 R_1(c_n) = \left| \mathbf{u}^T \hat{\mathbf{g}} \frac{\sqrt{1 - c_n^2}}{\sqrt{1 - c^2}} - v \right| - \frac{\alpha c_n \|\hat{\mathbf{g}}\|}{\sqrt{d(1 - c^2)}} = 0 \\ 304$$

305 We solve for the smallest $c < c_n \leq 1$. This has a quadratic symmetric four root solution, an analytic
306 method is provided: [Algorithm 1](#). Afterwards the estimator must be updated:
307

$$308 \hat{\mathbf{g}}_n = \hat{\mathbf{g}} \frac{\sqrt{1 - c_n^2}}{\sqrt{1 - c^2}}$$

309 The *Noisy Reset Boundary*:

$$310 \gamma_n(c_n) = \frac{\alpha c_n \|\hat{\mathbf{g}}\|}{\sqrt{d(1 - c^2)}}, \quad \tilde{R}(c_n) = (\mathbf{u}^T \hat{\mathbf{g}} \sqrt{\frac{1 - c_n^2}{1 - c^2}} - \tilde{v})^2 - \gamma_n^2(c_n) - \sigma^2 = 0 \\ 311$$

312 This is now a full quartic due to the noise term. We provide a bracketed secant solver in our code
313 base (here) customized to solve this quickly.

314 Finally if we use the Student’s t significance model $\alpha_t(\alpha_{\mathcal{N}}, \nu)$ our boundary solutions lose their
315 polynomial expectations. Fortunately α_t consistently results in c_n solutions that are smaller than
316 those under \mathcal{N} without strange behaviors. In fact t adjusted significance usually results in a solution
317 where $c_n < 1$, even when $c_n = 1$ normally. Empirically $\alpha_t(\alpha_{\mathcal{N}}, \nu)$ tends to improve optimization
318 performance under partial resets. To solve with $\alpha_t(\alpha_{\mathcal{N}}, \nu)$ refer to our secant implement (here), it
319

324 will also return variables c_n and s . Set $c_k = c_n$ then DOF $\nu = s$ is calculated by the ln equation in
 325 our code:

326 ECO's Method : $\nu = \frac{2 \ln(c_k)}{\ln\left(1 - \frac{1}{d}\right)}$, Monte Carlo : $\nu = \frac{d-1}{c_k^2} - d + 1$ (3.8)
 327
 328

329 Note: If v is small which is when it is relevant. Monte Carlo v is nearly the same as ECO, but avoids the expensive logs.
 330

331 From here increment $\nu_{k+1} = \nu_k + 1$ until the next reset is triggered. Or with noise every new sample
 332 represents diluted information, calculate with [Equation \(3.8\)](#) for each step.
 333

334 **3.4 RESULTS SECTION**

335 **REFERENCES**

337 Why bfgs and dfp work so well and interpretation.pdf, xxxx.

339 Ahmed1, Mohamed Osama, ˘cn’y, and Jakub Kone. Stop wasting my gradients: Practical svrg.
 340 *arXiv preprint arXiv:1511.01942*, 2015. URL <https://arxiv.org/abs/1511.01942>.

341 Neculai Andrei. An adaptive scaled bfgs method for unconstrained optimization. *Numerical Al-
 342 gorithms*, 77(2):413–432, 2018. ISSN 1572-9265. doi: 10.1007/s11075-017-0321-1. URL
 343 <https://doi.org/10.1007/s11075-017-0321-1>.
 344

345 Galen Andrew and Jianfeng Gao. Scalable training of l1-regularized log-linear models. In *Proceed-
 346 ings of the 24th International Conference on Machine Learning*, ICML ’07, pp. 33–40, New
 347 York, NY, USA, 2007. Association for Computing Machinery. ISBN 9781595937933. doi:
 348 10.1145/1273496.1273501. URL <https://doi.org/10.1145/1273496.1273501>.

349 Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order nonconvex stochastic opti-
 350 mization: Handling constraints, high-dimensionality and saddle-points, 2019. URL <https://arxiv.org/abs/1809.06474>.
 351

353 Atilim Güneş Baydin, Barak A. Pearlmuter, Don Syme, Frank Wood, and Philip Torr. Gradients
 354 without backpropagation, 2022. URL <https://arxiv.org/abs/2202.08587>.
 355

356 Albert S. Berahas, Liyuan Cao, Krzysztof Choromanski, and Katya Scheinberg. A theoretical and
 357 empirical comparison of gradient approximations in derivative-free optimization, 2021a. URL
 358 <https://arxiv.org/abs/1905.01332>.

359 Albert S. Berahas, Liyuan Cao, and Katya Scheinberg. Global convergence rate analysis of a generic
 360 line search algorithm with noise, 2021b. URL <https://arxiv.org/abs/1910.04055>.
 361

362 1. In *Biometrika*. On a formula for the product-moment coefficient. 2012.

363 Vivek S. Borkar, Vikranth R. Dwaracherla, and Neeraja Sahasrabudhe. Gradient estimation with
 364 simultaneous perturbation and compressive sensing, 2016. URL <https://arxiv.org/abs/1511.08768>.
 365

367 Sanae Lotfi@Polymtl Ca, Dominique Orban, Andrea Lodi@Polymtl Ca, and Tiphaine Bonniet De
 368 Ruisselet. Stochastic damped l-bfgs with controlled norm of the hessian approximation. 2020.
 369 doi: 10.13140/RG.2.2.27851.41765/1. URL <http://rgdoi.net/10.13140/RG.2.2.27851.41765/1>.
 370

371 Qian Chen, Peng Wang, and Detong Zhu. A second-order finite-difference method for derivative-
 372 free optimization. *Journal of Mathematics*, 2024(1):1947996, 2024. doi: <https://doi.org/10.1155/2024/1947996>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1155/2024/1947996>.

376 Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente. *Introduction to Derivative-Free Opti-
 377 mization*. Society for Industrial and Applied Mathematics, 2009. doi: 10.1137/1.9780898718768.
 378 URL <https://pubs.siam.org/doi/abs/10.1137/1.9780898718768>.

378 Ian D. Coope and Rachael Tappenden. Gradient and hessian approximations in derivative free opti-
 379 mization, 2020. URL <https://arxiv.org/abs/2001.08355>.

380

381 Adela DePavia, Vasileios Charisopoulos, and Rebecca Willett. Faster adaptive optimization via
 382 expected gradient outer product reparameterization, 2025. URL <https://arxiv.org/abs/2502.01594>.

383

384 John C. Duchi, Michael I. Jordan, Martin J. Wainwright, and Andre Wibisono. Optimal rates for
 385 zero-order convex optimization: the power of two function evaluations, 2014. URL <https://arxiv.org/abs/1312.2139>.

386

387 Pavel Dvurechensky, Eduard Gorbunov, and Alexander Gasnikov. An accelerated directional deriva-
 388 tive method for smooth stochastic convex optimization. *European Journal of Operational Re-
 389 search*, 290(2):601–621, April 2021. ISSN 0377-2217. doi: 10.1016/j.ejor.2020.08.027. URL
 390 <http://dx.doi.org/10.1016/j.ejor.2020.08.027>.

391

392 Maryam Fazel, Rong Ge, Sham M. Kakade, and Mehran Mesbahi. Global convergence of policy
 393 gradient methods for the linear quadratic regulator, 2019. URL <https://arxiv.org/abs/1801.05039>.

394

395 By R. Fletcher. A rapidly convergent descent method for minimization by r. fletcher and m. j. d.
 396 powell, 1960.

397

398 Gerald B. Folland. How to integrate a polynomial over a sphere. *The American Mathematical
 399 Monthly*, 108(5):446–448, 2001. ISSN 00029890, 19300972. URL <http://www.jstor.org/stable/2695802>.

400

401 Kevin Frans, Sergey Levine, and Pieter Abbeel. A stable whitening optimizer for efficient neural
 402 network training, 2025. URL <https://arxiv.org/abs/2506.07254>.

403

404 Katelyn Gao and Ozan Sener. Generalizing gaussian smoothing for random search, 2022. URL
 405 <https://arxiv.org/abs/2211.14721>.

406

407 Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation meth-
 408 ods for nonconvex stochastic composite optimization, 2013. URL <https://arxiv.org/abs/1308.6594>.

409

410 Donald Goldfarb. Factorized variable metric methods for unconstrained optimization. *Mathematics
 411 of Computation*, 30(136):796–811, 1976. ISSN 00255718, 10886842. URL <http://www.jstor.org/stable/2005399>.

412

413 Eduard Gorbunov, Pavel Dvurechensky, and Alexander Gasnikov. An accelerated method for
 414 derivative-free smooth stochastic convex optimization, 2020. URL <https://arxiv.org/abs/1802.09022>.

415

416 Robert M. Gower and Peter Richtárik. Randomized iterative methods for linear systems. *SIAM
 417 Journal on Matrix Analysis and Applications*, 36(4):1660–1690, January 2015. ISSN 1095-7162.
 418 doi: 10.1137/15m1025487. URL <http://dx.doi.org/10.1137/15M1025487>.

419

420 Robert M. Gower, Peter Richtárik, and Francis Bach. Stochastic quasi-gradient methods: Variance
 421 reduction via jacobian sketching, 2018. URL <https://arxiv.org/abs/1805.02632>.

422

423 Jiayi Guo. *Smooth quasi-Newton methods for nonsmooth optimization*. Ph.d. dissertation, Cor-
 424 nell University, 2018. URL <https://ecommons.cornell.edu/server/api/core/bitstreams/94926bb7-58ee-4082-bdc1-5e2cd2d65e5f/content>.

425

426 Jun Han and Qiang Liu. Stein variational gradient descent without gradient, 2018. URL <https://arxiv.org/abs/1806.02775>.

427

428 Filip Hanzely, Konstantin Mishchenko, and Peter Richtarik. Sega: Variance reduction via gradient
 429 sketching, 2018. URL <https://arxiv.org/abs/1809.03054>.

430

431 Slavomír Hanzely. Sketch-and-project meets newton method: Global $\mathcal{O}(k^{-2})$ convergence with low-
 432 rank updates, 2024. URL <https://arxiv.org/abs/2305.13082>.

432 Higham† and Nicholas J. Matrix nearness problems and applications. 1989.
 433

434 Feihu Huang, Lue Tao, and Songcan Chen. Accelerated stochastic gradient-free and projection-free
 435 methods, 2020. URL <https://arxiv.org/abs/2007.12625>.

436 S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. *A Stochastic*
 437 *Quasi-Newton Method with Nesterov’s Accelerated Gradient*, pp. 743–760. Springer Interna-
 438 tional Publishing, 2020. ISBN 9783030461508. doi: 10.1007/978-3-030-46150-8_43. URL
 439 http://dx.doi.org/10.1007/978-3-030-46150-8_43.

440 Kevin G. Jamieson, Robert D. Nowak, and Benjamin Recht. Query complexity of derivative-free
 441 optimization, 2012. URL <https://arxiv.org/abs/1209.2434>.

442 Dmitry Kamzolov, Klea Ziu, Artem Agafonov, and Martin Takáč. Cubic regularization is the key!
 443 the first accelerated quasi-newton method with a global convergence rate of $o(k^{-2})$ for convex
 444 functions, 2023. URL <https://arxiv.org/abs/2302.04987>.

445 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 446 <https://arxiv.org/abs/1412.6980>.

447 Huan Li and Zhouchen Lin. Restarted nonconvex accelerated gradient descent: No more polylog-
 448 arithmic factor in the $o(\epsilon^{-7/4})$ complexity, 2023. URL <https://arxiv.org/abs/2201.11411>.

449 Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O. Hero III, and Pramod K.
 450 Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
 451 Principals, recent advances, and applications. *IEEE Signal Processing Magazine*, 37(5):43–54,
 452 Sep. 2020. ISSN 1558-0792. doi: 10.1109/MSP.2020.3003837.

453 Cubic Regularized Quasi-Newton Methods. Hooml2022: Order up! the benefits of higher-
 454 order optimization in machine learning cubic regularized quasi-newton methods. *arXiv preprint*
 455 *arXiv:2012.15636*, 2022. URL <https://arxiv.org/abs/2012.15636>.

456 Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
 457 *Foundations of Computational Mathematics*, 17(2):527–566, 2017. ISSN 1615-3383. doi: 10.
 458 1007/s10208-015-9296-2. URL <https://doi.org/10.1007/s10208-015-9296-2>.

459 M. J. D. Powell. Algorithms for nonlinear constraints that use lagrangian functions. *Mathematical*
 460 *Programming*, 14(1):224–248, 1978. ISSN 1436-4646. doi: 10.1007/BF01588967. URL
 461 <https://doi.org/10.1007/BF01588967>.

462 Ruizhong Qiu and Hanghang Tong. Gradient compressed sensing: A query-efficient gradient es-
 463 timator for high-dimensional zeroth-order optimization, 2025. URL <https://arxiv.org/abs/2405.16805>.

464 Republic, Academy of Sciences of the Czech, ceka, Jan Vl, sana; b, and Ladislav Luk. Institute of
 465 computer science. 2017.

466 Manish Kumar Sahu and Suvendu Ranjan Pattanaik. Modified limited memory bfgs with displace-
 467 ment aggregation and its application to the largest eigenvalue problem, 2025. URL <https://arxiv.org/abs/2301.05447>.

468 Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as
 469 a scalable alternative to reinforcement learning, 2017. URL <https://arxiv.org/abs/1703.03864>.

470 Katya Scheinberg and Xiaocheng Tang. Practical inexact proximal quasi-newton method with global
 471 complexity analysis, 2015. URL <https://arxiv.org/abs/1311.6547>.

472 Schulman, John, Levine, Sergey, Moritz, Philipp, Jordan, Michael, Abbeel, and Pieter. Trust region
 473 policy optimization. *arXiv preprint arXiv:1502.05477*, 2005. URL <https://arxiv.org/abs/1502.05477>.

486 Leslie N. Smith. Cyclical learning rates for training neural networks, 2017. URL <https://arxiv.org/abs/1506.01186>.

487

488

489 Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-order opti-
490 mization in high dimensions, 2018. URL <https://arxiv.org/abs/1710.10551>.

491

492 Pengcheng Xie and Ya xiang Yuan. Derivative-free optimization with transformed objective func-
493 tions (dfoto) and the algorithm based on the least frobenius norm updating quadratic model, 2023.
494 URL <https://arxiv.org/abs/2302.12021>.

495

496 Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
497 momentum algorithm for faster optimizing deep models, 2024. URL <https://arxiv.org/abs/2208.06677>.

498

499 Haishan Ye, Zhichao Huang, Cong Fang, Chris Junchi Li, and Tong Zhang. Hessian-aware zeroth-
500 order optimization for black-box adversarial attack, 2019. URL <https://arxiv.org/abs/1812.11377>.

501

502 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
503 Gradient surgery for multi-task learning, 2020. URL <https://arxiv.org/abs/2001.06782>.

504

505 Jingyi Zhu. Hessian estimation via stein’s identity in black-box problems, 2021. URL <https://arxiv.org/abs/2104.01317>.

506

507

508

509

510 A DISCUSSION

511

512 A.1 DIRECTIONAL PERTURBATION AND DISTRIBUTION

513

514 If our intent is to estimate a true gradient, de-biasing is necessary and can be expensive. As we
515 assume little about $f(\mathbf{x})$, we . There are other asymptotically unbiased distributions, but we opt for
516 the following to derive our framework in an elegant manner.

517

518 A.2 DIRECTIONAL DERIVATIVE STENCILS

519

520 *Approximation:* Directional derivatives are cheap to estimate. By selecting a random unbiased
521 direction \mathbf{u} we 1) enable our optimization to make progress independent of individual coordinates
522 even before $k \geq d$ where k represents total optimizer steps. 2) Reduce the problem to an objective
523 in 1D and gain access to reduced finite difference stencils. We can even treat (v) as a black box
524 output in use of exotic methods, like de-noising, metrics, or (source). The following are well known
525 estimates for (v) and a lesser known one.

526 Incomplete section .

527 But there is also:

528 We can see that it is possible to obtain a $O(h^4)$ accurate estimate of $\nabla f(\mathbf{x})$ in just $4d$ function
529 evaluations. Gradient stencils exist for $O(h^{2n}), n \in \mathbb{Z}^+$. They may not be worth the effort for
530 floating point accuracy; and Nesterov (source) shows good results can be obtained for non-smooth
531 $f(\mathbf{x})$ even with $O(h)$ stencils. But they have another use, obtaining greater accuracy when $f(\mathbf{x})$ is
532 significantly discontinuous, such as a reward landscape in offline RL or simulations. We conclude
533 this as an area of further research.

534 that would need significantly more samples to replicate in higher dimensions.

535 A.3 BLOCK ECO’S METHOD INTUITION

536

537 An intuition is to see the update as a rapidly convergent solver of a linear system for $\nabla f(\mathbf{x})$. We
538 could treat this as a direct interpolation of $f(\mathbf{x})$ within a proximal area requiring $d+1$ samples (DFO

540 source); but canceling the value intercept of $f(\mathbf{x})$ allows us to abstract to a system of directional
 541 derivatives. In fact, we define the *Block ECO’s Method*:

$$543 \quad \hat{\mathbf{g}}_k = \hat{\mathbf{g}}_{k-n} + (\mathbf{v} - \hat{\mathbf{g}}_{k-n}^T \mathbf{U}) \mathbf{U}^T (\mathbf{U} \mathbf{U}^T)^{-1}, \quad \begin{array}{l} \text{Compute Complexity: } O(d(k/n) \cdot n^2) = O(d(k)n) \\ \text{Convergence Rate: } O\left((1 - \frac{n}{d})^{k/2n}\right) \end{array} \quad (A.1)$$

545 In this setting k now increments by n . If batch size n is $\ll d$ which is our expected setting, the
 546 block update will have virtually no additional error improvement, but cost an extra $d * n$ per iterate.
 547 On the opposite end, it could make more sense to complete the interpolation $d = n$, providing well
 548 established 1st order guarantees and aggressive super-linear methods e.g. Quasi-Newton. For this
 549 reason we don’t further mention the block update in our framework. We briefly mention that it is
 550 possible to amortize the least squares solution using orthogonal \mathbf{U} , but it still has it’s own drawbacks
 551 (continue here if time).

553 A.4 T DISTRIBUTED SIGNIFICANCE

554 We argue for dimension invariant t-distributed α by noting there are two opposing forces that scale
 555 with dimension size. First as d increases the influence of any one $u_i \in \mathbf{u}$ decreases, we know already
 556 that $\mathbb{E}[(v)\mathbf{u}] = \mathbf{g}/d$ and $\mathbb{E}[\cos \theta^2] = 1/d$ will have the effect of smoothing/decreasing the variation
 557 of $|v|$ and reducing contribution of any one sample in improving the estimate. Second the estimators
 558 require more samples to reach the same MSE optimal accuracy as d increases, we see this with the
 559 longer lasting leverage of $c/\sqrt{1 - c^2}$, balancing this variance reduction effect. Also see the end of
 560 [proof B.6](#). (maybe plots).

562 A.5 WHY OUR SHRINKAGE

563 For the Kaczmarz lemma in [proof B.4](#) we see that the right hand side has an \mathbf{x}_0 initial point, by
 564 setting it to 0 we arrive at our intuitive framework. We chose shrinkage instead of re-deriving our
 565 bounds and variables, as it requires an analysis from an FTRL perspective instead of OMD, compli-
 566 cating our setting. It also breaks the approximate symmetry of [lemma 2.1](#). We believe shrinkage is
 567 more appropriate for gradients anyway, because:

- 569 1. During optimization, the only time we can be completely certain that our gradient estimator
 570 does have N-RMSE < 1 and $\cos \theta > 0$ is when $\hat{\mathbf{g}}_k = [0]_d + (v)\mathbf{u}$. Therefore shrinkage is
 571 possibly a consistent method that makes the next update to satisfy this criteria more likely.
- 572 2. Shrinkage of 0 stationary parameters is synonymous with loss of information, especially
 573 for online methods like our LMS adaption. Shrinkage is the method exponential moving
 574 averages use to ‘forget’.
- 575 3. We don’t have a guarantee that even after re-deriving the Kaczmarz bounds, convergence
 576 rate, and optimal learning rate, it will actually adapt quicker to the true gradient from the
 577 anchor point. In fact if we assume in a convex setting that $\mathbb{E}[\mathbf{g}] = [0]_d$ over the life of the
 578 optimization, it may even hinder convergence.
- 579 4. Even in a non-convex setting, convergence to a stationary point on a smooth surface im-
 580 plies a decreasing $\|\nabla f(\mathbf{x})\|$. So it’s reasonable to consider norm shrinkage may place our
 581 estimator within a better range of “steepness” as the stationary point is approached. Ad-
 582 ditionally, by assuming negligible correlation between parameters we can guess that the
 583 angle of the gradient may change even less than the norm on average.

585 A.6 BIG COMPUTE ECOGRAD STRATEGIES

586 For infinite set SGD like temporal differencing and path dependence, we suspect longer sections
 587 will work better, up to a Pareto front, as is usually the case in comparing offline methods.

588 **Distributed ECOgrad:** Let’s have separable no-grad environments or datasets. We break them up
 589 into minibatches, assign each a gradient estimator. As we take new steps, allocate a certain amount
 590 of queries to updating and validating each gradient estimator with their respective N-RMSE expec-
 591 tation and ECO Ratio. We receive any full or partial reset requests, then depending on the new
 592 expected N-RMSE’s we allocate a proportional amount of queries to each estimator so that all esti-
 593 mators/minibatches reach a certain tolerable error expectation. This way we can obtain an accurate

594 net gradient estimate with even less compute (no wasting evaluations on estimators that already
 595 have tolerable expectation, and allocate more concurrent compute to those that need it), the tradeoff
 596 is more memory. And we don't know what the lower bound of savings are.

597 **Async Batched ECOgrad:** Each environment continuously samples directional queries, after a v is
 598 received, they are sent to a warehouse on network. The warehouse has lots of memory and high
 599 bandwidth, updating the gradient estimators of each environment as they are received according to
 600 ECOgrad. We have decoupled how good our estimate will be from how many queries we take at
 601 each round, so it should matter less if certain environments have more queries than others. After
 602 a certain criteria is hit, such as net expected gradient MSE, the estimates are combined. Possibly
 603 equal weighting, or weighted by expected gradient accuracy, or another scheme, and a step is taken.
 604 The only high-bandwidth need is transferring new parameters to each environment. However the
 605 environments never have to halt sending directional scalars, as even samples from stale but nearby
 606 parameters can improve the gradient estimates. We believe this to be an option for massively scaled
 607 real-time model free RL, such as a global network of models/agents that adapt to world environments
 608 collectively.

609 **ECOgrad SAGA:** SAGA but replace the exact gradient calculations with estimators. Or a jacobian
 610 approximation.

612 A.7 AREAS OF FUTURE WORK

- 614 • Derive intervals for the noisy setting, as well as informed (but continuous) stochastic setting
 615 separately.
- 617 • With noisy samples using ECO's method it's theoretically possible for the reset ratio to
 618 become 'stuck' when the true gradient norm rapidly decreases. As the LR could be near
 619 zero, the LMS update would waste new samples until the bounds detect a new anomaly.
 620 Possible solutions may involve, just using Monte Carlo averaging when the noise is signif-
 621 icant enough (and we don't want to smooth them per sample). Using a hybrid trust region
 622 function or alternative signals to reset.
- 624 • There may be stronger constraints or metric minimization's that can be placed on the La-
 625 grange Definition of ECO's method, that for certain problems can achieve faster conver-
 626 gence.
- 628 • Formally define asymptotic bounds on $1/d \leq m \leq 1$ for specific problems, e.g. strong
 629 convexity constants, Lipschitz constants, non-smooth or non-convex. While the bounds of
 630 SEGA hold, we will consider if more can be proven.
- 632 • We haven't formalized the ratio methods to account for drift in the estimator, and the ex-
 633 tended (or reduced) time to convergence that might add. The test is only for stationarity
 634 assumed, but a non-stationary factor would most likely be problem dependent. A possibil-
 635 ity is to use a classic gradient trust region method to shrink and grow α or the confidence
 636 interval directly as a multiplier.
- 638 • We demonstrated \mathcal{S}_{d-1} samples have provably faster convergence to the true gradient un-
 639 der Monte Carlo estimation for MSE minimizing, even if the difference is trivial. We sus-
 640 pect we'd get similar results deriving ECO's Method convergence under Gaussian samples.
 641 There may be other unbiased random distributions with provably faster convergence under
 642 these estimators with no more than $O(d \log(d))$ compute needs. e.g. a last- n orthogonal
 643 RNG, which only needs to guarantee orthogonality with the last n samples instead of all d .
- 645 • We can hypothetically use the expected angular bounds of \hat{g} to g accelerate true gradient
 646 convergence by sampling directional vectors in this range. This would be similar to an
 647 RL/policy gradient or even a modeled approach without knowing the action/state space.
 648 We would also investigate removing or altering the bias of this method.
- 650 • We hypothesize the d independent T-distribution of low DOF significance levels; but it
 651 would be better to prove this. Or prove it's relation to another distribution.

648 **B PROOFS**
 649

650 **Lemma 2.1.** Define $f(\mathbf{x})$ such that $\nabla f(\mathbf{x})$ is continuous, and let $\mathbf{u} \in \mathbb{R}^d$, s.t. $\|\mathbf{u}\| = 1$.
 651 Then with $\theta = \angle(\nabla f(\mathbf{x}), \mathbf{u})$

652
$$\frac{\|\nabla f(\mathbf{x}) - (v)\mathbf{u}\|}{\|\nabla f(\mathbf{x})\|} = \sin \theta, \quad \frac{\|(v)\mathbf{u}\|}{\|\nabla f(\mathbf{x})\|} = \frac{|v|}{\|\nabla f(\mathbf{x})\|} = \cos \theta, \quad (2.1)$$

653 **Proof B.1 (Lemma 2.1).**
 654
 655
 656 cos θ :

657
$$\cos \theta = \frac{((\nabla f(\mathbf{x}) \cdot \mathbf{u})\mathbf{u}) \cdot \nabla f(\mathbf{x})}{\|(\nabla f(\mathbf{x}) \cdot \mathbf{u})\mathbf{u}\| \|\nabla f(\mathbf{x})\|} = \frac{(\nabla f(\mathbf{x}) \cdot \mathbf{u})^2}{\|\nabla f(\mathbf{x}) \cdot \mathbf{u}\| \|\nabla f(\mathbf{x})\|} = \frac{|\nabla f(\mathbf{x}) \cdot \mathbf{u}|}{\|\nabla f(\mathbf{x})\|} = \frac{|v|}{\|\nabla f(\mathbf{x})\|}.$$

□

661
 662 sin θ :
 663 Let $\nabla f(\mathbf{x}) = \mathbf{g}$

664
$$\begin{aligned} \|\mathbf{g} - (\mathbf{g} \cdot \mathbf{u})\mathbf{u}\|^2 &= (\mathbf{g} - (\mathbf{g} \cdot \mathbf{u})\mathbf{u}) \cdot (\mathbf{g} - (\mathbf{g} \cdot \mathbf{u})\mathbf{u}) \\ 665 &\quad (\text{since } \mathbf{u} \cdot \mathbf{g} = \mathbf{g} \cdot \mathbf{u}, \mathbf{u} \cdot \mathbf{u} = 1) \\ 666 &= \|\mathbf{g}\|^2 - 2(\mathbf{g} \cdot \mathbf{u})^2 + (\mathbf{g} \cdot \mathbf{u})^2 \\ 667 &= \|\mathbf{g}\|^2 - (\mathbf{g} \cdot \mathbf{u})^2. \end{aligned}$$

668 Now:

669
$$\begin{aligned} \sqrt{\|\mathbf{g}\|^2 - (\mathbf{g} \cdot \mathbf{u})^2} &= \|\mathbf{g}\| \sqrt{1 - \frac{(\mathbf{g} \cdot \mathbf{u})^2}{\|\mathbf{g}\|^2}} \\ 670 &= \|\mathbf{g}\| \sqrt{1 - \cos^2 \theta} = \|\mathbf{g}\| \sin \theta \end{aligned}$$

□

671 And so:

672
$$\|\nabla f(\mathbf{x}) - (\nabla f(\mathbf{x}) \cdot \mathbf{u})\mathbf{u}\| = \|\nabla f(\mathbf{x})\| \sin \theta$$

673 Under our definition of \mathbf{u} we see that the gradient normalized *root mean square error* is $\sin \theta$, and
 674 $\sin \theta \leq 1$ implies N-RMSE ≤ 1 and $0 \leq \sin \theta$. Additionally we know that any real vector $\|\mathbf{v}\| \geq 0$
 675 implies cosine is positive, so bounded by $0 \leq \cos \theta \leq 1$.

676 **Proof B.2 (2.3) Eco's Method).**

677 By Lagrange

678
$$\mathcal{L}(\hat{\mathbf{g}}_k, \lambda) = \|\hat{\mathbf{g}}_k - \hat{\mathbf{g}}_{k-1}\|^2 + \lambda(\mathbf{u}^\top \hat{\mathbf{g}}_k - v).$$

679
$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{g}}_k} &= 2(\hat{\mathbf{g}}_k - \hat{\mathbf{g}}_{k-1}) + \lambda \mathbf{u} = \mathbf{0}, & \frac{\partial \mathcal{L}}{\partial \lambda} &= \mathbf{u}^\top \hat{\mathbf{g}}_k - v = 0 \\ 680 \hat{\mathbf{g}}_k &= \hat{\mathbf{g}}_{k-1} - \frac{\lambda}{2} \mathbf{u}, & \mathbf{u}^\top \hat{\mathbf{g}}_k &= v \end{aligned}$$

681 Then

682
$$\begin{aligned} v &= \mathbf{u}^\top \hat{\mathbf{g}}_{k-1} - \frac{\lambda}{2} \mathbf{u}^\top \mathbf{u} \\ 683 \lambda &= \frac{2(\mathbf{u}^\top \hat{\mathbf{g}}_{k-1} - v)}{\mathbf{u}^\top \mathbf{u}} \\ 684 \hat{\mathbf{g}}_k &= \hat{\mathbf{g}}_{k-1} + \frac{(v - \hat{\mathbf{g}}_{k-1}^\top \mathbf{u})}{\mathbf{u}^\top \mathbf{u}} \mathbf{u} \end{aligned}$$

685 By convex objective and affine constraint this is sufficient.

□

702 **Proof B.3 (Moment Contractions, MSE Shrinkage, Monte Carlo Convergence).**
 703 For $\mathcal{N}(\mathbf{0}, \mathbf{I})$ we have moment generators (that old source):

$$704 \quad 705 \quad \mathbb{E}[s_i s_j] = \delta_{ij}, \quad \mathbb{E}[s_i s_j s_k s_l] = (\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}).$$

706 For \mathcal{S}_{d-1} we have moment generators (book source):
 707

$$708 \quad 709 \quad \mathbb{E}[s_i s_j] = \frac{\delta_{ij}}{d}, \quad \mathbb{E}[s_i s_j s_k s_l] = \frac{\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}}{d(d+2)}$$

710 Some trivial proofs first:
 711

712 For \mathcal{S}_{d-1} we get $\mathbb{E}[\mathbf{u} \mathbf{u}^T] \nabla f(\mathbf{x}) = \frac{1}{d} \nabla f(\mathbf{x})$

713 Which means for $\sqrt{d} \mathcal{S}_{d-1}$ we get $d \cdot \mathbb{E}[\mathbf{u} \mathbf{u}^T] \nabla f(\mathbf{x}) = \nabla f(\mathbf{x})$. Also:

$$715 \quad 716 \quad \mathbb{E}[\cos \theta^2] = \mathbb{E}\left[\frac{(\nabla f(\mathbf{x}) \cdot \mathbf{u})^4}{\|\nabla f(\mathbf{x}) \cdot \mathbf{u}\|^2 \|\nabla f(\mathbf{x})\|^2}\right] = \frac{\nabla f(\mathbf{x})^T \mathbb{E}[\mathbf{u} \mathbf{u}^T] \nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|^2} = \frac{1}{d}$$

717 Now moving on, the law of total variance states:
 718

$$719 \quad 720 \quad \mathbb{E}\|\mathbf{X} - \mathbb{E}(\mathbf{X})\|^2 = \text{tr}(\text{Var}(\mathbf{X})).$$

$$721 \quad \text{And } \text{Var}(\mathbf{X}) = \mathbb{E}[\mathbf{X} \mathbf{X}^T] - \mathbb{E}[\mathbf{X}] \mathbb{E}[\mathbf{X}]^T$$

722 Next we know that $\mathbb{E}[\mathbf{X}] = \mathbf{g}$ and associate $\mathbf{X} = \langle \mathbf{g}, \mathbf{u} \rangle \mathbf{u}$.
 723

724 Then $\mathbb{E}[\mathbf{X} \mathbf{X}^T]_{ij} = \sum_{p,q} g_p g_q \mathbb{E}[u_p u_q u_i u_j]$.
 725

726 *Proof of Gaussian for Monte Carlo Estimator Equation (2.2):*

727 The Kronecker identity:

$$728 \quad 729 \quad \mathbb{E}[\mathbf{X} \mathbf{X}^T] = \|\mathbf{g}\|^2 \mathbf{I} + 2\mathbf{g}\mathbf{g}^T$$

$$730 \quad 731 \quad \text{tr}(\text{Var}(\mathbf{X})) = \text{tr}(\|\mathbf{g}\|^2 \mathbf{I} + 2\mathbf{g}\mathbf{g}^T - \mathbf{g}\mathbf{g}^T) = (d+1)\|\mathbf{g}\|^2$$

732 And admits:

$$733 \quad \text{N-MSE limit : } O\left(\frac{d+1}{k}\right), \quad \text{N-MSE Adjustment : } \frac{k}{d+k+1}, \quad \text{Adj. N-MSE limit : } O\left(\frac{d+1}{d+k+1}\right) \quad (\text{B.1})$$

736 *Proof of \mathcal{S}_{d-1} for Monte Carlo Estimator Equation (2.2):*

737 In this case, let us assume that $\mathbf{u} = \sqrt{d} \mathbf{s}$ so it matches the correct isotropic scaling for MC $\sqrt{d} \mathcal{S}_{d-1}$.

739 We instead get: $\mathbb{E}[u_i u_j] = \delta_{ij}$, $\mathbb{E}[u_p u_q u_i u_j] = \frac{d}{d+2} (\delta_{pq} \delta_{ij} + \delta_{pi} \delta_{qj} + \delta_{pj} \delta_{qi})$
 740

741 And now scalar adjustment to previous result:

$$742 \quad 743 \quad \mathbb{E}[\mathbf{X} \mathbf{X}^T] = \frac{d}{d+2} \|\mathbf{g}\|^2 \mathbf{I} + \frac{2d}{d+2} \mathbf{g}\mathbf{g}^T$$

744 $2d/(d+2) - 1 = \frac{d-2}{d+2}$:

$$747 \quad 748 \quad \text{tr}(\text{Var}(\mathbf{X})) = \text{tr}\left(\frac{d}{d+2} \|\mathbf{r}\|^2 \mathbf{I} + \frac{d-2}{d+2} \mathbf{g}\mathbf{g}^T\right) = \frac{d^2 + d - 2}{d+2} \|\mathbf{g}\|^2 = (d-1)\|\mathbf{g}\|^2$$

749 Admits:

$$751 \quad \text{N-MSE limit : } O\left(\frac{d-1}{k}\right), \quad \text{N-MSE Adjustment : } \frac{k}{d+k-1}, \quad \text{Adj. N-MSE limit : } O\left(\frac{d-1}{d+k-1}\right) \quad (\text{B.2})$$

753 \square

755 We see that Sphere Surface normalized directionals actually converge slightly quicker than basic gaussian, trivial at large dimension sizes, but valid at a small d .

756

757

Proof B.4 (ECO's Method Convergence Equation (2.3)).

758

We can recognize ECO's Method as a form of randomized Kaczmarz update and refer to Gower and Richtarik's definition (see 3.3). We define it with U , an arbitrarily finite set where every element $\|\mathbf{u}\| = 1$, and no \mathbf{u} necessarily repeats. This is like

761

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \frac{\mathbf{U}_{k:} \mathbf{x}^k - b_k}{\|\mathbf{U}_{k:}\|_2^2} (\mathbf{U}_{k:})^T$$

764

From Section 3.3 we find.

765

$$(3.4) \quad \mathbf{E} \left[\|\mathbf{x}^k - \mathbf{x}^*\|^2 \right] \leq \left(1 - \frac{\lambda_{\min}(\mathbf{A}^T \mathbf{A})}{\|\mathbf{A}\|_F^2} \right)^k \|\mathbf{x}^0 - \mathbf{x}^*\|^2$$

768

769

For our uniform isotropic sphere this reduces to:

770

771

$$\mathbf{E} \left[\|\hat{\mathbf{g}}_k - \nabla f(\mathbf{x})\|_2^2 \right] = (1 - \min(\mathbf{E}[\mathbf{u}\mathbf{u}^T]))^k \|\nabla f(\mathbf{x})\|^2$$

772

773

Recall from B.3 the second moment of

774

$\mathcal{S}_{d-1} : \mathbf{E}[s_i s_j] = \frac{\delta_{ij}}{d}$. Which means that $\mathbf{E}[\mathbf{u}\mathbf{u}^T] = \frac{1}{d} \mathbf{I}$ and:

775

776

$$\mathbf{E} \left[\|\hat{\mathbf{g}}_k - \nabla f(\mathbf{x})\|_2^2 \right] = (1 - d^{-1})^k \|\nabla f(\mathbf{x})\|^2 \quad (\text{B.3})$$

777

□

778

Proof B.5 (True Directional Estimator Bounds corollary 3.1).

779

Begin with a relation from lemma 2.1 and the definition of c from 3.1 then:

780

$$\|\mathbf{g} - (v)\mathbf{u}\| = \sin \theta \|\mathbf{g}\|$$

782

783

$$\text{Generalized Equation (B.3)}: \quad \mathbf{E} \left[\|\hat{\mathbf{g}} - \mathbf{g}\|^2 \right] = c^2 \|\mathbf{g}\|^2 \quad (\text{B.4})$$

784

785

(If this is not self evident already) we know $\|\hat{\mathbf{g}}\|/\|\mathbf{g}\| = \cos \angle(\mathbf{g}, \hat{\mathbf{g}})$ so define $r = \|\hat{\mathbf{g}}\|$ and $\mathbf{m} = \hat{\mathbf{g}}/r$ so that $(r)\mathbf{m} = \hat{\mathbf{g}}$ (note a small difference is that r will always be positive so \mathbf{m} will always be on the right half of \mathcal{S}_{d-1} but this shouldn't matter) now it follows from B.1 that $\hat{\mathbf{g}}$ satisfies lemma 2.1, and specifically $c = \sin \angle(\mathbf{g}, \hat{\mathbf{g}}) = \text{N-RMSE}[\hat{\mathbf{g}}, \mathbf{g}]$. Which let's us simplify:

786

787

$$\|\hat{\mathbf{g}} - \mathbf{g}\|^2 = c^2 \|\mathbf{g}\|^2, \quad \|\hat{\mathbf{g}} - \mathbf{g}\| = c \|\mathbf{g}\|$$

788

789

Bounds ratio derivation:

790

Our first attempt at stationary bounds involved solving the triangle inequality:

792

$$\|\hat{\mathbf{g}} - \mathbf{g}\| + \|\mathbf{g} - (v)\mathbf{u}\| \leq \|\mathbf{g}\| (\sin \theta + c_k).$$

793

But we can get stronger bounds:

794

By Cauchy-Schwartz: $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|, \|\mathbf{u}\| = 1$.

795

$$\|\mathbf{u}^T \hat{\mathbf{g}} - \mathbf{u}^T \mathbf{g}\| = |\mathbf{u}^T \hat{\mathbf{g}} - v| \leq \|\hat{\mathbf{g}} - \mathbf{g}\| = c \|\mathbf{g}\|$$

796

$$\frac{|\mathbf{u}^T \hat{\mathbf{g}} - v|}{\|\mathbf{g}\| c} \leq 1$$

797

□

798

Proof B.6 (ECO expectation ratio corollary 3.2).

799

Where u is our only random variable we get:

800

801

802

803

804

805

806

807

808

809

$$\begin{aligned} \mathbf{E} \left[(\mathbf{u}^T \hat{\mathbf{g}} - \mathbf{u}^T \mathbf{g})^2 \right] &= \mathbf{E} \left[(\mathbf{u}^T (\hat{\mathbf{g}} - \mathbf{g}))^2 \right] \quad \triangleright \text{let } \mathbf{y} = (\hat{\mathbf{g}} - \mathbf{g}) \\ &= \mathbf{y}^T \mathbf{E} [\mathbf{u}\mathbf{u}^T] \mathbf{y} \quad \triangleright \text{can't know } \mathbf{y}\mathbf{y}^T \\ &= \frac{\mathbf{y}^T \mathbf{y}}{d} \quad \triangleright \text{but } \|\mathbf{y}\| = c \|\mathbf{g}\| \\ &= \frac{c^2 \|\mathbf{g}\|^2}{d} \end{aligned}$$

810 However this merely provided us the expected value, we are interested in $\mathcal{L}[(\mathbf{u}^T \mathbf{g} - \mathbf{u}^T \hat{\mathbf{g}})^2]$. Fortunately we know:

$$813 \lim_{d \rightarrow \infty} \text{Unif}(\mathcal{S}_{d-1}) \rightarrow \mathcal{N}(\mathbf{0}, \frac{1}{\sqrt{d}} \mathbf{I}), \quad \text{and vice versa.}$$

815 This is evident by noting that every $\mathbf{u} \in \mathbf{u}$ from $\mathcal{N}(\mathbf{0}, \frac{1}{\sqrt{d}} \mathbf{I})$ is i.i.d. $\sigma = 1/\sqrt{d}$, then define our
816 sample set as d separate \mathbf{u} 's. By the Central Limit Theorem as d grows $\bar{u}^2 = \sum u^2/d = 1/d$ then
817 $d \cdot \bar{u}^2 = \mathbf{u}^T \mathbf{u} = \|\mathbf{u}\| = 1$ which is in $\text{Unif}(\mathcal{S}_{d-1})$.

818 Now say:

$$819 \mathbb{E}_\alpha [|\mathbf{u}^T \hat{\mathbf{g}} - v|^2] = \frac{c^2 \alpha^2 \|\mathbf{g}\|^2}{d}$$

□

822 Gaussian is convergent to $\text{Unif}(\mathcal{S}_{d-1})$ so we say that it's 'probably ok' to use gaussian error function
823 at large enough d . But we welcome you to calculate the $\text{Unif}(\mathcal{S}_{d-1})$ error function if you would
824 like. Also because \mathbf{u} is our only random, independent of \mathbf{g} or $\hat{\mathbf{g}}$ and α seems not to depend on the
825 number of dimensions d , this provides more credence to the T - model independence.

827 **Proof B.7 (Noisy Eco Ratio Equation (3.4)).**

828 In this framework we still expect $\|\hat{\mathbf{g}}_k - \mathbf{g}\| \approx \|\mathbf{g}\|c$ even if all our observations are noisy, but this is
829 reasonable to estimate as we will see because it simply entails calculating the correct c .
830 We find that:

$$831 (\mathbf{u}^T \hat{\mathbf{g}} - v + e)^2 = (\mathbf{u}^T \hat{\mathbf{g}} - v)^2 + 2e(\mathbf{u}^T \hat{\mathbf{g}} - v) + e^2$$

$$832 \mathbb{E}[(\mathbf{u}^T \hat{\mathbf{g}} - \tilde{v})^2] = \mathbb{E}[(\mathbf{u}^T \hat{\mathbf{g}} - v)^2] + \sigma^2$$

833 So we get:

$$834 (\mathbf{u}^T \hat{\mathbf{g}} - \tilde{v})^2 \lesssim \frac{\alpha^2 c^2 \|\mathbf{g}\|^2}{d} + b^2 \sigma^2$$

836 And from here it's apparent how we get the noisy ratio.

□

837 **Proof B.8 (Optimal Learning Rate for Noisy ECO's Method Equation (3.5)).**

838 Under the Lagrangian derivation of ECO's Method we know the optimal learning rate is $l = 1$ in the
839 smooth setting. Instead of solving another constraint metric with noise, we recognize our method
840 as a specific Normalized LMS setting and use it's system derived identities (source). (might need to
841 change this lets see)

842 The optimal learning rate of N-LMS:

$$843 l_{\text{opt}} = \frac{E [|y(n) - \hat{y}(n)|^2]}{E [|e(n)|^2]}$$

846 Note the equivalences:

$$847 y(n) - \hat{y}(n) \Rightarrow \mathbf{u}^T \mathbf{g} - \mathbf{u}^T \hat{\mathbf{g}}_k = v - \mathbf{u}^T \hat{\mathbf{g}}_k.$$

$$848 e(n) = d(n) - \hat{y}(n) = y(n) + r(n) - \hat{y}(n)$$

$$849 \Rightarrow \mathbf{u}^T \tilde{\mathbf{g}} - \mathbf{u}^T \hat{\mathbf{g}}_k = v + e - \mathbf{u}^T \hat{\mathbf{g}}_k.$$

851 Now we have:

$$852 l = \frac{E [|v - \mathbf{u}^T \hat{\mathbf{g}}_k|^2]}{E [|v + e - \mathbf{u}^T \hat{\mathbf{g}}_k|^2]}$$

854 The first observation we can make is that $l \leq 1$ always, which is sensible as under perfect conditions
855 $l = 1$.

856 From B.6 we have $\mathbb{E} [|v - \mathbf{u}^T \hat{\mathbf{g}}_k|^2] = \mu = \frac{c^2 \|\mathbf{g}\|^2}{d}$.

857 From B.7 we get $\mathbb{E} [|v + e - \mathbf{u}^T \hat{\mathbf{g}}_k|^2] = \mu + \sigma_e^2$:

$$860 l_{\text{opt}} = \frac{\mu}{\mu + \sigma_e^2}$$

862 And we know $\hat{\mu}_k$ already from the section.

□

