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ABSTRACT

We introduce a Quasi-Gradient method using 0th order directional derivatives
and quasi-Newton like updates. Empirically, our method reduces d-dependence
of zeroth-order problems to an effective ≈ d ·m factor 1/d ≤ m ≤ 1, with only a
small linear increase in compute. We show this holds under Lipschitz bounds and
on practical tasks. While compressive sensing achieves similar gains with sparse
gradients, our approach applies to any gradient geometry. It exploits high cosine
similarity and stable gradient norms along neighboring steps, ultimately requiring
fewer samples to correct the estimator. Applications include policy optimization,
model-free reinforcement learning, function smoothing, evolutionary methods, ef-
ficient JVPs (e.g. in JAX), learning from simulation, and related areas. We include
a probing framework that leverages convergence bounds to detect when a gradi-
ent estimator is no longer aligned with new samples, helping prevent non-descent
steps. We also introduce the ECO estimator a least-change secant update that
results in a specific LMS adaption, which achieves O(e−k/d) convergence in gra-
dient MSE, while Monte Carlo averaging is sub-exponential O( d+1

d+k+1 ). Finally
we provide performance results comparing directional SGD to quasi-GD, alone
and with adaptive optimizers. As models grow, our approach bridges the gap
between full-gradient methods and large scale derivative free optimization. We
hope to motivate further research in quasi-gradient techniques for simulation and
exploratory learning.

1 0TH-ORDER GRADIENT ESTIMATION

2 DIRECTIONAL DERIVATIVES AND GRADIENT ESTIMATORS

2.1 DIRECTIONAL DERIVATIVES

In the standard literature a Directional Derivative is defined as (∇f(x) · u)u or ⟨∇f(x),u⟩u,
Nesterov & Spokoiny (2017), we refer to it as (v)u for convenience and because v = ⟨∇f(x),u⟩
will be utilized separately. It is also known as a Forward Gradient and a forward Jacobean Vector
Product Baydin et al. (2022). What remains ambiguous, and we find important to address is defining
u. The most common form is u ∼ N (0, I) this satisfies the definition of Gaussian Smoothing:
E [(v)u] = ∇f(x), and can be implemented directly as a form of SGD Nesterov & Spokoiny (2017).
The single necessary assumption of smoothing is unbiasedness, but there isn’t a specification for
variance or distribution of u. Unbiasedness does not mean the distribution of u can’t be biased e.g.
Rademacher or Bernoulli, de-biasing can also be performed after sampling Ye et al. (2019). However
this can all lead to potentially harmful asymptotics that slow SGD, we continue this discussion here
A.1.

Smoothing error is generally measured by MSE, but we believe this doesn’t capture enough per-
spective on gradient estimators. Our approach focuses on cosine similarity and norm separately.
MSE can be viewed as capturing two dimensions of error: 1) How large is the angle between the
estimator and true gradient? 2) How large is the difference between norms of the estimator and
gradient? Between the two, closer angle (larger cosine) is most expensive and important to estimate
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ECO Bounds: 2D Unit Isotropic Gradient Estimator
True Gradient Gradient Estimator
Valid ECO Bounds Valid Noisy ECO Bounds

Figure 1: Estimators that satisfy lemma 2.1 and corollary 3.1. By calculating the accuracy as a convergence expectation,
typically as cos θ, we can draw precise bounds around where our Directional Derivatives can appear relative to our estimate
so that they are still feasible on the ring of the true gradient. We see that as the accuracy improves, the feasible region
converges to the true gradient ring. If a Directional Derivative landed outside of these bounds at any point, we would know
that the true gradient has changed. Plotting code (TBE). The procedure is covered in section 3.

accurately. This is because by selecting the correct distribution, we can calculate the MSE optimal
estimate (that determines the norm) for any given cos θ. Define the uniform unit sphere distribu-
tion as u ∼ Unif(Sd−1) where u = v/∥v∥, v ∼ N (0, I). We believe u exhibits a very ideal
theoretical perspective as compared to other distributions, because it satisfies what we call a True
Directional Derivative lemma 2.1. It’s also the only fully independent, identically distributed, and
uniform variable on Sd−1.
Lemma 2.1. Define f(x) such that ∇f(x) is continuous, and let u ∈ Rd, s.t. ∥u∥ = 1.
Then with θ = ∠(∇f, (v)u)

∥∇f(x)− (v)u∥
∥∇f(x)∥

= sin θ,
∥(v)u∥
∥∇f(x)∥

=
|v|

∥∇f(x)∥
= cos θ, (2.1)

And we have 0 ≤ sin θ ≤ 1, and 0 ≤ cos θ ≤ 1 [proof B.1]. These relationships wouldn’t exist
without ∥u∥ = 1, and they are the key insight behind how we predict if a gradient estimator ((2.2)
or (2.3)) is accurate without having access to ∇f(x). By the Pythagorean theorem, we know a
directional sample that obtains the smallest possible MSE for a given positive cos θ will be a true
directional derivative. This why we use Unif(Sd−1) for the methods below, we try to replicate this
symmetry as closely as possible. We also now have E [(v)u] = d−1∇f(x) [B.3].

For reference limd→∞ Unif(Sd−1) ∼ N (0, 1
dI) has a rate of O(d−1/2) [B.6]. When d is large we

may even sample directly from N (0, 1
dI) without an expensive normalization. A brief discussion

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

on finite differences to approximate directional derivatives with high accuracy and exotic estimators
can be found here A.2. For clarity in further sections we say the gradient normalize root mean square
error of our directional derivative: N-RMSE = sin θ. We also use ∇f(x) and g interchangeably.

2.2 GRADIENT ESTIMATORS

Figure 2: Left plot: path of a Monte Carlo gradient estimator normalized to be MSE minimizing, and ECO’s method.
Center plot: directional derivatives used by the estimators. Right plot: derived convergence rates of Normalized RMSE.

When a large parameter count makes other methods difficult, Monte Carlo Averaging is a well
known method for estimating the gradient. Even outside of 0th order optimization, it is the primary
method used in batched stochastic sampling; this encompasses alternative gradient estimators such
as policy and natural gradients in RL. We define it for our specific setting as:

g̃ =
d

N

N∑
k=1

(vk)uk,
N - Sample size.
d - Problem dimensions. (2.2)

It’s commonly understood that Monte Carlo estimation converges to the population mean in
O(k−1/2), this is true for the RMSE: ∥g̃ − g∥ of our estimator. While being an unbiased esti-
mator Duchi et al. (2014), it doesn’t produce the (approximately) smallest possible MSE/RMSE for
k samples in expectation. But fortunately Gao & Sener (2022) has already solved this for Gaussian
admitting k

d+k+1 , our Sd−1 result is a bit different : k
d+k−1 g̃k = ĝk. With ∥u∥ = 1 and d multiplier,

it’s evident that ∥ĝ − g∥/∥g∥ ≤ 1, with O(( d−1
d+k−1 )

1/2) convergence, [proof B.3].

Now we introduce ECO’s Method. (We have renamed this method temporarily to hide an author’s identity.)
This is our new application of established methods that achieves [proof B.4] exponential
O((1− 1

d )
k/2) N-RMSE convergence, figure 2. There are many ways to interpret and arrive at this

update. To honor Quasi-Newton methods, we define the secant constraint and variable metric for
Langrange form.

ECO’s Method [Proof B.2] Solve minĝk
∥ĝk − ĝk−1∥2 s.t. ⟨ĝk,u⟩ = v. Admits:

ĝk = ĝk−1 +
(v − ĝT

k−1u)u

uTu
, iff ∥u∥ = 1. → ĝk = ĝk−1 + (v − ĝT

k−1u)u (2.3)

It is already a MSE minimizing estimator, and N-RMSE ≤ 1 almost certainly by the results of
lemma 2.1. To attribute the recurrence we may also call it the Least Change Gradient Estimator
in a Euclidean sense, equivalent to Broyden’s Method but for gradients instead of the Hessian. It’s
identical to the N-LMS Update and uniformly random Kaczmarz Update Gower & Richtárik (2015)
with a known optimal learning rate l = 1. Going forward we will use these names interchangeably.
For intuition on why ECO’s Method is exponential even though MC and LMS have the same O(d ·
k) operational dependence, see discussion A.3 where we also mention Block ECO’s Method and
Orthogonal directions. To see how ECO’s Method and MC perform on a static gradient: figure 4.
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Figure 3: d = 100 Rosenbrock. Lipschitz L at x0. LR for GD = 6/L, Adan = 300/L [source].

3 ECOGRAD AND PROBING FRAMEWORK

The ECOgrad framework is what we call a Quasi-Gradient method as it improves a gradient esti-
mate at parameter vector xk that was already established at previous xk−n’s. We are motivated by
the empirical observation that full gradients remain significantly correlated between descent steps
figure 3, even with aggressive learning rates. In Nesterov’s analysis of DFO (source) and in other
works (sources), we see O(d/ϵ) or improved bounds with d-dependence. Under Lipschitz optimal,
n = d/ϵ is oracles to achieve ϵ bounds on the stationary point. With E[cos θ2] = d−1 B.3, let
d = 100 gives us E[cos θ2] = .01, if our method averages cos θ2 = .1 without additional queries
(this is like ≈ 10 oracle calls for free) we may need only m ≈ 1/10 of our original n queries to
achieve ϵ margin. We might call md the effective dimension size.

To achieve this effect, one strategy would be to naively update the estimator, but this could fall
short. Monte Carlo estimation is dependent on k; as samples are received each has less impact on
the estimate leading to stagnation. However ECO’s Method has exponential convergence and will
adapt in time. This effect alone is enough to produce a variance reducing strategy as seen in SEGA,
that generalizes to eliminate distribution bias and even operate on sub-spaces Hanzely et al. (2018).
Yet estimator convergence is still a stationary assumption and depends on the dimension size, it
follows that a step must be smaller to allow the method to adapt quickly enough to changes in the
gradient. The method may not beat the d-dependent (optimization) lower bound of the underlying
sample strategy. When analyzing impacts of large step size or non-characteristic surfaces we find
situations that form bad estimates, like non-descent directions leading to oscillation and asymmetri-
cally worsened progress. The next gradient may form a greater than 90 deg angle with the previous,
or the norm might reduce significantly (common for stationary points). In both cases, resetting the
estimator to zero or reducing it’s size would result in a faster update to the true gradient and even
guarantee a descent direction. Reset and shrinkage has found success already in 2nd order methods
[Ca et al. (2020), Indrapriyadarsini et al. (2020)] and is the basis of our strategy.

Seeking a corrective method that works generally, we developed a system that only depends on
the gradient estimator and directional derivatives. Empirically we find that avoiding non-descent
directions is especially consequential, our strategy aims to preserve estimator descent first and then
improve MSE or cos θ with the same sampling rate. The added benefit is that we can work with
other estimators, like Monte Carlo that is convergent under noise.

3.1 BOUNDS AND ECO RATIO

We first begin with the gradient, and enforce lemma 2.1: State c =
(
1− 1

d

)k/2
if we use ECO’s

Method and c = ( d−1
d+k−1 )

1/2 for MSE minimizing Monte Carlo.

Corollary 3.1. Define ĝ such that c = sin∠(g, ĝ), and ∥ĝ∥/∥g∥ = cos∠(g, ĝ) i.e. unit isotropic
estimator on Sd−1. And ∥u∥ = 1 then

|uT ĝ − v|
c∥g∥

≤ 1 (3.1)

Proof B.5. These are the strongest definite bounds on directional derivatives we could find when the
estimator also satisfies unit isotropic. This is what figure 1 green area visualizes, more conservative
bounds in the 2D scenario may lead to false positives. In many dimensions this is consistent, yet
from B.3 we know E[uuT ] = d−1I . So even when d≫ 1 it is still possible for a (v)u to appear up
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to a residual = c∥g∥, but very unlikely. We rely on the distribution of our samples to state what is
improbable, not impossible.

Corollary 3.2. Proof B.6. Assume corollary 3.1 then

E
[
|uT ĝ − v|2

]
=

c2∥g∥2

d
(3.2a)

Eα

[
|uT ĝ − v|2

]
=

c2α2∥g∥2

d
(3.2b)

α is the Gaussian two-sided significance level, found in a CI table or by Φ−1. Next by 3.1 we
recognize ∥g∥ = ∥ĝ∥/ cos∠(g, ĝ) = ∥ĝ∥/

√
1− c2. We can even define g = ĝ/

√
1− c2 as the

norm error minimizing estimator.

The ECO Ratio:

M(v,u, ĝ, c, α) |= M(v) =
|uT ĝ − v|

√
d(1− c2)

αc∥ĝ∥
(3.3)

Figure 4: d = 105, αN ≈ 3.3. T - Students’s t.
R - Resets. P - Partial resets. F - Final Value.

proof B.6 Iff M(v) > 1 we fail to sup-
port ĝ is a continuing estimator of g up to
c (our expected estimator N-RMSE (link
to appendix as to why we call it that)), we
set ĝk = (v)uk, c =

√
1− d−1, and be-

gin to improve ĝ and c again in forward
steps. A benefit of this ratio stems from
it’s independence of∇x or the higher mo-
ments of f(x), allowing it to work uncon-
ditionally in many situations. The only re-
quirement is L-smoothness (by (v)u not
even by ∇f(x)). Under convexity as-
sumptions, parameter count, interactions,
and step size, the optimal α may vary but
this is beyond the scope of our current
work.

We conclude by mentioning certain hand-
waving, necessary to achieve our result: 1)
In Equation (3.2b) we assume α is Gaus-
sian but u ∼ Sd−1, for small d this ap-

pears trivial, at large d we know Unif(Sd−1) ∼ N (0, 1
dI). 2) In reality the isotropic assumption of

corollary 3.1 is never exact. We hypothesize that when E[uuT ] = (d)−1I , then ∥ĝ∥/∥g∥ is con-
vergent to cos∠(g, ĝ) in a approximately t-distributed manner, independent of dimension size. We
provide our evidence in discussion A.4. Because calculating α ∼ t(ν) at each step can be expensive,
we also provide an accurate polynomial interpolate αt(αN , ν) in our repository (source). The DOF
ν represents steps since last reset.

3.2 NOISY ECO RATIO

We begin with ṽk = vk + ek. Assume ek ∼ N
(
0, σ2

)
so that: ek is independent of vk. E[ek] = 0.

And E[(ek)2] = σ2.

The Noisy ECO Ratio:

γ =
αc∥ĝ∥√
d(1− c2)

, M̃(ṽ) =

√
(uT ĝ − ṽ)2

γ2 + σ2
≤ 1 (3.4)

Proof B.7. We see that after adding noise, Equation (3.4) simply contributes a static threshold that
eventually dominates the boundary. It is in root form for consistency but that is not necessary. If we
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are using ECO’s Method then a variable learning rate is theoretically optimal, proof B.8. We get the
recurrence:

µ̂k =
c2k∥ĝk∥2

d(1− c2k)
, lk ≈

µ̂k

µ̂k + σ2
e

, c2k+1 = c2k · (1− lkd
−1)

ĝk+1 = ĝk + lk(v − ĝT
k uk)uk

(3.5)

Note: Updating ck+1 is not the same as updating c2k+1 we need to take the root separately if ck+1 is needed.

σ2
e can be estimated adaptively or known at first, it may also help to alter it’s significance by con-

stant factors. Holding σ2 and ∥ĝk∥ constant we would find that limk→∞ ck → n where 0 < n < 1
and lk approaches 0. This is an expected behavior, the LMS filter does not fully converge under
noise (source). For moderate noise such as (smoothing) non-smoothness, discontinuous function es-
timation, and finite difference stencil error, ECO’s Method should be viable. When noise becomes a
significant portion of the true gradient norm, consider: 1) Averaging multiple directional derivatives,
or use an over-determined stencil regression. 2) Switch to Monte Carlo Estimation at such point that
LMS progress is estimated to be slower. 3) For finite/semi-finite SGD, batch along dimensions and
not along environment or dataset sections, avoiding noisy updates all together.

Option 3 is generally unavailable to full gradient methods, but a widely relevant strategy to DFO
and ECOgrad. In (ilya and co) show how Gaussian smoothing can be used to achieve similar results
to model based methods and policy gradients, while also seeing nearly linear return for additional
network resources. In their work parallelization happens over separate gaming environments, then
RNG states and directional perturbations v are transferred as scalar values, requiring minimal band-
width. This exact strategy can still benefit from our framework while enabling new possibilities.
We provide further notes regarding networked asynchronous learning and maximizing compute ef-
ficiency when calculating estimators, discussion A.6.

3.3 ECOGRAD PARTIAL RESETS

During the hypothetical progress of our optimization, the ECO bounds may be violated but with an
insignificant tail (just barely). Both statistical anomalies and the true gradient only changes in norm
or angle slightly, are possible. To remedy this we introduce a shrinkage method for our existing ĝk
that also relax the ECO bounds. We provide justification for this approach in discussion A.5. We
can solve for the partial reset by increasing c and simultaneously shrink ĝ to the norm that would be
expected for this increase, such that the ECO Ratio is < 1. n references new values, and the iteration
k is arbitrary. Our Reset Boundary equation:

R1(cn) =

∣∣∣∣∣uT ĝ

√
1− c2n√
1− c2

− v

∣∣∣∣∣− αcn∥ĝ∥√
d(1− c2)

= 0 (3.6)

We solve for the smallest c < cn ≤ 1. This has a quadratic symmetric four root solution, an analytic
method is provided: Algorithm 1. Afterwards the estimator must be updated:

ĝn = ĝ

√
1− c2n√
1− c2

The Noisy Reset Boundary:

γn(cn) =
αcn∥ĝ∥√
d(1− c2)

, R̃(cn) = (uT ĝ

√
1− c2n
1− c2

− ṽ)2 − γ2
n(cn)− σ2 = 0 (3.7)

This is now a full quartic due to the noise term. We provide a bracketed secant solver in our code
base (here) customized to solve this quickly.

Finally if we use the Student’s t significance model αt(αN , ν) our boundary solutions lose their
polynomial expectations. Fortunately αt consistently results in cn solutions that are smaller than
those underN without strange behaviors. In fact t adjusted significance usually results in a solution
where cn < 1, even when cn = 1 normally. Empirically αt(αN , ν) tends to improve optimization
performance under partial resets. To solve with αt(αN , ν) refer to our secant implement (here), it

6
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will also return variables cn and s. Set ck = cn then DOF ν = s is calculated by the ln equation in
our code:

ECO’s Method : ν =
2 ln(ck)

ln
(
1− 1

d

) , Monte Carlo : ν =
d− 1

c2k
− d+ 1 (3.8)

Note: If v is small which is when it is relevant. Monte Carlo v is nearly the same as ECO, but avoids the expensive logs.

From here increment νk+1 = νk+1 until the next reset is triggered. Or with noise every new sample
represents diluted information, calculate with Equation (3.8) for each step.

3.4 RESULTS SECTION
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A DISCUSSION

A.1 DIRECTIONAL PERTURBATION AND DISTRIBUTION

If our intent is to estimate a true gradient, de-biasing is necessary and can be expensive. As we
assume little about f(x), we . There are other asymptotically unbiased distributions, but we opt for
the following to derive our framework in an elegant manner.

A.2 DIRECTIONAL DERIVATIVE STENCILS

Approximation: Directional derivatives are cheap to estimate. By selecting a random unbiased
direction u we 1) enable our optimization to make progress independent of individual coordinates
even before k ≥ d where k represents total optimizer steps. 2) Reduce the problem to an objective
in 1D and gain access to reduced finite difference stencils. We can even treat (v) as a black box
output in use of exotic methods, like de-noising, metrics, or (source). The following are well known
estimates for (v) and a lesser known one.

Incomplete section .

But there is also:

We can see that it is possible to obtain a O(h4) accurate estimate of ∇f(x) in just 4d function
evaluations. Gradient stencils exist for O(h2n), n ∈ Z+. They may not be worth the effort for
floating point accuracy; and Nesterov (source) shows good results can be obtained for non-smooth
f(x) even with O(h) stencils. But they have another use, obtaining greater accuracy when f(x) is
significantly discontinuous, such as a reward landscape in offline RL or simulations. We conclude
this as an area of further research.

that would need significantly more samples to replicate in higher dimensions.

A.3 BLOCK ECO’S METHOD INTUITION

An intuition is to see the update as a rapidly convergent solver of a linear system for ∇f(x). We
could treat this as a direct interpolation of f(x) within a proximal area requiring d+1 samples (DFO
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source); but canceling the value intercept of f(x) allows us to abstract to a system of directional
derivatives. In fact, we define the Block ECO’s Method:

ĝk = ĝk−n + (v − ĝT
k−nU)UT (UUT )−1,

Compute Complexity: O(d(k/n) · n2) = O(d(k)n)
Convergence Rate: O

(
(1− n

d )
k/2n

)
(A.1)

In this setting k now increments by n. If batch size n is << d which is our expected setting, the
block update will have virtually no additional error improvement, but cost an extra d ∗ n per iterate.
On the opposite end, it could make more sense to complete the interpolation d = n, providing well
established 1st order guarantees and aggressive super-linear methods e.g. Quasi-Newton. For this
reason we don’t further mention the block update in our framework. We briefly mention that it is
possible to amortize the least squares solution using orthogonal U , but it still has it’s own drawbacks
(continue here if time).

A.4 T DISTRIBUTED SIGNIFICANCE

We argue for dimension invariant t-distributed α by noting there are two opposing forces that scale
with dimension size. First as d increases the influence of any one ui ∈ u decreases, we know already
that E[(v)u] = g/d and E[cos θ2] = 1/d will have the effect of smoothing/decreasing the variation
of |v| and reducing contribution of any one sample in improving the estimate. Second the estimators
require more samples to reach the same MSE optimal accuracy as d increases, we see this with the
longer lasting leverage of c/

√
1− c2, balancing this variance reduction effect. Also see the end of

proof B.6. (maybe plots).

A.5 WHY OUR SHRINKAGE

For the Kaczmarz lemma in proof B.4 we see that the right hand side has an x0 initial point, by
setting it to 0 we arrive at our intuitive framework. We chose shrinkage instead of re-deriving our
bounds and variables, as it requires an analysis from an FTRL perspective instead of OMD, compli-
cating our setting. It also breaks the approximate symmetry of lemma 2.1. We believe shrinkage is
more appropriate for gradients anyway, because:

1. During optimization, the only time we can be completely certain that our gradient estimator
does have N-RMSE < 1 and cos θ > 0 is when ĝk = [0]d + (v)u. Therefore shrinkage is
possibly a consistent method that makes the next update to satisfy this criteria more likely.

2. Shrinkage of 0 stationary parameters is synonymous with loss of information, especially
for online methods like our LMS adaption. Shrinkage is the method exponential moving
averages use to ’forget’.

3. We don’t have a guarantee that even after re-deriving the Kaczmarz bounds, convergence
rate, and optimal learning rate, it will actually adapt quicker to the true gradient from the
anchor point. In fact if we assume in a convex setting that E[g] = [0]d over the life of the
optimization, it may even hinder convergence.

4. Even in a non-convex setting, convergence to a stationary point on a smooth surface im-
plies a decreasing ∥∇f(x)∥. So it’s reasonable to consider norm shrinkage may place our
estimator within a better range of ”steepness” as the stationary point is approached. Ad-
ditionally, by assuming negligible correlation between parameters we can guess that the
angle of the gradient may change even less than the norm on average.

A.6 BIG COMPUTE ECOGRAD STRATEGIES

For infinite set SGD like temporal differencing and path dependence, we suspect longer sections
will work better, up to a Pareto front, as is usually the case in comparing offline methods.

Distributed ECOgrad: Let’s have separable no-grad environments or datasets. We break them up
into minibatches, assign each a gradient estimator. As we take new steps, allocate a certain amount
of queries to updating and validating each gradient estimator with their respective N-RMSE expec-
tation and ECO Ratio. We receive any full or partial reset requests, then depending on the new
expected N-RMSE’s we allocate a proportional amount of queries to each estimator so that all esti-
mators/minibatches reach a certain tolerable error expectation. This way we can obtain an accurate

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

net gradient estimate with even less compute (no wasting evaluations on estimators that already
have tolerable expectation, and allocate more concurrent compute to those that need it), the tradeoff
is more memory. And we don’t know what the lower bound of savings are.

Async Batched ECOgrad: Each environment continuously samples directional queries, after a v is
received, they are sent to a warehouse on network. The warehouse has lots of memory and high
bandwidth, updating the gradient estimators of each environment as they are received according to
ECOgrad. We have decoupled how good our estimate will be from how many queries we take at
each round, so it should matter less if certain environments have more queries than others. After
a certain criteria is hit, such as net expected gradient MSE, the estimates are combined. Possibly
equal weighting, or weighted by expected gradient accuracy, or another scheme, and a step is taken.
The only high-bandwidth need is transferring new parameters to each environment. However the
environments never have to halt sending directional scalars, as even samples from stale but nearby
parameters can improve the gradient estimates. We believe this to be an option for massively scaled
real-time model free RL, such as a global network of models/agents that adapt to world environments
collectively.

ECOgrad SAGA: SAGA but replace the exact gradient calculations with estimators. Or a jacobian
approximation.

A.7 AREAS OF FUTURE WORK

• Derive intervals for the noisy setting, as well as informed (but continuous) stochastic setting
separately.

• With noisy samples using ECO’s method it’s theoretically possible for the reset ratio to
become ’stuck’ when the true gradient norm rapidly decreases. As the LR could be near
zero, the LMS update would waste new samples until the bounds detect a new anomaly.
Possible solutions may involve, just using Monte Carlo averaging when the noise is signif-
icant enough (and we don’t want to smooth them per sample). Using a hybrid trust region
function or alternative signals to reset.

• There may be stronger constraints or metric minimization’s that can be placed on the La-
grange Definition of ECO’s method, that for certain problems can achieve faster conver-
gence.

• Formally define asymptotic bounds on 1/d ≤ m ≤ 1 for specific problems, e.g. strong
convexity constants, Lipschitz constants, non-smooth or non-convex. While the bounds of
SEGA hold, we will consider if more can be proven.

• We haven’t formalized the ratio methods to account for drift in the estimator, and the ex-
tended (or reduced) time to convergence that might add. The test is only for stationarity
assumed, but a non-stationary factor would most likely be problem dependent. A possibil-
ity is to use a classic gradient trust region method to shrink and grow α or the confidence
interval directly as a multiplier.

• We demonstrated Sd−1 samples have provably faster convergence to the true gradient un-
der Monte Carlo estimation for MSE minimizing, even if the difference is trivial. We sus-
pect we’d get similar results deriving ECO’s Method convergence under Gaussian samples.
There may be other unbiased random distributions with provably faster convergence under
these estimators with no more than O(d log(d)) compute needs. e.g. a last-n orthogonal
RNG, which only needs to guarantee orthogonality with the last n samples instead of all d.

• We can hypothetically use the expected angular bounds of ĝ to g accelerate true gradient
convergence by sampling directional vectors in this range. This would be similar to an
RL/policy gradient or even a modeled approach without knowing the action/state space.
We would also investigate removing or altering the bias of this method.

• We hypothesize the d independent T-distribution of low DOF significance levels; but it
would be better to prove this. Or prove it’s relation to another distribution.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B PROOFS

Lemma 2.1. Define f(x) such that ∇f(x) is continuous, and let u ∈ Rd, s.t. ∥u∥ = 1.
Then with θ = ∠(∇f, (v)u)

∥∇f(x)− (v)u∥
∥∇f(x)∥

= sin θ,
∥(v)u∥
∥∇f(x)∥

=
|v|

∥∇f(x)∥
= cos θ, (2.1)

Proof B.1 (Lemma 2.1).
cos θ:

cos θ =
((∇f(x) · u)u) · ∇f(x)
∥(∇f(x) · u)u∥∥∇f(x)∥

=
(∇f(x) · u)2

|∇f(x) · u|∥∇f(x)∥
=
|∇f(x) · u|
∥∇f(x)∥

=
|v|

∥∇f(x)∥
.

sin θ:
Let ∇f(x) = g

∥g − (g · u)u∥2 = (g − (g · u)u) · (g − (g · u)u)
(since u · g = g · u, u · u = 1)

= ∥g∥2 − 2(g · u)2 + (g · u)2

= ∥g∥2 − (g · u)2.

Now: √
∥g∥2 − (g · u)2 = ∥g∥

√
1− (g · u)2

∥g∥2
.

= ∥g∥
√
1− cos2 θ = ∥g∥ sin θ

And so:
∥∇f(x)− (∇f(x) · u)u∥ = ∥∇f(x)∥ sin θ

Under our definition of u we see that the gradient normalized root mean square error is sin θ, and
sin θ ≤ 1 implies N-RMSE ≤ 1 and 0 ≤ sin θ. Additionally we know that any real vector ∥v∥ ≥ 0
implies cosine is positive, so bounded by 0 ≤ cos θ ≤ 1.

Proof B.2 ((2.3) Eco’s Method).

By Lagrange
L(ĝk, λ) = ∥ĝk − ĝk−1∥2 + λ(u⊤ĝk − v).

∂L

∂ĝk
= 2(ĝk − ĝk−1) + λu = 0,

∂L

∂λ
= u⊤ĝk − v = 0

ĝk = ĝk−1 − λ
2u, u⊤ĝk = v

Then
v = uT ĝk−1 − λ

2 uTu

λ =
2(u⊤ĝk−1 − v)

u⊤u

ĝk = ĝk−1 +
(v − ĝ⊤

k−1u)

u⊤u
u

By convex objective and affine constraint this is sufficient.
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Proof B.3 (Moment Contractions, MSE Shrinkage, Monte Carlo Convergence).
For N (0, I) we have moment generators (that old source):

E [sisj ] = δij , E [sisjsksl] = (δijδkl + δikδjl + δilδjk) .

For Sd−1 we have moment generators (book source):

E [sisj ] =
δij
d
, E [sisjsksl] =

δijδkl + δikδjl + δilδjk
d(d+ 2)

Some trivial proofs first:

For Sd−1 we get E[uuT ]∇f(x) = 1
d∇f(x)

Which means for
√
dSd−1 we get d · E[uuT ]∇f(x) = ∇f(x). Also:

E[cos θ2] = E
[

(∇f(x) · u)4

|∇f(x) · u|2∥∇f(x)∥2

]
=
∇f(x)TE

[
uuT

]
∇f(x)

∥∇f(x)∥2
=

1

d

Now moving on, the law of total variance states:

E∥X − E(X)∥2 = tr(Var(X)).

AndVar(X) = E
[
XX⊤]− E [X]E [X]

T

Next we know that E[X] = g and associate X = ⟨g,u⟩u.

Then E
[
XX⊤]

ij
=

∑
p,q gpgqE [upuquiuj ].

Proof of Gaussian for Monte Carlo Estimator Equation (2.2):

The Kronecker identity:
E
[
XX⊤] = ∥g∥2I + 2gg⊤

tr(Var(X)) = tr(
(
∥g∥2I + 2gg⊤)− gg⊤) = (d+ 1)∥g∥2

And admits:

N-MSE limit : O(
d+ 1

k
), N-MSE Adjustment :

k

d+ k + 1
, Adj. N-MSE limit : O(

d+ 1

d+ k + 1
) (B.1)

Proof of Sd−1 for Monte Carlo Estimator Equation (2.2):

In this case, let us assume that u =
√
ds so it matches the correct isotropic scaling for MC

√
dSd−1.

We instead get: E [uiuj ] = δij , E [upuquiuj ] =
d

d+2 (δpqδij + δpiδqj + δpjδqi)

And now scalar adjustment to previous result:

E
[
XX⊤] = d

d+ 2
∥g∥2I +

2d

d+ 2
gg⊤

2d/(d+ 2)− 1 = d−2
d+2 :

tr(Var(X)) = tr(
d

d+ 2
∥r∥2I +

d− 2

d+ 2
gg⊤) =

d2 + d− 2

d+ 2
∥g∥2 = (d− 1)∥g∥2

Admits:

N-MSE limit : O(
d− 1

k
), N-MSE Adjustment :

k

d+ k − 1
, Adj. N-MSE limit : O(

d− 1

d+ k − 1
) (B.2)

We see that Sphere Surface normalized directionals actually converge slightly quicker than basic
gaussian, trivial at large dimension sizes, but valid at a small d.
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Proof B.4 (ECO’s Method Convergence Equation (2.3)).
We can recognize ECO’s Method as a form of randomized Kaczmarz update and refer to Gower and
Richtarik’s definition (see 3.3). We define it with U , an arbitrarily finite set where every element
∥u∥ = 1, and no u necessarily repeats. This is like

xk+1 = xk − Uk:x
k − bk

∥Uk:∥22
(Uk:)

T

From Section 3.3 we find.

(3.4) E
[∥∥xk − x∗∥∥2] ≤ (

1− λmin(A
TA)

∥A∥2F

)k ∥∥x0 − x∗∥∥2
For our uniform isotropic sphere this reduces to:

E
[
∥ĝk −∇f(x)∥22

]
=

(
1−min(E[uuT ])

)k ∥∇f(x)∥2
Recall from B.3 the second moment of
Sd−1 : E [sisj ] =

δij
d . Which means that E[uuT ] = 1

dI and:

E
[
∥ĝk −∇f(x)∥22

]
=

(
1− d−1

)k ∥∇f(x)∥2 (B.3)

Proof B.5 (True Directional Estimator Bounds corollary 3.1).
Begin with a relation from lemma 2.1 and the definition of c from 3.1 then:

∥g − (v)u∥ = sin θ∥g∥

Generalized Equation (B.3) : E
[
∥ĝ − g∥2

]
= c2 ∥g∥2 (B.4)

(If this is not self evident already) we know ∥ĝ∥/∥g∥ = cos∠(g, ĝ) so define r = ∥ĝ∥ and m =
ĝ/r so that (r)m = ĝ (note a small difference is that r will always be positive so m will always be
on the right half of Sd−1 but this shouldn’t matter) now it follows from B.1 that ĝ satisfies lemma 2.1,
and specifically c = sin∠(g, ĝ) = N-RMSE[ĝ, g]. Which let’s us simplify:

∥ĝ − g∥2 = c2 ∥g∥2 , ∥ĝ − g∥ = c ∥g∥

Bounds ratio derivation:
Our first attempt at stationary bounds involved solving the triangle inequality:
∥ĝ − g∥+ ∥g − (v)u∥ ≤ ∥g∥ (sin θ + ck).
But we can get stronger bounds:

By Cauchy-Schwartz : |⟨u,v⟩| ≤ ∥u∥∥v∥, ∥u∥ = 1.∥∥uT ĝ − uTg
∥∥ = |uT ĝ − v| ≤ ∥ĝ − g∥ = c ∥g∥
|uT ĝ − v|
∥g∥c

≤ 1

Proof B.6 (ECO expectation ratio corollary 3.2).
Where u is our only random variable we get:

E
[(
uT ĝ − uTg

)2]
= E

[
(uT (ĝ − g))2

]
▷ let y = (ĝ − g)

= yTE
[
uuT

]
y ▷ can’t know yyT

=
yTy

d
▷ but ∥y∥ = c∥g∥

=
c2∥g∥2

d
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However this merely provided us the expected value, we are interested in L
[(
uTg − uT ĝ

)2]
. For-

tunately we know:

lim
d→∞

Unif(Sd−1)→ N (0,
1√
d
I), and vice versa.

This is evident by noting that every u ∈ u from N (0, 1√
d
I) is i.i.d. σ = 1/

√
d, then define our

sample set as d separate u’s. By the Central Limit Theorem as d grows ū2 =
∑

u2/d = 1/d then
d · ū2 = uTu = ∥u∥ = 1 which is in Unif(Sd−1).

Now say:

Eα

[
|uT ĝ − v|2

]
=

c2α2∥g∥2

d

Gaussian is convergent to Unif(Sd−1) so we say that it’s ’probably ok’ to use gaussian error function
at large enough d. But we welcome you to calculate the Unif(Sd−1) error function if you would
like. Also because u is our only random, independent of g or ĝ and α seems not to depend on the
number of dimensions d, this provides more credence to the T - model independence.

Proof B.7 (Noisy Eco Ratio Equation (3.4)).
In this framework we still expect ∥ĝk − g∥ ≈ ∥g∥c even if all our observations are noisy, but this is
reasonable to estimate as we will see because it simply entails calculating the correct c.
We find that:

(uT ĝ − v + e)2 = (uT ĝ − v)2 + 2e(uT ĝ − v) + e2

E[(uT ĝ − ṽ)2] = E[(uT ĝ − v)2] + σ2

So we get:

(uT ĝ − ṽ)2 ≲
α2c2∥g∥2

d
+ b2σ2

And from here it’s apparent how we get the noisy ratio.
Proof B.8 (Optimal Learning Rate for Noisy ECO’s Method Equation (3.5)).
Under the Lagrangian derivation of ECO’s Method we know the optimal learning rate is l = 1 in the
smooth setting. Instead of solving another constraint metric with noise, we recognize our method
as a specific Normalized LMS setting and use it’s system derived identities (source). (might need to
change this lets see)

The optimal learning rate of N-LMS:

lopt =
E
[
|y(n)− ŷ(n)|2

]
E [|e(n)|2]

Note the equivalences:
y(n)− ŷ(n)⇒ uTg − uT ĝk = v − uT ĝk.

e(n) = d(n)− ŷ(n) = y(n) + r(n)− ŷ(n)

⇒ uT g̃ − uT ĝk = v + e− uT ĝk.

Now we have:

l =
E
[
|v − uT ĝk|2

]
E [|v + e− uT ĝk|2]

The first observation we can make is that l ≤ 1 always, which is sensible as under perfect conditions
l = 1.

From B.6 we have E
[
|v − uT ĝk|2

]
= µ = c2∥g∥2

d .
From B.7 we get E

[
|v + e− uT ĝk|2

]
= µ+ σ2

e :

lopt =
µ

µ+ σ2
e

And we know µ̂k already from the section.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C PSEUDOCODES

The analytic solution to (3.3) for a partial reset, note that there can’t be any noise term σ and α is
not from the T-model:

Algorithm 1 Smooth Gradient Estimator Error Solve
Require: u ∈ Rn, ĝ ∈ Rn, v ∈ R, c ∈ [0, 1)

1: procedure
2: cn ← 1 ▷ Initial value if no valid roots.
3: m←

(
uT ĝ

)2
+ α2∥ĝ∥2d−1 − v2

(
1− c2

)
4: if m > 0 then
5:

C ←
∓v
√
1− c2 α∥ĝ∥√

d
±

(
uT ĝ

)√
m

(uT ĝ)
2
+ α2∥ĝ∥2d−1

6:
cn = min

c′
c′ ∈ [c++, c+−, c−+, c−−],

s.t. c < c′ < 1

7: end if
8: return cn
9: end procedure
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