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Abstract

Few-shot prompts are difficult for humans to001
construct, but can be critical for the perfor-002
mance of large language models on down-003
stream tasks. I propose a framework of au-004
tomatically generating few-shot prompts by se-005
lecting high-quality outputs sampled from the006
model itself. I apply it to code generation. In007
testing the framework, I use High Probabil-008
ity Branching, a novel tree-based systematic009
search, demonstrated to outperform conven-010
tional sampling in accuracy and efficiency. I011
evaluate the performance of the framework by012
applying it to the GPT-J model with a subset013
of the HumanEval dataset. The prompt gener-014
ated by the framework achieves a ten percent015
relative improvement over model performance016
with no prompt; the improvement is six times017
the improvement from the human prompt.018

1 Introduction019

Few-shot prompting is a common method of pro-020

viding context to guide large language models021

(LLMs) to solve problems. Through proper prompt-022

ing, language models become capable of in-context023

learning (Dong et al., 2022), gaining the ability to024

solve complex, multi-step problems (Nye et al.,025

2021) (Wei et al., 2023). However, it is difficult for026

humans to create good few-shot prompts because027

humans often cannot accurately understand or pre-028

dict the behavior of language models when solving029

problems.030

Automated generation of discrete and continu-031

ous prompts has been studied in (Shin et al., 2020)032

(Liu et al., 2021) for knowledge retrieval, but these033

methods do not scale well to generating long few-034

shot prompts which demonstrate multi-step strate-035

gies for solving complex problems. This is because036

these prompt generation methods do not involve a037

system with semantic understanding of the prob-038

lems themselves, and thus are unlikely to imple-039

ment problem-specific strategies. This problem040

can be avoided by utilizing the output of LLMs, 041

which may include a semantic understanding of the 042

problem, to generate prompts. 043

Auto-CoT (Zhang et al., 2023) composes few- 044

shot prompts using zero-shot chain-of-thought 045

model question/output pairs as examples. These 046

prompts are demonstrated to be competitive with 047

human-designed few-shot prompts. However, 048

Auto-CoT does not use a measurement of prompt 049

quality or even example correctness in selecting 050

generated examples. As a result, Auto-CoT de- 051

pends on the particular behavior of the language 052

model in the chain of thought setting, and may not 053

generalize to less powerful models or to domains 054

for which chain of thought is not directly applica- 055

ble, such as code generation. This may be improved 056

by actively selecting examples that work better for 057

the specific domain by measuring correctness and 058

prompting performance. 059

I propose an automated framework to generate 060

few-shot prompts. This framework uses the pre- 061

trained large language models themselves to gener- 062

ate few-shot prompt candidates and then identifies 063

and selects effective prompts from these candidates. 064

Candidates are generated by searching the space of 065

token sequences generated by the model for those 066

sequences which lead to correct answers for a sub- 067

set of input problems. Then, good prompts are 068

identified by validating their effectiveness on the 069

other problems from the input. 070

In this paper, I apply this framework to code gen- 071

eration. Here, the objective is to search for correct 072

output programs which improve code generation 073

performance when used as prompts. Prompting 074

the model with well-written code by humans does 075

not necessarily help the model solve new problems, 076

because large language models interact with code 077

differently from how humans programmers do. In 078

fact, the best few-shot prompts may be unintuitive 079

to humans, and would thus be difficult for humans 080

to compose. Therefore, automated generation of 081
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few-shot prompts not only can reduce need for hu-082

man labor, but may also produce better prompts083

than humans can.084

In the rest of the paper, I first briefly formulate085

the problem of prompt generation, casting it as a086

tree-search problem. I then introduce a five-step087

automated prompt generation procedure. Next I088

describe the experimental methodology used to im-089

plement and test the framework as applied to code090

generation, utilizing High-Probability Branching091

(HPB) as a systematic tree-search algorithm. Fi-092

nally, I discuss the experimental results.093

2 Problem Formulation094

2.1 Prompting095

Autoregressive large language models together096

with a sequence sampling algorithm take a tok-097

enized input query Q, and output a probability dis-098

tribution over generated sequences A. Suppose that099

there is a dataset of questions {qi} and there exists100

some measure for whether a model output A con-101

stitutes an accurate answer to a particular question102

qi. A prompt is a transformation qi → Qi such that103

when Qi is given to the language model, results104

in an Ai that more accurately answers qi . As a105

simplification, assume input query Qi = p||qi is106

simply the concatenation of a prefix p and the ques-107

tion itself qi where p is static and do not depend108

on qi . For human-designed prompts, p often takes109

the form of instructions, or few-shot examples. It110

is not necessary in this context for p to generalize111

to problems outside the domain of {q}, and indeed112

it is difficult to imagine fully general instructions113

or examples for problem-solving across arbitrary114

domains.115

The prompt generation problem is then to find116

better performing prompts, that is to optimize117

popt = argmax
p∈P

1

|{qi}|
∑
{qi}

Correctnessqi(M(p||qi)).118

Since the space of all possible prompts P is huge,119

finding the optimal prompt cannot be efficiently120

computed and heuristic methods must be used. In121

human prompt design, humans rely on their own in-122

tuitions of large language model behavior to choose123

p. In this paper I propose systematically sampling124

from model outputs to obtain a candidate subset of125

P corresponding to few-shot prompts, and select-126

ing the best prompt within that subset.127

2.2 Tree-Based Sampling 128

Mathematically, language models assign a proba- 129

bility to every single possible output sequence of 130

tokens as a factorized product of token probabilities. 131

The entire space of possible generated sequences 132

can be represented as a tree, where each node repre- 133

sents a generated token and descendants represent 134

all the possible tokens that could follow. Running 135

the language model can compute the descendants 136

of a particular node. So for the current node and its 137

ancestors x(1...i) = x(1)x(2) . . . x(i) , the language 138

model outputs a probability distribution over all 139

possible next tokens in the vocabulary V , each 140

constituting a child node x
(i+1)
k for the kth most 141

probable next token. We can call this exploring the 142

node. Then we have 143

|V |∑
k=1

P (x
(i+1)
k |x(1...i)) = 1. 144

Sampling sequences from the large language 145

model can be formulated as a tree search prob- 146

lem, where sampling processes, possibly acting in 147

parallel, compute nodes of the tree to find complete 148

sequences which end in terminal nodes. A terminal 149

node might be one that corresponds to an end-of- 150

sequence token, is at a certain depth, or results in a 151

sequence that satisfies a termination condition. 152

Later in this work, I introduce High Probability 153

Branching, a novel tree-search algorithm. 154

2.3 Framework Overview 155

At a high level, the automated prompt generation 156

framework to produce few-shot prompts consists 157

of the following steps: 158

1. Initial Input Data: As input, take a small 159

subset of sample problems representative of 160

the dataset, along with an associated validator. 161

The validator is able to measure the correct- 162

ness of solutions to the sample problems. 163

2. Generation Phase: Use the language model 164

to generate candidate solutions for the sam- 165

ple problems using some generative sampling 166

strategy. 167

3. Selection Phase: Validate the generated can- 168

didate solutions and select high quality ones 169

for evaluation as prompts according to some 170

heuristics. 171
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4. Evaluation Phase: Evaluate the performance172

of selected candidates as prompts by testing173

them on the sample problems. Select the174

highest-performing candidates as the output175

prompts of the system.176

3 Experimental Methodology177

3.1 Model, Hardware, and Dataset178

The model used is GPT-J with 6B parameters179

(Wang and Komatsuzaki, 2021), released under the180

Apache License 2.0. Experiments were run using181

custom input parallelism code across eight 24GB182

NVIDIA GeForce 3090 GPUs. About 5,000,000183

forward passes were performed in total.184

The dataset used is the HumanEval dataset (Chen185

et al., 2021) proposed by OpenAI and released186

under the MIT license. HumanEval is a set of187

164 Python programming problems. Each problem188

consists of a Python function stub and docstring189

specifying the expected behavior of the function190

in natural language, test cases used to evaluate the191

correctness of proposed implementations, and a192

human-written canonical reference implementation.193

Solutions are evaluated on functional correctness,194

defined by whether a solution passes all provided195

test cases corresponding to the problem.196

I replicate OpenAI’s statistics, finding that GPT-197

J solves HumanEval problems correctly at a rate of198

4% at temperature 1 and 10% at temperature 0.2,199

averaged over 200 samples per question. GPT-J200

may not be able to comprehend some problems, or201

may not have the algorithmic capabilities to gener-202

ate valid solutions even with many samples. This203

implies that the HumanEval dataset is difficult over-204

all with respect to the capabilities of GPT-J, with205

around two thirds of the problems being apparently206

solvable.207

To produce a dataset with difficulty more in line208

with GPT-J’s capabilities, I abridge the dataset by209

considering only problems where both naive sam-210

pling and High Probability Branching (discussed211

later) manage to discover at least one correct so-212

lution. This results in an abridged dataset of 37213

problems, from which 8 problems are further re-214

moved to form an input set, leaving a 29 problem215

evaluation abridged dataset.216

Figure 1 shows the pass@1 accuracy of GPT-J of217

each problem in the abridged HumanEval dataset218

at temperature 1 and 0.2, sorted by T = 1 perfor-219

mance. Problems that are not shown have basically220

zero pass@1 accuracy. Abridging the dataset al-221

Figure 1: GPT-J pass@1 accuracy, abridged dataset

lows for a much more reasonable range of problem 222

difficulty. OpenAI’s optimal temperature selection 223

of 0.2 is shown to result in performance improve- 224

ments that are often significant but inconsistent 225

across problems. For the remainder of the work, 226

temperature 1 is used because tuning the tempera- 227

ture for specific datasets is outside the scope of the 228

research. 229

In order to significantly increase the efficiency 230

of Python code generation, whenever a whitespace 231

token is appended to a sequence more whitespace 232

is added in order to reach the next indentation level 233

if syntactically necessary. Experimentation shows 234

that GPT-J almost never makes errors by emitting 235

an invalid amount of whitespace, so this has mini- 236

mal effect on generated sequences. 237

3.2 Top-level Prompt 238

I introduce the top-level prompt "Answer 239

Key:\n\n" before the problem specification 240

and any few-shot prompts. Experimentally, this 241

appears to slightly improve overall performance 242

across all metrics. This top-level prompt may 243

improve instrumental alignment and discourage 244

hallucination and calling functions defined in the 245

prompt, by indicating to the model that the code 246

ought to be correct and that the functions are 247

independent problems rather than components of a 248

larger program. 249

3.3 High Probability Branching 250

The best sequence generated from a large lan- 251

guage model cannot be solved for directly, and 252

therefore an appropriate sampling algorithm is nec- 253

essary to produce high-quality sequences. This 254

is true even for the training objective of finding 255

high-probability sequences, but also for alternative 256
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objectives like finding correct programs or good257

prompts.258

I propose a novel, simple tree search algorithm259

called High Probability Branching (HPB) in order260

to systematically explore the model output space to261

find good generated sequences. The parameters for262

HPB are a token quota Q, which is decremented263

whenever a node is explored, and an exploration264

distance L, as well as a termination condition for265

generated sequences. Define the frontier of the266

output space to be the set of unexplored children267

of explored nodes. Initially define to be in the268

frontier the root node, corresponding to the first269

token prediction with only the prompt as the input.270

HPB consists of repeatedly branching from the271

highest probability node in the frontier. After iden-272

tifying the highest-probability frontier node, greed-273

ily explore vertically down the tree by repeatedly274

computing highest-probability children, stopping275

after a maximum of L children have been explored276

or if a termination condition for the sequence is277

reached. Since children are always lower proba-278

bility than their ancestors, the highest-probability279

node in the frontier can often be determined before280

the previous branch ends, allowing many branches281

to be simultaneously explored in parallel. Branch-282

ing is suspended when running all active branches283

to the exploration distance may exceed the token284

quota. Once the token quota is exhausted, the285

search ends and all terminated sequences are re-286

turned.287

HPB can be seen as a generalized beam search.288

Setting the exploration distance to 1 results in com-289

puting the node with highest probability at each290

step. This guarantees that every terminated se-291

quence is output in order of cumulative probability.292

If a termination condition of a generation length293

H is set, this replicates the result of a beam search294

with horizon H . But similarly to beam search, this295

becomes infeasible when H becomes larger as the296

computational requirements grow exponentially.297

In Table 1 and Table 2, I compare the pass@k ac-298

curacy of High Probability Branching with ordi-299

nary sampling on the abridged and full HumanEval300

dataset. The HPB parameters used throughout the301

work are Q = 10000 and L = 500. For code302

generation, sequence termination is determined as303

soon as the indentation block for the function im-304

plementation is broken.305

1Whether any correct generations were found among all
generated sequences for each problem

This evidence suggests that High Probability 306

Branching is superior to naive sampling for code 307

generation in several respects, as it finds more cor- 308

rect solutions at higher accuracy using fewer for- 309

ward passes. As noted by OpenAI, tuning the tem- 310

perature to 0.2 significantly increases the pass@1 311

accuracy on HumanEval, but with the tradeoff of 312

degrading performance on pass@10 and pass@100 313

(Chen et al., 2021). Highest Probability Branching, 314

in contrast, does not exhibit such tradeoffs as it 315

increases performance against a sampling baseline 316

for the same temperature across all metrics. It is 317

also not mutually exclusive with tuning the model 318

temperature for the specific dataset and metric. 319

3.4 Evaluation Metrics 320

I use the pass@k metric for evaluating code gener- 321

ation models (Chen et al., 2021), representing the 322

estimated probability a correct solution is found 323

within k samples. As HPB outputs sequences in 324

a deterministic order, this models the distribution 325

of correct sequences during HPB exploration as 326

uniform. 327

In addition, I propose pass@kt, the estimated 328

probability a correct solution is found within k for- 329

ward passes, or k new token generations. Pass@kt 330

better captures the cost-efficiency of using a tree 331

search algorithm to generate completions, while 332

functioning similarly to pass@k for independent 333

sampling algorithms with the added benefit of ac- 334

counting for different solution lengths between 335

problems. 336

In Table 3, I compare the pass@kt performance 337

of HPB and ordinary sampling on the abridged 338

dataset. High Probability Branching is able to find 339

twice as many correct generations on average in the 340

same token quota compared to ordinary sampling. 341

4 Implementation and Results 342

4.1 Initialization 343

As an input to the prompt generation framework, 344

I select every fifth problem from the abridged Hu- 345

manEval dataset, for a total of 8 problems and 346

associated test cases. This splits the 37 problems 347

into an input set and a test set. The 8-problem input 348

set and its test cases are provided to the framework 349

and are used to generate prompts. The 29-problem 350

test set is used afterwards to evaluate the perfor- 351

mance of the prompts and judge the efficacy of the 352

automated prompt generation framework. 353
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Table 1: Sampling Strategy Performance, Full Dataset (N = 164)

Generation Strategy pass@any1 pass@1 pass@10 pass@100
HPB, T=1, Answer Key prompt 0.2988 0.0639 0.1605 0.2734
Sampling, T=1, Answer Key prompt 0.2927 0.0427 0.1375 0.2477
Sampling, T=1, No prompt 0.2805 0.0401 0.1270 0.2300
Sampling, T=0.2, No prompt 0.2561 0.1030 0.1533 0.2200

Table 2: Sampling Strategy Performance, Abridged Dataset (N = 29)

Generation Strategy pass@any pass@1 pass@10 pass@100
HPB, T=1, Answer Key prompt 1.0000 0.2703 0.6813 0.9484
Sampling, T=1, Answer Key prompt 1.0000 0.1834 0.5877 0.9329
Sampling, T=1, No prompt 1.0000 0.1772 0.5502 0.8921
Sampling, T=0.2, No prompt 0.7586 0.4272 0.6096 0.7192

4.2 Candidate Generation354

I use High Probability Branching with Q = 10000355

and L = 500 to generate candidate prompts for356

each of the 8 problems. In this work, candidate357

prompts will be referred to by a two number code358

p-n for the nth generated sequence from the pth359

HumanEval problem.360

4.3 Candidate Selection361

I discard all generated solutions that are not func-362

tionally correct by testing them against the known363

test cases. I select up to 8 possible candidates364

from the set of correct solutions generated for each365

problem by simply choosing the first four correct366

sequences to be produced during the generation367

process.368

In order to select candidates from the problems369

with more than eight correct generated sequences,370

I originally considered choosing the ones with the371

highest mean log probability per token. OpenAI372

found that mean log probability, but not sum log373

probability, is modestly associated with functional374

correctness(Chen et al., 2021). However, selecting375

based on this criteria results in very semantically376

similar candidates, which for example differ only377

in the name of a variable or in the number of line378

breaks.379

Instead choosing the first four correct sequences380

to be produced during the generation process re-381

sults in a more diverse set of candidates, because382

sequences which terminate early also are likely to383

have branched early.384

Table 4, shows each of the eight problems in385

the input set, how many sequences generated for386

each, the number of sequences that were correct,387

and finally the number of candidates selected for388

evaluation. 389

4.4 Prompt Evaluation 390

To evaluate the performance of the candidate 391

prompts, I use them as one-shot prompts and per- 392

form HPB to generate solutions to the seven other 393

problems in the known input data. For each of 394

the prompts and problems, I compute five perfor- 395

mance metrics: pass@1, pass@10, pass@100t, and 396

pass@1000t. I also treat the canonical solution for 397

problem 58 in HumanEval as a candidate prompt 398

as if it were generated by the model, and evaluate 399

it the same way. 400

Each prompt has performance metrics on one 401

of the prompts missing, since a prompt cannot be 402

fairly evaluated on the problem it was derived from. 403

Therefore for each problem I use the mean perfor- 404

mance metrics over all prompts which could be 405

evaluated on that problem as normalized placehold- 406

ers for the prompts that were derived from that 407

problem. Prompts are ranked for selecteion by 408

pass@1. 409

Table 5 shows the pass@k and pass@kt results 410

for the two best and two worst-performing prompts 411

as well the human-written canonical prompt. 58- 412

13, 58-15, and 28-1 are the three prompts with 413

highest pass@1. From these 58-13 and 28-1 are 414

selected as the final output of the prompt gener- 415

ation framework, found by searching the output 416

space of eight original sample problems for high- 417

performance prompts. 418

4.5 Validation of Generated Prompts 419

In order to validate the performance of the frame- 420

work, I test 58-13 as a one-shot prompt, 28-1 and 421

58-13 together as a two-shot prompt, as well as 422
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Table 3: Token Efficiency, Abridged Dataset (N = 37)

Generation Strategy pass@1 pass@100t pass@1000t Correct Samples Tokens Generated
HPB 0.2703 0.4457 0.7958 73.6897 9332.6897
Sampling 0.1834 0.3043 0.6717 36.6897 10329.2069

Table 4: Prompt Generation and Selection

Problem Tokens Generated Samples Generated Correct Samples Selected Candidates
0 10036 125 3 3
8 10004 191 86 8
18 10029 193 4 4
28 10030 561 405 8
35 10022 254 159 8
51 10034 186 4 4
58 10032 167 94 8
152 10057 166 6 6

the human-written canonical solution to 58 as a423

one-shot prompt. I also test the worst prompt 152-424

151 identified by the framework. I compare all of425

these against the previously evaluated no-prompt426

baseline. Table 6 shows the pass@k and pass@kt427

performance of these prompting options on the 29428

remaining problems in the abridged dataset, again429

using HPB with Q = 10000 and L = 500.430

4.6 Results and Discussion431

The accuracy data in Table 6 supports the ef-432

fectiveness of the framework at generating good433

prompts. Prompts identified by the framework as434

good through validation on the limited input data435

are more effective when tested on held-out data.436

Additionally, the prompt identified as bad by the437

framework harms performance when used with the438

held-out data, despite being a correct solution. The439

framework’s selection process is therefore able to440

measure the intrinsic quality of prompts.441

The best one-shot prompt 58-13 improves442

pass@1 performance over baseline from 27% to443

30%, while the human-written canonical solution444

is much less effective at 27.5%. This represents a445

ten percent improvement in pass@1 performance,446

six times that of the human-written prompt.447

For pass@10 and pass@100, the benefits of448

few-shot prompting in code generation are not449

demonstrated, as the performance of not using a450

prompt is competitive with or superior to using var-451

ious prompts. This can be explained by few-shot452

prompting decreasing the diversity of generation,453

similarly to reducing the temperature. Addition-454

ally, during the selection phase of the experiment,455

prompts were chosen based on their pass@1 per- 456

formance, not their pass@10 or pass@100 perfor- 457

mance. Pass@10 and pass@100 performance is 458

slightly improved by combining high performing 459

prompts 28-1 and 58-13 at only a marginal pass@1 460

performance tradeoff. This is explained by the 461

combined prompt recovering some diversity in se- 462

quence generation, which indicates a possible ben- 463

efit of prompting using multiple examples. 464

Finally, for pass@100t and pass@1000t, the 465

two-shot combined prompt outperforms all other 466

prompts and no prompt. This means that the com- 467

bined prompt results in the most token-efficient 468

discovery of correct programs on the dataset. This 469

may be because the selected prompts represent 470

strategies that result in shorter programs, mean- 471

ing fewer forward passes are spent exploring long, 472

incorrect solutions. For many problems, the model 473

attempting a short solution may also more likely 474

result in a correct program than a long solution, 475

because there are less opportunities for the model 476

to make mistakes. 477

Inspecting the highest-performing prompts de- 478

rived from problem 58 reveals that the two are 479

closely related. As shown in Figure 2, 58-15 is 480

a "clean" solution that solves the problem in one 481

line with set operations and the sorted() function, 482

while 58-13 is a "dirty" solution that is identical to 483

58-15 except that it wraps the return value in a list 484

comprehension. Since sorted() already returns a 485

list, the list comprehension simply iterates through 486

the answer and copies it to a new list, which is use- 487

less from an algorithmic standpoint. Most human 488

programmers would probably prefer to remove the 489
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Table 5: Prompt Evaluation: HPB Prompt Performance on Input Set (N=8, selected)

Prompt pass@1 pass@10 pass@100 pass@100t pass@1000t
58-13 0.3578 0.7538 0.9928 0.4576 0.8617
58-15 0.3557 0.7226 0.9982 0.4435 0.8442
58 canonical 0.3288 0.7084 0.9988 0.4169 0.7849
152-84 0.2704 0.7398 0.9943 0.4499 0.8557
152-151 0.2008 0.6548 0.9783 0.4323 0.8385

Table 6: HPB Prompt Performance, Abridged Dataset (N = 29)

Prompt pass@1 pass@10 pass@100 pass@100t pass@1000t
No prompt 0.2703 0.6813 0.9484 0.4457 0.7958
28-1+58-13 (two-shot) 0.2966 0.6839 0.8920 0.4958 0.8101
58-13 0.2981 0.6643 0.8636 0.4928 0.7874
58-15 0.2794 0.6590 0.8670 0.4852 0.7831
58 canonical 0.2755 0.6724 0.8714 0.4656 0.7785
152-151 0.2326 0.5805 0.8098 0.4656 0.7316

unnecessary list comprehension, because it makes490

the code less efficient and adds clutter. A huma491

prompt designer might reason that a prompt with492

an extraneous list comprehension provides a con-493

text indicative of a low-skill programmer, and for494

that reason expect the prompt to underperform the495

"clean" version due to promoting harmful behav-496

iors.497

The prompt generation framework selects the498

"dirty" solution as the preferred prompt, in defiance499

of human intuition. In order to judge whether or500

not this is an erroneous selection brought about by501

variance or bias in the evaluation process, I validate502

both 58-13 and 58-15 as prompts against the 29-503

problem test set. Indeed, the dirty prompt continues504

to significantly outperform the clean prompt on505

the larger test set, which is strong evidence the506

selection was not erroneous and the dirty solution507

is truly a better prompt for code generation with508

GPT-J.509

One possible explanation for this counterintu-510

itive result it might be a good strategy to begin511

with a list comprehension when a output list is ex-512

pected, even if it is inapplicable in this particular513

case. The branching point between the two prompts514

occurs directly after the " return" token, where515

the clean solution emits " sorted" and the dirty516

solution emits " [". Emitting " sorted" is cor-517

rect because the sorted() function returns a list518

and can be used to solve the problem. Emitting519

" [" on the other hand guarantees the output will520

eventually be a list, which can be seen as a small521

step towards solving the problem. Entering a list522

comprehension environment when trying to return 523

a list is at worst harmless, and allows for useful 524

strategies such as converting a non-list iterable to 525

a list. Therefore, promoting more use of list com- 526

prehensions, even when unnecessary, can be seen 527

as encouraging a conservative strategy for solving 528

list manipulation problems by taking a small step 529

while leaving options open. This strategy might 530

improve the likelihood of correctness in the general 531

case, while possibly being difficult for humans to 532

think of. 533

4.7 Time Complexity and Effects of Input Size 534

The time complexity of the prompt generation pro- 535

cedure is O(KQN2), where K is the number of 536

prompts per input problem, Q is the token quota 537

when measuring prompt accuracy during selection, 538

and N is the number of input problems. Increasing 539

K widens the candidate pool, making it more likely 540

a good prompt will be proposed, while increasing 541

Q increases the precision of the prompt quality es- 542

timate during selection, making it more likely the 543

best prompt will actually be selected. However, 544

it is less clear what effect N has, since it charac- 545

terizes both how well the input set represents the 546

problem domain, as well as the number of possible 547

starting points for prompts. 548

In order to investigate the effect of the input 549

set size N on the generated prompt, I perform an 550

input ablation analysis by considering what prompt 551

would have been chosen as the best prompt during 552

the selection phase for smaller values of N . To 553

do this, I run the selection phase on all possible 554
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def common(l1: list, l2: list):
"""Return sorted unique common elements for two

lists.↪→
>>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1,

5, 9, 653, 121])↪→
[1, 5, 653]
>>> common([5, 3, 2, 8], [3, 2])
[2, 3]

"""
return [i for i in sorted(set(l1) & set(l2))]

def common(l1: list, l2: list):
"""Return sorted unique common elements for two

lists.↪→
>>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1,

5, 9, 653, 121])↪→
[1, 5, 653]
>>> common([5, 3, 2, 8], [3, 2])
[2, 3]

"""
return sorted(set(l1) & set(l2))

Figure 2: Prompt 58-13 (left) and Prompt 58-15 (right).

Figure 3: Distribution of estimated performance of se-
lected prompt with ablated inputs

subsets of the input set, where each subset of a555

fixed N is considered equally likely. It is then556

possible to observe the rate at which each prompt557

is ranked as the best one for each value of N . In558

Figure 3, the data is plotted to show the range of559

selected prompt quality for each value of N , using560

the pass@1 quality estimation from the N = 8561

selection phase, including the corresponding figure562

when no prompt is used (N = 0).563

The ablation data supports the coherency of the564

prompt selection process. As N increases, the prob-565

ability of selecting the best prompt 58-13 steadily566

increases, as does the probability of selecting the567

second-best prompt. However, this also means the568

quality of prompt selection may depend strongly on569

N . Even reducing the input set by just one problem570

to 7, there is a 1/4 chance of erroneously selecting571

58-13 over 58-15, despite the robust 2% perfor-572

mance gap measured on the 29-problem dataset.573

An input set size of three or less incurs the risk574

of selecting a prompt which harms performance575

compared to no prompt. When N is lower the576

chance of problem 58 not being included at all577

increases, meaning the selected prompt must be 578

derived from a problem less likely to produce good 579

prompts. This implies that better prompts may yet 580

still be found if the input size were larger than 8, 581

which encourages future improvements in scaling 582

prompt selection to higher input sizes if input data 583

is available. 584

If it was assumed more known data was avail- 585

able, it would be beneficial to efficiently use that 586

data to find more optimal prompts, but doing so 587

naively may become infeasible at large N . One pos- 588

sible improvement may be to dynamically adjust Q 589

during prompt evaluation in order to allocate more 590

computational time to measurements that provide 591

more information. For example, the system could 592

track as a prior the intrinsic difficulty of a problem 593

based on achieved performance, and if a problem 594

is observed to be so difficult all prompts tend to 595

have near-zero performance, computation could be 596

reallocated to problems with more differentiation 597

in prompting performance instead. 598

5 Conclusion 599

This paper proposes an automated prompt genera- 600

tion framework to automatically produce few shot 601

prompts for large language models by sampling, 602

evaluating, and selecting outputs from the models 603

themselves. A novel tree-based algorithm, High 604

Probability Branching, is devised to increase effi- 605

ciency and accuracy of sampling candidate prompts 606

from the models. The framework is tested by ap- 607

plying it to create prompts for python code gen- 608

eration. The prompts automatically produced by 609

the framework are found to produce a ten percent 610

performance improvement in generating correct 611

Python code solutions to programming problems in 612

the HumanEval problem set. Furthermore, gener- 613

ated prompts perform significantly better than the 614

human-written solution used as a prompt. 615
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A Limitations666

This study has some limitations. First, the scope667

of the experiments were limited. The model GPT-J668

was used with the dataset HumanEval. GPT-J is669

a relatively small model. Additionally, the dataset670

was abridged to match the capabilities of the model. 671

Moreover, the result was obtained using the par- 672

ticular HBP parameters Q = 10000 and L = 500. 673

Therefore, the experimental results should be con- 674

sidered preliminary. Further experimentation with 675

larger models, unabridged datasets, and other do- 676

mains is desirable. 677

Second, the measured prompt performance in 678

this study may be different from the benefit for a 679

user using generated prompts. The metrics mea- 680

sured were pass@k and a similar metric pass@kt 681

using the standard estimator proposed in (Chen 682

et al., 2021) and HPB with parameters Q = 10000 683

and L = 500 as a sampling method. However, the 684

result obtained by a user depends not only on the 685

prompts but also on how the prompts are used. A 686

user of a prompt may generate only a few samples 687

using naive sampling or a lower token quota with 688

HPB, obtaining different results. 689

B Risks 690

Large language models may be misaligned to hu- 691

man intentions, so there is a risk of producing bi- 692

ased, incorrect, or dangerous outputs, and in the 693

context of code generation they may produce bi- 694

ased, incorrect, or dangerous code. Because the 695

proposed automated prompt generation procedure 696

uses model outputs to generate prompts, generated 697

prompts and outputs derived from them are also 698

subject to these risks. At present, human review of 699

model-generated code is necessary before use in 700

real applications. 701
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