Automated Few-Shot Prompt Generation For and From Large Language
Models

Anonymous ACL submission

Abstract

Few-shot prompts are difficult for humans to
construct, but can be critical for the perfor-
mance of large language models on down-
stream tasks. I propose a framework of au-
tomatically generating few-shot prompts by se-
lecting high-quality outputs sampled from the
model itself. I apply it to code generation. In
testing the framework, I use High Probabil-
ity Branching, a novel tree-based systematic
search, demonstrated to outperform conven-
tional sampling in accuracy and efficiency. I
evaluate the performance of the framework by
applying it to the GPT-J model with a subset
of the HumanEval dataset. The prompt gener-
ated by the framework achieves a ten percent
relative improvement over model performance
with no prompt; the improvement is six times
the improvement from the human prompt.

1 Introduction

Few-shot prompting is a common method of pro-
viding context to guide large language models
(LLMs) to solve problems. Through proper prompt-
ing, language models become capable of in-context
learning (Dong et al., 2022), gaining the ability to
solve complex, multi-step problems (Nye et al.,
2021) (Wei et al., 2023). However, it is difficult for
humans to create good few-shot prompts because
humans often cannot accurately understand or pre-
dict the behavior of language models when solving
problems.

Automated generation of discrete and continu-
ous prompts has been studied in (Shin et al., 2020)
(Liu et al., 2021) for knowledge retrieval, but these
methods do not scale well to generating long few-
shot prompts which demonstrate multi-step strate-
gies for solving complex problems. This is because
these prompt generation methods do not involve a
system with semantic understanding of the prob-
lems themselves, and thus are unlikely to imple-
ment problem-specific strategies. This problem

can be avoided by utilizing the output of LLMs,
which may include a semantic understanding of the
problem, to generate prompts.

Auto-CoT (Zhang et al., 2023) composes few-
shot prompts using zero-shot chain-of-thought
model question/output pairs as examples. These
prompts are demonstrated to be competitive with
human-designed few-shot prompts. However,
Auto-CoT does not use a measurement of prompt
quality or even example correctness in selecting
generated examples. As a result, Auto-CoT de-
pends on the particular behavior of the language
model in the chain of thought setting, and may not
generalize to less powerful models or to domains
for which chain of thought is not directly applica-
ble, such as code generation. This may be improved
by actively selecting examples that work better for
the specific domain by measuring correctness and
prompting performance.

I propose an automated framework to generate
few-shot prompts. This framework uses the pre-
trained large language models themselves to gener-
ate few-shot prompt candidates and then identifies
and selects effective prompts from these candidates.
Candidates are generated by searching the space of
token sequences generated by the model for those
sequences which lead to correct answers for a sub-
set of input problems. Then, good prompts are
identified by validating their effectiveness on the
other problems from the input.

In this paper, I apply this framework to code gen-
eration. Here, the objective is to search for correct
output programs which improve code generation
performance when used as prompts. Prompting
the model with well-written code by humans does
not necessarily help the model solve new problems,
because large language models interact with code
differently from how humans programmers do. In
fact, the best few-shot prompts may be unintuitive
to humans, and would thus be difficult for humans
to compose. Therefore, automated generation of

few-shot prompts not only can reduce need for hu-
man labor, but may also produce better prompts
than humans can.

In the rest of the paper, I first briefly formulate
the problem of prompt generation, casting it as a
tree-search problem. I then introduce a five-step
automated prompt generation procedure. Next I
describe the experimental methodology used to im-
plement and test the framework as applied to code
generation, utilizing High-Probability Branching
(HPB) as a systematic tree-search algorithm. Fi-
nally, I discuss the experimental results.

2 Problem Formulation

2.1 Prompting

Autoregressive large language models together
with a sequence sampling algorithm take a tok-
enized input query (), and output a probability dis-
tribution over generated sequences A. Suppose that
there is a dataset of questions {¢; } and there exists
some measure for whether a model output A con-
stitutes an accurate answer to a particular question
q;. A prompt is a transformation ¢; — @; such that
when (); is given to the language model, results
in an A; that more accurately answers ¢; . As a
simplification, assume input query Q; = pl|g; is
simply the concatenation of a prefix p and the ques-
tion itself ¢; where p is static and do not depend
on g; . For human-designed prompts, p often takes
the form of instructions, or few-shot examples. It
is not necessary in this context for p to generalize
to problems outside the domain of {¢}, and indeed
it is difficult to imagine fully general instructions
or examples for problem-solving across arbitrary
domains.

The prompt generation problem is then to find
better performing prompts, that is to optimize

1
{4}

Popt = argmax
peP

{ai}

Since the space of all possible prompts P is huge,
finding the optimal prompt cannot be efficiently
computed and heuristic methods must be used. In
human prompt design, humans rely on their own in-
tuitions of large language model behavior to choose
p. In this paper I propose systematically sampling
from model outputs to obtain a candidate subset of
P corresponding to few-shot prompts, and select-
ing the best prompt within that subset.

Z Correctness,, (M (p||g;))-

2.2 Tree-Based Sampling

Mathematically, language models assign a proba-
bility to every single possible output sequence of
tokens as a factorized product of token probabilities.
The entire space of possible generated sequences
can be represented as a tree, where each node repre-
sents a generated token and descendants represent
all the possible tokens that could follow. Running
the language model can compute the descendants
of a particular node. So for the current node and its
ancestors z(-9) = (M@ 2 | the language
model outputs a probability distribution over all
possible next tokens in the vocabulary V , each
constituting a child node x,(jﬂ) for the kth most
probable next token. We can call this exploring the
node. Then we have

Vi

ZP(@,SH)’%(LJ)) -1
k=1

Sampling sequences from the large language
model can be formulated as a tree search prob-
lem, where sampling processes, possibly acting in
parallel, compute nodes of the tree to find complete
sequences which end in terminal nodes. A terminal
node might be one that corresponds to an end-of-
sequence token, is at a certain depth, or results in a
sequence that satisfies a termination condition.

Later in this work, I introduce High Probability
Branching, a novel tree-search algorithm.

2.3 Framework Overview

At a high level, the automated prompt generation
framework to produce few-shot prompts consists
of the following steps:

1. Initial Input Data: As input, take a small
subset of sample problems representative of
the dataset, along with an associated validator.
The validator is able to measure the correct-
ness of solutions to the sample problems.

2. Generation Phase: Use the language model
to generate candidate solutions for the sam-
ple problems using some generative sampling
strategy.

3. Selection Phase: Validate the generated can-
didate solutions and select high quality ones
for evaluation as prompts according to some
heuristics.

4. Evaluation Phase: Evaluate the performance
of selected candidates as prompts by testing
them on the sample problems. Select the
highest-performing candidates as the output
prompts of the system.

3 Experimental Methodology

3.1 Model, Hardware, and Dataset

The model used is GPT-J with 6B parameters
(Wang and Komatsuzaki, 2021), released under the
Apache License 2.0. Experiments were run using
custom input parallelism code across eight 24GB
NVIDIA GeForce 3090 GPUs. About 5,000,000
forward passes were performed in total.

The dataset used is the HumanEval dataset (Chen
et al., 2021) proposed by OpenAl and released
under the MIT license. HumanEval is a set of
164 Python programming problems. Each problem
consists of a Python function stub and docstring
specifying the expected behavior of the function
in natural language, test cases used to evaluate the
correctness of proposed implementations, and a
human-written canonical reference implementation.
Solutions are evaluated on functional correctness,
defined by whether a solution passes all provided
test cases corresponding to the problem.

I replicate OpenAlI’s statistics, finding that GPT-
J solves HumanEval problems correctly at a rate of
4% at temperature 1 and 10% at temperature 0.2,
averaged over 200 samples per question. GPT-J
may not be able to comprehend some problems, or
may not have the algorithmic capabilities to gener-
ate valid solutions even with many samples. This
implies that the HumanEval dataset is difficult over-
all with respect to the capabilities of GPT-J, with
around two thirds of the problems being apparently
solvable.

To produce a dataset with difficulty more in line
with GPT-J’s capabilities, I abridge the dataset by
considering only problems where both naive sam-
pling and High Probability Branching (discussed
later) manage to discover at least one correct so-
lution. This results in an abridged dataset of 37
problems, from which 8 problems are further re-
moved to form an input set, leaving a 29 problem
evaluation abridged dataset.

Figure 1 shows the pass@1 accuracy of GPT-J of
each problem in the abridged HumanEval dataset
at temperature 1 and 0.2, sorted by 7" = 1 perfor-
mance. Problems that are not shown have basically
zero pass@1 accuracy. Abridging the dataset al-

GPT-J Perf., Abridged HumanEval (N = 37, 200 samples), Sorted

104 —e— T=1.0
T=0.2

pass@1 accuracy
o o
o -]
) |

o
IS
L

o
¥
N

pPpe”,
00] Seeesentetensly

[I)r;:l;\elrr:
Figure 1: GPT-J pass@1 accuracy, abridged dataset

lows for a much more reasonable range of problem
difficulty. OpenAl’s optimal temperature selection
of 0.2 is shown to result in performance improve-
ments that are often significant but inconsistent
across problems. For the remainder of the work,
temperature 1 is used because tuning the tempera-
ture for specific datasets is outside the scope of the
research.

In order to significantly increase the efficiency
of Python code generation, whenever a whitespace
token is appended to a sequence more whitespace
is added in order to reach the next indentation level
if syntactically necessary. Experimentation shows
that GPT-J almost never makes errors by emitting
an invalid amount of whitespace, so this has mini-
mal effect on generated sequences.

3.2 Top-level Prompt

I introduce the top-level prompt "Answer
Key:\n\n" before the problem specification
and any few-shot prompts. Experimentally, this
appears to slightly improve overall performance
across all metrics. This top-level prompt may
improve instrumental alignment and discourage
hallucination and calling functions defined in the
prompt, by indicating to the model that the code
ought to be correct and that the functions are
independent problems rather than components of a
larger program.

3.3 High Probability Branching

The best sequence generated from a large lan-
guage model cannot be solved for directly, and
therefore an appropriate sampling algorithm is nec-
essary to produce high-quality sequences. This
is true even for the training objective of finding
high-probability sequences, but also for alternative

objectives like finding correct programs or good
prompts.

I propose a novel, simple tree search algorithm
called High Probability Branching (HPB) in order
to systematically explore the model output space to
find good generated sequences. The parameters for
HPB are a token quota (), which is decremented
whenever a node is explored, and an exploration
distance L, as well as a termination condition for
generated sequences. Define the frontier of the
output space to be the set of unexplored children
of explored nodes. Initially define to be in the
frontier the root node, corresponding to the first
token prediction with only the prompt as the input.

HPB consists of repeatedly branching from the
highest probability node in the frontier. After iden-
tifying the highest-probability frontier node, greed-
ily explore vertically down the tree by repeatedly
computing highest-probability children, stopping
after a maximum of L children have been explored
or if a termination condition for the sequence is
reached. Since children are always lower proba-
bility than their ancestors, the highest-probability
node in the frontier can often be determined before
the previous branch ends, allowing many branches
to be simultaneously explored in parallel. Branch-
ing is suspended when running all active branches
to the exploration distance may exceed the token
quota. Once the token quota is exhausted, the
search ends and all terminated sequences are re-
turned.

HPB can be seen as a generalized beam search.
Setting the exploration distance to 1 results in com-
puting the node with highest probability at each
step. This guarantees that every terminated se-
quence is output in order of cumulative probability.
If a termination condition of a generation length
H is set, this replicates the result of a beam search
with horizon H. But similarly to beam search, this
becomes infeasible when H becomes larger as the
computational requirements grow exponentially.
In Table 1 and Table 2, I compare the pass@k ac-
curacy of High Probability Branching with ordi-
nary sampling on the abridged and full HumanEval
dataset. The HPB parameters used throughout the
work are ¢ = 10000 and L = 500. For code
generation, sequence termination is determined as
soon as the indentation block for the function im-
plementation is broken.

'Whether any correct generations were found among all
generated sequences for each problem

This evidence suggests that High Probability
Branching is superior to naive sampling for code
generation in several respects, as it finds more cor-
rect solutions at higher accuracy using fewer for-
ward passes. As noted by OpenAl, tuning the tem-
perature to 0.2 significantly increases the pass@1
accuracy on HumanEval, but with the tradeoff of
degrading performance on pass@ 10 and pass@ 100
(Chen et al., 2021). Highest Probability Branching,
in contrast, does not exhibit such tradeoffs as it
increases performance against a sampling baseline
for the same temperature across all metrics. It is
also not mutually exclusive with tuning the model
temperature for the specific dataset and metric.

3.4 Evaluation Metrics

I use the pass@k metric for evaluating code gener-
ation models (Chen et al., 2021), representing the
estimated probability a correct solution is found
within k£ samples. As HPB outputs sequences in
a deterministic order, this models the distribution
of correct sequences during HPB exploration as
uniform.

In addition, I propose pass@kt, the estimated
probability a correct solution is found within k for-
ward passes, or k new token generations. Pass @kt
better captures the cost-efficiency of using a tree
search algorithm to generate completions, while
functioning similarly to pass@k for independent
sampling algorithms with the added benefit of ac-
counting for different solution lengths between
problems.

In Table 3, I compare the pass @kt performance
of HPB and ordinary sampling on the abridged
dataset. High Probability Branching is able to find
twice as many correct generations on average in the
same token quota compared to ordinary sampling.

4 Implementation and Results

4.1 Initialization

As an input to the prompt generation framework,
I select every fifth problem from the abridged Hu-
manEval dataset, for a total of 8 problems and
associated test cases. This splits the 37 problems
into an input set and a test set. The 8-problem input
set and its test cases are provided to the framework
and are used to generate prompts. The 29-problem
test set is used afterwards to evaluate the perfor-
mance of the prompts and judge the efficacy of the
automated prompt generation framework.

Table 1: Sampling Strategy Performance, Full Dataset (N = 164)

Generation Strategy pass@any' pass@1 pass@10 pass@100
HPB, T=1, Answer Key prompt 0.2988 0.0639 0.1605 0.2734
Sampling, T=1, Answer Key prompt 0.2927 0.0427 0.1375 0.2477
Sampling, T=1, No prompt 0.2805 0.0401 0.1270 0.2300
Sampling, T=0.2, No prompt 0.2561 0.1030 0.1533 0.2200
Table 2: Sampling Strategy Performance, Abridged Dataset (N = 29)
Generation Strategy pass@any pass@1 pass@10 pass@100
HPB, T=1, Answer Key prompt 1.0000 0.2703 0.6813 0.9484
Sampling, T=1, Answer Key prompt 1.0000 0.1834 0.5877 0.9329
Sampling, T=1, No prompt 1.0000 0.1772 0.5502 0.8921
Sampling, T=0.2, No prompt 0.7586 0.4272 0.6096 0.7192
4.2 Candidate Generation evaluation.

I use High Probability Branching with () = 10000
and L = 500 to generate candidate prompts for
each of the 8 problems. In this work, candidate
prompts will be referred to by a two number code
p-n for the nth generated sequence from the pth
HumanEval problem.

4.3 Candidate Selection

I discard all generated solutions that are not func-
tionally correct by testing them against the known
test cases. I select up to 8 possible candidates
from the set of correct solutions generated for each
problem by simply choosing the first four correct
sequences to be produced during the generation
process.

In order to select candidates from the problems
with more than eight correct generated sequences,
I originally considered choosing the ones with the
highest mean log probability per token. OpenAl
found that mean log probability, but not sum log
probability, is modestly associated with functional
correctness(Chen et al., 2021). However, selecting
based on this criteria results in very semantically
similar candidates, which for example differ only
in the name of a variable or in the number of line
breaks.

Instead choosing the first four correct sequences
to be produced during the generation process re-
sults in a more diverse set of candidates, because
sequences which terminate early also are likely to
have branched early.

Table 4, shows each of the eight problems in
the input set, how many sequences generated for
each, the number of sequences that were correct,
and finally the number of candidates selected for

4.4 Prompt Evaluation

To evaluate the performance of the candidate
prompts, I use them as one-shot prompts and per-
form HPB to generate solutions to the seven other
problems in the known input data. For each of
the prompts and problems, I compute five perfor-
mance metrics: pass@1, pass@10, pass@100t, and
pass@1000t. I also treat the canonical solution for
problem 58 in HumanEval as a candidate prompt
as if it were generated by the model, and evaluate
it the same way.

Each prompt has performance metrics on one
of the prompts missing, since a prompt cannot be
fairly evaluated on the problem it was derived from.
Therefore for each problem I use the mean perfor-
mance metrics over all prompts which could be
evaluated on that problem as normalized placehold-
ers for the prompts that were derived from that
problem. Prompts are ranked for selecteion by
pass@1.

Table 5 shows the pass@k and pass @kt results
for the two best and two worst-performing prompts
as well the human-written canonical prompt. 58-
13, 58-15, and 28-1 are the three prompts with
highest pass@1. From these 58-13 and 28-1 are
selected as the final output of the prompt gener-
ation framework, found by searching the output
space of eight original sample problems for high-
performance prompts.

4.5 Validation of Generated Prompts

In order to validate the performance of the frame-
work, I test 58-13 as a one-shot prompt, 28-1 and
58-13 together as a two-shot prompt, as well as

Table 3: Token Efficiency, Abridged Dataset (N = 37)

Generation Strategy pass@1 pass@100t pass@1000t Correct Samples Tokens Generated
HPB 0.2703 0.4457 0.7958 73.6897 9332.6897
Sampling 0.1834 0.3043 0.6717 36.6897 10329.2069
Table 4: Prompt Generation and Selection

Problem Tokens Generated Samples Generated Correct Samples Selected Candidates

0 10036 125 3 3

8 10004 191 86 8

18 10029 193 4 4

28 10030 561 405 8

35 10022 254 159 8

51 10034 186 4 4

58 10032 167 94 8

152 10057 166 6 6

the human-written canonical solution to 58 as a
one-shot prompt. I also test the worst prompt 152-
151 identified by the framework. I compare all of
these against the previously evaluated no-prompt
baseline. Table 6 shows the pass@k and pass @kt
performance of these prompting options on the 29
remaining problems in the abridged dataset, again
using HPB with) = 10000 and L = 500.

4.6 Results and Discussion

The accuracy data in Table 6 supports the ef-
fectiveness of the framework at generating good
prompts. Prompts identified by the framework as
good through validation on the limited input data
are more effective when tested on held-out data.
Additionally, the prompt identified as bad by the
framework harms performance when used with the
held-out data, despite being a correct solution. The
framework’s selection process is therefore able to
measure the intrinsic quality of prompts.

The best one-shot prompt 58-13 improves
pass@1 performance over baseline from 27% to
30%, while the human-written canonical solution
is much less effective at 27.5%. This represents a
ten percent improvement in pass@1 performance,
six times that of the human-written prompt.

For pass@10 and pass@100, the benefits of
few-shot prompting in code generation are not
demonstrated, as the performance of not using a
prompt is competitive with or superior to using var-
ious prompts. This can be explained by few-shot
prompting decreasing the diversity of generation,
similarly to reducing the temperature. Addition-
ally, during the selection phase of the experiment,

prompts were chosen based on their pass@]1 per-
formance, not their pass@ 10 or pass@ 100 perfor-
mance. Pass@10 and pass@100 performance is
slightly improved by combining high performing
prompts 28-1 and 58-13 at only a marginal pass@]1
performance tradeoff. This is explained by the
combined prompt recovering some diversity in se-
quence generation, which indicates a possible ben-
efit of prompting using multiple examples.

Finally, for pass@100t and pass@1000t, the
two-shot combined prompt outperforms all other
prompts and no prompt. This means that the com-
bined prompt results in the most token-efficient
discovery of correct programs on the dataset. This
may be because the selected prompts represent
strategies that result in shorter programs, mean-
ing fewer forward passes are spent exploring long,
incorrect solutions. For many problems, the model
attempting a short solution may also more likely
result in a correct program than a long solution,
because there are less opportunities for the model
to make mistakes.

Inspecting the highest-performing prompts de-
rived from problem 58 reveals that the two are
closely related. As shown in Figure 2, 58-15 is
a "clean" solution that solves the problem in one
line with set operations and the sorted() function,
while 58-13 is a "dirty" solution that is identical to
58-15 except that it wraps the return value in a list
comprehension. Since sorted() already returns a
list, the list comprehension simply iterates through
the answer and copies it to a new list, which is use-
less from an algorithmic standpoint. Most human
programmers would probably prefer to remove the

Table 5: Prompt Evaluation: HPB Prompt Performance on Input Set (N=8, selected)

Prompt pass@1 pass@10 pass@100 pass@100t pass@ 1000t
58-13 0.3578 0.7538 0.9928 0.4576 0.8617
58-15 0.3557 0.7226 0.9982 0.4435 0.8442
58 canonical 0.3288 0.7084 0.9988 0.4169 0.7849
152-84 0.2704 0.7398 0.9943 0.4499 0.8557
152-151 0.2008 0.6548 0.9783 0.4323 0.8385

Table 6: HPB Prompt Performance, Abridged Dataset (N = 29)

Prompt pass@1 pass@10 pass@100 pass@100t pass@ 1000t
No prompt 0.2703 0.6813 0.9484 0.4457 0.7958
28-1+58-13 (two-shot) 0.2966 0.6839 0.8920 0.4958 0.8101
58-13 0.2981 0.6643 0.8636 0.4928 0.7874
58-15 0.2794 0.6590 0.8670 0.4852 0.7831
58 canonical 0.2755 0.6724 0.8714 0.4656 0.7785
152-151 0.2326 0.5805 0.8098 0.4656 0.7316

unnecessary list comprehension, because it makes
the code less efficient and adds clutter. A huma
prompt designer might reason that a prompt with
an extraneous list comprehension provides a con-
text indicative of a low-skill programmer, and for
that reason expect the prompt to underperform the
"clean" version due to promoting harmful behav-
iors.

The prompt generation framework selects the
"dirty" solution as the preferred prompt, in defiance
of human intuition. In order to judge whether or
not this is an erroneous selection brought about by
variance or bias in the evaluation process, I validate
both 58-13 and 58-15 as prompts against the 29-
problem test set. Indeed, the dirty prompt continues
to significantly outperform the clean prompt on
the larger test set, which is strong evidence the
selection was not erroneous and the dirty solution
is truly a better prompt for code generation with
GPT-J.

One possible explanation for this counterintu-
itive result it might be a good strategy to begin
with a list comprehension when a output list is ex-
pected, even if it is inapplicable in this particular
case. The branching point between the two prompts
occurs directly after the " return” token, where
the clean solution emits " sorted” and the dirty
solution emits " ["”. Emitting " sorted” is cor-
rect because the sorted() function returns a list
and can be used to solve the problem. Emitting
" [" on the other hand guarantees the output will
eventually be a list, which can be seen as a small
step towards solving the problem. Entering a list

comprehension environment when trying to return
a list is at worst harmless, and allows for useful
strategies such as converting a non-list iterable to
a list. Therefore, promoting more use of list com-
prehensions, even when unnecessary, can be seen
as encouraging a conservative strategy for solving
list manipulation problems by taking a small step
while leaving options open. This strategy might
improve the likelihood of correctness in the general
case, while possibly being difficult for humans to
think of.

4.7 Time Complexity and Effects of Input Size

The time complexity of the prompt generation pro-
cedure is O(KQN?), where K is the number of
prompts per input problem, () is the token quota
when measuring prompt accuracy during selection,
and N is the number of input problems. Increasing
K widens the candidate pool, making it more likely
a good prompt will be proposed, while increasing
@ increases the precision of the prompt quality es-
timate during selection, making it more likely the
best prompt will actually be selected. However,
it is less clear what effect N has, since it charac-
terizes both how well the input set represents the
problem domain, as well as the number of possible
starting points for prompts.

In order to investigate the effect of the input
set size IV on the generated prompt, I perform an
input ablation analysis by considering what prompt
would have been chosen as the best prompt during
the selection phase for smaller values of N. To
do this, I run the selection phase on all possible

def common(l1: list, 12: list):

"""Return sorted unique common elements for two

— lists.

>>> common([1, 4, 3, 34, 653, 2, 5],
< 5,9, 653, 1211)

[1, 5, 653]

>>> common([5, 3, 2, 81, [3, 21)

[2, 3]

(5, 7, 1,

nnn

return [i for i in sorted(set(l1) & set(12))]

def common(1l1: list, 12: list):

"""Return sorted unique common elements for two
— lists.

>>> common([1, 4, 3, 34, 653, 2, 5],
< 5,9, 653, 1211)
[1, 5, 653]

>>> common([5, 3, 2, 81,
[2, 3]

(5, 7, 1,

[3, 21)

nnn

return sorted(set(11) & set(12))

Figure 2: Prompt 58-13 (left) and Prompt 58-15 (right).

Selection Phase Score Distribution of Selected Prompt under Input Ablation
0.36 4

e ¢ 3 tH
0.35 o 8 G
e & 13
¢ 033 © e °
go
&
. °
-
® 032 o N
@] °
a []

o
w
et

e
w
=]

o
N
©

Input Size (N)

Figure 3: Distribution of estimated performance of se-
lected prompt with ablated inputs

subsets of the input set, where each subset of a
fixed N is considered equally likely. It is then
possible to observe the rate at which each prompt
is ranked as the best one for each value of N. In
Figure 3, the data is plotted to show the range of
selected prompt quality for each value of /V, using
the pass@1 quality estimation from the N = 8
selection phase, including the corresponding figure
when no prompt is used (/N = 0).

The ablation data supports the coherency of the
prompt selection process. As NV increases, the prob-
ability of selecting the best prompt 58-13 steadily
increases, as does the probability of selecting the
second-best prompt. However, this also means the
quality of prompt selection may depend strongly on
N. Even reducing the input set by just one problem
to 7, there is a 1/4 chance of erroneously selecting
58-13 over 58-15, despite the robust 2% perfor-
mance gap measured on the 29-problem dataset.
An input set size of three or less incurs the risk
of selecting a prompt which harms performance
compared to no prompt. When N is lower the
chance of problem 58 not being included at all

increases, meaning the selected prompt must be
derived from a problem less likely to produce good
prompts. This implies that better prompts may yet
still be found if the input size were larger than 8,
which encourages future improvements in scaling
prompt selection to higher input sizes if input data
is available.

If it was assumed more known data was avail-
able, it would be beneficial to efficiently use that
data to find more optimal prompts, but doing so
naively may become infeasible at large /N. One pos-
sible improvement may be to dynamically adjust)
during prompt evaluation in order to allocate more
computational time to measurements that provide
more information. For example, the system could
track as a prior the intrinsic difficulty of a problem
based on achieved performance, and if a problem
is observed to be so difficult all prompts tend to
have near-zero performance, computation could be
reallocated to problems with more differentiation
in prompting performance instead.

5 Conclusion

This paper proposes an automated prompt genera-
tion framework to automatically produce few shot
prompts for large language models by sampling,
evaluating, and selecting outputs from the models
themselves. A novel tree-based algorithm, High
Probability Branching, is devised to increase effi-
ciency and accuracy of sampling candidate prompts
from the models. The framework is tested by ap-
plying it to create prompts for python code gen-
eration. The prompts automatically produced by
the framework are found to produce a ten percent
performance improvement in generating correct
Python code solutions to programming problems in
the HumanEval problem set. Furthermore, gener-
ated prompts perform significantly better than the
human-written solution used as a prompt.

References

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. ArXiv,
abs/2107.03374.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey on in-context learning.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. ArXiv, abs/2103.10385.

Maxwell Nye, Anders Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show your work: Scratchpads for interme-
diate computation with language models. ArXiv,
abs/2112.00114.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric
Wallace, and Sameer Singh. 2020. Eliciting knowl-
edge from language models using automatically gen-
erated prompts. In Conference on Empirical Methods
in Natural Language Processing.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

A Limitations

This study has some limitations. First, the scope
of the experiments were limited. The model GPT-J
was used with the dataset HumanEval. GPT-J is
a relatively small model. Additionally, the dataset

was abridged to match the capabilities of the model.
Moreover, the result was obtained using the par-
ticular HBP parameters () = 10000 and L = 500.
Therefore, the experimental results should be con-
sidered preliminary. Further experimentation with
larger models, unabridged datasets, and other do-
mains is desirable.

Second, the measured prompt performance in
this study may be different from the benefit for a
user using generated prompts. The metrics mea-
sured were pass@k and a similar metric pass @kt
using the standard estimator proposed in (Chen
et al., 2021) and HPB with parameters) = 10000
and L = 500 as a sampling method. However, the
result obtained by a user depends not only on the
prompts but also on how the prompts are used. A
user of a prompt may generate only a few samples
using naive sampling or a lower token quota with
HPB, obtaining different results.

B Risks

Large language models may be misaligned to hu-
man intentions, so there is a risk of producing bi-
ased, incorrect, or dangerous outputs, and in the
context of code generation they may produce bi-
ased, incorrect, or dangerous code. Because the
proposed automated prompt generation procedure
uses model outputs to generate prompts, generated
prompts and outputs derived from them are also
subject to these risks. At present, human review of
model-generated code is necessary before use in
real applications.

https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:255372865
https://api.semanticscholar.org/CorpusID:232269696
https://api.semanticscholar.org/CorpusID:232269696
https://api.semanticscholar.org/CorpusID:232269696
https://api.semanticscholar.org/CorpusID:244773644
https://api.semanticscholar.org/CorpusID:244773644
https://api.semanticscholar.org/CorpusID:244773644
https://api.semanticscholar.org/CorpusID:226222232
https://api.semanticscholar.org/CorpusID:226222232
https://api.semanticscholar.org/CorpusID:226222232
https://api.semanticscholar.org/CorpusID:226222232
https://api.semanticscholar.org/CorpusID:226222232
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr

	Introduction
	Problem Formulation
	Prompting
	Tree-Based Sampling
	Framework Overview

	Experimental Methodology
	Model, Hardware, and Dataset
	Top-level Prompt
	High Probability Branching
	Evaluation Metrics

	Implementation and Results
	Initialization
	Candidate Generation
	Candidate Selection
	Prompt Evaluation
	Validation of Generated Prompts
	Results and Discussion
	Time Complexity and Effects of Input Size

	Conclusion
	Limitations
	Risks

