
Performance-Adaptive Sampling Strategy
Towards Fast and Accurate Graph Neural Networks
Minji Yoon∗, Théophile Gervet∗, Baoxu Shi†, Sufeng Niu†, Qi He†, Jaewon Yang†

∗Carnegie Mellon University, Pittsburgh, PA, USA
†LinkedIn Corporation, Sunnyvale, CA, USA

{minjiy, tgervet}@andrew.cmu.edu, {dashi, sniu, qhe, jeyang}@linkedin.com

ABSTRACT

The main challenge of adapting Graph convolutional networks
(GCNs) to large-scale graphs is the scalability issue due to the
uncontrollable neighborhood expansion in the aggregation stage.
Several sampling algorithms have been proposed to limit the neigh-
borhood expansion. However, these algorithms focus onminimizing
the variance in sampling to approximate the original aggregation.
This leads to two critical problems: 1) low accuracy because the
sampling policy is agnostic to the performance of the target task,
and 2) vulnerability to noise or adversarial attacks on the graph.

In this paper, we propose a performance-adaptive sampling strat-
egy PASS that samples neighbors informative for a target task.
PASS optimizes directly towards task performance, as opposed to
variance reduction. PASS trains a sampling policy by propagating
gradients of the task performance loss through GCNs and the non-
differentiable sampling operation. We dissect the back-propagation
process and analyze how PASS learns from the gradients which
neighbors are informative and assigned high sampling probabilities.
In our extensive experiments, PASS outperforms state-of-the-art
sampling methods by up to 10% accuracy on public benchmarks
and up to 53% accuracy in the presence of adversarial attacks.

CCS CONCEPTS

• Information systems → Data mining.

KEYWORDS

Graph Neural Networks; Sampling policy

ACM Reference Format:

Minji Yoon[1], Théophile Gervet[1], Baoxu Shi[2], SufengNiu[2], Qi He[2], Jae-
won Yang[2] . 2021. Performance-Adaptive Sampling Strategy Towards Fast
and Accurate Graph Neural Networks. In Proceedings of the 27th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’21),

August 14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3447548.3467284

1 INTRODUCTION

Graph convolutional networks (GCN) [12] have garnered consider-
able attention as a powerful deep learning tool for representation
learning of graph data [2, 19]. For instance, GCNs demonstrate

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD ’21, August 14–18, 2021, Virtual Event, Singapore

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8332-5/21/08.
https://doi.org/10.1145/3447548.3467284

state-of-the-art performance on node classification [5], link predic-
tion [16], and graph property prediction tasks [7]. Motivated by
convolutional neural networks, GCNs aggregate information from
a node’s neighbors analogously to how convolution filters process
text or image data [9, 13].

The main challenge of adapting GCNs to large-scale graphs is
that GCNs expand neighbors recursively in the aggregation oper-
ations, leading to high computation and memory footprints. For
instance, given a graph whose average degree is d , L-layer GCNs
access dL neighbors per node on average. If the graph is dense
or has many high degree nodes, GCNs need to aggregate a huge
number of neighbors for most of the training/test examples. The
only way to alleviate this neighbor explosion problem is to sample
a fixed number of neighbors in the aggregation operation, thereby
regulating the computation time and memory usage [8].

Most samplers minimize the variance in sampling to approxi-
mate the original aggregation of the full neighborhood [4, 10, 14, 23].
These sampling policies learn neighbors helpful for variance reduc-
tion, not neighbors informative for the target task’s performance.
Thus, those variance reduction-oriented samplers suffer from two
critical problems: 1) low accuracy because the sampling policy is
agnostic to the performance, and 2) vulnerability to noise or ad-
versarial attacks on the graph because the sampling policy cannot
distinguish relevant neighbors from irrelevant ones or true neigh-
bors from adversarially added fake neighbors.

Then what is the optimal sampling policy for GCNs? To answer
this question, we come back to the motivation of the aggregation
operation. In GCNs, each node aggregates its neighbors’ embed-
dings assuming that neighbors are informative for the target task.
We extend this motivation to the sampling policy and sample neigh-
bors informative for the target task. In other words, we aim for a
sampler that maximizes the target task’s performance instead of
minimizing sampling variance.

Here we propose PASS, a performance-adaptive sampling strat-
egy that optimizes a sampling policy directly for task performance.
PASS trains the sampling policy based on gradients of the perfor-
mance loss passed through the GCN. To receive the gradients from
the GCN, we need to pass them through the sampling operations,
which is non-differentiable. To address this, PASS borrows the log
derivative trick commonly used in the reinforcement learning com-
munity to train stochastic policies [15, 20]. PASS optimizes the
sampling policy jointly with the GCN to minimize the task perfor-
mance loss, resulting in a considerable performance improvement.

Graph attention networks (GATs) [21] share the same objective
of learning the importance of neighbors. They select neighbors
through an attention mechanism trained by back-propagating gra-
dients of the performance loss. This mechanism was originally

This work is licensed under a Creative Commons Attribution International 4.0 License.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8332-5/21/08.
https://doi.org/10.1145/3447548.3467284

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2046

https://doi.org/10.1145/3447548.3467284
https://doi.org/10.1145/3447548.3467284
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3447548.3467284&domain=pdf&date_stamp=2021-08-14

(a) Neighborhood for a software engineer member (b) Neighborhood for a registered nurse member

Figure 1: PASS learns which neighbors are informative for the job industry classification task on the LinkedIn member-to-member network.

(a) Given Member A from the "Computer software" industry, PASS learns high sampling probabilities for Members B, C, and D from similar

industries but low probabilities forMembers E and F from different industries. (b) GivenMember G from the "Hospital& health care" industry,

PASS assigns a low sampling probability to Member I, who has an unrelated career as a "Program Analyst" although he works in the same

industry. This shows PASS is able to determine that the attributes of Member I are different from Member G’s and thus not informative. For

space efficiency, we show part of neighbors; thus, the sum of sampling probabilities does not sum to 1. See Section 6 for details.

designed as a continuous approximation of the non-differentiable
hard selection (i.e., sampling) operation [1, 21]. However, GATs
suffer from the same scalability issues as GCNs. Since sampling is
inevitable in large scale graphs, we embed the informative neigh-
bor selection directly in the sampler, instead of approximating it
downstream with an attention mechanism. In our experiments, we
show how PASS not only alleviates scalability issues of GATs but
also shows higher performance.

Another advantage of PASS compared to previous sampling-
based methods is that we provide theoretical foundations on how
sampling policy is updated to optimize the task performance. While
other samplers present the back-propagation algorithm to learn the
sampling policy as a black box, PASS cracks it open. We present
a transparent reasoning process on how PASS learns whether a
neighbor is informative from the back-propagated gradients and
why it assigns a certain sampling probability to a neighbor.

Through extensive experiments on seven public benchmarks
and one LinkedIn production dataset, we demonstrate the superior
performance of PASS over existing sampling algorithms. We also
present various case studies examining the effectiveness of PASS
on real-world datasets (Figure 1). Our main contributions are:

• Performance-adaptiveness: PASS learns a sampling policy
that samples neighbors informative for the task performance.

• Effectiveness: PASS outperforms state-of-the-art samplers, be-
ing up to 10.4% more accurate.

• Robustness: PASS shows up to 53.1% higher accuracy than the
baselines in the presence of adversarial attacks.

• Theoretical foundation: PASS presents a transparent reason-
ing process on how it learns whether a neighbor is informative.

2 PRELIMINARIES

In this section, we briefly review graph convolutional networks
(GCNs) then describe how sampling operations operate and solve
the scalability issue in GCNs.
Notations. Let G = (V, E) denote a graph with N nodes vi ∈ V

and edges (vi ,vj) ∈ E. Denote an adjacencymatrixA = (a(vi ,vj)) ∈

RN×N and a feature matrix H (0) ∈ RN×D (0)
where h(0)i denotes the

Table 1: Commonly used notation.

Symbol Definition

G = (V, E) input graph with nodes vi ∈ V

and edges (vi , vj) ∈ E

L number of layers in GCN model
D (l) dimension of the l -th hidden layer

where l = 0, 1, · · · , L
H (0) N × D (0) input node feature matrix
H (l) N × D (l) hidden embeddings at the l -th layer
W (l) D (l) × D (l+1) transformation matrix

at the l -th layer where l = 0, · · · , L − 1
α (·) nonlinear activation function

αW (l) (·) abbreviation of α (W (l) · ·)

p(j |i) probability of sampling node vj given node vi
q(j |i) approximation of p(j |i)

D(0)-dimensional feature vector of node vi . Table 1 gives a list of
symbols and definitions.
GCN. The GCN models stack layers of first-order spectral filters
followed by a nonlinear activation functions to learn node embed-
dings. When h(l)i denotes the hidden embeddings of node vi in the
l-th layer, the simple and general form of GCNs is as follows [4]:

h(l+1)
i = α (

1
N (i)

N∑
j=1

a(vi , vj)h
(l)
j W (l)), l = 0, . . . , L − 1 (1)

where a(vi ,vj) is set to 1 when there is an edge from vi to vj ,
otherwise 0. N (i) =

∑N
j=1 a(vi ,vj) is the degree of node vi ; α(·)

is a nonlinear function;W (l) ∈ RD
(l)×D (l+1)

is the learnable trans-
formation matrix in the l-th layer with D(l) denoting the hidden
dimension at the l-th layer.
Sampling operation in GCN. GCNs require the full expansion
of neighborhoods across layers, leading to high computation and
memory costs. To circumvent this issue, sampling operations are
added to GCNs to regulate the size of neighborhood. We first recast
Equation 1 as follows:

h(l+1)
i = αW (l) (Ej∼p(j |i)[h

(l)
j]), l = 0, . . . , L − 1 (2)

where we combine the transformation matrix W (l) into the ac-
tivation function αW (l) (·) for concision; p(j |i) =

a(vi ,vj)
N (i) defines

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2047

the probability of sampling vj given vi . Then we approximate the
expectation by Monte-Carlo sampling as follows:

h(l+1)
i = αW (l) (

1
k

k∑
j∼p(j |i)

h(l)
j), l = 0, . . . , L − 1 (3)

where k is the number of sampled neighbors for each node. Now,
we regulate the size of neighborhood using k .
Scalability solution. Equations 1 and 3 describe the computation
at the l-th layer in the original GCN and GCN with sampling, re-
spectively. In Equation 1, the numbers of nodes that participate in
the l-th and (l + 1)-th layers are both up to O(N), resulting in a
time complexity ofO(|E |D(l)D(l+1)) where |E | denotes the number
of edges. On the other hand, we can regulate the number of nodes
engaged at each layer in the GCN with sampling. When we set the
number of nodes sampled for the l-th and (l + 1)-th layers to k , the
number of edges engaged in Equation 3 is up to O(k2), leading to a
time complexity of O(k2D(l)D(l+1)). With k ≪ N , sampling solves
the scalability issue in the GCN successfully [10, 14].
Table 2: PASS out-features competitors: comparison of our pro-

posed PASS and existing sampling methods for GCNs.

Property

Method

G
ra
ph

Sa
ge

[8
]

Fa
st
G
CN

[4
]

LA
D
IE
S
[2
3]

A
S-
G
CN

[1
0]

G
CN

-B
S
[1
4]

P
A
S
S

Importance Sampling ✓ ✓ ✓ ✓ ✓
Learnability ✓ ✓ ✓
Performance adaptiveness ✓

3 RELATEDWORK

The sampling algorithms for GCNs broadly fall into two categories:
node-wise sampling and layer-wise sampling.
• Node-Wise Sampling. The sampling distribution q(j |i) is de-
fined as a probability of sampling node vj given a source node
vi . In node-wise sampling, each node samples k neighbors from
its sampling distribution, then the total number of nodes in the
l-th layer becomes O(kl). GraphSage [8] is one of the most well-
known node-wise sampling method with the uniform sampling
distribution q(j |i) = 1

N (i) . GCN-BS [14] introduces a variance
reduced sampler based on multi-armed bandits. GCN-BS defines
an individual sampling probability q(j |i) for each edge and trains
them toward minimum sampling variance.

• Layer-Wise Sampling. To alleviate the exponential neighbor
expansionO(kl) of the node-wise samplers, layer-wise samplers
define the sampling distribution q(j |i1, · · · , in) as a probability of
sampling node vj given a set of nodes {vk }

in
k=i1

. Each layer sam-
ples k neighbors from their sampling distribution q(j |i1, · · · , in),
then the number of sampled nodes in each layer becomes O(k).
FastGCN [4] defines q(j |i1, · · · , in) proportional to the degree of
the target node vj , thus every layer has independent-identical-
distributions. LADIES [23] adopts the same iid as FastGCN but
limits the sampling domain to the neighborhood of the sam-
pler layer. AS-GCN [10] parameterizes the sampling distribu-
tions q(j |i1, i2, . . . , in) with a learnable linear function. While
the layer-wise samplers successfully regulate the neighbor ex-
pansion, they suffer from sparse connection problems — some

nodes fail to sample any neighbors while other nodes sample
their neighbors repeatedly in a given layer.

Learnable Sampling Policy. GraphSage [8], FastGCN [4], and
LADIES [23] use the heuristic sampling probability distributions
(e.g., proportional to degrees of nodes). GCN-BS [14] andAS-GCN [10]
train their sampling distributions towards minimum sampling vari-
ance. They compute the optimal sampling probability model with
the minimum variance theoretically, then update their sampling
models towards the optimal variance.

Our proposed PASS is a learnable node-wise sampler. Table 2
compares PASS with existing sampling methods.

4 PROPOSED METHOD

What is the optimal sampling policy for GCNs? To answer this ques-
tion, we come back to the motivation of the aggregation operation
in GCNs. The aggregation operation intends to complement node
embeddings with neighbors’ embeddings on the assumption that
neighbors are informative for the target task. We extend this mo-
tivation to the sampling policy and sample neighbors informative
for the target task. In other words, we train a sampler that directly
maximizes the GCN performance.

The key idea behind our approach is that we learn a sampling pol-
icy by propagating gradients of the GCN performance loss through
the non-differentiable sampling operation. We first describe a learn-
able sampling policy function and how it operates in the GCN (i.e.,
forward propagation) in Section 4.1. We then describe how to learn
the parameters of the sampling policy by back-propagating gra-
dients through the sampling operation in Section 4.2. Finally, we
present the overall algorithm and discuss implementation consider-
ations in Section 4.3.

4.1 Sampling Policy

Fig. 2 shows an overview of PASS. In the forward pass, PASS sam-
ples neighbors with its sampling policy (Fig. 2(a)), then propagates
their embeddings through the GCN (Fig. 2(b)). In this section, we
introduce our parameterized sampling policy q(l)(j |i) that estimates
the probability of sampling node vj given node vi at the l-th layer.

The policy q(l)(j |i) is composed of two methodologies, impor-
tance q(l)imp (j |i) and random sampling q(l)rand (j |i) as follows:

q(l)imp (j |i) = (Ws · h(l)
i) · (Ws · h(l)

j) (4)

q(l)rand (j |i) =
1

N (i)
(5)

q̃(l)(j |i) = as · [q(l)imp (j |i), q(l)rand (j |i)] (6)

q(l)(j |i) = q̃(l)(j |i)/
N (i)∑
k=1

q̃(l)(k |i) (7)

whereWs ∈ RD
(s)×D (l)

is a transformation matrix with D(s) denot-
ing the hidden dimension in the sampling policy and D(l) denoting
the hidden dimension of the l-th layer; h(l)i is the hidden embedding
of nodevi at the l-th layer; N (i) is the degree of nodevi ; as ∈ R1×2

is an attention vector; and q(l)(·|i) is normalized to sum to 1. Ws
and as are learnable parameters of our sampling policy, which will
be updated toward performance improvement.

We describe each component in the sampling policy.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2048

(a) Sampling process (b) Forward propagation

(c) Backward propagation

Figure 2: PASS is composed of three steps: 1) sampling, 2) feedfor-

ward propagation, and 3) backpropagation. In the backpropagation

process, the GCN and the sampling policy are optimized jointly to

minimize the GCN performance loss.

Importance Sampling. The first term q
(l)
imp (j |i) computes the in-

termediate score of sampling vj given node vi in the l-th layer,
corresponding to importance sampling. We first map the hidden
embeddings h(l)i and h(l)j into the D(s)-dimension through the trans-
formation matrixWs , then compute the similarity between these
two embeddings by dot product. We describe the intuition behind
this dot product-based importance sampling in Section 5.
Random Sampling. The second term q

(l)
rand (j |i) assigns the same

sampling probability to each node the neighborhood. When a graph
is well-clustered, nodes are connected with all informative neigh-
bors. Then random sampling becomes effective since its random-
ness helps aggregate diverse neighbors, thus preventing the GCN
from overfitting. By capitalizing on both importance and random
samplings, our sampling policy better generalizes across various
graphs. We show how random sampling complements importance
sampling experimentally in Section 6.
Attention of Sampling. The attention as regulates the trade-
off between importance sampling q(l)imp (j |i) and random sampling

q
(l)
rand (j |i). as learns which sampling methodology is more effective
on a given task. We initialize as with higher attention to the random
sampling than the importance sampling and allow the model to
examine a broad scope of neighbors at first.

While our sampling policy q(l)(j |i) assigns a distinct sampling
probability to each edge at each layer, it shares the parameters
(Ws ,as) across all edges and all layers. This parameter sharing

helps our model generalize and prevents the sampling policy from
overfitting to the training set.

4.2 Training the Sampling Policy

As shown in Fig. 2(c), after a forward pass with sampling, the
GCN computes the performance loss (e.g., cross-entropy for node
classification) then back-propagates gradients of the loss. Next,
we describe how the gradients of the loss pass through the non-
differentiable sampling operation to update our sampling policy.

When θ denotes parameters (Ws ,as) in our sampling policy q(l)θ ,

we can write the sampling operation with q(l)θ (j |i) as follows:

h(l+1)
i = αW (l) (Ej∼q(l)θ (j |i)

[h(l)
j]), l = 0, . . . , L − 1 (8)

Before being fed as input to the GCN transformation, αW (l) , the hid-
den embeddings go through a non-differentiable expectation under
the sampling policy, which is non-differentiable. To pass gradients
of the loss through the expectation, we apply the log derivative
trick [22], widely used in reinforcement learning to compute gra-
dients of stochastic policies. Then the gradient ∇θL of the loss L
w.r.t. the sampling policy q(l)θ (j |i) is computed as follows:

Theorem 4.1. Given the loss L and the hidden embedding h
(l)
i of

node vi at the l-th layer, the gradient of L w.r.t. the parameter θ of

the sampling policy q
(l)
θ (j |i) is computed as follows:

∇θ L =
dL

dh(l+1)
i

αW (l)Ej∼q(l)θ (j |i)
[∇θ logq(l)θ (j |i)h(l)

j]

Proof. By the chain rule, dLdθ is decomposed as follows:

dL
dθ
=

dL

dh(l+1)
i

dh(l+1)
i
dθ

We compute the gradient of h(l+1)i w.r.t. θ as follows:

dh(l+1)
i
dθ

= ∇θ αW (l) (Ej∼q(l)θ (j |i)
[h(l)
j])

= αW (l) (∇θ

N (i)∑
k=0

q(l)θ (uk |i)h
(l)
uk)

= αW (l) (

N (i)∑
k=0

∇θ q
(l)
θ (uk |i)h

(l)
uk)

= αW (l) (

N (i)∑
k=0

q(l)θ (uk |i)∇θ logq(l)θ (uk |i)h
(l)
uk)

= αW (l) (Ej∼q(l)θ (j |i)
[∇θ logq(l)θ (j |i)h(l)

j])

where the nodes {uk }
N (i)
k=1 are neighbors of vi . The log deriva-

tive trick leveraging the property of the logarithm ∇θ logqθ =
∇θqθ /qθ to tranform the sum into an expectation under qθ that
we can sample is applied in the fourth equation. ■

In Theorem 4.1, we describe the gradient of the loss w.r.t the
sampling policy of a single edge (i.e., sampling probability q(l)θ (j |i)

of node j given node i). In the implementation, we average the gradi-
ents∇θL passed through all edges. Also, to show how the gradients
w.r.t. the sampling policy is passed through GCN parameters (σW)

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2049

Algorithm 1: One minibatch in PASS

Require: a minibatch of labeled nodes: {vi , yi }bi=1, sample number: k ,
GCN model: {W (l) }L−1l=1 , sampling policy: q(l)(j |i)

Ensure: updated GCN model and sampling policy
1: Gcomp = Sampler ({vi }bi=1, q

(l)(j |i), k)
2: for l from 1 to L − 1 do
3: for vi in Gcomp [l + 1] do
4: Neiдhbor (vi) = neighbor nodes of vi in Gcomp [l]

5: h(l+1)
i = α (

∑
j∈Neiдhbor (vi) h

(l)
j W (l))

6: end for

7: end for

8: L = loss({h(L)
i , yi }bi=1)

9: for l from L − 1 to 1 do
10: updateW (l) using ∇W (l)L

11: update q(l)(j |i) using ∇q(l)(j |i)L

12: end for

13: return {W (l) }L−1l=1 and q(l)(j |i)

more efficiently, we omit how the gradients pass through the ReLU.
Except for the ReLU condition (x > 0), there is no difference in the
final result.

Based on Theorem 4.1, we pass the gradients of the GCN perfor-
mance loss to the sampling policy through the non-differentiable
sampling operation and optimize the sampling policy for the GCN
performance.

4.3 Algorithm

Algorithms 1 and 2 describe how we train graph convolutional
networks with our sampling policy. Our algorithm’s framework is
composed of three steps: 1) sampling, 2) feedforward propagation,
and 3) backpropagation.

In the sampling process, we define a computation graph. The
computation graph is a L-layer network composed of nodes and
edges participating in a minibatch. We generate the computation
graph using our sampling policy q(l)(j |i) in a top-down manner
(l : L → 1). When a minibatch of size b is given, the b nodes are
located at the L-th layer; each node samples k neighbors following
the sampling policy q(L)(j |i); the sampled kb nodes are located at
the (L − 1)-th layer; each node samples k neighbors following the
sampling policy q(L−1)(j |i); the sampled k2b nodes are located at
the (L − 2)-th layer; repeat until the 1-st layer.

After acquiring the computation graph, we do feedforward prop-
agation in a bottom-upmanner (l : 1 → L), i.e., iteratively aggregate
neighboring embeddings and pass them through transformations.
After computing the loss, we do backpropagation and update param-
eters using gradients of the loss in a top-down manner (l : L → 1).
In the backpropagation phase, we update the parameters of both
the GCN and the sampling policy. In practice, we find that the gra-
dients from the 1-st layer are sufficient to successfully update the
sampling policy. We repeat the whole process with each minibatch.

4.3.1 Implementation. In the backpropagation phase, PASS uses
the log derivative trick [22] to pass gradients of the loss from the
GCN to the sampling policy through an expectation operation. In
reinforcement learning, the log derivative trick is used to compute
the gradient of the expectation of a scalar function (e.g., a reward
function) [15, 22]. However, our model applies the log derivative

Algorithm 2: Sampler

Require: a minibatch of nodes: {vi }bi=1, sampling policy: q(l)(j |i),
sample number: k

Ensure: computation graph Gcomp

1: Gcomp [L] = {vi }bi=0
2: for l = L − 1 to 1 do
3: for vi in Gcomp [l + 1] do
4: Gcomp [l] = Gcomp [l] + {vuj }

k
j=1 ∼ q(l)(uj |i)

5: end for

6: end for

7: return Gcomp

trick to compute the gradient of an expectation of vectors (matrices
for a batch implementation) located in the middle of the neural
network. The implementation of the log derivative trick in this
context requires hand-crafted backpropagation. If we were to brute-
force the implementation, we would need to compute dL/dh

(l)
i ,

compute dh(l)i /dθ using the log derivative trick, multiply them to
output dL/dθ , and finally update θ manually using dL/dθ .

Here, we introduce an additional SUB-LOSS trick that allows us
to leverage the backpropagation mechanisms built in deep learning
frameworks (e.g., PyTorch, TensorFlow).

Theorem 4.2 (SUB-LOSS trick). Given θ ∈ RD
(s)
, a hidden

embedding h(θ) ∈ RD
(l)
, and a loss L(h) ∈ R, the gradient of the loss

L w.r.t. θ is presented as follows:

dL
dθ
=

d
dθ

(
dL
dh

· h)

with an assumption
d
dθ (

dL
dh) = 0.

Proof. Proofs are given in Appendix A.1 ■

With the SUB-LOSS trick, we compute an auxiliary loss Laux =

dL/dh
(l)
i · h

(l)
i and simply call the backpropagation function of our

deep learning framework on Laux to compute the gradient w.r.t. θ .
More details are in Appendix A.1.

5 THEORETICAL FOUNDATION

In this section, we dissect the back-propagation process of PASS
and analyze how PASS learns whether a neighbor is informative
for the target task from gradients of the performance loss (i.e., why
it assigns a certain sampling probability to the neighbor).

GCNs train their parameters tomove the node embeddingsh(l)i in
the direction that minimizes the performance loss L, i.e., the gradi-
ent −dL/dh

(l)
i . PASS promotes this process by sampling neighbors

whose embeddings are aligned with the gradient −dL/dh
(l)
i . When

h
(l)
i is aggregated with the embedding h(l)j of a sampled neighbor
aligned with the gradient, it moves in the direction that reduces
the loss L.

In other words, PASS decides a neighbor node vj is informative
when its embedding h

(l)
j is aligned with the gradient −dL/dh

(l)
i .

In Fig.3, PASS considers v3 more informative than v5 since h
(l)
3 is

better aligned with −dL/dh
(l)
2 , thereby helping h(l)2 move towards

loss reduction. In Theorem 5.1, we show how PASS measures the

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2050

Figure 3: Interpretation ofwhyPASS assigns higher sampling proba-

bility to nodev3 thanv5 given source nodev2: nodev3’s embedding

h(l)
3 helps v2’s embedding h(l)

2 move in the direction −dL/dh(l)
2 that

decreases the performance loss L while aggregating the embedding

of node v5 would move v2 in the opposite direction.

alignment between −dL/dh
(l)
i and h

(l)
j and how it increases the

sampling probability q(l)(j |i) in proportion to this alignment.

Theorem 5.1. Given a source node vi and its neighbor node vj ,

PASS increases a sampling probability q(l)(j |i) in proportion to the

dot product of −dL/dh
(l)
i and h

(l)
j .

Proof. Let z(l)i = Ej∼q(l)(j |i)[h
(l)
j] denote an intermediate hid-

den embedding of node vi at the l-th layer after the aggregation
operation. By the chain rule, −dL/dq(l)(j |i) decomposes into(
−dL/dz

(l)
i

)
·

(
dz

(l)
i /dq(l)(j |i)

)
. The first component −dL/dz

(l)
i is

the direction z
(l)
i needs to move towards to decrease the loss L.

The second component dz(l)i /dq(l)(j |i) is computed as follows:

dz(l)i
dq(l)(j |i)

=
d

dq(l)(j |i)
Ek∼q(l)(k |i)[h

(l)
k]

=
d

dq(l)(j |i)

N (i)∑
k=0

q(l)(uk |i)h
(l)
uk

=
d

dq(l)(j |i)
(q(l)(j |i)h(l)

j) = h(l)
j

where the nodes {uk }
N (i)
k=1 are neighbors of vi . In the third equa-

tion, ∇q(j |i)q(uk |i) is zero for nodes uk , j . Then −dL/dq(l)(j |i) is
presented as follows:

−
dL

dq(l)(j |i)
= (−

dL

dz(l)i
) ·

dz(l)i
dq(l)(j |i)

= (−
dL

dz(l)i
) · h(l)

j (9)

Since dL/dz
(l)
i = dL/dh

(l)
i , −dL/dq(l)(j |i) is decided by the dot

product of −dL/dh
(l)
i and h

(l)
j . When −dL/dh

(l)
i and h

(l)
j have

similar directions, −dL/dq(l)(j |i) becomes large and the probability
q(l)(j |i) is updated to increase by the gradient descent. ■

In Theorem 5.1, PASS estimates the alignment between −dL/dh
(l)
i

and h
(l)
j from their dot product. However, the dot product as a

measure of alignment prefers h(l)j with a large L1 norm. To prevent

this issue, we normalize h(l)j in our experiments.
This reasoning process leads to two important considerations.

First, it crystallizes our understanding of the aggregation operation

Table 3: Dataset statistics: LinkedIn dataset on member net-

works has two labels, member industry and job title.

Dataset Nodes Edges Features Labels

Cora 2,485 5,069 1,433 7
Citeseer 2,110 3,668 3,703 6
Pubmed 19,717 44,324 500 3
AmazonC 13,381 245,778 767 10
AmazonP 7,487 119,043 745 8
MsCS 18,333 81,894 6,805 15
MsPhysics 34,493 247,962 8,415 5

LinkedIn 39K+ 1.7M+ 20+ (industry) ∼150
(title) ∼8,000

in GCNs. The aggregation operation enables a node’s embedding to
move towards its neighbors’ to reduce the performance loss. Second,
this reasoning process shows the benefits of jointly optimizing the
GCN and the sampling policy. Optimizing the sampling policy for
task performance allows an embedding to choose which neighbors
to move towards, leading to the minimum loss more efficiently.

5.1 Design of Sampling Policy

In Equation 9, −dL/dq(l)(j |i) measures alignment/similarity be-
tween −dL/dz

(l)
i and h(l)j by a dot product. We choose the same

similarity measurer, the dot product, to estimate the importance of
neighbors in our sampling policy (Equation 4). When we choose
another similarity measurer, for instance, a concatenation-based
measurer a(vi ,vj) = a · [W · h

(l)
i | |W · h

(l)
j] used in graph attention

networks (GAT), we observe up to 28% drop in accuracy (more
details in Section 6). This shows a careful design of the sampling
policy has a large impact on performance.

6 EXPERIMENTS

In this section, we evaluate the performance of PASS compared to
state-of-the-art sampling algorithms on GCNs.

6.1 Experimental setting

We compare the performance of PASS and other sampling algo-
rithms on semi-supervised node classification tasks. All experi-
ments were conducted on the same p2.xlarge Amazon EC2 instance.
Datasets. We use seven public datasets — three citation networks
(Cora, Citeseer, and Pubmed) [17], two co-purchase graphs (Amazon
Computers and Amazon Photo) [18], and two co-authorship graphs
(MS CS and MS Physics) [18]. In addition, we also evaluate on a
subset of LinkedIn social networks where nodes are alumni from
a US university, and edges are connections between them. We
use members’ latest job title and their industry as labels. We split
50%/10%/40% of the datasets into the training/validation/test sets,
respectively. We report their statistics in Table 3.
Baselines. We compare PASS with four state-of-the-art sampling
methods: GraghSage [8], FastGCN [4], AS-GCN [10], and GCN-
BS [14]; and one attention method: GAT [21]. For fair comparison,
all methods share the same network structure, two-hidden-layer
GCN with all hidden dimensions set to 64. Please refer to Appen-
dix A.2 for more details.
Unified time complexity bound. With the batch size set to 64,
layer-wise sampling methods (FastGCN, AS-GCN) sample 64 nodes
per layer. For a fair comparison, node-wise sampling methods

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2051

Table 4: Effectiveness test: PASS outperforms all baselines up to 10.4% on the benchmark datasets and up to 10.2% on our production datasets

(LnkIndustry, LnkTitle). Results on the benchmark datasets are presented in precision. Results on our production datasets are presented in

percentage point (pp) with respect to GraphSage (random sampling). A higher precision/percentage point is better.

Method Cora Citeseer Pubmed AmazonC AmazonP MsCS MsPhysics LnkIndustry LnkTitle

FastGCN 0.582 0.496 0.569 0.480 0.542 0.520 0.638 -4.2pp -2.0pp
AS-GCN 0.462 0.387 0.502 0.419 0.480 0.403 0.516 -7.1pp -0.6pp
GraphSage 0.788 0.698 0.792 0.707 0.787 0.766 0.875 0.0pp 0.0pp
GCN-BS 0.788 0.693 0.809 0.736 0.800 0.780 0.887 1.8pp 0.7pp
PASS 0.821 0.715 0.858 0.757 0.855 0.884 0.934 10.2pp 1.3pp

Table 5: Robustness test: PASS maintains high accuracy in various graph noise scenarios, while the accuracy of all other baselines plummets

with noise. PASS is effective not only in sampling informative neighbors but also in removing irrelevant neighbors.

Fake connections among existing nodes Fake neighbors with random feature vectors

Method Cora Citeseer Pubmed AmazonC AmazonP MsCS Cora Citeseer Pubmed AmazonC AmazonP MsCS

FastGCN 0.293 0.254 0.416 0.300 0.307 0.292 0.597 0.513 0.614 0.502 0.566 0.563
AS-GCN 0.229 0.171 0.334 0.206 0.167 0.176 0.233 0.152 0.379 0.271 0.169 0.252
GraphSage 0.312 0.261 0.439 0.376 0.306 0.262 0.282 0.269 0.459 0.264 0.264 0.248
GCN-BS 0.320 0.265 0.457 0.387 0.305 0.264 0.571 0.493 0.681 0.639 0.686 0.622
PASS 0.658 0.603 0.811 0.669 0.698 0.822 0.722 0.681 0.761 0.672 0.783 0.667

(GraghSage, GCN-BS, and PASS) sample one neighbor per node,
thus sampling 64 nodes per layer in total. You can find the results
with larger numbers of samples in Appendix A.4.
Evaluation with Sampling. Previous works [4, 10, 14] sample
during training but not during testing: they compute node embed-
dings on the test set by aggregating full neighborhoods. This setting
is unrealistic: the prohibitive time and memory costs from the full
neighborhood expansion that prompted us to sample during train-
ing are also issues during testing. In this work, we sample both

during training and testing. This results in a significant drop in
accuracy for certain baselines, especially layer-wise samplers.

6.2 Effectiveness

We measure the accuracy of each sampling algorithm on the node
classification tasks. In Table 4, our proposed PASS shows the high-
est accuracy among all baselines across all datasets. Layer-wise
methods (FastGCN, AS-GCN) show lower accuracy than node-wise
methods (GraphSage, GCN-BS, PASS).

Layer-wise samplers define the probability of sampling node vj
given a set of source nodes {vk }

in
k=i1

as q(j |i1, · · · , in). Since they
sample from a union pool of each source node’s neighborhood,
there is no guarantee for each source node to fairly sample their
neighbors. Moreover, a node’s sampling probability in a layer-wise
sampler is proportional to its degree, which follows a power-law
distribution [6]. If a source node vi ’s neighbors all have smaller de-
grees than neighbors of other source nodes, none of vi ’s neighbors
are likely to be sampled, and vi fails to aggregate any neighbor
information. This results in sparse connections between layers and
poor performance for layer-wise samplers.

Among node-wise sampling methods, PASS outperforms Graph-
Sage and GCN-BS. One interesting result is that GraphSage, which
just samples neighbor randomly, still shows good performance
among carefully-designed sampling algorithms. The seven pub-
lic datasets are well-clustered; thus there is not much room to be
improved by importance sampling. In the following Section, we

show when the graphs have noise (e.g., random connections be-
tween different communities), GraphSage plummets in accuracy.
GCN-BS shows higher accuracy than other baselines but lower than
our method. While PASS learns a shared sampling policy across all
edges with the performance loss, GCN-BS trains individual sam-

pling probabilities for each edge with variance reduction loss. This
result presents the effectiveness of the parameter sharing and the
performance loss of PASS.

6.3 Robustness

To examine the robustness of sampling algorithms, we inject noise
into graphs. We investigate two different noise scenarios: 1) fake
connections among existing nodes, and 2) fake neighbors with ran-
dom feature vectors. These two scenarios are common in real-world
graphs. The first "fake connection" scenario simulates connections
made by mistake or unfit for purpose (e.g., connections between
family members in a job search platform). The second scenario
simulates fake accounts with random attributes used for fraud-
ulent activities. For each node, we generate five true neighbors
and five fake neighbors for each scenario. We keep the rest of the
experimental setting as in Section 6.1.

Table 5 shows that PASS consistently has high accuracy across
all scenarios, while the performance of all other methods plummets.
The sparse connection problems of layer-wise sampling methods
(FastGCN, AS-GCN) become worse with graph noise. Node-wise
samplingmethods also showmuch lower accuracy than on the origi-
nal graphs (Table 4). GraphSage gives the same sampling probability
to true neighbors and fake neighbors, resulting in a sharp drop in
accuracy. GCN-BS is likely to sample high-degree or dense-feature
nodes, which help stabilize the sampling variance, regardless of
their relationship with the source node. Thus GCN-BS fails to distin-
guish fake neighbors from true neighbors. On the other hand, PASS
learns which neighbors are informative or fake from gradients of
the performance loss (Theorem 5.1). These results show that the
optimization of the sampling policy toward performance brings
robustness to graph noise.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2052

Table 6: Comparison with GATs: PASS is scalable across all datasets while GATs run out of memory on Pubmed, Amazon Computer, MS CS,

and MS Physics datasets. We run PASS with both 1 and 5 sampled neighbors, trading-off speed for accuracy. On the few datasets where GATs

are applicable, PASS (5) shows comparable or higher accuracy as GATs with considerably shorter training and test time.

Accuracy Training time (s) Test time (s)

Dataset GATs PASS (1) PASS (5) GATs PASS (1) PASS (5) GATs PASS (1) PASS (5)

Cora 0.850 0.821 0.847 189.670 9.459 7.226 0.122 0.022 0.033
Citeseer 0.744 0.715 0.735 404.904 13.962 13.225 0.175 0.043 0.069
Pubmed - 0.858 0.871 - 87.660 94.918 - 0.612 1.510
AmazonC - 0.757 0.886 - 52.060 184.522 - 0.256 1.218
AmazonP 0.905 0.855 0.944 1869.690 30.060 68.134 0.709 0.094 0.338
MS CS - 0.884 0.918 - 101.840 142.099 - 0.811 3.113
MS Physics - 0.934 0.952 - 439.378 507.816 - 4.162 8.445

(a) Amazon Computer

(b) Amazon Photo

Figure 4: The convergence on test set in terms of epochs.

6.4 Convergence & Variance

In this section, we analyze the convergence and variance of sam-
pling algorithms across epochs.We train each algorithm 5 times and
plot the mean and standard deviation. PASS shows the highest accu-
racy by a significant margin (+5.5%) with a slightly higher variance
(0.5− 1.2%) than baselines (0.1− 0.6%). Static algorithms, including
GraphSage and FastGCN, show low variance since their sampling
policy is decided heuristically and fixed. Learnable algorithms, in-
cluding AS-GCN and GCN-BS, show low variance because their
sampling policy is optimized for variance reduction. On the other
hand, PASS optimizes for performance improvement. PASS explores
neighbors to find the most informative, leading to slightly higher
variance and much higher accuracy than baselines that exploit the
neighbors that minimize variance.

6.5 Comparison with GAT

In this section, we compare PASS with GATs. PASS and GATs share
the same objective of learning the importance of neighbors, respec-
tively through sampling probabilities and attention scores. While
PASS solves the scalability issues of GCNs with sampling, GATs
suffer from high computation and memory footprints. To investi-
gate their scalability, we train GATs and PASS on a GPU with 16GB

Table 7: Ablation study: Our dot-product-based importance sam-

pling qimp outperforms the GAT-version importance sampling

mechanism. Random sampling qrand complements importance

sampling qimp .

Dataset GAT-version qimp qimp + qrand

Cora 0.574 0.779 0.821
Citeseer 0.456 0.706 0.715
Pubmed 0.606 0.862 0.858
AmazonC 0.482 0.746 0.757
AmazonP 0.575 0.854 0.855
MsCS 0.661 0.883 0.884
MsPhysics 0.683 0.933 0.934

of memory. We run PASS with both 1 and 5 sampled neighbors
(denoted as PASS-1 and PASS-5), trading-off speed for accuracy.

Table 6 shows PASS is scalable across all datasets while GAT
runs out of memory on the Pubmed, Amazon Computer, MS CS,
and MS Physics datasets. On the few datasets where GATs are
applicable (Cora, Citeseer, and Amazon Photo), PASS-1 shows up
to ×60 shorter training time and ×8 shorter test time than GAT
while having 5% lower accuracy. When sampling more neighbors to
increase accuracy at the price of speed, PASS-5 shows comparable
or higher accuracy as GATs while maintaining shorter training and
test times. On the Amazon Photo dataset, where neighbors have
20 neighbors on average, PASS-5 shows 5% higher accuracy than
GATs while only sampling 5 neighbors when GATs consider the full
neighborhood. This shows PASS is scalable and learns neighbors
informative for performance improvement.

6.6 Ablation Study

In this section, we examine the effectiveness of importance and
random sampling in PASS. We compare the performance of our dot-
product-based importance sampling with the importance sampling
mechanism introduced in GATs, presented as

q
(l)
GAT (j |i) = a · [W · h

(l)
i | |W · h

(l)
j]

whereW and a are a trainable (D(s) ×D(l))matrix and a (1× 2D(s))

vector, respectively.
Table 7 shows our dot-product-based importance sampling out-

performs the GATs version by up to 27.9% accuracy. The addition of
random sampling improves accuracy by up to another 4.2% accuracy
as the noise helps aggregate diverse neighbors (i.e., exploration),
preventing the GCN from overfitting.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2053

Figure 5: The hidden-layer embeddings of a neighborhood in the

Amazon Computer dataset (visualized by t-SNE [3]). The red cross

denotes the gradient of the loss w.r.t the source node and green

points denote the embeddings of neighbor nodes. Numbers denote

the increase/decrease in sampling probabilities. PASS increases sam-

pling probabilities for neighbors in the red area, close to the gra-

dient, while decreasing probabilities for the neighbors in the blue

zone, which are far from the gradients.

6.7 Case Study

Figure 1 shows a case study where PASS is used to classify the
job industry of nodes in the LinkedIn social network. PASS learns
which neighbors are informative for the task. Given Member A
from the "Computer software" industry, PASS learns high sampling
probabilities for Members B, C, and D from similar industries but
low probabilities for Members E and F from different industries.
Given Member G from the "Hospital & health care" industry, PASS
assigns a low sampling probability to Member I, who has an unre-
lated career as a "Program Analyst" although he works in the same
industry. This shows PASS is able to determine that the attributes of
Member I are different from Member G’s and thus not informative.
These case studies show the effectiveness of PASS at identifying in-
formative neighbors on real-world graphs. Additional case studies
on the Cora and Amazon photo datasets are in Appendix A.

6.8 Visualization of PASS

In Section 5, we saw that PASS decides whether a neighbor vj is
informative based on the alignment between its embedding h(l)j and

the gradient −dL/dh
(l)
i of the loss w.r.t the source nodevi . Figure 5

shows the hidden-layer embeddings projected to 2D via t-SNE [3].
Numbers denote the increase/decrease in sampling probabilities.
The neighbors in the red area, which are close to the gradient (the
red cross), see an increase in their sampling probabilities. Con-
versely, the neighbors in the blue area, which are far from the
gradient, see a decrease in their sampling probabilities. This result
shows our theoretical foundation holds on real-world datasets.

7 CONCLUSION

In this paper, we propose a novel sampling algorithm PASS for
graph convolutional networks. Our main contributions are:

• Performance-adaptive sampler: PASS samples neighbors in-
formative for the task performance.

• Effectiveness: PASS outperforms state-of-the-art samplers, be-
ing up to 10.4% more accurate.

• Robustness: PASS shows up to 53.1% higher accuracy than the
baselines in the presence of adversarial attacks.

• Theoretical foundation: PASS explains why a neighbor is con-
sidered informative and assigned a high sampling probability.

Future works include learning an edge imputation policy and com-
bining it with our proposed edge sampling policy to improve the
overall performance of graph neural networks.

REFERENCES

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473 (2014).
[2] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,

Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. 2018. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261 (2018).

[3] Andreas Buja, Dianne Cook, and Deborah F Swayne. 1996. Interactive high-
dimensional data visualization. Journal of computational and graphical statistics

5, 1 (1996), 78–99.
[4] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with graph

convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247
(2018).

[5] Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative embeddings of latent vari-
able models for structured data. In International conference on machine learning.

[6] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On power-law
relationships of the internet topology. ACM SIGCOMM computer communication

review 29, 4 (1999), 251–262.
[7] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein interface

prediction using graph convolutional networks. InAdvances in neural information

processing systems. 6530–6539.
[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in neural information processing systems.
[9] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional neu-

ral network architectures for matching natural language sentences. In Advances

in neural information processing systems. 2042–2050.
[10] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive

sampling towards fast graph representation learning. In Advances in neural

information processing systems. 4558–4567.
[11] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[12] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).
[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information

processing systems. 1097–1105.
[14] Ziqi Liu, Zhengwei Wu, Zhiqiang Zhang, Jun Zhou, Shuang Yang, Le Song, and

Yuan Qi. 2020. Bandit Samplers for Training Graph Neural Networks. arXiv
preprint arXiv:2006.05806 (2020).

[15] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. 2019.
Monte carlo gradient estimation in machine learning. arXiv preprint

arXiv:1906.10652 (2019).
[16] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan

Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European Semantic Web Conference. Springer, 593–607.

[17] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[18] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[19] Baoxu Shi, Jaewon Yang, Tim Weninger, Jing How, and Qi He. 2019. Representa-
tion Learning in Heterogeneous Professional Social Networks with Ambiguous
Social Connections. In IEEE BigData.

[20] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-

duction. MIT press.
[21] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint

arXiv:1710.10903 (2017).
[22] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229–256.
[23] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.

2019. Layer-Dependent Importance Sampling for Training Deep and Large Graph
Convolutional Networks. In Advances in Neural Information Processing Systems.
11249–11259.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2054

A APPENDIX

A.1 Proof of SUB-LOSS trick

Our model applies the log derivative trick to compute the gradient
of an expectation of vectors (matrices for a batch implementation)
located in the middle of the neural network. The implementation
of the log derivative trick in this context requires hand-crafted
backpropagation. Here, we introduce an additional SUB-LOSS trick
that allows us to leverage the backpropagation mechanisms built
in deep learning frameworks (e.g., PyTorch, TensorFlow).

Theorem A.1 (SUB-LOSS trick). Given θ ∈ RD
(s)
, a hidden

embedding h(θ) ∈ RD
(l)
, and a loss L(h) ∈ R, the gradient of the loss

L with respect to θ is presented as follows:

dL
dθ
=

d
dθ

(
dL
dh

· h)

with an assumption
d
dθ (

dL
dh) = 0.

Proof. By the chain rule, dLdθ is decomposed as follows:
dL
dθ
=
dL
dh

·
dh
dθ

where dL
dh is an (1 × D(l)) matrix and dh

dθ is a (D(l) × D(s)) matrix.
The i-th component of dLdθ is presented as follows:

dL
dθi

=

D (l)∑
j=0

dL
dhj

·
dhj
dθi

The dot product of dLdh and h is presented as follows:
dL
dh

· h =
dL
dh0

h0 +
dL
dh1

h1 + · · · +
dL

dh
(D (l)−1)

h
(D (l)−1)

where dL
dh · h is a scalar value. With an assumption d

dθi
(dLdh) = 0,

the gradient of dLdh · h with respect to θi is presented as follows:

d
dθi

(
dL
dh

· h) =
dL
dh0

dh0
dθi
+
dL
dh1

dh1
dθi
+ · · · +

dL
dh

(D (l)−1)

dh
(D (l)−1)

dθi

=

D (l)∑
j=0

dL
dhj

dhj
dθi

=
dL
dθi

Then dL
dθi
= d

dθi
(dLdh · h) for every 0 ≤ i < D(s). This shows dL

dθ is
equal to d

dθ (
dL
dh · h). ■

With the SUB-LOSS trick, we compute an auxiliary loss Laux =

dL/dh
(l)
i · h

(l)
i and simply call the backpropagation function of our

deep learning framework on Laux to compute the gradient w.r.t. θ .

A.2 Experimental Setting

Hyper-parameters. We use the Adam optimizer [11] and tune
each baseline with a grid search on each dataset. Most baselines
perform best on most datasets with a learning rate of 0.01, weight
decay of 5× 10−4. We report the average performance across 5 runs
for each experiment.
Baselines.We refer to the following websites when implementing
the baseline models:
• FastGCN: https://github.com/matenure/FastGCN

• AS-GCN: https://github.com/huangwb/AS-GCN
• GraphSage: https://github.com/williamleif/GraphSAGE
• GCN-BS: https://github.com/xavierzw/ogb-geniepath-bs
• GAT: https://github.com/PetarV-/GAT

A.3 Case Study

In Figure 6(a), we find PASS distinguishes informative neighbors
(same labels) from less informative ones (different labels). The node
464 with label 0 has a high sampling probability (0.27) for the node
2240 with label 0 while low probabilities (0.09) for the nodes 1940
and 1892 with different labels. In Figure 6(b), the node 643 with label
1 gives a high sampling probability (0.21) to the node 6572 with
different label 4. The node 6572 has a high sampling probability
(0.20) for the neighbor node 5454 with label 1; thus, the node 6572
contains information of label 1. In the two-layer GCNs, the node 643
aggregates the node 5454 through the node 6572 and supplements
its embedding with another label 1 node.

(a) Nodes and subset of neighbors from the Cora dataset

(b) Nodes and subset of neighbors from the Amazon Photo dataset

Figure 6: PASS learns which neighbors are informative or not. The

numbers in nodes denote node ids and labels. The numbers in edges

denote sampling probabilities computed by PASS.

A.4 Different sample numbers

In Section 6, we sample one neighbor per node for a fair compar-
ison between layer-wise samplers and node-wise samplers. With
the batch size set to 64, both the layer-wise and node-wise sam-
plers samples 64 nodes in total for each layer. Under the same
time/memory efficiency, the node-wise samplers outperform the
layer-wise sampler in accuracy. Here, we compare the performance
of the node-wise samplers with larger numbers of samples (k > 1).
In Table 8, PASS shows higher or similar accuracy with its competi-
tors. The accuracy gap between PASS and its competitors is smaller
than when the sampling number is 1. The large sample number

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2055

https://github.com/matenure/FastGCN
https://github.com/huangwb/AS-GCN
https://github.com/williamleif/GraphSAGE
https://github.com/xavierzw/ogb-geniepath-bs
https://github.com/PetarV-/GAT

Table 8: Node-wise samplers with large numbers of samples.

Dataset #sample GraphSage GCN-BS PASS

Cora 3 0.845 0.840 0.844
Citeseer 3 0.740 0.708 0.735
Pubmed 3 0.839 0.877 0.874
AmazonC 5 0.844 0.880 0.889
AmazonC 10 0.862 0.898 0.885
AmazonP 5 0.900 0.919 0.942
AmazonP 10 0.923 0.937 0.945
MsCS 3 0.862 0.909 0.912

allows the informative neighbors sampled at some point by Graph-
Sage and GCN-BS. Thus the accuracy of GraphSage and GCN-BS
could catch up with our accuracy, not surpass ours. In addition,
the accuracy is saturated around 0.88 and 0.94 from the sampling
number 5 on the AmazonC and AmazonP datasets, respectively.
This shows the number of informative neighbors is under 5. Thus
sampling neighbors more than 5 does not bring further increase in
accuracy. These results show that our experimental setting with one
sample per node is more effective at comparing the performance of
the sampling algorithms.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2056

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Proposed Method
	4.1 Sampling Policy
	4.2 Training the Sampling Policy
	4.3 Algorithm

	5 Theoretical Foundation
	5.1 Design of Sampling Policy

	6 Experiments
	6.1 Experimental setting
	6.2 Effectiveness
	6.3 Robustness
	6.4 Convergence & Variance
	6.5 Comparison with GAT
	6.6 Ablation Study
	6.7 Case Study
	6.8 Visualization of PASS

	7 Conclusion
	References
	A Appendix
	A.1 Proof of SUB-LOSS trick
	A.2 Experimental Setting
	A.3 Case Study
	A.4 Different sample numbers

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 48.61, 59.34 Width 250.88 Height 101.57 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 48.6127 59.3371 250.8763 101.5658

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 11
 0
 1

 1

 HistoryList_V1
 qi2base

