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Abstract. Although current deep learning models have achieved re-
markable success in medical image segmentation, their deployment on
resource-constrained environments remains challenging due to substan-
tial computational and memory requirements, particularly for 3D medi-
cal images. Existing lightweight models often sacrifice segmentation ac-
curacy significantly to reduce computational overhead.
To address this challenge, we propose a comprehensive lightweight op-
timization framework based on nnU-Net that maintains high segmenta-
tion accuracy while dramatically reducing computational requirements.
Our main contributions include: (1) a lightweight network architecture
that replaces standard 3D convolutions with depthwise separable con-
volutions and incorporates bottleneck residual blocks, reducing model
parameters to 157.59K while preserving the feature representation ca-
pability; (2) pyramid pooling modules for enhanced multi-scale feature
extraction and improved boundary precision; (3) a knowledge distillation
strategy where a teacher network (original nnU-Net) transfers knowledge
to our lightweight student network through feature-level and output-level
distillation losses; and (4) a multi-threaded inference optimization system
that parallelizes post-processing operations using 12 threads, achieving
2-4× speedup in post-processing.
Comprehensive experiments on MICCAI FLARE 2025 validation set val-
idate the effectiveness of our approach. The proposed method achieves
an average organ Dice Similarity Coefficient (DSC) of 90.48% and Nor-
malized Surface Dice (NSD) of 96.56%, and the validation score im-
proved by 0.9 points. Our method ranked 1st in the MICCAI FLARE
2025 Task 2 online validation leaderboard. The code is available at:
https://github.com/houkainiubi/flare25task2_hk.git

Keywords: Knowledge Distillation · Depthwise Separable Convolution
· Pyramid Pooling · Multi-threading Optimization · Bottleneck Residual
Blocks.
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1 Introduction

Medical image segmentation plays a crucial role in computer-aided diagnosis,
treatment planning, and clinical decision-making [14]. Accurate segmentation
of anatomical structures and pathological regions from medical images enables
quantitative analysis, disease progression monitoring, and personalized medicine.
However, deploying robust segmentation models in real-world clinical environ-
ments presents significant computational and practical challenges that must be
addressed to ensure widespread clinical adoption [11].

The computational constraints in clinical settings pose one of the greatest
challenges for medical image segmentation systems. Unlike research [7] envi-
ronments with access to high-performance GPUs and abundant computational
resources [12], clinical deployment scenarios often operate under strict hardware
limitations. In this challenge, models must perform inference exclusively on CPU
architectures, which typically offer significantly lower computational throughput
compared to GPU-accelerated systems. This constraint dramatically impacts the
feasibility of deploying computationally intensive deep learning models that have
become standard in medical image analysis research.

Memory limitations [27] further compound the deployment challenges, as the
available runtime memory is restricted to merely 8GB during inference. This con-
straint is particularly challenging for medical image segmentation tasks, which
often involve processing high-resolution volumetric data or large-scale 2D im-
ages. Traditional segmentation networks, especially those based on U-Net ar-
chitectures and their variants, typically require substantial memory for storing
intermediate feature maps, particularly in the encoder-decoder pathways. The
memory bottleneck becomes even more severe when processing multiple cases
simultaneously or when dealing with 3D volumetric segmentation tasks that
inherently demand more memory resources.

Perhaps the most significant architectural constraint imposed by this chal-
lenge is the prohibition of two-stage cascade models, specifically those employing
localization-then-segmentation paradigms. Many state-of-the-art medical seg-
mentation systems rely on cascade approaches where an initial network localizes
the region [2] of interest, followed by a specialized segmentation network that fo-
cuses on the identified region. This two-stage strategy has proven highly effective
in improving both accuracy and computational efficiency by reducing the search
space for the segmentation network. However, the necessitates end-to-end single-
stage models that achieve comparable performance under strict computational
constraints.

To meet the requirements of Task 2 in the MICCAI FLARE 2025 Challenge,
which involves deploying advanced 3D abdominal CT segmentation models in
non-GPU environments while maintaining high accuracy, this paper introduces
improvements to the nnU-Net model, along with knowledge distillation and post-
processing strategies. Specifically, Task 2 of the MICCAI FLARE 2025 Challenge
requires semantic segmentation of abdominal organ CT images using CPU-based
algorithms on a laptop with an 8GB memory limit. This task utilizes the same
dataset as MICCAI FLARE 2024, involving the segmentation of 13 organs from
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CT images provided by over 20 medical groups, with organ labels as shown in
Figure 1 . The dataset includes 2050 cases for model training, 250 cases for val-

Fig. 1. Semantic labels of the 13 abdominal organs in FLARE 2025 Task2.

idation, and 300 test cases for final evaluation. The evaluation metrics include
the Dice Similarity Coefficient (DSC), Normalized Surface Dice (NSD), and the
number of seconds required for inferring a single CT image (runtime).
Medical image segmentation has witnessed remarkable progress with the advent
of deep learning, particularly with the introduction of U-Net and its variants. The
nnU-Net framework has emerged as a gold standard for medical image segmen-
tation, achieving state-of-the-art performance across multiple medical imaging
tasks through its self-configuring pipeline and robust architecture design. How-
ever, the computational demands of such high-performance models pose signifi-
cant challenges for deployment in resource-constrained clinical environments.

Recent efforts in model compression and efficiency optimization have explored
various approaches including network pruning, quantization, and knowledge dis-
tillation. Knowledge distillation, originally proposed by Hinton et al., has proven
particularly effective in transferring knowledge from large teacher networks to
compact student networks while preserving performance. In the context of med-
ical image segmentation, several works have demonstrated the effectiveness of
distillation-based approaches for creating efficient models suitable for clinical
deployment.

Lightweight network architectures, such as MobileNets and EfficientNets,
have introduced depthwise separable convolutions and inverted residual blocks
to significantly reduce computational complexity while maintaining representa-
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tional capacity [10]. However, the direct application of these architectures to
3D medical image segmentation remains challenging due to the unique charac-
teristics of volumetric medical data and the need for precise boundary delin-
eation [14].

Following prior works that leverage lightweight architectures for efficient in-
ference [25], we propose a comprehensive optimization framework that integrates
multiple architectural innovations with advanced knowledge distillation strate-
gies. Our approach is specifically designed to address the stringent computational
constraints of the MICCAI FLARE 2025 Challenge Task 2 while maintaining
high segmentation accuracy.

Lightweight Network Architecture with Advanced Components: We intro-
duce a novel lightweight network architecture that replaces standard 3D convo-
lutions with depthwise separable convolutions and incorporates bottleneck resid-
ual blocks to dramatically reduce model parameters. The architecture is further
enhanced with pyramid pooling modules [26] as shown in Figure 2 to capture

Fig. 2. Pyramid Pooling Block.

multi-scale contextual information, enabling improved boundary precision for
organs of varying sizes. This multi-component design addresses the fundamental
trade-off between model efficiency and representational capacity in 3D medical
image segmentation.

Multi-Scale Knowledge Distillation Strategy: To preserve the segmentation
performance of the lightweight student model, we employ a sophisticated knowl-
edge distillation framework where a teacher network (original nnU-Net) transfers
its knowledge to our lightweight student network through both feature-level and
output-level distillation losses. Specifically, we implement a temperature-scaled
knowledge distillation loss that combines KL divergence, MSE, and attention
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transfer mechanisms to ensure comprehensive knowledge transfer across differ-
ent scales and representation levels. This multi-faceted distillation approach en-
ables the student model to retain the teacher’s performance while operating with
significantly reduced computational resources.

System-Level Inference Optimization: Beyond architectural improvements,
we implement a comprehensive multi-threaded inference optimization system
that parallelizes the post-processing pipeline. Our optimization strategy includes
parallel resampling operations, segmentation post-processing, and file I/O opera-
tions using up to 12 threads, achieving 2-4× speedup in the post-processing stage.
The system incorporates dynamic resource management, memory optimization
strategies, and robust error handling to ensure stable performance across diverse
computational environments and varying input sizes.

Robust Training and Loss Design: To improve the segmentation performance
of small organs and address potential issues with training stability, we design a
weighted composite loss function that combines Dice loss and cross-entropy loss
with careful weighting strategies. The loss function is specifically optimized for
the knowledge distillation framework to ensure stable convergence and effective
knowledge transfer.

To summarize, our main contributions are: (1) A comprehensive lightweight
architecture combining depthwise separable convolutions, bottleneck Residual
Block Using Deep Separable Convolution, and pyramid pooling modules specifi-
cally optimized for 3D medical image segmentation; (2) A multi-scale knowledge
distillation strategy that effectively transfers knowledge from teacher to student
networks through multiple distillation mechanisms; (3) A system-level optimiza-
tion framework featuring multi-threaded post-processing that achieves signif-
icant speedup while maintaining robustness; (4) Comprehensive experimental
validation demonstrating that our approach successfully balances segmentation
accuracy and computational efficiency, making advanced 3D medical image seg-
mentation feasible for deployment in resource-limited clinical environments.

2 Method

2.1 Preprocessing

– Resample: We resample the pixel spacing to (1.9735,1.5380, 1.5380) for all
cases.

2.2 Proposed Method

Model Architecture and Improvements In this work, we propose an im-
proved nnUNet-based segmentation framework that integrates depthwise sepa-
rable convolutions, bottleneck residual blocks, pyramid pooling, and a knowl-
edge distillation mechanism. The overall network follows the encoder–decoder
paradigm with skip connections between symmetric layers, as illustrated in Fig-
ure 3 .
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Fig. 3. Teacher model of the proposed method.

The encoder is composed of multiple stages, each containing a stack of Bot-
tleneck Residual Blocks. Each block employs a 1×1 convolution for channel re-
duction, followed by a depthwise separable 3×3 convolution to extract spatial
features, and another 1×1 convolution for channel restoration. A residual con-
nection is added between the input and output of the block to facilitate gradient
propagation and mitigate degradation in deeper layers. Two types of bottleneck
residual blocks are utilized: one with stride = 1 for feature refinement and one
with stride = 2 for spatial downsampling.

In the bottleneck stage of the encoder, a Pyramid Pooling Module (PPM) is
incorporated to capture multi-scale contextual information. The PPM aggregates
features from different spatial scales and fuses them back into the main feature
stream, enhancing the model’s ability to segment organs of varying sizes.

The decoder mirrors the encoder structure and progressively upsamples the
feature maps to the original resolution using bilinear upsampling layers, followed
by bottleneck residual blocks for refinement. Skip connections between encoder
and decoder stages preserve fine-grained details lost during downsampling.

To enhance computational efficiency while maintaining accuracy, all standard
convolutions in the network are replaced with depthwise separable convolutions,
significantly reducing the number of parameters and floating-point operations.

Knowledge Distillation Strategy: A Teacher–Student learning scheme
is adopted to further boost segmentation performance. First, a large-capacity
Teacher model, initialized with 32 base channels, is trained using a compound
loss combining Dice loss and Cross-Entropy loss. The Teacher network achieves
high segmentation accuracy on the FLARE25 dataset with pseudo-labels.

Subsequently, a lightweight Student model is constructed, initialized with 16
base channels, as illustrated in Figure 4 . To ensure feature alignment for knowl-
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Fig. 4. Student model of the proposed method.

edge transfer, an additional non-resolution-changing layer is inserted in the Stu-
dent encoder to match the depth of the Teacher model. Multi-scale feature dis-
tillation is performed at the two lowest encoder layers using Mean Squared Error
(MSE) loss. The distillation losses from the two scales are summed, weighted by
w=0.5, and added to the Student’s supervised loss to form the final optimization
objective.

Both Teacher and Student networks adopt deep supervision, where auxil-
iary segmentation outputs are generated at multiple decoder stages to stabilize
training. The pseudo-labels used for both models are generated from 2,000 un-
labeled cases based on the winning solution of FLARE 2025, without further
post-processing.

This combination of architectural optimization and multi-scale knowledge
distillation allows the Student model to achieve competitive accuracy while sig-
nificantly reducing computational cost, making it more suitable for deployment
in resource-constrained environments.

2.3 Post-processing

Multi-threaded Post-processing Pipeline To address the computational
bottleneck in the post-processing stage, we implemented a multi-threaded opti-
mization pipeline that significantly accelerates the resampling and segmentation
export processes.

Parallel Resampling Strategy The most time-consuming operation in post-
processing is resampling predictions from low resolution back to original resolu-
tion. We implemented a class-wise parallel resampling approach: Thread alloca-
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tion: Dynamically allocates up to 12 threads based on physical CPU cores and
memory constraints Class-wise parallelization: Each segmentation class is pro-
cessed independently using separate threads Memory-aware processing: Thread
count is automatically reduced for large datasets (>8GB) to prevent memory
overflow Error handling: Robust fallback mechanisms ensure processing contin-
ues even if individual threads fail.

3 Experiments

3.1 Dataset and evaluation measures

The dataset is curated from more than 40 medical centers under the license
permission, including TCIA [3], LiTS [1], MSD [21], KiTS [8,9], autoPET [6,5],
AMOS [13], AbdomenCT-1K [20], TotalSegmentator [22], and past FLARE chal-
lenges [17,18,19]. The training set includes 2050 abdomen CT scans where 50 CT
scans with complete labels and 2000 CT scans without labels. The validation and
testing sets include 250 and 300 CT scans, respectively. The annotation process
used ITK-SNAP [24], nnU-Net[11], MedSAM [15,16], and Slicer Plugins [4,16].
In additional to use all training cases for model development, we also added a
coreset track where participants can select 50 cases from the training set for
model development in an automatic way.

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside one efficiency
measures—runtime. These metrics collectively contribute to the ranking com-
putation. During inference, GPU is not available where the algorithm can only
rely on CPU.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 20.04 LTS or Windows 11
CPU Intel(R) Core(TM) i9-13900HX CPU@5.40GHz
RAM 8×2GB; 2933MT/s
Programming language Python 3.12
Deep learning framework torch 2.0, torchvision 0.2.2
Specific dependencies nnU-Net
Code https://github.com/houkainiubi/flare25task2_hk.git

https://github.com/houkainiubi/flare25task2_hk.git
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Training protocols Please describe at least the following aspects:
1. Data augmentation (Based on the winning solutions in FLARE 2021 [17],

we recommend using extensive data augmentation)
2. patch sampling strategy
3. optimal model selection criteria

Table 2. Training protocols.

Network initialization
Batch size 2
Patch size 80×160×160
Total epochs 2700
Optimizer AdamW with weight decay(µ = 1e -5)
Initial learning rate (lr) 0.01
Lr decay schedule halved by 200 epochs
Training time 45 hours
Loss function DiceLoss and CELoss
Number of model parameters 157.59K1

Number of flops 60G2

CO2eq 0.5 Kg3

4 Results and discussion

4.1 Quantitative results on validation set

The quantitative evaluation results are presented in Table 3 , which indicate
that the proposed method yields highly promising outcomes in segmenting major
organs such as the liver, spleen, kidneys, and stomach. Nevertheless, segmenting
smaller organs remains a significant challenge that demands further attention,
especially for extremely small organs with indistinct boundaries, such as the
adrenal glands and duodenum.

We conducted ablation experiments on the constructed base model, the model
with one-time knowledge distillation, and the model with two-time knowledge
distillation. The results show that the base model without knowledge distillation
achieves the highest accuracy but has the slowest inference speed. The model
with two-time knowledge distillation yields the lowest accuracy but boasts the
fastest inference speed. Meanwhile, we conducted ablation experiments on both
the public validation set and the online validation set. The results are shown in
Table 4 and Table 5.
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Table 3. Quantitative evaluation results.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 97.87 92.79 97.90 99.17
Right Kidney 95.20 95.74 95.19 96.44
Spleen 96.24 96.50 95.92 97.77
Pancreas 88.90 96.77 89.73 97.82
Aorta 96.79 98.34 94.90 98.39
Inferior vena cava 89.30 89.24 90.98 93.71
Right adrenal gland 79.99 90.94 82.04 95.34
Left adrenal gland 75.45 85.25 81.43 94.20
Gallbladder 79.90 79.70 84.20 85.98
Esophagus 87.22 95.38 86.16 95.68
Stomach 92.37 94.92 94.64 97.79
Duodenum 80.10 92.44 85.60 96.50
Left kidney 91.95 93.08 95.09 96.33
Average 88.56 92.79 90.29 95.78

Table 4. Overview of Ablation Experiment Results in Public Validation. Pro-
posed:Base+Distill+Distill2nd

Target Base Base+Distill Base+Distill2nd
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 98.15 98.47 97.87 92.79 97.39 97.30
Right Kidney 95.46 96.15 95.20 95.74 90.89 90.35
Spleen 97.16 97.25 96.24 96.50 95.55 95.41
Pancreas 89.77 97.21 88.90 96.77 79.39 89.78
Aorta 97.09 98.64 96.79 98.34 93.02 94.66
Inferior vena cava 90.58 90.45 89.30 89.24 80.90 77.55
Right adrenal gland 83.99 93.15 79.99 90.94 55.17 65.31
Left adrenal gland 81.25 89.71 75.45 85.25 47.15 52.72
Gallbladder 79.43 80.16 79.90 79.70 78.06 75.44
Esophagus 89.06 96.17 87.22 95.38 73.58 83.89
Stomach 92.71 95.00 92.37 94.92 88.38 91.51
Duodenum 81.48 92.67 80.10 92.44 65.36 80.85
Left kidney 92.84 93.66 91.95 93.08 90.10 90.18
Average 89.92 93.75 88.56 92.79 79.61 83.47
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Table 5. Overview of Ablation Experiment Results in Online Validation. Pro-
posed:Base+Distill+Distill2nd

Target Base Base+Distill Base+Distill2nd
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 98.04 99.40 97.90 99.17 97.27 98.44
Right Kidney 95.87 91.11 95.19 96.44 94.88 96.07
Spleen 96.00 97.81 95.92 97.77 94.91 96.50
Pancreas 90.19 97.95 89.73 97.82 81.27 92.09
Aorta 94.87 98.29 94.90 98.39 91.97 94.06
Inferior vena cava 91.44 94.30 90.98 93.71 80.92 79.23
Right adrenal gland 83.89 96.35 82.04 95.34 61.01 71.63
Left adrenal gland 84.87 96.63 81.43 94.20 54.61 64.04
Gallbladder 83.52 85.78 84.20 85.98 78.98 77.31
Esophagus 87.87 96.80 86.16 95.68 73.58 84.81
Stomach 94.89 97.94 94.64 97.79 91.68 95.04
Duodenum 86.31 96.70 85.60 96.50 69.02 86.29
Left kidney 95.27 96.51 95.09 96.33 94.60 96.05
Average 91.00 96.27 90.29 95.78 81.90 87.04

4.2 Qualitative results on validation set

In this section, we show the two good segmentation cases and two bad segmen-
tation cases, along with the time consumption for inference on several large CT
scans.

Fig. 5. Good segmentation cases from 200 validation set.

Good segmentation cases: Figure 5 illustrates representative segmenta-
tion results for two cases. In FLARETs_0007, the Base+Distill method achieves
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a close alignment with the ground truth across all major abdominal organs, with
a high DSC of 93.89. Conversely, the Base+Distill2nd method shows lower seg-
mentation accuracy, where the liver and stomach boundaries become less precise,
leading to a notable DSC drop to 88.90. In FLARETs_0194, both methods gen-
erally produce satisfactory segmentation results, yet Base+Distill again demon-
strates superior accuracy (DSC: 93.51). In contrast, Base+Distill2nd fails to cap-
ture finer organ structures, particularly at the pancreas and adjacent vascular re-
gions, contributing to its reduced DSC of 90.39. These findings suggest that while
both methods are capable of segmenting large organs effectively, Base+Distill
maintains better sensitivity to organ boundaries and small structures, whereas
Base+Distill2nd tends to lose detail, resulting in degraded segmentation quality.

Fig. 6. Bad segmentation cases from 50 validation set.

Bad segmentation cases: Figure 6 presents two examples where the seg-
mentation performance degrades significantly. In FLARETs_0032, the Base+Distill
method maintains relatively good delineation of the pancreas and surrounding
organs with a DSC of 83.62, whereas Base+Distill2nd shows noticeable errors,
particularly at the pancreas and duodenum boundaries, resulting in a substan-
tial DSC drop to 69.19. In FLARETs_0048, both methods struggle with accu-
rate segmentation. The Base+Distill method exhibits under-segmentation of the
spleen and kidneys, leading to a DSC of 69.55, while Base+Distill2nd slightly
improves the overall score (72.70) but still produces misclassifications in vascular
regions and small organ structures. These cases highlight that both approaches
face difficulties in segmenting organs with complex shapes or low contrast against
adjacent tissues, with Base+Distill2nd being more prone to boundary inaccura-
cies, particularly for smaller structures.
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4.3 Segmentation efficiency results on validation set

We quantitatively evaluate the segmentation efficiency of our model based on
running time, as shown in Table 6 and Table 7. It can be clearly seen that the
model reasoning speed after a knowledge distillation is greatly accelerated. Even
if the model accuracy after a knowledge distillation is slightly lost compared to
the basic model, it is worth it.

Table 6. Segmentation time on the Base+Distill model. Quantitative evaluation of
segmentation efficiency in terms of the running time. Evaluation CPU: Intel Xeon(R)
W-2133 CPU @ 3.60GHz × 12.

Case ID Image Size Running Time (s)
0007 (512, 512, 215) 116.71
0027 (512, 512, 169) 61.29
0029 (512, 512, 171) 63.08
0036 (512, 512, 91) 31.65
0058 (512, 512, 56) 52.75
0063 (512, 512, 361) 113.41
0071 (512, 512, 108) 60.21
0164 (512, 512, 114) 161.21
0189 (512, 512, 89) 50.17
0190 (512, 512, 101) 117.29

Table 7. Segmentation time on the Base model.Quantitative evaluation of segmenta-
tion efficiency in terms of the running time. Evaluation CPU: Intel Xeon(R) W-2133
CPU @ 3.60GHz × 12.

Case ID Image Size Running Time (s)
0007 (512, 512, 215) 146.79
0027 (512, 512, 169) 123.66
0029 (512, 512, 171) 122.64
0036 (512, 512, 91) 70.87
0058 (512, 512, 56) 85.37
0063 (512, 512, 361) 175.61
0071 (512, 512, 108) 81.05
0164 (512, 512, 114) 202.47
0189 (512, 512, 89) 97.47
0190 (512, 512, 101) 174.05
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4.4 Results on final testing set

4.5 Limitation and future work

Although the proposed modifications to the nnU-Net framework, including the
integration of depthwise separable convolutions, pyramid pooling, bottleneck
residual blocks, and multi-threaded post-processing, have demonstrated signifi-
cant improvements in both segmentation accuracy and inference efficiency, sev-
eral limitations remain. First, the current approach still relies on the general
preprocessing pipeline of nnU-Net, which may not optimally capture the re-
gion of interest (ROI) in highly variable abdominal CT scans. This limitation
could lead to redundant computations and reduced robustness in cases where
organ boundaries are subtle or imaging quality is degraded. Second, while the
proposed architectural changes improved overall performance, the model occa-
sionally struggles with small or low-contrast structures, suggesting that further
refinement in feature extraction and multi-scale representation is necessary. Fi-
nally, the evaluation was constrained by the competition dataset, and general-
ization to diverse clinical datasets remains to be validated.

In future work, we aim to address these issues by developing a more adap-
tive preprocessing strategy that incorporates precise ROI localization prior to
segmentation. By narrowing the target area during preprocessing, the model
can potentially reduce computational overhead and focus more effectively on
relevant anatomical structures. Additionally, integrating attention-based mech-
anisms and exploring self-supervised pretraining on large-scale medical imaging
datasets could further enhance the model’s ability to capture fine-grained details
and generalize across different imaging modalities and institutions.

5 Conclusion

In this study, we presented an enhanced segmentation framework based on nnU-
Net, designed and optimized for the medical image segmentation challenge.
Through architectural modifications—namely the introduction of depthwise sep-
arable convolutions, pyramid pooling modules, and bottleneck residual connec-
tions—combined with an efficient multi-threaded post-processing scheme, our
method achieved substantial gains in both segmentation accuracy and compu-
tational efficiency. The experimental results demonstrated the effectiveness of
these modifications in handling complex abdominal CT scans and improving
organ delineation compared to the baseline.

Despite its limitations, the proposed framework offers a practical balance
between accuracy and efficiency, making it well-suited for large-scale medical
imaging tasks. Our findings further underscore the flexibility of nnU-Net as
a foundation for innovation in medical image analysis. Future work will focus
on advancing preprocessing strategies, particularly precise ROI localization, to
further reduce computational burden and improve segmentation robustness in
challenging scenarios. Overall, this work highlights the potential of tailored ar-
chitectural and system-level optimizations to push the performance boundaries
of automated medical image segmentation.
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