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Abstract—Learning based approaches have witnessed great successes in blind single image super-resolution (SISR) tasks, however,
handcrafted kernel priors and learning based kernel priors are typically required. In this paper, we propose a Meta-learning and Markov
Chain Monte Carlo based SISR approach to learn kernel priors from organized randomness. In concrete, a lightweight network is
adopted as kernel generator, and is optimized via learning from the MCMC simulation on random Gaussian distributions. This
procedure provides an approximation for the rational blur kernel, and introduces a network-level Langevin dynamics into SISR
optimization processes, which contributes to preventing bad local optimal solutions for kernel estimation. Meanwhile, a meta-learning
based alternating optimization procedure is proposed to optimize the kernel generator and image restorer, respectively. In contrast to
the conventional alternating minimization strategy, a meta-learning based framework is applied to learn an adaptive optimization
strategy, which is less-greedy and results in better convergence performance. These two procedures are iteratively processed in a
plug-and-play fashion, for the first time, realizing a learning-based but plug-and-play blind SISR solution in unsupervised inference.
Extensive simulations demonstrate the superior performance and generalization ability of the proposed approach when comparing with
state-of-the-arts on synthesis and real-world datasets.

Index Terms—Blind single image super resolution, Markov Chain Monte Carlo simulation, Meta-learning.

✦

1 INTRODUCTION

S INGLE image super-resolution (SISR) plays a crucial role
in image processing society. It tends to reconstruct high-

resolution (HR) images from the low-resolution (LR) obser-
vations. With the fact that the degradation model is typically
unknown in real-world scenarios, growing studies begin to
predict the blur kernels and the HR images simultaneously,
known as the blind SISR problem. A common mechanism
to solve the blind SISR problem is underlying an alternating
optimization between two sub-problems, kernel estimation
and image restoration, which are iteratively minimized until
the HR image is restored. Kernel estimation is a pivotal step
in solving blind SISR problems, which determines the HR
image reconstruction performance, and thereby becomes the
centrality study of this paper.

Most of the existing blind SISR approaches can be cat-
egorized as model-based approaches and learning-based
approaches. Model-based approaches [1], [2], [3], [4], [5], [6]
enjoys better generalization-ability because of the explicit
degradation modeling and gradient-based solution scheme.
However, these methods suffer from the ill-posedeness and
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Deniz Gündüz is with the Department of Electrical and Electronic
Engineering, Imperial College London, SW7 2AZ, UK, and the ‘Enzo
Ferrari’ Department of Engineering, University of Modena and Reggio
Emilia, Italy.

• E-mail: (j.xia16, shengxi.li17, d.gunduz)@imperial.ac.uk,
(yzx21, zhangshuanghui, fuyaowen, lixiang)@nudt.edu.cn.

• Jingyuan Xia and Zhixiong Yang contributed equally to this work (Corre-
sponding authors: Zhixiong Yang and Shuanghui Zhang).

non-convexity of the blind SISR problem, and typically
stuck at the bad local mode during optimization. There-
fore, learning-based methods [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17] obtain popularity in recent years,
which realize significantly better performance via substitut-
ing explicit degradation model by network-based learning
procedure on a large amount of labelled data, therefore, pro-
viding data-driven image and kernel priors for solving the
non-convex blind SISR optimization problem. Nevertheless,
these methods are still restricted by high data dependency
on training samples and dedicated time-consumption for
model-training in real-world applications.

In general, we claim that there is a trade-off between
the reconstruction performance on individual task and the
generalization capacity on different scenarios in blind SISR.
On the one hand, stronger priors definitely bring better
performance, as the learning-based methods achieve. Mean-
while, the generalized flexibility to real-world applications
will be declined since strong priors typically lead to serious
overfitting. On the other hand, rational kernel priors and
adaptive optimization strategy, instead of exhaustively min-
imizing each individual sub-problem, are necessary to han-
dle the intrinsic non-convexity and ill-posedness of blind
SISR problems. The latest meta-learning based optimization
algorithms [18], [19], [20], [21] have substantiate significant
advances on solving non-convex optimization problems, in
particular, for those are with alternating minimization (AM)
framework, just as blind SISR problem does. In light of
the meta-learning mechanism that learns to extract mutual
knowledge for a “bird’s eye view” on global scope optimiza-
tion, these algorithms achieve considerably better conver-
gence performance on non-convex geometry. The common
idea of meta-learning-based optimization strategies lies on
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incorporating organized randomness to prevent trapping
into bad local optima, and a network-based optimizer is
meta-learned across iterations to ensure the incorporated
random disturbance following the primary objective of the
optimization problem. In this instance, this paper strives
to realize a novel blind SISR solution scheme, in which
rational kernel priors and adaptive optimization strategy
are gained through learning from organized randomness
without cumbersome training in advances as well as data
dependancy.

In this paper, we propose a Meta-learning and Markov
Chain Monte Carlo (MLMC) based approach to solve the
blind SISR problem. It establishes a two phases SISR op-
timization, including a Markov Chain Monte Carlo kernel
approximation (MCKA) phase and a meta-learning based al-
ternating optimization (MLAO) phase. In the MCKA phase,
a MCMC simulation on random Gaussian distributions is
proposed to substitute traditional model-based or learning-
based kernel priors, which are either handcrafted or deter-
ministic via pre-training. In contrary, the proposed MCKA
aims to learn task-general kernel priors from random Gaus-
sian distributions, and thereby achieves pre-training and la-
belled data free. A Markov Chains system modeling on op-
timization trajectory of the blind SISR problem is proposed
to provide organized randomness, which allows the Monte
Carlo simulations to sample Gaussian distributions with a
global scope on LR image reconstruction errors, therefore,
providing rational kernel priors for better convergence per-
formance. In concrete, a lightweight network is iteratively
optimized in an unsupervised manner using MCMC simula-
tions to approximately generate blur kernel, which is trained
across random Gaussian distributions. In this way, good
generalization properties and flexibility towards arbitrary
SISR tasks are ensured, and this organized randomness
leads to a relaxation that prevents the kernel estimation
trapping into bad local modes. Moreover, the MLAO phase
refines blur kernel and restores HR image, alternatively,
with respect to the task-specific LR observation. Instead
of the exhaustive minimization on each individual sub-
problem, the optimizer for kernel estimation is meta-learned
by minimizing the accumulated LR image reconstruction er-
rors over MLAO iterations. Then, an adaptive and effective
optimization strategy for better convergence performance
is obtained by learning the mutual knowledge of solving
a sequence of MLAO sub-problems. These two phases are
operated alternatively to realize a balance between task-
general relaxation via learning from organized randomness
and task-specific refinement.

The advantages of the proposed MLMC are listed below:
i) Plug-and-play. The MCKA phase effectively substitutes
the deterministic kernel priors by a plug-and-play learn-
ing process through MCMC simulation on Gaussian dis-
tributions. This results in negligible time-consumption and
circumvents the cumbersome demand of labelled training
samples. ii) Better convergence performance. Though without
training in advances, the MLAO phase achieves an adaptive
non-convex optimization strategy that converges to better
optimum for the estimated blur kernels. Meanwhile, the
MCKA phase can be regarded as a network-level Langevin
dynamics [6], [22], [23] towards the kernel estimation in
the MLAO phase, which provides a rational and trainable

random disturbance with the kernel estimation via learning
from random Gaussian distributions. This also ensures the
convergence of kernel estimation. iii) Stronger generalization
capacity and flexibility. The obtained kernel priors from the
MCMC simulation are loose and dynamic, which endows
better generalization capability on different degradation sce-
narios. Besides, the plug-and-play fashion evades the data
dependency and re-training requests, therefore, significantly
improving the flexibility in practical applications. The main
contributions of this paper are listed below:

• An universal statistic framework for network-based
degradation model is proposed to elaborate the
network-based approach for SISR problem. On the
basis of this, an MCMC simulation model on random
Gaussian distributions with a glimpse on LR image
reconstruction error is established to elaborate a new
kernel approximation phase.

• Different to the commonly-applied pre-training or
manually designed kernel priors, a random kernel
learning scheme replaces the ordinary kernel priors,
which realizes a learning-based but plug-and-play
kernel prior generation paradigm and contributes
to a commonly network-level Langevin dynamics
optimization for convergence improvements.

• A meta-learning-based adaptive strategy is con-
structed to solve the blind SISR problem. It learns
to optimize the non-convex and ill-posed blind SISR
problem in a less-greedy optimization strategy, and
thereof ensures better convergence performance to-
wards ground truth when only depending on the
observed LR image.

• To the best of our knowledge, MLMC is the first
learning-based but plug-and-play SISR approach
that achieves superior performance and can be di-
rectly applied to common kernel estimation tasks
including isotropic and anisotropic Gaussian, non-
Gaussian and motion kernels, with competitive num-
ber of parameters, runtime and memory usage com-
paring to the state-of-the-art, as well as robustness to
the noise.

2 RELATED WORK

2.1 Blind SISR methods
The existing blind SISR approaches can be roughly cate-
gorised into model-based and learning-based approaches.
Model-based methods. Most of the early model-based blind
SISR appraoches [1], [24], [25], [26] merely aims to construct
specific HR images priors with explicit formulations, such as
gradient profile [27], hyper-Laplacian [28], sparsity [29] and
total variation (TV) [30], for better reconstruction perfor-
mance. More recent studies begin to focus on kernel priors
designing. For example, Jin et al. [31] propose a popurlar
heuristic normalization as kernel prior which realizes better
convergence. Yue et al. [6] employ an explicit pre-defined
Gaussian kernel model, achieving good robustness on noise
scenarios. It iteratively optimizes the Gaussian kernel and
the input noise via a gradient-based algorithm, which causes
limitation towards capturing varying kernel categories.
In sum, model-based approaches are typically with good
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generalization-ability due to the explicit modelling on task-
specific priors. Meanwhile, significant performance decline
will appear when the manually designed kernel priors
slightly deviate to the degradation model in application.
Besides, due to the high ill-posedness and non-convexity
of the blind SISR problem, model-based methods can easily
get stuck at local optimums via the hand-crafted and rule-
fixed gradient descent based optimization algorithms. These
urge researchers turn their attentions to learning-based al-
ternatives for better convergence performance and more
flexibility.
Learning-based methods. The arise of deep learning has
motivated the learning-based blind SISR approaches to learn
kernel/image priors via network-based behavior. These
models are typically pre-trained on paired LR/HR image
samples to obtain image and kernel priors. Typically, end-
to-end deep networks are adopted to formulate the degra-
dation model [32], and therewith bring about plenty of deep
convolutional neural network (CNN) based SISR optimizers
[9], [33], [34], [35], [36], [37], [38], [39], [40], [41]. Specifically,
Liang et al. [42] propose an end-to-end deep network that
estimates kernel for different patches in LR images via
residual blocks. Fang et al. [39] establish a two-stage frame-
work for solving blind SR task with a statistical modelling
on LR image, which learns mean and variance from LR
image estimate kernel. To improve the generalization-ability
towards diverse degradations of real image, Zhang et al.
[38] design a practical degradation model with shuffled blur
for the synthetic training data. More recently, Xia et al. [40]
propose a knowledge distillation based implicit degradation
estimator for blind SR task, allowing better generalization
towards different degradations. Deep image prior (DIP)
[2] is one of the most well-known model that is capacity
of learning image features in an unsupervised way with
superior performance on solving computer vision tasks.
However, it suffers from limited generalization-ability on
different degradation models when dealting with blind SISR
problems. In this instance, recent works [43], [44], [45], [46],
[47] introduce meta-learning for better generalization-ability
via training across different samples in terms of image sizes,
degradation categories and resolution ratios. Nevertheless,
these methods demand large amount of training samples
and time-consuming dedicated pre-training phase. Mean-
while, other works [11], [42], [48], [49], [50], [51], [52] strive
to expand the conventional model-based iterative solutions
with learning-based behavior via unfolded deep learning
algorithms. Gu et al. [53] propose an network-based alterna-
tive optimization framework that simultaneously optimizes
the blur kernel and HR image via deep models. Zhang et
al. [50] formulate a fundamental deep unfolding framework
for SR task, which unfolds the MAP inference via a half-
quadratic splitting algorithm. More recently, Liang et al.
[13] establish a flow-based kernel prior (FKP) model that
realizes an improved performance through pre-training a
kernel estimator as non-parametric priors, and incorporates
it with the existing SISR approaches. Approaches in [41],
[52] formulate deep-unfolding-based model on the basis of
half quadratic splitting algorithm and proximal gradient
descent algorithm.

In a sum, the latest blind SISR methods illustrate a
trend of reducing the dependency on training resource (pre-

training stage, external training data) and strengthening the
generalization-ability on varying degradation categories.
Although the exsiting works, such as FKP-DIP [13], in which
the necessity of large amount of images is replaced by
kernel samples, have achieved less pre-training demand,
they still require hours to train their model in advance
and the performance is determined by the training samples.
To reduce the kernel prior dependency, this work designs
a MCMC simulation on random Gaussian distributions to
provide an approximation for the blur kernel, while neither
pre-training nor labelled data is necessary, and thus improve
its generalization-ability towards different degradation cat-
egories.

2.2 Meta-learning-based Non-convex Optimization

Differ to the conventional deep learning methods that focus
on optimizing each task exhaustedly, meta-learning meth-
ods [18], [19], [20], [21] prefer to leverage the mutual experi-
ence of solving different tasks to obtain good generalization-
ability and adaptability for the trained model. For example,
Li et al. [54] propose a metric-based meta-learning that
shares a hierarchical optimization structure to handle the
task-specific information and task-across knowledge. Re-
cently, Xia et al. [21] introduce a randomness perturbations
with gradient descent algorithm pinciple, which is realized
by meta-learning the optimization trajectory during itera-
tions. Inspired by [21], Yang et al. [55] further extend the idea
of introducing random perturbations for better convergence
performance in a plug-and-play fashion on solving another
formous non-convex and ill-posed weighted sum rate prob-
lem in wireless communication society, and attains state-of-
the-art performance with competitive computational com-
plexity. In a nutshell, these approaches aim to balance the
to allow better convergence in the non-convex problems.
Motivated by this idea , this paper employs a meta-learning
scheme for solving SISR problem, hoping to achieve better
convergence in the blind SISR problem.

3 NOTATION AND PROBLEM STATEMENT

3.1 Notation

We denote vectors and matrices by bold letters. The super-
script represents the index of the iteration, while the sub-
script indicates practical meaning of variables. We denote
the neural network model by G(·) with parameters ϕ. In the
rest of this paper, we define variable with ∗ on superscript
as the well-optimized results. For the degradation model, let
y denotes the down-sampled LR image, x denotes the HR
image,⊗ indicates the convolution operation, ↓s denotes the
down-sampling operation with scale factor s, and k denotes
the blur kernel. We define n ∼ N (0, σ2) as a zero-mean
white Gaussian noise with variance σ2. Let ∥ · ∥F denotes
the Frobenius norm.

3.2 Model-based Degradation Model

The fundamental degradation model of image super-
resolution [56], [57], [58] is typically formulated as follows

y = (x⊗ k) ↓s +n. (1)
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Following the maximum a posteriori (MAP) framework, the
blind SISR problem can be formulated as a MAP problem:

max
x,k

p(y|x,k)p(x)p(k). (2)

In Eq. (2), p(y|x,k) denotes the likelihood of the observed
LR image, p(k) denotes the kernel prior, and p(x) is the
image prior. When optimizing the log-likelihood of (2), the
problem can also be expressed as

argmin
x,k
∥y − (x⊗ k) ↓s ∥2F + λΦ(x) + βΩ(k), (3)

where Φ(x) and Ω(k) are the prior information functions
with weights λ and β, respectively. In the model-based
methods, a projected alternation minimization (PAM) [1]
based iterative optimization between x and k is typically
applied to solve problem (3) in the following form{

x∗ = argmin
x
∥y − (x⊗ k) ↓s ∥22 + λΦ(x),

k∗ = argmin
k
∥y − (x⊗ k) ↓s ∥22 + βΩ(k),

(4)

subject to ∥k∥1 = 1, k > 0, x > 0,

where the constraints are satisfied via projected gradient
descent at each iteration step, more details of the PAM
formulation could be found in [1].

3.3 Network-based Degradation Model

Black-box based Framework Most of network-based degra-
dation models, such as SRCNN [32], RCAN [59] and DASR
[12], estimate HR image by an end-to-end deep network
Gx(·). Let ϕ denotes the parameters of the deep network,
then the optimization problem (3) is converted to

ϕ∗ = argmin
ϕ

∑
xj

gt,y
j∈Dx

∥xj
gt − G(yj ,ϕ)∥2F , (5)

where xgt
j is the ground truth HR image paired with LR

observation yj in training dataset Dx = {xj
gt,y

j}Jj=1.
Double-DIP Framework Following the AM-based frame-
work in (4), Double-DIP framework [4], [60] establishes two
networks Gx(·) and Gk(·) with parameters ϕx and ϕk to
estimate HR image and blur kernel by taking fixed random
noises zx and zk as input in the following form

ϕ∗
x = argmin

ϕx

∥y − (Gx(zx,ϕx)⊗ k) ↓s ∥2F ,

ϕ∗
k = argmin

ϕk

∥y − (x⊗ Gk(zk,ϕk)) ↓s ∥2F .
(6)

FKP-DIP Framework Differ to Double-DIP framework,
FKP-DIP [13] learns kernel prior via pre-training ϕk on a
labelled kernel dataset Dk as follows,

ϕ∗
k = argmin

ϕk

∑
kj
gt∈Dk

∥kj
gt − G(zk,ϕk)∥2F ,

ϕ∗
x = argmin

ϕx

∥y − (Gx(zx,ϕx)⊗ k) ↓s ∥2F ,

z∗
k = argmin

zk

∥y − (x⊗ Gk(zk,ϕ
∗
k)) ↓s ∥2F ,

(7)

where kj
gt is the ground truth blur kernel, and ϕ∗

k denotes
the pre-trained network parameters with respect to labelled
kernel dataset Dk = {kj

gt}Jj=1.

4 THE PROPOSED MLMC APPROACH

In this paper, a statistic formulation for network-based
degradation model is introduced, and a MLMC approach
is proposed to optimize the blind SISR problem in an al-
ternative framework, containing an MCKA stage for kernel
approximation and an MLAO stage alternatives on kernel
and HR image estimation.

4.1 Problem Formulation for Network-based Degrada-
tion Model
Following the concept of the network-based degradation
model that learns to optimize HR image and blur kernel
via network-behavior, the optimization of x and k are
converted into the optimization of parameters ϕx and ϕk.

Mathematically, according to the Bayes theorem, we
have

p(x) = p(x|ϕx)p(ϕx)/p(ϕx|x), (8)

p(k) = p(k|ϕk)p(ϕk)/p(ϕk|k). (9)

Then, the primary MAP problem (2) can be reformulated as

max
ϕx,ϕk

p(y|x,k)p(x|ϕx)p(ϕx)p(k|ϕk)p(ϕk)

p(ϕx|x)p(ϕk|k)
. (10)

Given the fact that the obtained HR image x and k are
determined by the parameters ϕx and ϕk, respectively, thus
p(ϕx|x) = 1 and p(ϕk|k) = 1. Then problem (10) can be
further reformulated as

max
ϕx,ϕk

p(y|x,k)p(x|ϕx)p(k|ϕk)p(ϕx)p(ϕk). (11)

Given that p(y|x,k)p(x|ϕx)p(k|ϕk) = p(y,x,k|ϕx,ϕk),
then we have

max
ϕx,ϕk

p(y,x,k|ϕx,ϕk)p(ϕx)p(ϕk). (12)

When rewriting problem (12) in logarithm form, an uni-
versal statistical framework for network-based degradation
model is given by

max
ϕx,ϕk

log p(y,x,k|ϕx,ϕk) + log p(ϕx) + log p(ϕk), (13)

where the first term denotes a maximum log-likelihood
estimation for parameters ϕx and ϕk with respect to the
joint probability of LR observation y, HR image x and blur
kernel k. The second and third terms in (13) denote the
image prior and kernel prior, respectively.

Specifically, the first term is typically demonstrated by
a minimization problem of LR image reconstruction error
with respect to alternatively optimizing parameters ϕx and
ϕk, as what Double-DIP does in (6). The black-box based
end-to-end deep learning solutions, such as SRCNN [32],
RCAN [59] and DASR [12], are typically pre-trained on
labelled HR image dataset Dx, consequently resulting in a
strong image prior. These methods tend to learn an effec-
tive image prior from labelled data, referring to p(ϕx|Dx).
Meanwhile, classical image priors are easy to be applied to
p(ϕx) in the form of regularization or constraint aligned
with LR reconstruction error. In contrast, the latest blind
SISR approach, FKP-DIP, tends to learn kernel prior instead
of image prior in the form of trainable parameters by pre-
trained on kernel dataset Dk, referring to p(ϕk|Dk).
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Fig. 1. The overall framework of the proposed MLMC.

On the basis of the problem (13), three developed mod-
ules for kernel prior, image prior and maximum likeli-
hood estimation, respectively, are proposed in this paper
as follows: i) In Section 4.3, a Markov Chain Monte Carlo
simulation on random Gaussian distributions kg , referring
to kernel approximation p(ϕk|kg), is proposed to substitute
pre-training based kernel prior p(ϕk|Dk); ii) In Section 4.4.2,
a hyper-Laplacian prior is adopted to improve the denoising
performance, referring to p(ϕx|n); iii) In Section 4.4, a meta-
learning based alternating optimization strategy is incorpo-
rated to optimize parameters ϕx and ϕk to improve the con-
vergence performance of solving the maximum likelihood
estimation for p(y,x,k|ϕx,ϕk). Detailed demonstrations
on each part are given in the following subsections.

4.2 Overall Framework

The overall framework of the proposed MLMC is depicted
in Fig. 1. The fundamental paradigm is established on an
alternating optimization between MCKA (blue) and MLAO
(yellow) phases over the parameters of kernel estimator net-
work ϕk and image restorer network ϕx. Specifically, ϕk are
optimized across these two phases referring to ϕk,MC and
ϕk,ML, while ϕx are only optimized within MLAO. The al-

Algorithm 1: The overall framework of the pro-
posed MLMC algorithm.

1 Input: y.
2 Initialized: ϕ1

x, ϕ1
k,ML, ϕ1

k,MC, zx, zk.
3 for i← 1, 2, . . . , I do
4 % Markov Chain Monte Carlo Kernel

Approximation
5 ϕi

k,ML = fMCKA({kl,τ
g }Tτ=1, zk,ϕ

i
k,MC)

6 % Meta-learning based Alternating Optimization
7 ϕi+1

x ,ϕi+1
k,MC = fMLAO(ϕ

i
k,ML,ϕ

i
x,y, zx, zk)

8 end
9 Output: k = Gk(zk,ϕ

I
k,ML), x = Gx(zx,ϕ

I
x)

ternative optimization process between MCKA and MLAO
is referred as the outer loop with index i = 1, 2, · · · , I .
At each outer loop step, there are MCKA inner loop with
the index l = 1, 2, . . . , L and MLAO inner loop with the
index q = 1, 2, . . . , Q, respectively. In MCKA inner loop,
the parameters of kernel generator ϕk,MC are iteratively
updated with respect to L number of MCMC simulations
on random Gaussian distributions to endow random kernel
priors. In MLAO inner loop, the alternates between kernel
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Fig. 2. The overview of the Markov Chain Monte Carlo kernel approximation (MCKA). (a) The approximated blur kernel kl = Gk(zk,ϕ
l
k,MC) is

generated from the given noise zk with fully-connected network (FCN) Gk, the parameters of which are iteratively updated, thereof resulting in
Markov chain with possible transitionp(ϕl+1

k,MC|ϕ
l
k,MC,zk,x,y). (b) Left: the network parameters (blue crosses) are optimized by gradient descent-

based algorithm iteratively with respect to MCMC loss function in Eq. (25). The obtained approximated kernel present a trend of non-monotonically
decreasing on MCMC loss. Right: the three panels show the trajectory of optimization on ϕl

k,MC over the geometry of MCMC loss (blue crosses).
From an initial model (obtained from the last MLAO phase), the parameters ϕl

k,MC are updated via gradient descent-based algorithm. (c) Left:
the MCMC simulations sample kernels (green crosses) from random Gaussian distributions with respect to a posterior that the sampled kernel
should minimize the MCMC loss as well as close to the last generated sample. What stands out in this chart is the fluctuated convergence of the
sampled kernel PSNR. This is caused by the posterior distribution formed by the Markov chain possible transition p(ϕl+1

k,MC|ϕ
l
k,MC,zk,x,y). Right:

the three panels illustrate that sufficient MCMC sampling will lead to an approximation of posterior distribution underlying the minimized MCMC loss
with respect to k∗. The random samples (green crosses) are distributed on posterior distribution with the guidance of probability density from LR
reconstruction loss. Those kernels with less MCMC loss will be sampled with higher probability along with the MCMC process. We note that k∗ is
the generated blur kernel with respect to ϕ∗

k.

estimation and HR image restoration are processed for Q
iterations to ensure the estimation accuracy on the basis
of the given LR observation. Mathematically, MCKA phase
generates random kernel priors {kl,τ

g }Tτ=1 to optimize pa-
rameters ϕk,MC as follows

ϕi
k,ML = fMCKA({kl,τ

g }Tτ=1, zk,ϕ
i
k,MC), (14)

where fMCKA denotes the MCKA optimization process, and
zk is a random noise taken as input of the kernel estimator.
The obtained ϕi

k,ML will be delivered to MLAO to provide a
rational initialization of blur kernel in HR image restoration,
and the parameters are optimized with respect to the LR
observation:

ϕi+1
x ,ϕi+1

k,MC = fMLAO(ϕ
i
k,ML,ϕ

i
x,y, zx, zk), (15)

where fMLAO denotes the meta-learning based optimization
for HR image restoration, and zx is a random noise input to
the image restorer. The overall framework of the proposed

MLMC is given in Algorithm 1. We will delineate these two
phase as follows.

4.3 Markov Chain Monte Carlo Kernel Approximation
In this subsection, a kernel approximation method via
MCMC simulations on random Gaussian distributions is
proposed to provide rational kernel priors for p(ϕk). This
process is named MCKA and we elaborate it in terms of the
MCMC formulation, the random kernel sampling process,
the optimization of kernel estimator, and the comparison
towards the existing kernel estimators as follows.

4.3.1 The MCMC Formulation for Kernel Estimator
The MCMC method is widely used to systematically gen-
erate random samples from distributions, e.g. Gaussian,
which allows the algorithms to obtain a sample of the
desired distribution by establishing a Markov chain that
achieves equilibrium at the desired distribution. In light of
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this, we proposed an MCMC simulation on random Gaus-
sian distributions to provide kernel priors, and construct a
Markov chain on the parameters of the kernel generator,
which are updated iteratively during the MCMC process to
approximate blur kernels for blind SISR task. The proposed
MCKA contains two major parts, the MCMC simulation
on random Gaussian distributions and the optimization on
kernel approximation network.

Mathematically, let l = 1, 2, . . . , L denotes the index of
MCMC step. At the lth MCMC step, a shallow FCN Gk(·)
with parameters ϕl

k,MC is applied to generate blur kernel kl

via taking a fixed random noise zk as input in the following
form:

kl = Gk(zk,ϕ
l
k,MC). (16)

Meanwhile, let kg denotes a blur kernel with kernel size
(2d+ 1)× (2d+ 1) from random Gaussian distributions,

kg = p(h|Σ) =
1

2π|Σ|−1/2
exp{(h−h0)

TΣ(h−h0)}, (17)

where h = [mn ] denotes the coordinates, m,n ∈ [−d, d],
Σ = [ σ1 ρ

ρ σ2 ] denotes the covariance matrix, σ1 and σ2 are the
horizontal and vertical variances, ρ is the kernel additional
random rotation angle, and h0 denotes the kernel cen-
tre coordinate. This indicates that the randomly generated
distributions cover different kernel size d, centre h0, and
categories Σ. At the lth MCMC step, according to Eq. (17),
the MCMC sampled random kernel kl

g is given by

kl
g =

∫
Σ
p(h|Σ)p(Σ|ϕl

k,MC, zk,x,y)dΣ, (18)

where the p(Σ|ϕl
k,MC, zk,x,y) denotes the the posterior

over the current parameters state ϕl
k,MC, the given HR image

x and LR image y.
Then, the Markov chain is established on a sequence

of generated blur kernels that are determined by the cor-
responding network parameters ϕ1

k,MC,ϕ
2
k,MC, . . . ,ϕ

L
k,MC.

The network parameters ϕl
k,MC are iteratively updated with

respect to the Markov chain transition possibility in the
following form

log p(ϕl+1
k,MC,k

l
g|ϕl

k,MC, zk,x,y) =

log p(ϕl+1
k,MC|k

l
g,ϕ

l
k,MC, zk) + log p(kl

g|ϕl
k,MC, zk,x,y),

(19)

where log p(ϕl+1
k,MC|kl

g,ϕ
l
k,MC, zk) denotes that the state tran-

sition probability is determined by the sampled random
kernel kl

g , ϕl
k,MC and zk. log p(kl

g|ϕl
k,MC, zk,x,y) denotes

the MCMC sampling posterior based on the LR image
reconstruction error and the approximated blur kernel. Note
that we have omitted the prior terms p(x), p(y) and p(zk),
which are fixed during the MCKA stage. Eq. (19) illustrates
that the proposed MCMC process is composed of two major
modules: the update on ϕl

k,MC, referring to the optimization
on the kernel approximation network, and the random sam-
pling for kl

g , referring to the MCMC simulation on random
Gaussian distributions, respectively.

Fig. 2 illustrates the algorithmic principle and objective
of the MCKA phase. Specifically, Fig. 2 (a) shows that the
approximated kernels are iteratively optimized based on
the Markov chain update on ϕl

k,MC. It can be seen that the

approximated blur kernels are iteratively optimized to be a
rational blur kernel with respect to the updates on ϕl

k,MC. In
the first column of Fig. 2 (b), it explicitly shows that with
the update number, the optimization loss of ϕl

k,MC non-
monotonically decreases. This is because that the update
is implemented in the way of gradient-based strategy as
shown in the third column of Fig. 2 (b). Moreover, thanks
to the randomly sampled kernels in MCMC simulations,
the optimization on ϕl

k,MC is able to escape from bad local
optimum and converges to an equilibrium stationary mode
as the forth column of Fig. 2 (b) presented. This is achieved
by the parallel MCMC simulations that provide organized
randomness to guide the optimization process in Fig. 2 (b).

Specifically, the randomly sampled kernels are shown in
Fig. 2 (c). The first column shows the general trend of the
sampled kernels with update number. Though the MCMC
simulations retain significant fluctuation on kernel PSNR,
a converge trend is presented. In the second to the forth
columns, the posterior distribution with respect to the LR
image reconstruction error loss is presented, where the high-
est probability density refers to the blur kernel k∗ that min-
imizes the LR image reconstruction error. As shown in the
forth column of Fig. 2 (c), the MCMC simulations randomly
sample on the posterior distribution, and thereby realize or-
ganized randomness that leads to dense distribution around
the k∗. The forth columns in Fig. 2 (b) and (c) illustrate that
the organized random sampling on posterior distribution
allows the optimization on ϕl

k,MC escaping from bad local
optimum and achieving equilibrium oscillation around the
optima. We conclude that the updates on ϕl

k,MC in Fig.
2 (b) and the random sampling from MCMC simulations
in Fig. 2 (c) are iteratively processed in MCKA iterations
underlying learning from random Gaussian distributions
that are organized by the MCMC based loss, therefore,
attaining rational blur kernel as priors and providing better
convergence performance.

4.3.2 Random Kernel Sampling Process
A Monte Carlo simulations on random Gaussian distribu-
tions is proposed with respect to Markov chain on the state
of kernel generator parameters ϕl

k,MC. These parameters
determine the approximated blur kernels, which are itera-
tively updated during the MCKA steps on the basis of the
randomly sampled kernels and LR reconstruction error.

In practice, the lth sampled kernel kl
g is nontrivial,

thereof, the integral operation is replaced by the summation
of sufficient sampling on the whole distribution, as the
classic Monte Carlo simulation does as follows

kl
g ≈

T∑
τ=1

p(h|Σl,τ )p(Σl,τ |ϕl
k,MC, zk,x,y) =

T∑
τ=1

ωl,τkl,τ
g ,

(20)

where p(h|Σl,τ ) can be referred to the τ th Gaussian ker-
nel kl,τ

g dominated by the covariance matrix Σl,τ with
σ1, σ2 ∈ (0, σmax] and ρ ∈ [−π, π]. σmax denotes the
maximum variance of kernel boundary, and T is the total
number of random samples in one Monte Carlo simu-
lation. p(h|Σl,τ )p(Σl,τ |ϕl

k,MC, zk,x,y) can be referred to
the weight ωl,τ of the τ th sampled kernel. Different to
the conventional Monte Carlo simulation that uniformly
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Fig. 3. Blur kernels are randomly sampled by the Monte Carlo simulation
from different Gaussian distributions, e.g., different variances (Σ) and
rotation angle (ρ).

samples blur kernels from random Gaussian distributions,
in this paper, the Markov chain on ϕl

k,MC re-weights all the
sampled kernels by kernel weight ωl,τ in one Monte Carlo
simulation as follows

ωl,τ = p(kl,τ
g |ϕl

k,MC, zk,x,y) ∝
1

νl,τ
(21)

νl,τ = ∥y − (x⊗ kl,τ
g ) ↓s ∥2F ,

+ ∥Gk(zk,ϕ
l
k,MC)− kl,τ

g )∥2F + ϵ, (22)

where ϵ is a small hyper-parameter to prevent νl,τ = 0.
Eq. (21) and Eq. (22) illustrate that the randomly sampled
kernels are weighted by the νl,τ that is composed of the LR
image reconstruction term and the MSE of sampled kernel
and approximated kernel at the lth iteration. Therefore, we
claim that the randomly sampled kernels are organized to
be distributed closely to the kernels that minimize the LR
image reconstruction error, and the new sampling will pre-
fer to occur in the neighbor of the last sampled kernel. The
LR image reconstruction error urges the randomly sampled
kernels realizing the posterior distribution as shown in Fig.
2 (c) right, while the MSE brings a balance between steep
variation on kernel PSNR and stable convergence on the
obtained rational blur kernel as shown in Fig. 2 (c) left.

We note that, instead of exhaustively sampling on the
full range of Σ with extremly large sampling number T , as
the classical MCMC method does, only a few realizations are
randomly sampled in one MCKA stage. In Fig. 3, the visual-
ization of the randomly sampled blur kernels from different
Gaussian distributions in one Monte Carlo simulation is
presented. It is explicit that the variability of these sampled
kernels in terms of coordinate and outline are significantly
large. After the Markov chain possible transition reweights
the sampled kernels, the obtained integrated kernel kl

g is
applied to optimize the parameters ϕl

k,MC. In this way the
obtained sampled kernel kl

g can be regarded as a loose
relaxation for the obtained approximated blur kernel kl, that
is dominated by parameters ϕl

k,MC, which typically suffers
from the overfitting optimization during the MLAO stage
even with the proposed meta-learning-based framework.
The optimization on approximation network will be demon-
strated next.

4.3.3 Optimizing the Kernel.

The parameters of kernel approximation network ϕk,MC are
iteratively optimized with respect to the randomly sampled
Gaussian distributions at each MCKA iteration. Specifically,
at each iteration l, recalling the transition possible in Eq.
(19), the optimization on ϕl

k,MC can be expressed as a log-

Algorithm 2: The work flow of the MCKA phase.

1 Input: y, zk, ϕi
k,MC.

2 % Markov Chain Monte Carlo kernel approximation
3 ϕ1,i

k,MC ← ϕi
k,MC

4 Sample random kernels {kl,τ
g }Tτ=1 via MC sampling

5 for l← 1, 2, . . . , L do
6 for τ ← 1, 2, . . . , T do
7 νl,τ = ∥y − (x⊗ kl,τ

g ) ↓s ∥2F+
8 ∥Gk(zk,ϕ

l
k,MC)−kl,τ

g )∥2F + ϵ

9 ωl,τ = 1
νl,τ

10 end
11 Ll

MC =
∑T

τ=1 ω
l,τ∥Gk(zk,ϕ

l,i
k,MC)− kg(Σ

τ ))∥2F
12 ϕl+1,i

k,MC = ϕl,i
k,MC − γl,i

MCAdam( ∂

∂ϕl,i
k,MC
Ll

MC)

13 end
14 ϕi

k,ML ← ϕL,i
k,MC

15 Output: ϕ1,i
k,ML

likelihood maximization problem on transition probability
in the following form

max log p(ϕl+1
k,MC|k

l
g,ϕ

l
k,MC, zk,x,y)

=max log p(ϕl+1
k,MC|{k

l,τ
g }Tτ=1,ϕ

l
k,MC, zk,x,y), (23)

where each random sampled kernel kl,τ
g is independent

and identically distributed (i.i.d.). However, each kl
g entails

Markov chain based re-weighting recalling to ωl,τ in Eq.
(22), which bridges the possible transition with the LR
reconstruction in terms of x and y. Therefore, the optimiza-
tion problem (23) can be rewritten as

max log
T∏

τ=1

p(ϕl+1
k,MC|k

l,τ
g )p(kl,τ

g |ϕl
k,MC, zk,x,y)

=min
T∑

τ=1

− log p(ϕl+1
k,MC|k

l,τ
g )p(kl,τ

g |ϕl
k,MC, zk,x,y). (24)

As demonstrated in Eq. (21), ωl,τ =
p(kl,τ

g |ϕl
k,MC, zk,x,y). Then, the MCMC loss Ll

MC is
given by

min
ϕl

k,MC

Ll
MC =

T∑
τ=1

ωl,τ∥Gk(zk,ϕ
l
k,MC)− kl,τ

g )∥2F . (25)

Eq. (25) elaborates that the parameters ϕl
k,MC are optimized

with respect to the MSE between the approximated blur
kernels and the randomly sampled kernel, underlying the
organized by the MCMC weight ωl,τ . The parameters are
optimized by the Adam [61] optimizer:

ϕl+1
k,MC = ϕl

k,MC − γl
MC ·Adam

(
∂

∂ϕl
k,MC
Ll

MC

)
, (26)

where γl
MC denotes the learning rate.

We note that the optimization on the kernel approxi-
mation network is implemented in a way of plug-and-play
fashion, that is “training while solving” the blind SISR task,
instead of training in advance. The whole MCKA stage alter-
natively processes the MCMC simulations for rational blur
kernels and optimizes the kernel approximation network via
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learning from organized randomness. There are two major
contributions of enrolling the proposed MCKA procedure in
solving blind SISR problem. On the one hand, the MCMC
simulations provide a loose but rational kernel priors for
blur kernel estimation, while no pre-training procedure and
labelled data are needed. On the other hand, the MCKA
phase periodically brings random disturbance to the con-
vergence of the parameters ϕk, which are alternatively opti-
mized with respect to the LR image reconstruction error loss
in the MLAO phase. Therefore, it prevents the optimization
of the parameters ϕk converging to bad local modes due
to the intrinsic non-convexity and ill-posedness. We note
that the randomnesses learned in MCKA will approximately
converge to a desire distribution via the MCMC behavior
in terms of minimizing the LR image reconstruction error.
Thus, the additive disturbance will not lead to a significant
deviation that is detrimental to the convergence of solving
blind SISR problem.

The overall data flow of the MCKA phase is given in
Algorithm 2. It should be also noted that we set L and T
to be small for the following two reasons: i) The obtained
kernel priors are flexible, and can be easily refined by the
LR image reconstruction error; ii) The implementation is
less time-consuming and computationally less demanding,
ensuring negligible runtime cost and memory usage. Con-
sequently, the MCKA is implemented in a plug-and-play
manner and is combined with a meta-learning framework
to resolve the blind SISR problem in the next section.

4.3.4 Kernel Estimator Comparisons
As aforementioned in Section 2, the existing kernel estima-
tors can be roughly divided into two categories: designing
kernel model in a handcraft way [1], [4], [6] or estimating
kernel via networks [13], [42], [60]. We compare the most
related existing kernel estimators as follows:

• Deep-learning methods: More recent deep learning
methods also investigate to design specific modules
on the basis of kernel prior knowledge, such as
implicit degradation modeling [40], shuffled degra-
dation processes [38], and varying degradations for
multiple patches [42]. In a nutshell, these methods
tend to estimate kernels via learning on labelled HR
images with independent modeling on kernel priors.
In contrast, the MLMC strives to learn kernel priors
from randomness in an unsupervised manner and
follows a plug-and-play fashion.

• Double-DIP: Double-DIP adopts a DIP-like network
without pre-training for kernel estimation. The
adopted network is simply optimized with respect
to LR image restoration error and no specific kernel
priors available, thus the performance is not satisfac-
tory in most Gaussian and motion kernel cases. Then,
the network utilized in MLMC has two differences
comparing to Double-DIP: i) the network architec-
ture is much more lightweight; ii) the parameters are
optimized on the basis of random kernel priors along
with the LR image restoration error.

• FKP-DIP: The kernel estimator FKP module is pre-
trained in a supervised way with sufficient kernel
data. This training process typically requests hours

and is necessary when being applied to different ker-
nel categories. In contrast, the kernel learning mod-
ule in MLMC is plug-and-play, allowing stronger
flexibility for varying kernel categories.

• BSRDM [6]: In BSRDM, an explicit two-dimensional
Gaussian model is employed to estimate the Gaus-
sian kernel, whose parameters (mean and variance)
are optimized via a gradient-based algorithm along
with the LR image reconstruction error through the
entire solution iterations. In contrast, the kernel esti-
mator in the proposed MLMC only formulates the
kernel distribution, allowing a significantly larger
scope for kernel prior learning, resulting in more dy-
namic and flexible kernel priors. Besides, the MLMC
kernel estimator is trained on the basis of learned
kernel priors and LR observation, ensuring better
convergence performance than BSRDM. Moreover,
the MLMC can be applied to non-Gaussian kernels,
such as the motion kernel. This highlights its better
generalization ability and flexibility in practice.

In a nutshell, comparing to the existing kernel estimators,
the proposed MLMC combines the merits of model-based
and learning-based methods, realizing a training while solv-
ing paradigm for kernel estimation without requests on
labelled dataset and training before applying. We claim
that the random kernel-prior-learning based MCKA is the
main technical contribution of the proposed MLMC and
the fundamental discrepancy towards the existing kernel
estimators.

4.4 Meta-learning based Alternating Optimization
Despite rational kernel priors, referring to p(ϕk), can be
gained from the MCKA phase, the primary blind SISR
problem with respect to p(y,x,k|ϕx,ϕk) retains high non-
convexity and ill-posedness, therefore, being ease of con-
verging to bad local optimums, especially for the kernel
estimation. Inspired by [21], [55], a meta-learning based
alternating optimization is designed to optimize ϕx and ϕk

from the observed LR image y, the whole process is named
MLAO phase and elaborated as follows.

4.4.1 HR Image restoration Optimization
As aforementioned in Section 3.3, the network-based blind
SISR problem (6) is typically solved in an AM-based fashion
between the kernel estimation and image restoration sub-
problems, which alternatively estimate the HR image x and
blur kernel k via networks Gx(zx,ϕx) and Gk(zk,ϕk),
respectively. However, the intermediate solutions from each
sub-problem in (6) typically contain significant noise, and
the minimization behavior for each sub-problem using only
first-order information may not necessarily lead to benign
solutions in the view of global convergence. Therefore, a
meta-learning scheme is proposed to learn a less-greedy and
adaptive updating rule for better convergence performance
in terms of kernel estimation.

Mathematically, let p = 1, 2, . . . , P denotes the SISR
iteration index, and q = 1, 2, . . . , Q represents the index
of the meta-update on the kernel generator. Then, at the pth

iteration, the LR image reconstruction error is given by

Lp
RE = ∥y − (xp ⊗ kq) ↓s ∥2F , (27)
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where kq = Gk(zk,ϕ
q
k,ML) and xp = Gx(zx,ϕ

p
x). Instead

of exhaustively optimize each sub-problem with respect to
minimizing Lp

RE, the kernel estimation iterations are pro-
cessed in a meta-learning manner. We tend to minimize the
leveraged reconstruction errors over P iterations, denoted
by the meta-loss Lq

ML, to update the parameters ϕq
k,ML for Q

times as follows
Lq

ML =
1

P

P∑
p=1

ωpLp
RE, (28)

ϕq+1
k,ML = ϕq

k,ML − γq
ML ·Adam

(
∂

∂ϕq
k,ML
Lq

ML

)
, (29)

where γq
ML denotes the learning rate at the qth meta-update

step and ωp is the weight of Lp
RE at iteration p. In this

instance, the parameters ϕq
k,ML are no longer optimized

via minimizing each individual reconstruction error but the
accumulated losses Lq

ML, which results in a less-greedy but
more adaptive optimization strategy. As illustrated in [21],
Lq

ML essentially leads to a better optima, as it optimizes
each individual sub-problem in-exhaustively by globally
learning the mutual knowledge of the optimization strategy
on partial reconstruction error trajectories across iterations.
In this way, the optimization strategy for the blur kernel
estimation is endowed with a relaxation, which allows non-
optimal solution at the pth sub-problem for ϕk during the
estimation iterations but is capacity of converging to better
optimum in the view of P iterations.

Meanwhile, the image restoration sub-problem is opti-
mally solved at each iteration on the basis of the hyper-
Laplacian image prior demonstrated in Section 4.4.2, which
updates the parameters ϕx as follows,

ϕp+1
x = ϕp

x − γp
x ·Adam

(
∂

∂ϕp
x
Lp

RE-n

)
, (30)

where γp
x denotes the learning rate. We note that the

adopted network Gx is a well-designed image restorer
with substantiated performance in the literature [2], [4],
[13]. Hence, the vanilla iterative minimization is sufficiently
satisfactory to realize good HR image reconstruction when
the blur kernel is obtained through the meta-learning based
optimization strategy.

In this stage, the overview of the MLAO phase is de-
picted in the yellow box in Fig. 1 and the work flow is
given in Algorithm 3. Explicitly, the whole MLAO stage
tends to refine the approximated kernel based on the meta-
loss Lq

ML, as such ϕq
k,ML are optimized on the basis of the

observed LR image y via a less-greedy and more adaptive
optimization strategy. We note that the incorporated meta-
learning approach on kernel estimation regards each kernel
estimation sub-problem as training sample, and meta-learn
across kernel estimation iterations to extract the mutual
knowledge of solving a set of sub-problems. In this way,
the learned update rule becomes more flexible and non-
monotonically, therefore, being able to prevent trapping into
bad local optimum.

4.4.2 Image Noise Optimization
In this subsection, we further propose an HR image restora-
tion formulation for the noise scenario. A hyper-Laplacian

Algorithm 3: The work flow of the MLAO phase.

1 Input: ϕi
k,ML,ϕ

i
x,y, zx, zk.

2 % Meta-learning based alternating optimization
(MLAO)

3 ϕ1,i
k,ML ← ϕi

k,ML,ϕ
1,i
x ← ϕi

x

4 for q ← 1, 2, . . . , Q do
5 kq = Gk(zk,ϕ

q,i
k,ML)

6 % Image network update
7 for p← 1, 2, . . . , P do
8 xp = Gx(zx,ϕ

p,i
x )

9 σ2 = 1
h×w

∑
j∈N{yj − [(xp ⊗ kq) ↓s]j}2

10 Lp
RE-n = 1

σ2 ∥y − (xp ⊗ kq) ↓s ∥2F+
11 ρ

∑2
c=1

(
∥fc ⊗ xp∥2F

)η
12 ϕp+1,i

x ← ϕp,i
x − γp

x ·Adam( ∂
∂ϕp,i

x
Lp

RE-n)

13 end
14 ϕ1,i

x ← ϕP,i
x

15 % Kernel network update
16 Lq

ML = 1
P

∑P
p=1 ω

pLp
RE-n

17 ϕq+1,i
k,ML ← ϕq,i

k,ML − γq
ML ·Adam( ∂

∂ϕq,i
k,ML
Lq

ML)

18 end
19 ϕi+1

x ← ϕP,i
x , ϕi+1

k,MC ← ϕQ,i
k,ML

20 Output: ϕi+1
x ,ϕi+1

k,MC

image prior is incorporated with the HR image restoration
for p(ϕx). We formulate an independent and identically
distributed (i.i.d) additive white Gaussian noise (AWGN)
model for the fundamental degradation model as follows,

y ∼ N (y|(x⊗ k) ↓s, σ2), (31)

where σ denotes the covariance of the noise distribution.
Similar to the previous works [2], [4], [6], [13], a CNN-
based network Gx(·) is established to estimate the HR
image as formulated in Eq. (6). As demonstrated in [2],
Gx(·) is typically fragile to the image noise, thus leading to
overfitting to bad local optimums. A hyper-Laplacian prior
[28] is implemented to constrain the AWGN of the estimated
HR image following the proposed statistic framework as
follows,

(ϕx, zx) ∼ p(ϕx, zx) = p(ϕx|zx)p(zx), (32)

p(ϕx|zx) ∝ exp

(
−ρ

2∑
c=1

(
∥fc ⊗ Gx(zx,ϕx)∥2F

)η)
, (33)

p(zx) = N (0, σ2), (34)

where {fc}2c=1 represent the gradient filters along the hor-
izontal and vertical directions, ρ and η denote the hyper-
parameters. Equivalently, the parameters of the image esti-
mator ϕx are optimized by the loss function as follow,

min
ϕx

LRE-n =
1

σ2
∥y − (Gx(zx,ϕx)⊗ k) ↓s ∥2F

+ρ
2∑

c=1

(
∥fc ⊗ Gx(zx,ϕx)∥2F

)η
. (35)
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The noise variance σ2 is typically given by

σ2 =
1

h× w

∑
j∈N

{yj − [(Gx(zx,ϕx)⊗ k) ↓s]j}
2, (36)

where h and w denote the image height and width, respec-
tively, and the number of image pixels N = h×w, j denotes
the jth pixel of image.

4.5 Network-level Langevin Dynamics
The vanilla Langevin dynamics [22] is proposed to im-

prove the performance of gradient descent-based optimiza-
tion algorithms for variable update, which can be typically
formulated as follows,

zt+1 = zt +
δ2

2
· ∂ log p(zt|y)

∂zt
+ δ · ζn, (37)

where t denotes the index of update step, z denotes the
variable to be optimized, y denotes the observation data, δ
denotes the optimization step size. log p(zt|y) demonstrates
the standard optimization on the basis of the task-specific
data, and ζn is a random noise (e.g., zero-mean Gaussian
noise). When t → ∞ and δ2 → 0, Langevin dynamics
realizes a sampling from the task-specific data posterior
p(zt|y) to optimize zt+1. Theoretically, this is achieved by
the additive noise ζn that correlated with the posterior
p(zt|y).

Different to the Langevin dynamics in BSRDM, the
proposed MLMC tends to resolve an optimization problem
of network parameters update. Following the concept of
improving the optimization convergence performance via
incorporating random fluctuation, the white Gaussian noise
should be re-designed to fit the network-based optimization
process. A natural idea is to incorporate random samples
into the network training process to achieve the similar
effect of Langevin dynamics. In light of this concept, in
the proposed MLMC, we proposed a novel network-level
Langevin dynamics optimization strategy that is designed
for network parameters optimization as follows

ϕnew
k = ϕold

k + γML ·
∂ log pMLAO(ϕ

old
k |y)

∂ϕold
k

+ γMC · ζk, (38)

where ζk =
∂ log pMLAO(ϕ

old
k |y)

∂ϕold
k

denotes the gradients of LR

image restoration loss Lp
RE and ∂ log pMCKA(ϕ

old
k |kg)

∂ϕold
k

denotes

the gradients of MSE loss Ll
MC. At each alternating step,

the parameters of the kernel estimator are optimized with
respect to the Lp

RE and Ll
MC in MLAO and MCKA phases,

respectively. Specifically, the third term essentially plays
the role of ζn in vanilla Langevin dynamics (37), as the
random sampled kernels kg can be regarded as a ”noise”
in the view of network training samples. Besides, the sam-
pling process follows MCMC simulation that also iteratively
updates the sampling distribution with respect to the HR
image restoration posterior. In this stage, we claim that this
is a novel Langevin dynamics framework that is suitable for
network-level optimization, as the conventional Langevin
dynamics merely works on traditional model-based opti-
mization paradigm. This also provides a theoretical support
of rationalizing the incorporation of the MCKA phase.

It is also noteworthy that the proposed network-level
Langevin dynamics optimization framework is intrinsically
different to the traditional Langevin dynamics, as such
applied in BSRDM [6]. In BSRDM, the input noise of DIP
network is iteratively optimized via gradient-based algo-
rithm and an additive white Gaussian noise is applied to
prevent trapping into local mode. Differently, in the pro-
posed MLMC, we proposed a novel network-level Langevin
dynamics optimization strategy that is designed for network
parameters optimization. Specifically, random sampled ker-
nels are employed as the additive noises in this network-
level Langevin dynamics optimization to play the role of
preventing converging to bad local optimum of the kernel
estimator. Recalling the depiction in Fig. 2, the MCMC simu-
lations on random Gaussian distributions will converge to a
stable equilibrium, therefore, ζ is an organized random sam-
ple instead of total randomness. In this way, the proposed
MCMC simulations on random Gaussian distributions bring
a profitable disturbance towards the optimization process,
as well as providing a rational kernel prior.

4.6 Pipeline and Analysis

The overall solution procedure of the proposed MLMC is
given in Algorithm 1, and the details of MCKA and MLAO
loops are illustrated in Algorithm 2 and 3, respectively.
At this stage, it is clear that the alternating framework

between MCKA and MLAO is indispensable. On the one
hand, at each iteration in Algorithm 1, the MCKA phase
learns a rational kernel prior from MCMC simulations,
which provides external knowledge of the sampled kernel
distributions. This contributes to a rational initialization
of the ϕk,ML in MLAO stage instead of initializing from
randomness. On the other hand, in the view of the total op-
timization on ϕk, the MCKA phase provides an organized
randomness with the optimization based on LR observation
in MLAO phase, formulating the aforementioned network-
level Langevin dynamics.

We note that the whole MLMC is processed in an un-
supervised inference and the whole algorithm is applied in
a plug-and-play fashion without any training in advance.
This significantly improves the flexibility and generalization
capacity of the MLMC. In simulations, we show that the
proposed MLMC is able to achieve strong generalization
ability and flexibility towards out-of-distribution blur ker-
nels, different noise scenarios and non-Gaussian kernels
in Section 5.3, as well as realizing superior performance
comparing to the state-of-the-arts in Section 5. The hyper-
parameters involved in the two summations corresponding
to the number of sampling times in one MCMC simulation,
denoted by T , and the meta-learning interval, denoted by
P , will be discussed in Section 5.1.

5 EXPERIMENTAL RESULTS

5.1 Experimental Setup

Data Preparation. Following the widely adopted kernel
assumption [6], [13], [44], [62], [63], [64], we conduct most
of the experiments on anisotropic Gaussian kernels and a
few on non-Gaussian kernels (motion kernels generated by
[65]). The kernel sizes are set to (4s + 3) × (4s + 3), the
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Fig. 4. Image PSNR performance of the proposed MLMC method on
Set5 with different hyper-parameter combinations: the number of the
Monte Carlo sampling times T and the number of meta-learning opti-
mization intervals P .

Gaussian width ranges are set to [0.175s, 2.5s], and the
rotation angle range ρ is set to [0, π], for a scale factor
s ∈ 2, 3, 4, respectively. We synthesize LR images with
random kernels with respect to Eq. (1) for testing data based
on four popular public benchmark datasets, including Set5
[66], Set14 [67], BSD100 [68], Urban100 [69] and a real-world
dataset, RealSRSet [51]. We compare these kernels in terms
of the peak signal to noise ratio (PSNR), and compare HR
images in terms of PSNR and structural similarity (SSIM)
[70].
Implementation Details. We adopt a two-layer shallow
FCN with 1000 nodes at each layer as the kernel genera-
tor, and use a CNN-based image generator following the
architecture in [2]. The Adam optimizer [61] is applied
to optimize the parameters of these two networks with
learning rates 0.5 and 0.005 for FCN and CNN, respectively.
We compare the proposed MLMC approach with other two
kinds of state-of-the-arts, including unsupervised methods
(the model is optimized on only one LR image): PAM [1],
DIP [2], KernelGAN+ZSSR [64], Double-DIP [4], FKP-DIP
[13] and BSRDM [6], and deep-learning-based methods (the
model is pre-trained on LR-HR paired dataset): RCAN [59],
DASR [12], BSRGAN [38], KDSR [40], KULNet [39], UDKE
[41], KXNet [52]. We also use non-blind model USRNet [50]
to generate the final SR result based on the kernel estimation
from MANet [42] and our MLMC as two deep-learning-
based methods: MANet+USRNet and MLMC+USRNet.
The parameters of the proposed MLMC approach are ran-
domly initialized from scratch and re-initialized for each test
image, ensuring fairness when compared with the deep-
learning-based methods. For those methods that are origi-
nally applied to bicubic cases (RCAN), we also re-trained
their model on the synthesised images with blur kernels
before testing.
Hyper-parameter Tuning. As mentioned in Sec. 4 the
proposed MLMC has the following hyper-parameters: the
MLMC algorithm adopts I = 100, L = 1, Q = 5 for all the
simulations. The number of the Monte Carlo sampling times
T and the number of meta-learning optimization intervals
P . We present the HR image PSNR for different hyper-
parameter settings in Fig. 4. It can be seen that the perfor-

mance fluctuates around the equilibrium PSNR when the
meta-learning scheme is executed (P ≥ 2), and the variation
on T has little effect on the performance. To balance the
efficiency and effectiveness, we thus set T = 10 and P = 5
for all the experiments.

5.2 Comparisons with state-of-the-arts
Quantitative Results of Unsupervised Methods. Quantita-
tive evaluation results of unsupervised methods (the model
is optimized on single LR image) with scale factors from 2
to 4 are presented in Table 1, the best results are highlighted
in bold. PAM is a classic model-based blind SISR approach,
and it is difficult to get satisfactory performance when no
prior is available. Specifically, DIP and Double-DIP show
less effectiveness due to the poor kernel estimation accu-
racy. FKP-DIP and BSRDM achieve better results thanks to
different pre-designed kernel priors. Meanwhile, the pro-
posed MLMC approach achieves superior performance in
all cases. It is worth noting that the proposed MLMC sig-
nificantly surpasses the counterpart unsupervised method
BSRDM, especially for kernel estimation results. This recalls
that BSRDM follows a gradient-based kernel estimation via
explicit modelling on Gaussian distribution while MLMC
formulates a network-level Langevin dynamic to learn from
random kernel prior for better convergence performance.
Quantitative Results of Deep-learning-based Methods.
Quantitative evaluation results of DL-based methods (the
model is pre-trained on LR-HR paired dataset) with scale
factors 4 are presented in Table 2. The best and second
best results are emphasized with bold. Overall, the vanilla
MLMC surpasses most of the DL-based supervised meth-
ods, showing comparable performance with KULNet and
being next to MANet+USRNet. Besides, when the unsuper-
vised MLMC is accompanied with the pre-trained image
estimator USRNet, the proposed MLMC+USRnet is able
to realize slightly better performance than the supervised
MANet+USRNet.
Visual Results. Fig. 5 presents the visually qualitative
results from Set14 [67], BSD100 [68] and Urban100 [69],
while Fig. 6 further shows visual results from RealSRSet
[51]. Apparently, the proposed MLMC obtains the most
concise blur kernels as well as restored HR images, almost
keeping consistence with the ground truth, while FKP-DIP
and BSRDM show different levels of distortion on the esti-
mated kernels, and Double-DIP fails to estimate reasonable
blur kernels. Particularly, the real-world image test results
demonstrate that all the approaches except MLMC estimate
a Gaussian-like blur kernel, whereas MLMC tends to find
a non-Gaussian mode. This also verifies that an adaptive
and flexible kernel estimation principle is learned from the
alternative Monte Carlo simulations, and hence, fitting the
real-world application better.

5.3 Generalization to out-of-distribution kernels
To further evaluate the generalization-ability of the pro-
posed MLMC approach, it is compared with Double-DIP,
BSRDM, and FKP-DIP, which use different kernel priors
in more challenging cases, including out-of-distribution
kernels (unseen Gaussian blur kernels with larger width
range [0.35s, 5s] than assumption kernel distribution within
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TABLE 1
Average PSNR/SSIM of different unsupervised methods (the model is optimized on only one LR image) on public datasets that are synthesized by

the random Gaussian kernels with s = 2, 3, 4. The best results are emphasized with bold.

Method Scale Set5 Set14 BSD100 Urban100
Bicubic ×2 26.58/0.8010 24.85/0.6939 25.19/0.6633 22.35/0.6503

PAM ×2 17.48/0.3990 17.52/0.3948 17.91/0.3826 17.15/0.3763
DIP ×2 26.82/0.7518 25.40/0.6868 24.71/0.6508 23.29/0.6749

KernelGAN+ZSSR ×2 26.45/0.7694 24.64/0.6658 23.96/0.6461 22.02/0.6263
Double-DIP ×2 24.71/0.6423 22.21/0.5626 23.31/0.5681 21.03/0.5701

FKP-DIP ×2 30.16/0.8637 27.06/0.7421 26.72/0.7089 24.33/0.7069
BSRDM ×2 30.56/0.8616 27.15/0.7435 26.69/0.7109 24.52/0.7115

MLMC (Ours) ×2 31.61/0.8836 28.52/0.7900 28.11/0.7751 25.32/0.7627

Bicubic ×3 23.38/0.6836 22.47/0.5884 23.17/0.5625 20.37/0.5378
PAM ×3 15.60/0.3596 16.23/0.3701 16.41/0.3684 15.23/0.3612
DIP ×3 28.14/0.7687 25.19/0.6581 25.25/0.6408 23.22/0.6512

KernelGAN+ZSSR ×3 25.57/0.6429 23.51/0.6216 23.08/0.6019 21.98/0.5864
Double-DIP ×3 23.21/0.6535 20.20/0.5071 20.38/0.4499 19.61/0.4993

FKP-DIP ×3 28.82/0.8202 26.27/0.6922 25.96/0.6660 23.47/0.6588
BSRDM ×3 28.84/0.8255 25.63/0.6973 25.88/0.6576 23.68/0.6783

MLMC (Ours) ×3 30.21/0.8547 27.05/0.7363 26.77/0.7076 23.96/0.7050

Bicubic ×4 21.70/0.6198 20.86/0.5181 21.95/0.5097 19.13/0.4729
PAM ×4 15.13/0.3938 15.93/0.3849 16.31/0.3894 15.06/0.3784
DIP ×4 27.34/0.7465 25.03/0.6371 24.92/0.6030 22.55/0.6128

KernelGAN+ZSSR ×4 24.46/0.6216 22.65/0.5414 21.49/0.5229 21.04/0.4979
Double-DIP ×4 20.99/0.5578 18.31/0.6129 18.57/0.3815 18.15/0.4491

FKP-DIP ×4 27.77/0.7914 24.21/0.6684 25.15/0.6354 22.89/0.6327
BSRDM ×4 27.81/0.8029 25.35/0.6859 25.61/0.6526 22.36/0.6601

MLMC (Ours) ×4 28.87/0.8129 26.23/0.6938 25.89/0.6534 23.83/0.6728

TABLE 2
Average PSNR/SSIM of different deep-learning-based methods (the model is pre-trained on LR-HR paired dataset) on public datasets that are

synthesized by the random Gaussian kernels with s = 4. The best results are emphasized with bold.

Method Scale Set5 Set14 BSD100 Urban100
BSRGAN ×4 20.47/0.5958 19.92/0.4938 20.89/0.4814 17.61/0.3585

RCAN ×4 22.01/0.6210 20.65/0.5031 21.99/0.4986 19.15/0.4503
KDSR ×4 23.35/0.6380 21.73/0.5102 23.85/0.5643 20.44/0.4879
UDKE ×4 27.01/0.8038 24.28/0.6923 24.77/0.6695 21.54/0.6515
DASR ×4 27.37/0.7859 25.43/0.6591 25.11/0.6129 22.88/0.6448
KXNet ×4 27.15/0.8085 24.86/0.6680 24.42/0.6431 21.78/0.6543

KULNet ×4 27.89/0.8163 25.43/0.6856 25.03/0.6630 21.98/0.6562
MLMC (Ours) ×4 28.87/0.8129 26.23/0.6938 25.89/0.6534 23.83/0.6728

MANet+USRNet ×4 29.87/0.8572 26.62/0.7360 26.06/0.7080 23.93/0.6944
MLMC+USRNet (Ours) ×4 30.31/0.8607 27.46/0.7518 26.59/0.7121 23.98/0.7093

TABLE 3
Average PSNR/SSIM of image and PSNR of kernels on Set14. The

best results are emphasized with bold.

Method Scale Kernel
PSNR

Image
PSNR/SSIM

with Out-of-distribution Kernel
Double-DIP ×2 46.22 24.69/0.6374

FKP-DIP ×2 46.49 26.13/0.7065
BSRDM ×2 42.53 24.35/0.6728

MLMC (Ours) ×2 52.32 26.63/0.7198
Double-DIP ×4 50.62 20.51/0.4835

FKP-DIP ×4 54.46 24.73/0.6344
BSRDM ×4 45.38 21.57/0.5510

MLMC (Ours) ×4 58.20 25.09/0.6474

width range [0.175s, 2.5s]). As we can see from Table 3, the
proposed MLMC significantly outperforms the competitors
in the case with out-of-distribution kernel by large margins.
We note that FKP-DIP experiences performance drops in

the these challenge cases, due to the high dependency on
pre-trained kernel priors, while MLMC still shows supe-
rior performance. In this case, we conclude that MLMC
has superior generalization-ability to arbitrary kernels and
exhibits satisfactory robustness to unseen kernels and non-
Gaussian kernels, even without specific kernel priors.

5.4 Generalization to motion kernels

The proposed MLMC can be directly expended on solving
motion kernel tasks without re-training. The fundamental
technique process keeps consistent with the Gaussian kernel
case, since our MLMC only replaces the random kernel
generation function follows settings in [65]. We visualize the
generated random motion kernels in Fig. 7. Table 5 presents
the quantitative evaluation results of different methods in
the motion kernel scenario. Compared with the Gaussian
kernel scenario, all the methods show different degrees of
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Fig. 5. Visual results of different methods on public datasets for scale factor 4. Estimated/ground-truth kernels are shown on the top right.

Fig. 6. Visual results of real world images on RealSRSet [51] for scale factor 3. Estimated kernels are shown on the top right.

Fig. 7. The visualization of the random motion blur kernels.

performance drop, while the proposed MLMC shows sig-
nificantly better performance than other alternatives. This
verifies the better generalization ability of our MLMC to-
wards more complex degradation kernels.

5.5 Robustness to image noise
We add image noise ( 3.92% and 7.84% of the maximum
image pixel value) to the LR image after blurring and
downsampling. In Table 4, the proposed MLMC produces
comparable result in all the cases, and showing good robust-
ness to different levels of image noise. Although MLMC has
a modest performance drop when the image is corrupted by
noise, it still surpasses all of the other comparative methods.

In this case, we argue that MLMC is able to handle more
complicated degradation model with better robustness.

5.6 Ablation Studies

In Fig. 8, intermediate kernel results of three ablation ex-
periments are depicted to highlight the effectiveness of the
introduced Monte Carlo kernel approximation and meta-
learning SISR stages, respectively. It can be seen that the
estimated kernel without Monte Carlo simulations has non-
negligible drop in PSNR as well as significant distortion,
compared to MLMC. Meanwhile, the absence of the meta-
learning scheme leads to a significant visible-deviation dur-
ing the optimization, indicating a different and worse local
optima compared to the one MLMC reached.

In Table 6, we further present the average results of the
ablation experiments of the proposed Monte Carlo kernel
approximation and meta-learning SISR stages under two
different scale factors: 2 and 4, two datasets: Set14 [67]
and BSD100 [68]. We can see that the proposed the MLMC
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(a) “005” in Urban100 [69] (b) “067” in BSD100 [68] (c) “071” in BSD100 [68]

Fig. 8. The intermediate kernel results of MLMC, MLMC without Monte Carlo and MLMC without meta-learning over iterations on three test images.

TABLE 4
Average PSNR/SSIM of image and PSNR of kernels on Set14. The

best results are emphasized with bold.

Method Scale Kernel
PSNR

Image
PSNR/SSIM

with Image Noise of 3.92%
Double-DIP ×2 40.95 23.93/0.6134

FKP-DIP ×2 44.38 27.14/0.7228
BSRDM ×2 43.96 24.97/0.7069

MLMC (Ours) ×2 44.65 27.24/0.7345
Double-DIP ×4 44.60 18.42/0.3897

FKP-DIP ×4 47.96 24.68/0.5760
BSRDM ×4 48.73 20.99/0.5387

MLMC (Ours) ×4 49.53 24.96/0.5951

with Image Noise of 7.84%
Double-DIP ×2 40.23 22.57/0.5376

FKP-DIP ×2 42.51 26.21/0.6857
BSRDM ×2 43.02 24.59/0.6781

MLMC (Ours) ×2 45.84 26.37/0.6913
Double-DIP ×4 42.88 15.77/0.2628

FKP-DIP ×4 45.44 24.06/0.5540
BSRDM ×4 46.87 20.82/0.5219

MLMC (Ours) ×4 47.20 24.53/0.5834

achieves the best results for all the cases. As we analyze
in the Section 4.3 and Section 4.4 that on the one hand,
without Monte Carlo simulations, the estimated kernels are
not regular, which leads to bad kernel estimation and image
restoration performance. On the other hand, without meta-
learning SISR scheme, the estimated kernels are easily con-
verged to local optimum, which results in the unsatisfactory
image restoration performance. For kernel estimation, we
also evaluate the necessity of the MCMC simulation towards
the kernel prior learning. Fig. 9 shows the visualization of
ablation on real world images from three cases. It is clear
that without MCMC simulation, the kernel estimation no
longer provide performance improvements on HR image
restoration and the estimated kernels are distorted. Mean-
while, we can see that the MLMC tends to estimate non-
Gaussian kernels via combinations of Gaussian sampling
results to fit the real-world degradations.

In table 7, we validate the effects of different regular-
izers in Eq. (35). The hyper-Laplacian, Tikhnonv, and TV
regularizers are compared in two cases with different levels
of noise. In both cases, hyper-Laplacian achieves the best

TABLE 5
Average PSNR/SSIM of image and PSNR of kernels on Set14 and

BSD100 in the motion kernel scenario. The best results are
emphasized with bold.

Method Scale Kernel
PSNR

Image
PSNR/SSIM

with Motion Kernel on Set14
Double-DIP ×2 31.07 22.80/0.6449

FKP-DIP ×2 33.97 25.99/0.8157
BSRDM ×2 30.31 23.62/0.6447

MLMC (Ours) ×2 34.44 28.48/0.8327
Double-DIP ×4 37.30 20.96/0.4817

FKP-DIP ×4 38.07 22.79/0.6278
BSRDM ×4 36.27 21.12/0.5491

MLMC (Ours) ×4 39.44 25.22/0.6776

with Motion Kernel on BSD100
Double-DIP ×2 29.94 22.31/0.6388

FKP-DIP ×2 32.49 25.27/0.7784
BSRDM ×2 30.63 23.88/0.5999

MLMC (Ours) ×2 33.93 28.10/0.8087
Double-DIP ×4 35.45 18.69/0.3646

FKP-DIP ×4 37.06 23.07/0.6264
BSRDM ×4 36.65 21.31/0.5543

MLMC (Ours) ×4 40.08 25.58/0.6554

TABLE 6
Ablation results on Set14 and BSD100 with scale factor 2 and 4. The

best results are emphasized with bold.

Method Scale Kernel
PSNR

Image
PSNR/SSIM

with Gaussian Kernel on Set14
without Monte Carlo ×2 41.30 24.23/0.6318

without Meta-learning ×2 42.54 26.94/0.7353
MLMC (Ours) ×2 45.01 28.52/0.7900

without Monte Carlo ×4 44.51 19.83/0.4999
without Meta-learning ×4 51.39 25.01/0.6869

MLMC (Ours) ×4 55.98 26.23/0.6938

with Gaussian Kernel on BSD100
without Monte Carlo ×2 37.58 22.14/0.5340

without Meta-learning ×2 40.43 25.76/0.7020
MLMC (Ours) ×2 47.84 28.11/0.7751

without Monte Carlo ×4 49.17 20.56/0.4782
without Meta-learning ×4 51.93 24.85/0.6210

MLMC (Ours) ×4 53.16 25.89/0.6534

performance, indicating the robustness towards noise level
variation.
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Fig. 9. Three ablation cases: (a) LR image, (b) MLMC-wo-k (MLMC with-
out the kernel estimation process), (c) MLMC-wo-MC (MLMC without
the Monte-Carlo sampling process), and (d) original MLMC.

TABLE 7
Ablation results of regularizers in Eq. (35) of our MLMC on Set5 with
scale factor 4. R1: Hyper-Laplacian, R2: Tikhnonv, R3: TV. The best

results are emphasized with bold.

R1 R2 R3 Kernel
PSNR

Image
PSNR/SSIM

with Image Noise of 3.92%, Scale ×4

% % % 49.38 26.25/0.6448

! % % 49.40 27.65/0.7707

% ! % 48.87 26.71/0.6824

% % ! 49.04 26.82/0.6967

with Image Noise of 7.84%, Scale ×4

% % % 45.57 24.07/0.5163

! % % 46.05 25.57/0.6493

% ! % 45.40 24.59/0.5576

% % ! 45.53 24.63/0.5598

TABLE 8
Comparison of different methods from tested LR image size of

256× 256 with scale factor s = 2, 3, 4. Computational requirements are
model size (K) and runtime (s).

Method Scale Pre-
training Model Size Time

ZSSR [64] ×2 % 225K 56s

Double-DIP [4] ×2 % 2359K+641K 47s
FKP-DIP [13] ×2 6 hours 2359K+195K 45s

BSRDM [6] ×2 % 766K 37s

MLMC (Ours) ×2 % 2359K+562K 41s

ZSSR [64] ×4 % 225K 235s

Double-DIP [4] ×4 % 2359K+641K 239s
FKP-DIP [13] ×4 6 hours 2359K+143K 232s

BSRDM [6] ×4 % 766K 190s

MLMC (Ours) ×4 % 2359K+562K 215s

5.7 Model Size, Runtime and Memory Usage

Table 8 compares the results on model size (number of
parameters), runtime and pre-training requirements of the
four approaches. All simulations are accelerated by GeForce
RTX 3090 GPU. The input LR images are with size 256×256
and scale factors s = 2, 3, 4. It can be seen that the MLMC
approach has similar model size and enjoys competitive
runtimes compared to the latest learning-based approaches.
Meanwhile, pre-training-based approaches, such as FKP-
DIP, which typically requests 5-6 hours for pre-training.
The memory usage of our MLMC on a GeForce RTX 3090

GPU for generating a HR image of size 1024 × 1024 are
about 11GB memory, which is close to the Double-DIP
(11.2GB) and DIP-FKP (10.6GB). We note that the plug-
and-play fashion and the better flexibility towards unknown
degradations allow significant merits on dealing with blind
SR tasks with real-world scenarios, especially those scenar-
ios without high quality training data and with complex
blurring, such as space high-speed targets (e.g., satellites,
aircraft) and medical images (e.g., beating heart).

6 CONCLUSION

In this paper, we have proposed a new learning-based
blind SISR method, which combines Markov Chain Monte
Carlo simulations and meta-learning training to achieve
superior kernel estimation. Most strikingly, the proposed
approach does not require any supervised pre-training
or parametric priors. In future work, we will investigate
two main directions for better practicality of the proposed
MLMC methods, including i) the expansion to more degra-
dation models, such as compression artifacts, deraining,
and shadow-removal, to improve the generalization ability;
and ii) the application with more advance pre-trained SR
models, for example, USRNet and Diffusion model, to play
the role of kernel prior learning module for performance
improvements. We believe that the concept introduced here,
in particular, learning from randomness to provide pri-
ors and the meta-learning-based non-convex optimization
algorithm, will lead to a new direction of solving blind
image retoration tasks to achieve superior performance with
limited computational complexity.
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aided flexible gradient descent approach to miso beamforming,”
IEEE Wireless Communications Letters, pp. 1–1, 2022.

[56] M. Elad and A. Feuer, “Restoration of a single superresolution
image from several blurred, noisy, and undersampled measured
images,” IEEE transactions on image processing, vol. 6, no. 12, pp.
1646–1658, 1997.

[57] S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and
challenges in super-resolution,” International Journal of Imaging
Systems and Technology, vol. 14, no. 2, pp. 47–57, 2004.

[58] C. Liu and D. Sun, “On bayesian adaptive video super resolution,”
IEEE transactions on pattern analysis and machine intelligence, vol. 36,
no. 2, pp. 346–360, 2013.

[59] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-
resolution using very deep residual channel attention networks,”
in Proceedings of the European conference on computer vision (ECCV),
2018, pp. 286–301.

[60] Y. Gandelsman, A. Shocher, and M. Irani, “” double-dip”: Unsu-
pervised image decomposition via coupled deep-image-priors,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 11 026–11 035.

[61] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[62] G. Riegler, S. Schulter, M. Ruther, and H. Bischof, “Conditioned
regression models for non-blind single image super-resolution,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 522–530.

[63] W.-Z. Shao and M. Elad, “Simple, accurate, and robust nonpara-
metric blind super-resolution,” in Image and Graphics. Springer,
2015, pp. 333–348.

[64] A. Shocher, N. Cohen, and M. Irani, ““zero-shot” super-resolution
using deep internal learning,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 3118–3126.

[65] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas,
“Deblurgan: Blind motion deblurring using conditional adversar-
ial networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 8183–8192.

[66] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel,
“Low-complexity single-image super-resolution based on nonneg-
ative neighbor embedding,” in British Machine Vision Conference,
2012, pp. 135–1.

[67] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up
using sparse-representations,” in International conference on curves
and surfaces. Springer, 2010, pp. 711–730.

[68] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of hu-
man segmented natural images and its application to evaluating
segmentation algorithms and measuring ecological statistics,” in
Proceedings Eighth IEEE International Conference on Computer Vision.
ICCV 2001, vol. 2. IEEE, 2001, pp. 416–423.

[69] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-
resolution from transformed self-exemplars,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp.
5197–5206.

[70] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612,
2004.

Jingyuan Xia is currently an Associate Professor with the
College of the Electronic Science, the National University of
Defense Technology (NUDT). His current research interests
include low level image processing, nonconvex optimiza-
tion, and machine learning for signal processing.

Zhixiong Yang is now pursuing a Ph.D. degree at the
College of Electronic Science, NUDT. His research interests
include deep learning on signal processing and image pro-
cessing.

Shengxi Li (Member, IEEE) is a Professor with Beihang
University. His research interests include generative mod-
els, statistical signal processing, rate-distortion theory, and
perceptual video coding.

Shuanghui Zhang (Member, IEEE) is currently a Profes-
sor with the College of Electrical Science and Technology,
NUDT. His research interests lie in compressive sensing,
sparse signal recovery techniques, Bayesian inference, and
their applications in radar signal processing.

Yaowen Fu is currently a Professor with the College of
Electronic Science and Technology, NUDT. His research in-
terests include information fusion, radar signal processing,
and other aspects of research.

Deniz Gündüz is a Fellow of the IEEE, and a Distinguished
Lecturer for the IEEE Information Theory Society (2020-22).
He is the recipient of a Consolidator Grant of the European
Research Council (ERC) in 2022, the IEEE Communica-
tions Society - Communication Theory Technical Committee
(CTTC) Early Achievement Award in 2017, a Starting Grant
of the European Research Council (ERC) in 2016, and sev-

eral best paper awards. He is currently a Professor in Imperial College
London.

Xiang Li was elected as the Academician of the Chinese
Academy of Sciences in 2022, and a Professor with NUDT.
His research interests include signal processing, automa-
tion target recognition, and machine learning.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3400041

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on May 21,2024 at 07:28:32 UTC from IEEE Xplore.  Restrictions apply. 


