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Abstract

Few-shot classification is challenging since the goal is to classify unlabeled samples1

with very few labeled samples provided. It has been shown that cross attention2

helps generate more discriminative features for few-shot learning. This paper3

extends the idea and proposes two cross attention modules, namely the cross scaled4

attention (CSA) and the cross aligned attention (CAA). Specifically, CSA scales5

different feature maps to make them better matched, and CAA adopts the principal6

component analysis to further align features from different images. Experiments7

showed that both CSA and CAA achieve consistent improvements over state-of-8

the-art methods on four widely used few-shot classification benchmark datasets,9

miniImageNet, tieredImageNet, CIFAR-FS, and CUB-200-2011, while CSA is10

slightly faster and CAA achieves higher accuracies.11

1 Introduction12

Few-shot classification has drawn lots of attentions in recent years [52]. It originates from the13

observation that humans can learn new concepts with very few samples, and the goal is to classify14

unseen query samples given very few support samples. One may consider fine-tuning a pre-trained15

model using the labeled samples from the unseen classes; however, this usually causes severe16

overfitting, which can be alleviated by regularization and data augmentation but cannot be fully17

solved.18

The meta-learning [17] has been widely used for few-shot learning recently. However, they usually19

do not focus enough on relevant features as shown in Figure 1, taking the prototypical network [46]20

for an example, and those irrelevant features causes the limitation of generalization to the unseen21

classes. The cross attention network (CAN) [18] and the relational embedding network (RENet) [20]22

remedy the above issue by proposing the cross attention. It has been shown that humans tend to locate23

the most relevant regions in the pair of labeled and unlabeled samples first to recognize a sample from24

an unseen class given a few labeled samples [18]. Inspired by that, CAN and RENet generate the25

attention maps across the support class features and the query sample features to make the network26

attends more on the target object regions.27

In this work, we make improvements for RENet by further enhancing the feature discriminability for28

few-shot classification. We propose the cross scaled attention (CSA) and the cross aligned attention29

(CAA). CSA scales different feature maps to make them better matched. CAA further considers the30

alignment issue between different images by adopting the principal component analysis (PCA).31

Our main contributions are as follows:32

• We propose two cross attention modules, CSA and CAA, to improve RENet.33

• Both proposed modules surpass the results of state-of-the-art methods on miniImageNet,34

tieredImageNet, CIFAR-FS, and CUB-200-2011.35
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Figure 1. An example of the class activation maps [59] of an image (left) of an existing method [46]
(middle) and our method (right). The warmer color indicates the higher value.

• CSA is slightly faster than CAA, while CAA achieves higher accuracies than CSA. Users36

can choose the one suitable for their needs.37

The remaining of this paper is organized as follows. Section 2 provides background knowledge highly38

related to this work. Section 3 presents our approaches. Section 4 shows the experiment results.39

Section 5 concludes this work.40

2 Related Work41

Few-Shot Classification Few-shot classification can be categorized into three groups, optimization-42

based methods [1, 29, 10, 44, 47], parameter-generating-based methods [3, 5, 32, 33], and metric-43

based methods [46, 48, 50, 18, 58, 20]. Optimization-based methods learn to update model parameters44

by designing the meta-learner as an optimizer. To adapt to new tasks efficiently for the learner, it45

learn a good initialization. Parameter-generating-based methods predict parameters by designing the46

meta-learner as a network. Metric-based methods learn an embedding function that maps images to a47

metric space such that the relevance between images is distinguished based on a distance metric.48

Our method belongs to metric-based methods. The prototypical network [46], CAN [18], and49

RENet [20] are highly related to our work. Following CAN and RENet, we exploit the relation50

between the support set and query set. However, the prototypical network extracts the support and51

the query features independently which makes the model distracted by irrelevant features. The52

cross attention network improves the performance by using an attention network to refine features,53

which makes the model focus on the relevant regions. RENet further improves the performance by54

integrating a module that matchs the features in an image itself. Inspired by these works, we follow55

some of their structures and integrate a module that matchs the features between the support and the56

query images.57

RENet We follow the structure of RENet [20] and integrate our module to RENet. the self-58

correlational representation (SCR) and the cross-correlational attention (CCA) are proposed in59

RENet. SCR exploits the sliding window and the dilation to match the features in an image itself.60

CCA computes the cosine similarity between the support and the query images and generate attention61

maps. We consider the cross attention between the support and the query images by exploiting62

the sliding window and the dilation, which is similar to SCR. In addition to matching the features63

between the support and the query images, we also deal with the scaling and the alignment issues.64

3 Approach65

The network that addresses the challenge of generalization to unseen target classes is presented in66

this section. The overall structure is composed of five modules: an embedding module, SCR, CCA,67

and CSA/CAA, and a classification module. The embedding module extracts features of the input68

image. It consists of several cascaded convolutional layers, mapping an input image into a feature69

map. We use the ResNet-12 [16] network as our embedding module, which is identical to CAN [18]70

and RENet [20]. Following the prototypical network [46], CAN, and RENet, the support feature of71

a class is defined as the mean of its support set in the embedding space. The embedding module72

takes the support set and a query sample as inputs and produces the support feature map Zs and a73

query feature map Zq. Each pair of feature maps (Zs and Zq) are then fed through SCR, CCA, and74

CSA/CAA, which highlight the relevant regions and output more discriminative feature pairs (s and75
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Figure 2: The overall architecture.

q) for classification. We first present a brief definition of the problem and a concise overview of the76

proposed architecture in Section 3.1 and Section 3.2 respectively. We then present technical details of77

CSA and CAA in Section 3.3 and describe our training objective in Section 3.4.78

3.1 Problem Definition79

The datasets for few-shot classification are split into the training set and the testing set, and each of80

them are further split into the support set and the query set. The support set contains few labeled81

samples and the query set contains unlabeled samples. Given the support set, few-shot classification82

aims to correctly classify the query set. The problem is called N -way K-shot if the support set is83

composed of N classes and K labeled samples per class.84

Because deep neural networks are vulnerable to overfitting with few labeled samples [20], most85

few-shot classification methods adopt a meta-learning framework with episodic training. Following86

them, we adopt the episodic training mechanism, which has been shown effective for few-shot87

learning [46, 50, 45, 40, 15, 22, 10, 31].88

3.2 Architecture Overview89

The overall architecture is illustrated in Figure 2. For each pair of support classes and query samples,90

we obtain proper feature representations. The network can model and exploit the semantic relevance91

between the support feature and query feature. Our approach is different from many previous methods92

which extract the support and the query features independently. We resort to metric learning in this93

work. To be helpful to the subsequent matching, we integrate attention to the features.94

The support feature map Zs ∈ Rc×h×w is extracted from the support samples and the query feature95

map Zq ∈ Rc×h×w is extracted from the query sample, where c, h, and w denote the number of96

channels, height, and width of the feature maps respectively. The network generates attention maps97

for the input pair, which is then used to weight the feature map to achieve more discriminative feature98

representation, and the final outputs are s and q. The architecture in Figure 2 consists of three main99

learnable modules: SCR, CCA, and CSA or CAA. Since SCR and CCA have already proposed in100

RENet [20], we start our description from CSA and CAA. More detail can refer to [20].101

3.3 Cross Scaled Attention (CSA) and Cross Aligned Attention (CAA)102

Figure 3 illustrates the structure of CSA and CAA. Inspired by SCR [20], We propose two similar103

modules CSA and CAA. SCR only considers about the correlation in the image itself, and we further104

think about the correlation between the support and the query images. CCA [20] also consider the105

correlation between the support and the query images. It computes the cosine similarity between the106

support and the query images and generate attention maps. On the other hand, CSA and CAA match107

the features between the support and the query images by computing the Hadamard product. They108

further help our model focus on more important features. SCR focuses on the target object in an109

image, and CSA and CAA focus on the target objects in both the support and the query images. The110
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Figure 3: The structure of CSA and CAA.

structure is almost identical to SCR, and the only difference is the input. Similar to CCA, CSA and111

CAA take an input pair of support and query, Ys and Yq , and produces the final embeddings, s and q.112

Correlation computation Similar to SCR, we exploit the sliding window and the dilation to match113

the features. However, instead of matching the features of each position and its neighborhood which is114

presented in SCR, we match the features between the support and the query. The Hadamard product of115

a vector at each position x ∈ [1, H]× [1,W ] and vectors at the neighborhood of x′ ∈ [1, H]× [1,W ]116

is computed and collected into a cross-correlation tensor R. We represent the tensor R as a function117

with a vector output:118

R(x, x′,p) =
Ys(x)
∥Ys(x)∥

⊙ Yq(x′ + p)
∥Yq(x′ + p)∥

, (1)

where p ∈ [−dU , dU ]× [−dV , dV ]. It corresponds to a relative position in the neighborhood window119

such that 2dU + 1 = U and 2dV + 1 = V , which includes the center position. The edges of the120

feature map are zero-padded for sampling off the edges.121

To make the training process more efficient, we do not iterate through the whole image for x′. We122

take the position at attention map produced previously that has maximum value as the center and123

crop the image to find the scope of the target object, where the region we iterate through. For CSA,124

the size of the cropped region is s∗w× s∗h, where w and h are the width and the height of the image125

respectively, and s∗ is the scaling factor which is the portion of pixels where attention values are126

higher than the average of the whole attention map. If we change the scaling factor, which is the only127

difference between CSA and CAA, the module will become CAA. We elaborate on how we tune the128

scaling factor in the next two paragraphs.129

Cross scaled attention (CSA) In this paragraph, we first elaborate on how we tune the scaling130

factor. In general, we have two scaling factors, s1 and s2, to crop the image with size s1w × s2h,131

where w and h are the width and the height of the image respectively. We tune the scaling factors132

s1 and s2 in three different ways. Firstly, we let s∗ = s1 = s2 and fix s∗ to 0.5. Secondly, we let133

s∗ be the portion of pixels where attention values are higher than the average of the whole attention134

map, which is the scaling factor adopted in CSA. Finally, we adopt PCA to determine the scaling135

factors, and this is what CAA does. We find out that the first method achieves the lowest accuracy, so136

we regard it as a baseline. CAA achieves higher accuracies than CSA, but its training time is longer137

compared to CSA. The results of different methods are presented in Section 4.2.138

The scaling factor s∗ for CSA is obtained by the following equation:139

s∗ =
N

A
, (2)

where N is the number of pixels with attention values higher than the average of the attention map,140

and A is the is the total number of pixels.141

Cross aligned attention (CAA) We first filter all the pixels with the threshold of the average value142

of the whole attention map. If the attention values of the pixels are lower than the threshold, we143
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Figure 4. The class activation maps [59] of the support image (top) and the query images (middle and
bottom). In CAA, the target objects in the support and the query images are aligned after rotation.
The warmer color indicates the higher value.

will discard them. PCA is then conducted to find the first and the second principal components, and144

the image is rotated with the angle θ, where θ is the angle between the first principal component145

and the horizontal line. We crop the image with size s1w × s2h centered at the position where the146

attention value is maximum, where s1 and s2 are the magnitudes of the first and the second principal147

components respectively, and w and h are the width and the height of the image respectively.148

Consider a data matrix X with column-wise zero empirical means, which indicates that the sample149

mean of each column has been shifted to zero. The transformed is defined by a set of coefficient150

vectors v, and each coefficient vector is constrained to be a unit vector. To maximize variance, the151

first coefficient vector v1 has to satisfy the following equation:152

v1 = argmax(
vTXTXv

vT v
). (3)

With v1 found, the first principal component is e1 = Xv1v
T
1 .153

The second principal component e2 = Xv2v
T
2 can be found by the second coefficient vector v2. v2154

can be found by the following equations:155

X̂ = X −Xv1v
T
1 , (4)

156

v2 = argmax(
vT X̂T X̂v

vT v
). (5)

The rotation angle θ can be derived from the following equation:157

θ = cos−1(
e1 · u1

∥e1∥∥u1∥
), (6)

where u1 is the horizontal unit vector (1, 0).158

As shown in Figure 4, CAA aligns the target objects in the support and the query images since we159

rotate the image to help us match the features of the target objects in both images.160

Cross attention learning A series of 2D convolutions is applied to analyze the self-correlation161

patterns in R. For computational efficiency, the convolutional block follows a bottleneck structure as162

shown in Figure 3. It consists of a point-wise convolution layer for channel size reduction, two 3 ×163

3 convolution layers for transformation, and another point-wise convolution layer for channel size164
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recovery. We insert batch normalization and ReLU between the convolutions. The spatial dimensions165

of local correlation patterns are reduced from U × V to 1 × 1 such that the output g(R) and Ys166

(Yq) has the same size since they are gradually aggregated by the convolution block g(·) without167

padding. The process of analyzing structure patterns could be complementary to appearance patterns168

in the representation Ys (Yq). Therefore, we combine the two representations to produce the final169

embeddings s and q:170

s = g(R) + Ys, (7)
171

q = g(R) + Yq, (8)
which reinforces the base features with relational features and helps the few-shot learner focus on the172

target objects in the images.173

3.4 Training and Testing (Inference)174

Training Following [18] and [20], we train the network via minimizing the classification loss on175

the query samples of the training set. The classification module is composed of the nearest neighbor176

classifier and a global classifier. The nearest neighbor classifier classifies the query samples into N177

support classes based on pre-defined similarity measures. Each position in the query feature maps178

is constrained to be correctly classified to obtain precise attention maps. We define the nearest179

neighbor classification loss L1 as the negative log-probability according to the true class label. A180

fully connected layer followed by softmax to classify each query sample among all available training181

classes is used in the global classifier. We compute the global classification loss L2. Finally, we182

define the overall classification loss as L = λL1 + L2, where λ is the weight to balance the effects183

of different losses. We train the network end-to-end by optimizing L with the stochastic gradient184

descent algorithm.185

Testing (Inference) Many existing methods including the prototypical network [46] and RENet [20]186

use the inductive inference. The global average pooling is performed to the features to get the mean187

support and query features. The label for a query sample is predicted by finding the class which has188

the nearest mean support feature under a distance metric.189

However, each class has very few labeled samples in few-shot classification task, so the support190

features of classes can hardly represent the true class distribution. To alleviate the problem, [18]191

proposed a simple and effective transductive inference algorithm that utilizes the unlabeled query192

samples to enrich the support features of classes.193

Following [18], we use the transductive inference. In this way, the support features of classes can be194

more representative and robust. Experiment shows that the transductive inference achieves higher195

performance than the inductive inference especially in 1-shot where the problem described above is196

more serious.197

4 Experiment Results198

4.1 Experiment Setup199

Datasets We use four standard benchmarks for few-shot classification for evaluation: miniImageNet,200

tieredImageNet, CIFAR-FS, and CUB-200-2011 (Caltech-UCSD Birds-200-2011).201

• miniImageNet [50] is a subset of ImageNet (ILSVRC-2012) [21] which consists of 60000202

images. It contains 100 object classes with 600 images per class. These classes are randomly203

split into 64, 16, and 20 classes for training, validation, and testing respectively. All images204

are of size 84 × 84.205

• tieredImageNet [42] is a much larger subset of ImageNet (ILSVRC-2012) [21]. It contains206

608 classes grouped into 34 high-level categories. These are divided into 20, 6, and 8207

categories for training, validation, and testing respectively, which corresponds to 351, 97,208

and 160 classes for training, validation, and testing respectively. All images are of size 84 ×209

84.210

• CIFAR-FS [2] is a subset of CIFAR-100 which consists of 60000 images. It contains 100211

object classes with 600 images per class. These classes are randomly split into 64, 16, and212

20 classes for training, validation, and testing respectively. All images are of size 32 × 32.213
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• CUB-200-2011 [53] is an image dataset with photos of 200 bird species (mostly North214

American). It consists of 100, 50, and 50 classes for training, validation, and testing215

respectively.216

Experiment setting We conduct experiments for our approach on 5-way 1-shot and 5-way 5-shot217

settings. For an N -way K-shot setting, we form the episode with N classes and each class includes218

K support samples. We use 15 query samples per class in an episode for both training and testing.219

We randomly sample 2000 episodes from the testing set when testing. The average accuracy and the220

corresponding 95% confidence interval are reported over the 2000 episodes.221

Implementation details We use Pytorch to implement all our experiments on one NVIDIA RTX-222

3080 GPU. The ResNet-12 [16] network is used as our embedding module. The input images size is223

84 × 84 for miniImageNet and tieredImageNet, and 32 × 32 for CIFAR-FS. Horizontal flip, random224

crop, and random erasing are adopted as data augmentation during training. We use SGD as the225

optimizer. Each batch contains 8 episodes. For miniImageNet, CIFAR-FS, and CUB-200-2011, the226

model is trained for 90 epochs, with each epoch consisting of 1200 episodes, and the initial learning227

rate is 0.1 and decreased to 0.006, 0.0012, and 0.00024 at 60, 70, and 80 epochs, respectively. For228

tieredImageNet, the model is trained for 80 epochs, with each epoch consisting of 13980 episodes,229

and the initial learning rate is set to 0.1 with a decay factor of 0.1 at every 20 epochs. We set the230

temperature hyperparameter [20] to 2 for CUB-200-2011 and 5 otherwise, and we set the weight231

hyperparameter (λ) in the overall loss function to 0.25, 0.5, and 1.5 for ImageNet derivatives, CIFAR-232

FS, and CUB-200-2011 respectively. We set U=5 and V=5 in our experiment. We cross-validate all233

hyperparameters in the validation sets and fix them afterward in all experiments.234

Comparison with state-of-the-art methods Table 1 shows the comparison between our method235

and existing few-shot methods1 on miniImageNet, tieredImageNet, CIFAR-FS, and CUB-200-2011.236

All results in Table 1 except our work are directly adopted from their papers. "-" indicates the results237

are not available in their papers. Many existing methods extract features of support and query samples238

independently, making the features focus on the non-target objects. To avoid the issue, CAN [18],239

RENet [20], and our method highlights the target object regions and gets more discriminative features240

instead. Compared to CAN and RENet, our method achieves higher accuracies.241

4.2 Ablation Study242

We show the effectiveness of each component of the network by empirical results and compare the243

time cost in this subsection. In [18] and [20], a series of experiments in their ablation study has244

already been completed. Following them, we experiment on miniImageNet in this subsection. We245

show the effectiveness of CAA and compare the performances of CAA and CSA. We firstly introduce246

a baseline to be used for comparison. If we remove SCR, CCA, and CSA/CAA, the model almost247

become the prototypical network [46] with ResNet-12 [16] as the backbone, and the only difference248

is a global classifier. Therefore, we create a variant named R12-proto by removing SCR, CCA, and249

CSA/CAA. In R12-proto, the features from the embedding module are directly fed to the nearest250

neighbor and global classifier, and the model is trained with the joint of global and nearest neighbor251

classification loss. The comparison between all variants are shown in Table 2. Time cost is shown in252

Table 3.253

Influence of SCR, CCA, and CSA/CAA By comparing RENet+CSA/CAA and R12-proto, we254

observe consistent improvements on both 1-shot and 5-shot scenarios as shown in Table 2. The reason255

is that when using SCR, CCA, and CSA/CAA, our model can highlight the relevant regions and extract256

more discriminative features. The performance gap shows that (1) conventionally independently257

extracted features tend to focus on the non-target regions and produce inaccurate similarities. (2)258

SCR, CCA, and CSA/CAA can help to highlight target regions and reduce such inaccuracy. As shown259

in Table 2, RENet+CSA/CAA outperforms R12-proto consistently, which further demonstrates the260

effectiveness of the attention mechanism.261

Influence of CSA and CAA To verify the effectiveness of CSA and CAA, we test another variant262

without the modules. We remove the component of CSA/CAA. That is, after we get the feature maps263

1We re-implement the prototypical network with ResNet-12 as the backbone in Table 1.
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Table 1: Performance comparison in terms of accuracy (%) with 95% confidence intervals on 5-way
classification on (a) miniImageNet and tieredImageNet and (b) CIFAR-FS and CUB-200-2011.

(a) Results on miniImageNet and tieredImageNet datasets.

Model Backbone miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

MAML [10] ConvNet 48.70 ± 0.84 55.31 ± 0.73 51.67 ± 1.81 70.30 ± 1.75
cosine classifier [8] ResNet-12 55.43 ± 0.81 77.18 ± 0.61 61.49 ± 0.91 82.37 ± 0.67

MTL [47] ResNet-12 61.20 ± 1.80 75.50 ± 0.80 - -
TADAM [36] ResNet-12 58.50 ± 0.30 76.70 ± 0.30 - -

PPA [39] WRN-28-10 59.60 ± 0.41 73.74 ± 0.19 65.65 ± 0.92 83.40 ± 0.65
wDAE-GNN [15] WRN-28-10 61.07 ± 0.15 76.75 ± 0.11 68.18 ± 0.16 83.09 ± 0.12
SimpleShot [51] ResNet-18 62.85 ± 0.20 80.02 ± 0.14 - -

TPN [28] ResNet-12 59.46 75.65 59.91 ± 0.94 73.30 ± 0.75
RFS-simple [49] ResNet-12 62.02 ± 0.63 79.64 ± 0.44 69.74 ± 0.72 84.41 ± 0.55

LEO [44] WRN-28-10 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09
MetaOpt [22] ResNet-12 62.64 ± 0.62 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
adaNet [33] ResNet-12 56.88 ± 0.62 71.94 ± 0.57 - -

DC [26] ResNet-18 62.53 ± 0.19 79.77 ± 0.19 - -
Shot-Free [41] ResNet-12 59.04 77.64 63.52 82.59

S2M2 [30] ResNet-34 63.74 ± 0.18 79.45 ± 0.12 - -
MN [50] ConvNet 43.44 ± 0.77 60.60 ± 0.71 - -
MN [50] ResNet-12 63.08 ± 0.80 75.99 ± 0.60 68.50 ± 0.92 80.60 ± 0.71
RN [48] ConvNet 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 71.32 ± 0.78
PN [46] ConvNet 49.42 ± 0.78 68.20 ± 0.66 53.31 ± 0.89 72.69 ± 0.74
PN [46] ResNet-12 60.26 ± 0.49 73.65 ± 0.37 64.56 ± 0.56 76.78 ± 0.43

NegMargin [27] ResNet-12 63.85 ± 0.81 81.57 ± 0.56 - -
CTM [23] ResNet-18 64.12 ± 0.82 80.51 ± 0.13 68.41 ± 0.39 84.28 ± 1.73
FEAT [56] ResNet-12 66.78 ± 0.20 82.05 ± 0.14 70.80 ± 0.23 84.79 ± 0.16

DeepEMD [58] ResNet-12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58
CAN [18] ResNet-12 63.85 ± 0.48 79.44 ± 0.34 69.89 ± 0.51 84.23 ± 0.37

CAN+T [18] ResNet-12 67.19 ± 0.55 80.64 ± 0.35 73.21 ± 0.58 84.93 ± 0.38
RENet [20] ResNet-12 67.60 ± 0.44 82.58 ± 0.30 71.61 ± 0.51 85.28 ± 0.35

RENet+CSA (ours) ResNet-12 73.18 ± 0.51 84.20 ± 0.31 75.58 ± 0.57 85.74 ± 0.39
RENet+CAA (ours) ResNet-12 73.61 ± 0.51 84.43 ± 0.30 76.71 ± 0.55 86.38 ± 0.35

(b) Results on CIFAR-FS and CUB-200-2011 datasets.

Model Backbone CIFAR-FS CUB-200-2011
1-shot 5-shot 1-shot 5-shot

MAML [10] ConvNet 58.9 ± 1.9 71.5 ± 1.0 - -
MAML [10] ResNet-34 - - 67.28 ± 1.08 83.47 ± 0.59

cosine classifier [8] ResNet-12 - - 67.30 ± 0.86 84.75 ± 0.60
cosine classifier [8] ResNet-34 60.39 ± 0.28 72.85 ± 0.65 - -

MetaOpt [22] ResNet-12 72.6 ± 0.7 84.3 ± 0.5 - -
Shot-Free [41] ResNet-12 69.2 84.7 - -

RFS-simple [49] ResNet-12 71.5 ± 0.8 86.0 ± 0.5 - -
NegMargin [27] ResNet-18 - - 72.66 ± 0.85 89.40 ± 0.43

S2M2 [30] ResNet-34 62.77 ± 0.23 75.75 ± 0.13 72.92 ± 0.83 86.55 ± 0.61
Boosting [13] WRN-28-10 73.6 ± 0.3 86.0 ± 0.2 - -

FEAT [56] ResNet-12 - - 73.27 ± 0.22 85.77 ± 0.14
MN [50] ResNet-12 - - 71.87 ± 0.85 85.08 ± 0.57
RN [48] ConvNet 55.0 ± 1.0 69.3 ± 0.8 - -
RN [48] ResNet-34 - - 66.20 ± 0.99 82.30 ± 0.58
PN [46] ResNet-12 70.21 ± 0.52 80.60 ± 0.40 66.09 ± 0.92 82.50 ± 0.58

DeepEMD [58] ResNet-12 - - 75.65 ± 0.83 88.69 ± 0.50
CAN [18] ResNet-12 71.65 ± 0.50 83.72 ± 0.38 - -

CAN+T [18] ResNet-12 76.61 ± 0.56 84.37 ± 0.38 - -
RENet [20] ResNet-12 74.51 ± 0.46 86.60 ± 0.32 79.49 ± 0.44 91.11 ± 0.24

RENet+CSA (ours) ResNet-12 80.02 ± 0.51 87.63 ± 0.33 85.89 ± 0.45 92.03 ± 0.25
RENet+CAA (ours) ResNet-12 80.40 ± 0.50 87.76 ± 0.33 86.63 ± 0.44 92.88 ± 0.22
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Table 2: Ablation study on miniImageNet with performance comparison in terms of accuracy (%).
Variant 5-way 1-shot 5-way 5-shot

R12-proto 66.36 75.65
without CSA/CAA 72.81 83.84

unscaled 72.91 84.06
with CSA 73.18 84.20
with CAA 73.61 84.43

Table 3: Time cost on four datasets. All models are implemented in PyTorch and tested on Nvidia
RTX-3080.

Time Model miniImageNet tieredImageNet CIFAR-FS CUB-200-2011

training
RENet 5 h 41 m 48 h 05 m 5 h 43 m 1 h 08 m

RENet+CSA 5 h 52 m 48 h 45 m 5 h 55 m 1 h 10 m
RENet+CAA 6 h 16 m 49 h 17 m 6 h 20 m 1 h 15 m

inference
RENet 2 m 06 s 2 m 10 s 2 m 07 s 2 m 03 s

RENet+CSA 2 m 08 s 2 m 11 s 2 m 09 s 2 m 04 s
RENet+CAA 2 m 12 s 2 m 15 s 2 m 14 s 2 m 08 s

Ys and Yq from CCA, the features are fed to the nearest neighbor and global classifier, and the model264

is trained with the joint of global and nearest neighbor classification loss. As shown in Table 2, both265

the network with CSA and the network with CAA outperform the variant model. The improvement266

indicates that CSA and CAA can help to highlight target regions more effectively compared to the267

model without CSA/CAA.268

Influence of PCA Using PCA achieves higher accuracies for our model compared to other methods269

mentioned in Section 3.3. We compare the performances of the unscaled version, CSA, and CAA in270

Table 2. As described in Section 3.3, the unscaled version is the variant whose scaling factor is fixed271

to 0.5. As shown in Table 2, CAA achieves the highest accuracy, and we conclude that the alignment272

of the target objects in the support and the query images benefits classification.273

Speed comparison We compare the training time and inference time of RENet, RENet+CSA, and274

RENet+CAA in Table 3. As can be seen, the training time of RENet+CSA is slightly longer than275

RENet, and the training time of RENet+CAA is slightly longer than RENet+CSA but not by much.276

The inference time of RENet+CSA is longer than RENet, and the training time of RENet+CAA is277

longer than RENet+CSA, but the differences are so slim that they are practically insignificant.278

5 Conclusion279

This work improves RENet for few-shot classification by introducing two cross attention modules,280

CSA and CAA, which model the semantic relevance between the support and the query features.281

Specifically, CSA scales different feature maps to make them better matched, and CAA adopts282

the principal component analysis to further align features from different images. As a result, the283

proposed modules focus on more relevant regions by considering both the support and the query284

images rather than only the latter ones. Empirically, RENet with both CSA and CAA outperformed285

state-of-the-art methods on miniImageNet, tieredImageNet, CIFAR-FS, and CUB-200-2011, four286

widely used datasets for few-shot learning, in terms of accuracy. The ablation study further verified287

that the improvements are achieved owing to the proposed modules.288

Our work indicated that in few-show learning information contained in those few support samples289

should be exploited as much as possible, and the cross attention is one such way to do it. Although290

such techniques may require slightly longer training time, we believe that it is worthwhile especially291

in the scenarios where labeled data are valuable and few.292
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