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ABSTRACT

Lately, post-training quantization methods have gained considerable attention, as
they are simple to use, and require only a small unlabeled calibration set. This
small dataset cannot be used to fine-tune the model without significant over-fitting.
Instead, these methods only use the calibration set to set the activations’ dynamic
ranges. However, such methods always resulted in significant accuracy degradation,
when used below 8-bits (except on small datasets). Here we aim to break the 8-bit
barrier. To this end, we minimize the quantization errors of each layer separately
by optimizing its parameters over the calibration set. We empirically demonstrate
that this approach is: (1) much less susceptible to over-fitting than the standard
fine-tuning approaches, and can be used even on a very small calibration set; and
(2) more powerful than previous methods, which only set the activations’ dynamic
ranges. Furthermore, we demonstrate how to optimally allocate the bit-widths
for each layer, while constraining accuracy degradation or model compression by
proposing a novel integer programming formulation. Finally, we suggest model
global statistics tuning, to correct biases introduced during quantization. Together,
these methods yield state-of-the-art results for both vision and text models. For
instance, on ResNet50, we obtain less than 1% accuracy degradation — with 4-bit
weights and activations in all layers, but the smallest two. Our code is publicly
available at https://github.com/papers-submission/CalibTIP

1 INTRODUCTION

The pursuit of advanced Deep Neural Networks (DNNs) causes researchers to construct deeper and
wider networks, making them expensive to use in terms of power and time. This increases the need
for efficient implementations of these networks. Efficient networks reduce cloud-vendor costs and
make it possible to run them on low-power devices such as smartphones and wearable devices. The
most common off-the-shelf approach to improving network efficiency is quantization, which reduces
the numerical precision of the network and its complexity and memory footprint.

DNN quantization techniques can be classified as either post-training or quantization-aware training
(QAT) techniques (Han et al., |2015}; |Courbariaux et al.l 2015; [Hubara et al.,[2017;|Zhou et al., 2016).
Although QAT techniques, in general, achieve better results, there are important real-world scenarios
in which they are not applicable. These are the cases where the training data is sensitive or simply
unavailable at the time of deployment. For instance, when off-the-shelf or legacy models are being
used, or when medical records are involved. Therefore, much attention has recently been dedicated to
post-training quantization methods (Nagel et al.| 2019; |Banner et al., [2018; Zhao et al., 2019), which
can be more easily applied in practice. These methods allow for network quantization to happen
seamlessly when deployed, without requiring additional information from the user except a small
unlabeled calibration set.

Unfortunately, post-training quantization below 8-bit always incurs significant accuracy degradation
and in some cases even higher numerical precision is required. In this paper, our goal is to break
this barrier by distilling all the information the pre-trained model and calibration set encode. Our
goal is to find an optimal scheme for current state of the art hardware which usually support 16,8,4
bits data types with per-channel quantization of the weights. To that end, we suggest a three-stage
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pipeline that consists of methods applied solely on a small calibration set to reduce the local error
introduced during the quantization process (e.g., round-off errors) followed by integer programming
to determine the bit-width of different layers so that the overall accuracy degradation is minimized.
Even without using mixed-precision, the suggested method is much less prone to over-fitting than
current methods and yields best in class results for 8-bits Mobilenet-V2 and BERT-base trained
on ImageNet and SQuADI.1 datasets, respectively. Our paper suggests several contributions for
mixed-precision post-training quantization:

1. AdaQuant: A layer-by-layer optimization method that minimizes the error between the
quantized layer output and the full-precision layer output. This method can consume only a
small calibration dataset from training data without overfitting. In a comprehensive study,
we show that AdaQuant defines a new state-of-the-art for post-training quantization on
several networks and tasks, including vision models (Resnet18, Resnet50, MobilenetV?2)
and language (BERT).

2. Integer programming: As some parts of the network may allow lower precision compared
to other layers, we suggest an integer-linear programming based approach for determining
the precision level of different layers. This method aims at maximizing either the expected
speedup or savings in power consumption without violating a predefined constraint on
network accuracy degradation or compression.

3. Batch-norm tuning: Following quantization we observe an inherent bias in the mean and
the variance of batch norm statistics. We show that by employing the re-estimated statistics
in batch normalization, much of the quantized network degradation can be recovered.

4. Light and Advanced pipelines: We analyze the advantages and disadvantages of each
of the given methods and suggest two pipelines: (1) light pipeline that does not require a
backward pass, thus can be invoked even on inference-only hardware; and (2) Advanced
pipeline that includes also AdaQuant and bias tuning.

2 RELATED WORK

There has been a significant effort to accelerate inference via quantization (Courbariaux et al., 2015}
Han et al.| 2015} [Rastegari et al., 2016} |Zhou et al., | 2017). These works involve re-training in order
to compensate for the degradation due to the quantization process. Post-training quantization, on the
other hand is applied to a model after it was trained. Thus, it avoids re-training and as such it is much
simpler to use. However, naively quantizing a full-precision model to INT4 or lower to accelerate
computation usually incurs significant accuracy degradation (Krishnamoorthi, |2018}; Jacob et al.,
2018)).

AdaQuant: A recent post-training quantization method (Nagel et al., 2020), termed AdaRound,
suggested optimizing the rounding policy. Instead of using the predominant rounding-to-nearest
approach, they suggest formulating a per-layer quadratic optimization problem to optimize the round-
off error. Our proposed method, AdaQuant, takes another step and relaxes AdaRound’s implicit
constraint which forces the quantized weights to be within £1 of their round-to-nearest value. This
is done by optimizing the weights and quantization parameters of each layer separately, over the
calibration set, to minimize the MSE between the layer’s original and quantized outputs. As oppose to
AdaRound we apply AdaQuant to find optimal quantization not only to weights but also to activations.
In addtion we suggest two flavors for AdaQuant: (1) parallel-AdaQuant suited for mixed precision
setting; (b) sequential-adaquant which suited for fixed configuration.

Integer programming: Early work by |Lin et al.|(2016) used a convex optimization formulation
which results in a simple greedy compression scheme. |Aflalo et al.| (2020) used a combinatorial
optimization approach for network pruning. Their problem was formulated as a Knapsack problem
that optimizes the trade-off between the channels importance and their associated computational cost.
Cai et al.|(2020) finds a mixed-precision configuration with a guaranteed Pareto efficient allocation
with respect to model size and accuracy degradation. While this provides a “best-effort” standard
(e.g., the configuration cannot be further compressed without hurting accuracy), it does not suggest
which of all possible outcomes is best. To the best of our knowledge, this work is the first to formalize
a generic integer program, which can easily be adapted to various types of models and requirements
with a clear objective and constraints.
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Batch norm tuning: Finkelstein et al.| (2019) were the first to recognize that a significant source of
degradation is a shift in the mean activation value. They show a simple method to compensate for
this bias by updating the bias terms. Nagel et al.|(2019) suggest to equalize the weight ranges in the
network and correct biases in the error that are introduced during quantization .Recently [Sun et al.
(2019) suggested batch norm tuning for FP8 models. Here we detail how to perform this procedure on
a per-channel quantized (PCQ) model with fused batch-norm layers. The procedure is light as it only
requires to invoke the quantized model few times (on the calibration set) and adjust the quantization
parameters.Moreover after retuning the BN layers can be reabsorbed which reduces the inference
complexity. To the best of our knowledge we are the first to suggest it.

3  OPTIMIZING THE QUANTIZATION PIPELINE

In most post-training quantization settings, a model and a small unlabeled calibration set are given.
To avoid overfitting the calibration set, most studies utilize it only to extract the network’s internal
statistics, which is later used to set the quantization parameters.

Here we suggest using the calibration set much more extensively to tune the model while avoiding
over-fitting the data. In the following subsections, we detail three different optimization methods over
the calibration set: (1) AdaQuant, a layerwise optimization of weights and quantization parameters;
(2) an integer programming formulation for a mixed-precision setting; and (3) Batch Normalization
Tuning (BNT), for tuning the model’s internal statistics to match the numerical precision setting. We
discuss the strengths and weaknesses of each method and suggest an optimization flow that exploits
all the additive merits and leads to state-of-the-art results.

3.1 ADAQUANT - LAYERWISE OPTIMIZATION OVER THE CALIBRATION SET

Several researchers suggested per-tensor optimization to reduce quantization error by minimizing
some form of MSE objective between the quantized and the full-precision tensor X (either weights
or activations). They look for an optimized quantization step size A obtained by

A =argmin X - Qa(OI5  Qa(X) = A- m M)
where Q(-) is the quantization function. Although these methods are fast and easy to use, they often
result in an inferior solution — the loss in eq. [T]is sub-optimal, as it penalizes all the quantization errors
equally. However, the loss should penalize more quantization errors which affect the classification.
Accordingly, researchers suggested Quantization-Aware-Training (QAT) methods to fix this error by
training the entire model at once. However, those methods have three limitations: (a) they require
the large training set to avoid over-fitting, (b) they approximate the back-propagation gradients
through discrete function (the quantizer) and (c) they have high computational and memory footprints.
We suggest a modified objective for per-layer joint optimization of the weights and quantization
parameters.

(Bu A V) = axgmin [[WX — Qa, (W +V) - Qa. ()| @)
where V' is a continuous variable added to W and the quantized network weights are defined as
Wi =Qx, (W + V). In this new objective the quantized tensor is not required to be “’close” to
the original tensor, as in eq. [I] thus benefiting from the flexibility that Quantization-Aware-Training
methods have. Yet, it can be executed in parallel over all layers and is much less prone to over-fitting.
Moreover, under a fixed configuration we can optimize the model globally and infer the error between
layers. Thus, instead of running AdaQuant on all layers in parallel we can run it sequentially and fix
the error induced by quantaizing former layers. Thus, Eq. 2 changes to:

(Aups B0 Vi) = argmin [[WiXi = Qa,, (Wi + Vi) - Qa,, (X, 3)

wpBay Vi
Xy =0(Qa,,  (Wi1+Vie1) - Qa,, (X)) 4)
where o(+) is some activation function.

Note, that sequential AdaQuant should not be applied before the bit allocation was set as it optimize
over noisy input obtain from predecessor quantized layers. We evaluate both flavors of adaquant
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(named, AdQuant and sequential-AdaQuant and detail our finding in section 5.1. We note that
AdaQuant also optimizes over biases and offsets and optimized fused conv-bn-relu layers when
present; these were removed from the formulation in Equation [2]for simplicity.

Size of calibration set Perhaps surprisingly,
although we experiment with a very small cal-
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examine a simple fully connected layer W & —

RM>N " The input and output are of sizes N 6ol __4

and M, respectively. For each output we have )

B equations and N separate parameters (i.e., § 40

with no overlap in parameters between different § ————

Eutputs)'. Thprefore if BN we generically < 20 Naive min-max
ave an infinite amount of solutions and we can —— AdaQuant

overfit the data. If B > N then we might un- —— AdaRound

derfit the data. Thus, the size of the calibra- 0 !~ QAT-KLD

tion set required for AdaQuant should roughly 5 T > 3

S Lo . 10 10 10 10
be O(N). A similar derivation for convolution Calibration set size (log scale)

layers reveals that the calibration size should

have B > C;}V'f,z samples to avoid over-fitting,
where B is the number of unique samples, k
is the convolution’s kernel size, C; and C, is
the number of input and output channels respec-
tively and H, W represent height and width. In
fig.[Tj we compare AdaQuant to current state-of-
the-art methods including QAT with knowledge
distillation (QAT-KLD) (Kim et al.,[2019)) and
AdaRound (Nagel et al.||2020). For each method, we measured the top-1 accuracy with respect to the
number of samples in the calibration set over five runs and present the mean and standard deviation.
As can be seen, AdaQuant is superior to previous methods and specifically excels on small calibration
sets. Remarkably, AdaQuant does not overfit even when optimized on a single image. Additional
details can be found in section A and[D]of the Appendix.

Figure 1: Comparison of different optimization
methods over ResNet-50 quantized to 4 bit except
the first and the last layers which were kept in
8bit. Even optimizing on a single image drastically
improves the results but as expected have a high
variance (red bar). The variance decreases rapidly
as calibration set size increases.

3.2 PER-LAYER BIT ALLOCATIONS WITH INTEGER PROGRAMMING

AdaQuant significantly enhances network accuracy at lower bit widths. However, it is often not
sufficient by itself to attain acceptable accuracy. Therefore, in practical use cases, the user would
like to balance between accuracy and performance (e.g., power and speed), by setting several layers
to higher precision. Our high-level goal in this section would be to optimize the overall network
performance while maintaining a predefined accuracy degradation or a model compression constraint.

In the following, we provide an integer-programming (IP) formulation for optimizing per-layer bit
allocations. Depending on the needs, our performance metrics P would be either the execution time
of the network or its power consumption. Also, with every layer quantization, there is an associated
quantization error that affects the training loss £. We chose the latter to be our penalty metric. Integer
programming is applied in those situations where a given problem can clearly be represented in
the form of a linear relationship between different decision variables. Unlike other previous works
on compression, it attains a global optimum. For example, [Lin et al.[(2016) suggested a convex
optimization problem, but the constraints and the objective are not linear. This typically has a drastic
impact on convergence time, and the quality of the results since the Simplex method can no longer be
applied (Van Doormaal & Raithby, |1984).

Basic formulation We are given a neural network with L layers. For each layer [, we have weights
W, that need to be multiplied with activations of the previous layer X;_;. Such lower bit width
multiplications can be executed by quantizing the weights and activations to achieve higher throughput
and energy-efficient solutions. Let Wlk and X | represent a quantized version of W, and X;_; to
k and n bits, respectively. For each layer ¢, a low-bit width multiplication VV/“ - X', results in a

loss degradation A/jf’" and in performance improvement AIP;C’" with respect to the original product



Under review as a conference paper at ICLR 2021

W, - X;_1. This performance improvement measure needs to be additive and sum up to a total benefit
in end-to-end network performance (e.g., power, model size, etc.). Our goal would be to maximize
the total performance improvement without exceeding the total network degradation AL.

We now turn to solve the above problem using an integer program. We define a binary variable [ lk "

which is set to one if and only if the weights I/Vlk are multiplied with the activations X" ; at layer /;

otherwise we set the indicator to zero i.e., I lk " = (. Then, the basic bit allocation problem can be
formulated as follows:

Maximize § AP, (5a)
=0
Subject to Z AL < AL, (5b)
1
Vie{l,..,L}:AP =Y I APPT AL =Y I ALY (5¢)
k,n k,n
Vie{l,..L}:Y I =1,If"€{0,1} (5d)
k,n

The objective function (3a) maximizes the total performance improvement. Constraints (3b) and
(3c) ensure that the total degradation in loss and the total improvements in performance due to the
quantization of layer [ to k-bit-weights and n-bit-activations would be AL; and AIP,, respectively.
Equation (3d) states that the restriction on total degradation of AL is obeyed and ensures that only
one configuration (of quantized weights and activation) per layer is selected.

3.3 BATCH NORMALIZATION TUNING

A common practice is fusing BN layers into their predecessor weight layers before applying post-
training quantization to reduce the amount of Multiply-Accumulate (MAC) operations. However, the
reduction in bit-width after quantization can cause the model’s internal statistics to deviate further
from those of the full precision model. To compensate for this deviation, we suggest updating BN
statistics. First, we need to reconstruct the BN layers then re-tune the BN layers’ statistics (by a few
iterations of running-mean to re-collect the statistics). Finally, re-absorb (re-fuse) the BN layers into
the weight layers (this is possible only in a per-channel weights quantization setting, which is the
current standard). Next, we give more details on each phase.

Reconstructing BN layers Assume the original (pre-fusing) BN parameters ~,,, 3, and € are known,
as is usually the case. We would like to initialize u, 02, as well as the BN parameters -, and /3, (r for
“reconstructed”) so that the reconstructed BN

rT—p
Vo?+e
will re-adjust the model statistics. To do so, first we initialize the reconstructed BN layers by setting
the following parameters (denoted by 7):

p=0r=0s; 0P=7 v =1v12+e ()

so that BN,.(z) = x. Then, we update y and o2 by collecting running mean and running variance
on the calibration data. We stress that the BN parameters, -,., 5,-, do not change while applying BN
tuning, as we only invoke forward propagation.

BN,(z) = + 6= (6)

Re-fusing BN layers Due to the per-channel quantization setting we use, the collected statistics
can be fused back into the current quantization scale as follows:

W =Wl b=+ By AL =LA, ®)
g g g

Thus, in addition to the regular BN fusion, the quantization step is adjusted by v,0~!. Additional
details are given in section |B|of the Appendix .
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Bias tuning Much like Finkelstein et al.[(2019), we suggest to apply a global bias-tuning procedure
on the final mixed-precision model by applying quantization-aware training to minimize the Knowl-
edge Distillation (KD) loss (which does not require labels). Since we restrict the trainable variables
to be the biases only, we can train only on the calibration set without experiencing overfitting.

4  QUANTIZATION FLOW

Past years have seen the rapid development of efficient deployment techniques (Nagel et al., 2019
Haroush et al.| 2019). Deployment flows can vary based on the user setting such as hardware
constraints, deployment time and task/dataset availability. While some users are willing to pay at
initialization the time and effort to gain another fraction of accuracy, others require a simple and fast
solution. We address this by suggesting two novel pipelines, light and advanced. Our pipelines are
designed to the current, most common setting: per-channel quantization with a small calibration set.

Our light pipeline requires three steps: (1) Fuse layers and define quantization parameters; (2) Find
optimal mixed-precision configuration using IP; and (3) Use BN tuning to correct the internal statistics.
We note that all steps do not require back-propagation and thus are very light and fast. In addition to
the light setting, in the advanced pipeline we apply AdaQuant to reduce each layer’s output distortion
from its full precision counterpart before invoking the IP algorithm. A detail comparison between the
two pipeline is given in table-1. Models that were optimized using AdaQuant to different bit-widths
can be seamlessly stitched thus having the ability to create an optimized model in a mixed precision
setting. Subsequently, global methods such as tuning both BN statistics and the layers’ biases can
be applied to reduce a Knowledge Distillation loss. Although there are additional post-training
quantization techniques that could be potentially combined with our methods, such as bias correction
(Banner et al.,|2018), equalization (Meller et al., |2019), and outlier channel splitting (Zhao et al.,
2019), we did not find it necessary: our results demonstrate that our relatively simple pipeline yields
state of the art accuracy on both vision and text models, even without combining such methods. In
the following sections we show our findings and give an ablation study that highlights the importance
of each method and their combination.

| AdaQuant | Mixed-Precision (IP) | BN tuning | Bias Tuning
Light-Pipeline | x v v X
Heavy-Pipeline | v/ v v v

Table 1: Comparison between light and advanced pipelines.

5 EXPERIMENTS

In this section, we demonstrate our methods and pipelines on several models and datasets. We
first start by analyzing image recognition models such as ResNet18/50, MobileNet-V2, which were
trained over the ImageNet dataset. Next, we demonstrate our method robustness by applying it on
question answering task using the popular BERT model (Devlin et al.,2018)), which was fine-tuned
on SQuADI.1 dataset (Rajpurkar et al., 2016). In all our experiments, we used a small calibration
set taken from the training dataset. Unless stated otherwise, we applied asymmetric per-channel
quantization (i.e. GEMLOWP |Wu et al.[(2016)) with quantized offset (i.e., zero point). Next, we
analyze each method’s strengths and weaknesses separately and argue for its validity. Additional
implementation details can be found in section and the code are given in sections [DJE]of the Appendix.

5.1 ADAQUANT

Recently several researchers suggested different types of MSE optimization. In most cases, the
optimization was done per-tensor (i.e., for the weights and activations separately). Here we argue
that by optimizing both quantization parameters and the weights jointly we can reduce the MSE
even further and hence improve the accuracy as demonstrated in fig. In contrast to AdaRound
(Nagel et al.}2020) which restricted the change of the weights to be within +1 we allow the weights
to change as needed. As can be seen in fig. 2a]the weights indeed change their quantized value by
more than one. Since our pipeline is focused on the mixed-precision setting we optimize each layer
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separately to enable maximum flexibility when stitching the optimized models. Under that setting
AdaQuant can be performed in parallel across all layers. However, since most recent papers do not
show full compression-accuracy curves and only a few attempt 4-bit compression, we also compare
our results to common fixed configurations using our sequential-AdaQuant flavor. While sequential
AdaQuant cannot be parallelized or used for the mixed-precision setting it yields best-in-class results
for all models tested as can be seen in table-2 and 3. For instance, on the extensively studied 8bit
MobileNet-V2 (MobileNet-V2) topology we achieved 71.6% top-1 accuracy — less than 0.5%
degradation compared to the full precision counterparts (71.9%).

[RN-18 [ RN-34 | RN-50 | RN-101 | RNext-50 | Inc-V3

ACIQ* (Banner et al.;2018) [ 64.5% [ 69.1 68.1% | 68.1 N/A 60.4
DFQ* (Nagel et al.,[2019) 571% | N/A 64.5% | N/A N/A N/A
AdaQuant B 67.4% | 70.3% | 73.7% | 74.4% 74.0 72.6%
Sequential-AdaQuant 69.4% | 711.7% | 7151% | 75.5% 75.6% 73.4%
FP32 71.97% | 73.3% | 77.2% | T77.3% 79.22% 77.4%

Table 2: INT-4 quantization of weights and activations. Top-1 score over imagenet dataset for
different post-training quantization methods. All layers were quantized to 4-bit except first and last
layers which were set to 8-bit. Methods marked with (*) were implemented according to the paper.
In all our experiments we apply per-channel quantization of the weights.

MobileNet-V2 | BERT-Base-SQuadl.1
(top-1) (F1)

min-max - 70.9% 87.83%

DFQ (Nagel et ali, 2019) | 71.2% N/A

ZeroQ (Cai et al.L2020) 72.91% N/A

AdaQuant 73.03% 88.35%

Sequential-AdaQuant [ 72.94% | 88.45%

FP32 | 73.03% | 88.81%

Table 3: INT-8 quantization of weights and activations. A comparison with DFQ and naive quan-
tization methods (which uses the channel’s full dynamic range). In all our experiments we apply
per-channel quantization of the weights and quantized all layers to 8-bit.

Testing the strength of this method on both vision and text topologies resulted in state-of-the-art results.
As can be seen in table[3] on BERT-base model over SQuADI1.1 dataset (BERT-Base-SQuAD1.1)
we managed to obtain 88.45% F1 score using just AdaQuant — less than 0.5% of its full precision
counterpart (81.3%). Throughout our experiments, we avoided using any augmentation technique
and follow the known validation set prepossessing. s

5.2 INTEGER PROGRAMMING

Our Integer programming formulation requires us to have two quantities per-layer: (1) loss degrada-
tion and; (2) performance improvement. Obtaining those quantities requires to invoke the model over
a small calibration set L times (once per layer) and measure the loss degradation and the performance
gain. In our experiments, we set the performance value to be the number of parameters, but this
measure could be changed to any additive measure. In all experiments, we used 1000 samples from
the training set as our calibration set. Our setting considers only a mixture of 8-bit and 4-bit layers;
to further test IP capabilities, we investigate a mixture of 2-4-8 bits as well. Unfortunately, since
2-bits quantization in post-training setting results in high degradation, the IP algorithm chose only
mixture of 4-8 bits for compression ratio higher than 12.5%. Yet for 12.5% compression ratio, IP
method found that by setting one layer to 2-bits while setting 8 smaller layers to 8-bits accuracy gains
over 5.5% with respect to uniform 4-bit quantization. Also, by allowing a less hardware friendly
setting where numerical precision can have the form of any integer between 2-8, yields the highest
compression-accuracy ratio (fig.[3|- relaxed advanced pipeline).
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Figure 2: AdaQuant vs. AdaRound. (a) A histogram of AW distribution. AdaRound restricts this
additive term to be AW = +1. Relaxing this constraint provides a more powerful optimization. (b)
Ablation study on parameters optimization for ResNet50 over ImageNet. AdaRound is based exclu-
sively on weight optimization, while AdaQuant optimizes the weights, biases, and other quantization
parameters jointly.

5.3 BATCH-NORM TUNING

Batch-Norm Tuning (BNT) has a significant advantage, as it does not require weight optimization.
Since BNT is applied by invoking the entire model, we must apply it only after setting the mixed-
precision bit-width configuration. This is the case for all global optimization methods including
bias-tuning. Notably, BNT requires only a few (at most 10) forward passes over the calibration
set and yield significant gains (fig. [3). In this study, we applied BNT on models trained with BN
layers only. However, it might be possible to extend this method to models without BN layers by
reconstructing it from the statistics. We encourage the reader to investigate this path.

5.4 FULL PIPELINE AND ABLATION STUDY

Although several researchers suggested different methods for post-training mixed-precision quantiza-
tion, none offer their code. Each paper focuses on a different quantization setting (e.g., quantizing
only the weights, per-tensor quantization, etc.). Therefore, to demonstrate our pipeline strength, we
created two different baselines based on common practices:

e Greedy-accuracy: recent studies suggested measuring each layer sensitivity and, based on
the compression target, reduce the precision for the most robust layers.

e Greedy-compression: the complementary greedy approach (Lin et al., [2016) to sort the
layers by their number of parameters and increase the precision of the layers from the

smallest to the largest layer until the compression budget is reached.

Surprisingly, although the size of the layer should correlate with its sensitivity to quantization, the
two greedy methods yield entirely different configurations. Investigating the configuration greedy-
compression found that sorting by compression correlates with the location of the layers in the model.
In most vision models, the layers closer to the input have fewer parameters. This aligns with current
common practice (Banner et al.,[2018)). Notably, even when not combined with any other technique,
the IP method obtained the best bit-width configurations stressing its importance.

Next, we turn to consider the light and advanced pipelines. Under challenging compression rates,
our light-pipeline results highlight the importance of BN tuning. As can be seen in our experiment
fig. 3] by merely invoking the model at inference mode for a few iterations and fixing the intermediate
statistics, one can recover more than 1.5% of the accuracy (73.7% v.s 75.37%). As expected,
by applying the advanced pipeline, one can obtain state-of-the-art accuracy. Arguably, our most
impressive results are at 0.13% compression rate in which we managed to stay within 1% of the full
precision accuracy while converting 96% of the model to 4-bit. For the challenging MobileNet-V2
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we managed to switch 25% of the layers to 4bit (weights and activations) while maintaining less
than 2% degradation; Additionally, we achieved, for the first time, reasonable top-1 accuracy of 65%
when almost the entire model is in 4-bit.
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Figure 3: Ablation study over ResNet-50/18 and MobileNet-V2 - compression-accuracy curves. Our
advanced pipeline is consist of AdaQuant, IP-mixed-precision, BN-tuning and bias-tuning. Our
light pipeline is consist of only IP-mixed-precision, BN-tuning. The relaxed advanced pipeline
appears in|c|is similar to the advance pipeline but allows the integer-programming to choose any
bit-width between 2-8 and not just 4-bit or 8-bit. The compression ratio is measured as the ratio
between the compressed model and the full-precision (32-bit) mode thus 0.25 compression rate
indicate that the entire model uses 8-bit precision and respectively for 4-bit the compression rate is
0.125
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Appendix

A SIZE OF CALIBRATION SET

Fully Connected layers Let’s assume that we have weights of size W € R™*Y and input and

output are of sizes N and M respectively. Recalling Eq. [2]and settingY = WX and W/ =W + V
results in:

(Au A0 V) = argmin ¥ = @, (W) - Qa. (X)],

wHBx

For simplicity we assume that A, is fixed and define X, = Qa, (X), Wy = Qa_, (W'). Therefore,
if we have B unique samples, then the problem we aim to solve have the following structure:

w11 W1N T11 ... 1B Y11 -« U1B

wp1r ... WMN N1 .- XNB Ymi1 -~ YMB

which translates to:

w11T11 WINTN1 Y11
w1111 WINTN2 Y12
wpmiriB -~ WMNINB YMB

Notice that in the above equations, for each output we have a different set of parameters, therefore
we can examine each output separately. For a single output we are in scalar linear regression with
N parameters and B equations. If B > N we are under-parameterized, and if B < N we are
over-parameterized.

Convolution layers layers Similarly, for convolution layers with C, output channels, C; input
channels, and kernel size k& each element of the output is a dot product of C; - k - k parameters.
We have in total Co x H x W outputs where H, W is the output height and width. Thus we need

2
B> CHV’f, samples to avoid over-fitting, where B is the number of unique samples.

B RECONSTRUCTION AND RE-FUSING OF BATCH NORMALIZATION

In this section, we provide more details on Batch Normalization reconstruction and re-fusing proce-
dure.
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Reconstructing BN layers: Consider a Batch Normalization layer with parameters -, 3, that
fused into previous convolutional layer weight and bias. Fusing batch normalization layer transforms
weights and bias as following:

W= Wil b= (b — ) + B ©)
g g

To reconstruct the batch normalization, we would like to initialize p, o2, as well as the BN parameters
7 and f3, (r for “reconstructed”) so that the reconstructed BN is approximately identity fig. 4]

T —p

BN, (x) = v, ——
) = T re

+ B, ~x (10)

Will (b= ) + B,

Figure 4

To do so, first we initialize the reconstructed BN layers by setting the following parameters (denoted
by r):

M:ﬁrzﬁo; 02:73 ’77‘:\/73"’_6 (1)
so that BN,.(x) = x.

Now, we can update  and 02 by collecting running mean and running variance on the calibration
data. We stress that the BN parameters, -,., 3,-, do not change while applying BN tuning, as we only
invoke forward propagation.

Re-fusing BN layers: After BNT phase we need to fuse Batch Normalization layer again into
convolution weights and bias. Regular batch normalization fusing will cause degradation due to
quantization of the weights. To resolve this issue we can leverage per-channel quantization setting
we use.

Denote s,,,, 2., scale and zero point of the weigh, the quant/dequant operation defined as:

e ([ 2] 2
Sw, Sw; Sw,

We can fuse parameters of the batch normalization layer as following:

W{:Wik; b;:k(bi_,ux)"'ﬂr

(o g

* " (13)
sl o= gy A=
wi O ws w; O Wy
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Finally we can show that transformations eq. (13) equivalent to 2= W,

w! 2 2
! / ws; Wy
N R R (1
o Suw; Sw; S,

C ADDITIVE LOSS ASSUMPTION FOR INTEGER-PROGRAMMING

Suppose the loss function of the network £ depends on a certain set of variables (weights, activations,
etc.), which we denote by a vector v. We would like to measure the effect of adding quantization
noise to this set of vectors.

Since the quantization is emulated with additive noise, the loss is smooth and thus can be expanded
to the Taylor series:

AL=L(v+e)—L(V)= (15)

One can see from Eq([I6]that when the quantization error ¢ is sufficiently small, the overall degradation
AL can be approximated as a sum of N independent degradation processes by neglecting the quadratic
terms ¢

AL~ —e= - & (17)
;. Y

We note that|Lin et al.|(2016)); |Choukroun et al.|(2019) used a similar assumption with respect to the
additivity of quantization noise.

D EXPERIMENTAL DETAILS

In all our experiments, we used a small subset of the training set to run our methods. Specifically,
for vision models, we used 1000 unlabeled images from the ImageNet training set (single image for
each class) as a calibration set. For the Bert model, we used one paragraph from the training set.
All presented methods AdaQuant, BNT, BT, and IP, performed well on such small calibration set
producing SOTA results. Next we detail our setting for each of the technique in our pipelines

D.1 ADAQUANT

AdaQuant optimization problem defined as following except zero-point of the quantizer which we
omitted from eq. (I8):

(Bu B Vi V) = argmin WX 45— Qa, (W + Vir) - Qa, (X) = QB+ V)| (18)
wHySx, VW, Vb

Technically to find a solution for eq. (I8), we use Adam optimizer with different learning rates per
type of parameters. We set different learning rates for weight, bias, and quantization parameters of
input and weights. After experimenting with different models, we found that the same set of LR
parameters worked for each model. The learning rates are 1le — 5, le — 3, le — 1, 1le — 3 for weight,
bias, quantization parameters of the inputs, and weights, respectively.

For vision models, we used 1000 unlabeled images from the ImageNet training set (single image for
each class), running Adam optimizer for 100 iterations and a batch-size of 50 unless otherwise stated.
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Figure 5: Calibration size ablation study with additional early-stop plot.

For BERT-base model, we used one paragraph from the training set, running Adam optimizer for 50 -
100 iterations depending on the type of layer. Learning rates and batch size are the same as of vision
models.

In fig. [Tl we aimed to answer the following question: Assuming you have a small calibration set and
no resources constraints (time,power) which method is the most accurate and robust Out method
were evaluated by running each experiments five times and reporting mean and standrad deviation.
Here, in fig.[5] we add an additional naive early-stop plot on top of QAT-KLD experiment. We
split the calibration data into two equal sets and train on half the examples while evaluation our
performance on the other half Both KLD experiments used an SGD optimizer over 10 epochs; starting
with learning rate of 0.1 and decreasing it by le-2 factor after 2 and 8 epochs. We also conducted
KLD experiments with Adam optimizer and learning rate of le-3 where performed but their results
were inferior. As can be seen in the plot AdaQuant is superior to other methods and remarkably
excels on small calibration sets. As can be seen in fig. [5]the early exit results were inferior to the
QAT-KLD as they use much smaller training set. However, other types of training-validation splits
(e.g. 80-20) may boost the results.

D.2 INTEGER PROGRAMMING

Our IP method requires two steps, the first is measuring the properties of each layer, and the second
is applying the program based on these measurements with user defined constraint. As reference,
we measure the loss (can also be accuracy) of the base precision model on the calibration set. Next,
we measure the sensitivity of each layer by evaluating a model where all layers are qunatize to the
base-precision but one layer that is quantized to lower precision (e.g., all 8-bit but one layer with
4-bit). The AL; in Eq. 3 is defined as the difference between the reference model loss and the
measured loss. If a layer is robust to quantization, AL; will be small, and if a layer is sensitive to
quantization, AL; will be large. The performance gain in the case of compression, is simply the
model parameters size difference when lowering the precision of the examined layer. Hence, if a layer
has N parameters, the performance gain when changing from 8-bit to 4-bit result in compression
gain of AP, = N «8 — N x4 = 4N. In the second stage, we run the integer program based on the
sensitivity and compression measured on each layer along with the user defined constraint.

D.3 BATCH NORMALIZATION AND BIAS TUNING

The Batch Norm tuning phase is the most lightweight phase of the pipeline. We found empirically
less than ten iterations of statistics update are sufficient. We also found that as compression growth,
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more iterations of batch norm tuning are required. At the bias tuning phase, we perform 200 iterations
of fine-tuning with the learning-rate of 0.1.

E CODE

For all our vision dataset we used the default forchvision pre-trained model. For BERT-base experi-
ment we fined-tuned on SQUADI.1 dataset and provide the script for that as a part of our repository.
Our code can be found at: https.//github.com/papers-submission/CalibTIP.
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