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Abstract

Sparsity has often been used to address expensive matrix multiplication with very large
projection matrices for random Fourier features. Traditional sparse projections, however,
lead to information loss when sparsity is moderate. In this work, we propose Randomized
Block-Diagonal Projection (RBDP) with structured sparsity in a block-diagonal projection
matrix and feature shuffling to retain all information of the original features after projection
in projected space with high sparsity and efficiency due to the proposed block-diagonal
matrix for projection. Error bounds are given in our analysis for the proposed structured
sparsity and feature shuffling. We show that our estimators for kernel approximations and
random projection are unbiased with the variance inversely proportional to k. The proposed
method allows much reduced computation with improved complexity O(max{k, D}n), the
dimensionality of the feature vector D, the dimensionality in the projected space k and
the sample size n, compared to the complexity O(kDn) where k ≳ 1000 to keep errors
acceptable traditionally associated with random Fourier features and random projection. It
is demonstrated in our experiments that the proposed method achieves significant speed
improvements, i.e. a speed-up up to 10,000x over Random Kitchen Sinks and a speed-up up
to 15x over Fastfood (Le et al., 2013) on real-world datasets. RBDP is a general framework,
simple to implement without reliance on the fast Walsh-Hadamard transform, for any shift-
invariant kernels with no assumption on the use of Gaussians in the projection matrix. Our
code is made available at https://anonymous1.

1 Introduction

Both random Fourier features and random projection are popular methods in classification and regression
tasks Bingham & Mannila (2001); Ailon & Chazelle (2006); Anand et al. (2012); Paul et al. (2013); Zhang
et al. (2014). Random projection is an efficient and distance-preserving technique while random Fourier
features allow non-linear feature mapping through randomization. Random Fourier features, which is closely
related to random projection, became popular for good approximations to shift invariant kernels and random
Fourier features can be considered as nonlinear random projection Rahimi & Recht (2008). In large-scale
real-world problems, the original dimensionality, D, the dimensionality in the projected space, k, and the
sample size, n, can be very large. With k ∼ 105 for high accuracies, D from 105 to 107 in Zhai et al. (2014)
and n from 106 to 107 in Deng et al. (2009), matrix multiplication required can be prohibitively expensive
with the complexity O(kDn).

For random projections, we have n data points {ui}n
i=1 ∈ RD in data matrix A ∈ RD×n with D dimensions

and a random matrix R ∈ Rk×D for projection. For projected data points RA, each point {vi}n
i=1 ∈ Rk

is in k dimensions. The computational complexity of traditional random projection is O(kDn) and it is
computationally expensive for large-scale problems. It can be easily shown that, as in (Vempala, 2004) and
(Li et al., 2006a), we have the expectation for the squared L2-norm of the projected vector v from the original
vector u before random projection:

1Due to anonymity for the review, the link to the code repository will be provided after the review process.
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E(∥v1∥2) = ∥u1∥2 =
D∑

j=1
(u1)2

j .

Similarly, we get
E(∥v1 − v2∥2) = ∥u1 − u2∥2.

In addition, (v1)i√
∥u1∥2/k

and (v1)i−(v2)i√
∥u1−u2∥2/k

both follow the normal distribution meaning that

(v1)i√
∥u1∥2/k

∼ N (0, 1),

(v1)i − (v2)i√
∥u1 − u2∥2/k

∼ N (0, 1). (1)

Thus, when we take the sum over all i of (v1)2
i , we have

∑
i(v1)2

i following the χ2-distribution, i.e.

∥v1∥2

∥u1∥2/k
∼ χ2

k

and, for
∑

i((v1)i − (v2)i)2,
∥v1 − v2∥2

∥u1 − u2∥2/k
∼ χ2

k (2)

where χ2
k denotes the chi-squared random variable with k degrees of freedom. With one of the tightest

bounds for the Johnson and Lindenstrauss (JL) lemma in (Achlioptas, 2003b), it is shown that

(1 − ϵ)∥u1 − u2∥2 ≤ ∥v1 − v2∥2 ≤ (1 + ϵ)∥u1 − u2∥2

with probability 1 − n−γ given that

k ≤ k0 = 4 + 2γ

ϵ2/2 − ϵ3/3 log(n).

For kernel methods with dot products, it can also be shown that, as in (Li et al., 2006a) and (Li et al.,
2006b),

E(vT
1 v2) = uT

1 u2 =
D∑

j=1
(u1)j(u2)j .

1.1 Kernel Approximation

In this section, we describe how the dot products of vectors with random Fourier features can approximate
kernels. For a properly scaled shift-invariant kernel K(δ), Bochner’s theorem guarantees that its Fourier
transform p(ω) is a probability density function (Rahimi & Recht, 2008). It can be shown that

K(x − y) =
∫
Rd

p(w)(cos(wT x) cos(wT y) + sin(wT x) sin(wT y))

= Ep[< (cos(wT x), sin(wT y)), (cos(wT y), sin(wT x)) >].
(3)

For x ∈ Rd, K(.) can be approximated with inner product < ϕ(x), ϕ(y) >. Thus,

ϕ(x) =
√

2
k

(cos(wT
1 x), sin(wT

1 x), cos(wT
2 x), sin(wT

2 x), . . . , cos(wT
k/2x), sin(wT

k/2x))
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or, alternatively,

ϕ(x) =
√

2
k

(cos(wT
1 x), cos(wT

2 x), . . . , cos(wT
k/2x), sin(wT

1 x), sin(wT
2 x), . . . , sin(wT

k/2x))

as the dot product ϕ(x)T ϕ(y) gives us the same value in the alternate form where w1, . . . , wk are drawn
according to p(w), i.e.

ϕ(x)T ϕ(y) = 1
k/2

k/2∑
i=1

cos(ωT
i (x − y)). (4)

Our method takes advantage of structured sparsity in a block-diagonal matrix for projection and feature
shuffling to retain all information of the original features with high sparsity and efficiency. Feature shuffling
is used to reduce correlations between features because the order of features does not affect the distances
or similarities between feature vectors, provided that the same order is consistently applied to all feature
vectors. Instead of generating evenly spread random non-zero entries with previous methods like Fastfood
which uses Walsh Hadamard Transform (WHT), a random order of features in the data matrix is chosen
before projection in our method. It is easy to implement the proposed method without the need for libraries
for sparse matrix computation or fast WHT which depends on its implementation and the software and
hardware architecture. Moreover, as no Gaussian assumption has been made to the random entries of the
projection matrix, the proposed method is a unified approach to efficient random projections and random
Fourier features with any shift-invariant kernels.

1.2 The Complexity

As non-zero elements are arranged in a block-diagonal matrix such that the computational complexity is
independent of k, the complexity becomes O(Dn) when k ≤ D, i.e. the number of non-zero elements in
the random matrix is reduced to D. The proposed method speeds up traditional random projection and
Random Kitchen Sinks from O(kDn) to O(max{k, D}n) because the complexity of the proposed method is
O(kn) when the dimensionality after projection kmulti is larger than D. The computational complexity of
Random Kitchen Sinks (Rahimi & Recht, 2008) and Fastfood (Le et al., 2013), two state-of-the-art efficient
methods for kernel approximations, are O(kDn) and O(k log(D)n) respectively. Fastfood is a log-linear time
algorithm with O(k log(D)n). Note also that the big-O notation obtained through asymptotic analysis does
not account for constant factors due to the fact that when n gets large enough, constants do not matter.
Moreover, it has been suggested that the computational speeds of other related methods like Fastfood relying
on the Walsh-Hadamard Transform could be impacted by large big-O constants Iwen et al. (2007), Li et al.
(2014).

In our experiments, it is demonstrated that there is a bigger computational advantage with the complexity
our linear-time method when both D and k are large shown in Table 3, i.e. there is a 15x speed-up for
our method over Fastfood on real-world datasets with larger D and k while the speed-up is only around 3x
compared to that of Fastfood with small D and small k. For the value of k, it is shown that empirically,
for low errors with random projections and kernel approximations using random Fourier features, k should
be larger than or close to 104 (Le et al. (2013), Jacot et al. (2018a), Sutherland & Schneider (2015) Zhang
et al. (2019), Nabil (2017)).

1.3 Contributions

The complexity of Random Kitchen Sinks (RKS) Rahimi & Recht (2008) and that of a more recent state-
of-the-art log-linear time method, Fastfood (Le et al., 2013), are respectively O(kDn) and O(k log(D)n)
where usually k ≳ 1000 is used to achieve good kernel approximations with random Fourier features and
random projection with acceptable errors Jacot et al. (2018b), Zhang et al. (2018), Nabil (2017), Sutherland
& Schneider (2015), Le et al. (2014).

The proposed method is a linear-time method. The algorithm is 1.) easy to implement, 2.) with complexity
O(max{k, D}n), 3.) designed to provide an unbiased estimator having variance inversely proportional to k
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and 4.) shown to achieve a speed-up up to 10,000x over Random Kitchen Sinks and a speed-up up to 15x
over Fastfood on real-world datasets for the realistic values of D and k.

2 Related Work

2.1 Previous Approaches to Fast Random Projection and Fast Random Fourier Features

Speeding up computation with a sparse random projection matrix with one-third non-zero entries in the
matrix is proposed by Achlioptas Achlioptas (2003a). However, with a sparse projection matrix, some
features in feature vectors can be totally ignored in computation. Another idea is to make the sparse entries
spread more evenly. To do this, one can use the Fast Johnson-Lindenstrauss Transform (FJLT) Π = PHD
where P is the sparse projection matrix with D as a diagonal matrix with Di,i ∈ {+1, −1}. Each entry in
Di,i is an i.i.d. random variable and H is the D ×D Walsh Hadamard Transform matrix. The complexity to
multiply A by the "mixing matrix" preconditioner HD matrix with the fast Walsh-Hadamard is O(D log D).
It can be shown that HD is L2-norm preserving to make it a reasonable mixing matrix. In a more efficient
method called Improved Subsampled Randomized Hadamard Transform (SRHT) in Boutsidis & Gittens
(2012), a subsampling matrix S is considered instead of P , i.e. Π = SHD with complexity O(D log k),
original dimensionality D and reduced dimensionality k where k < D. For random Fourier features, Fastfood
Le et al. (2013) computes random Fourier features which extends previous work with SRHT, sparse JLT and
FJLT. Our method with sparse data matrix can theoretically achieve O(nnz(A)) with a sparse data matrix
and O(Dn) with dense data matrix.

2.2 Platform-Specific Implementations of Previous Methods

All implementations for fast WHT and Fastfood we have found with HD relies on the library SPIRAL2

introduced in Püschel et al. (2004). In addition, the speed in practice very much depends on the implemen-
tation of fast WHT and the computation of sparse matrices. For example, in MATLAB, the simplest way to
implement fast WHT or Fastfood is to consider the transform as matrix computation with dense matrices
to perform the matrix multiplication which does not take advantage of efficient computation on entries with
zeros. This easy-to-implement method however is not very efficient with complexity O(D2) to compute
HDA and it requires Ω(D2) memory. Fortunately, with fast WHT formulated as FFT, there are efficient
methods for the transform to take only O(D log D) instead of direct multiplication with dense matrices.

Although MATLAB comes with a native implementation for the fast WHT, it has been showed empirically in
many previous studies that the time required is in reality longer than direct multiplication with the Hadamard
matrix. That means there is no speed up with fast WHT in Matlab with the WHT as the bottleneck in the
overall computation. This is the reason why many implementations if not all rely on SPIRAL to speed up
WHT. SPIRAL written in C as a signal processing package provides an efficient implementation of WHT, to
take advantage of specific machine architectures. In a lot of implementations of WHT, SRHT or Fastfood,
SPIRAL with mex in Matlab is used for fast WHT and fast multiplication with sparse P or S. However,
efficient multiplications for sparse matrices are platform-dependent Kunchum et al. (2017),Dalton et al.
(2015),Liu & Vinter (2014) and Yang et al. (2011).

2.3 Other Approaches

Although random projection is computationally more efficient compared to many other dimensionality re-
duction methods such as principal component analysis (PCA), it is still computationally expensive for very
large-scale problems. Methods with sparse random matrices have been proposed to speed up traditional
random projection. The method in (Achlioptas, 2003b) with sparse random projection can achieve about
a three-fold speed-up compared to vanilla random projection with a small loss of accuracy and (Li et al.,
2006a) gets a more efficient

√
D-fold speed-up where D is dimensionality of the input space.

More recently, a very related technique called random Fourier features to speed up kernel methods has
attracted a lot of attention. Although the performance of non-linear kernel methods is almost always better

2https://github.com/jeffeverett/spiral-wht
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than that of linear kernel methods, non-linear kernel methods with large-scale problems are known to be
prohibitively expensive as they do not scale well with the sample sizes of the training sets. Approximations
with non-linear kernel methods aim to reduce time complexity so large-scale non-linear kernel methods can
become practical. There are two popular methods for these approximations: 1.) the Nystrom approximation
method for Gram matrices (Williams & Seeger, 2001) can be used to speed up general non-linear methods
to O (nD), where D is dimensionality of the input space and n is the number of training examples (Drineas
& Mahoney, 2005; Li et al., 2015; Jin et al., 2011). 2.) alternatively, a method called random Fourier
features (Rahimi & Recht, 2008) is proposed to approximate non-linear kernels. In this method, the original
high-dimensional data is projected to another feature space like random projection. Experiments show that
random Fourier features can perform very well with non-linear kernel methods in large-scale classification
and regression tasks. Random Fourier features can be used to speed up non-linear kernel methods but the
generation of random Fourier features can also be more efficient with a recent method called Fastfood (Le
et al., 2013). Experiments for Fastfood show that classification performance with the Nystrom method,
original random Fourier features and Fastfood are close while Fastfood is faster than the other two methods.
Although the computational efficiency of recent methods for both RP and kernel approximations has been
improved, they are still prohibitively expensive when the projected feature space is very large. This is
the case especially for random Fourier features. In this paper, an efficient method is proposed for random
projections and random Fourier features with the computational complexity independent of k.

3 Our Method

In this work, we introduce structured sparsity to the projection matrix instead of, randomized sparsity,
to retain all information from original features leaving only D non-zero elements in the k × D projection
matrix with sparsity s = 1/k which is the fraction of the number of non-zero random numbers generated in
the projection matrix. Together with normalization and the shuffling of features, we found that computing
random Fourier features and random projections can be highly efficient. Theoretical analysis is provided for
the error with encouraging experimental supports.

For the random matrix of random projection R, we create a deterministically sparse matrix S ∈ Rk×D with
D(k − 1) zeros, i.e. only D Gaussian random numbers need to be generated. We show that E(vi) = Sui

instead of E(vi) = 1√
k

Rui from standard random projections. We define S =
r1 0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 r2 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0
. . . 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0 rk

 (5)

with each row vector {ri}k
i=1 ∈ R(D/k). We increase sparsity for more efficient computation to the extent

that we can retain all information of the original features in the projected vectors. During projection, each
dot product between each row of the projection matrix and the feature vector retains the information of a
subset of original features. The resultant k-dimensional vector retains all information with the k dot products
involving all original features after projection.

3.1 The Algorithms

An equivalent formulation of this to find vi is to calculate the diagonal elements of the matrix CU where
we have vector ui reshaped as Ui ∈ R(D/k)×k and C = [r1; r2; . . . ; rk] ∈ Rk×(D/k). Now, for each data point
i with Ui, we calculate the diagonal elements diag(CUi) that gives k features in the subspace after random
projection, i.e.

∑
l(rm)l × (Ui)l,m gives the element m of the diagonal matrix.

In this section, there are two algorithms. As described in Sub-section 3.2, we first pre-process the data
by randomly shuffling the order of the features in each feature vector and normalizing the feature vectors.
Our method to speed up the computation for random projections is in Algorithm 1 and for random Fourier
features with the Gaussian kernel is in Algorithm 2 with C = CG generated from the standard normal
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distribution for each element. For other kernels, other distributions are required for general C as described
in Sub-section 4.1.

Algorithm 1 Fast Random Projection to compute diag(CU) with C = CG

Input: k and all data points {ui}n
i=1 ∈ RD

Output: {vi}n
i=1 ∈ RD

for i := 1; n do
vi := diag(CUi)

end for

Algorithm 2 Fast Fourier Features for Kernel Approximations
Input: k and all data points {ui}n

i=1 ∈ RD

Output: {vi}n
i=1 ∈ RD

for i := 1; n do
vi := diag(σCGUi) for the Gaussian kernel or vi := diag(CUi) for other kernels
vi :=

√
kvi

vi := [cos(vi); sin(vi)]
vi := 1√

k
vi

end for

Notice that, with Algorithm 2, the number of random Fourier features generated cannot be more than the
original dimensionality, i.e. k ≤ D. For a larger number of random Fourier features than D, Algorithm 2 is
invoked multiple times, i.e. Nmulti times, to obtain the projected vector in the desired dimensionality after
projection kmulti = kNmulti. The sparsity as described previously in Section 3 is s = 1/k. With Algorithm 2
invoked multiple times, the sparsity is still smulti = 1/k, not smulti = 1/kmulti.

3.2 Random Permutation of Features and Normalization

Motivated by the fact that the chi-squared random variable can be asymptotically approximated by the
normal random variable, we consider random permutations of features and feature normalization to speed
up random Fourier features.

As shown in Lemma 4.6 in the next section, the bounds for ∥v1 − v2∥2 depends on the data points
{ui}n

i=1. When M/m = 1 with m = min{
√∑

l(U)2
l,1,

√∑
l(U)2

l,2, . . . ,
√∑

l(U)2
l,k} and M =

max{
√∑

l(U)2
l,1,

√∑
l(U)2

l,2, . . . ,
√∑

l(U)2
l,k}, we have the tightest bounds, i.e. the inequality reduces

back to the original JL lemma but obviously there is no way that we can change the data. We use two
techniques which include feature shuffling and normalization to obtain diag(CU) so that M/m is small. We
will demonstrate that with feature shuffling and feature normalization, M/m is not far from 1.

For data point i, we obtain a random permutation of features (α((ui)1), α((ui)2), . . . , α((ui)D)). If we per-
mute the order of the features, ∥u1−u2∥2 gives us the same Euclidean distance regardless of the permutation.
However, the permutation makes M/m a much closer value to 1 for ∥diag

(
C(U1 − U2)

)
∥2 because of less

correlations among features after shuffling in {(Ui)l,m}(n/k)
l=1 .

It is very common is to scale features for various methods to perform well. We normalize features using
mean normalization, i.e. (ui)j := (ui)j−

∑
i
(ui)j/n

maxi(ui)j−mini(ui)j
∀i, j.
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4 Results

The expectation of the approximate kernel in Sutherland & Schneider (2015) with feature vectors u1 and
u2 is

Eωϕ(u1)T ϕ(u2) = Eω[ 1
k/2

k/2∑
i=1

cos(ωT
i (u1 − u2))] = Eω[ 1

k/2

k/2∑
i=1

cos(ωT
i (∆u))] (6)

where ∆u = u1 − u2.

In our analysis, intuitively two cases can be considered. First, for fixed ∆u and Gaussian ω, with the normal
random variable X = ωT ∆u ∼ N (0, σ2

x), it can be easily found that, the expectation is

E[cos(X)] = e−σ2
x/2

which is the approximate Gaussian kernel using random Fourier features.

With our method and ∆i = (U1)i − (U2)i,

Eω,∆ϕ(u1)T ϕ(u2) = Eω,∆
[ 1
k/2

k/2∑
i=1

cos(ωT
i ∆i)

]
= 1

k/2

k/2∑
i=1

Eωi,∆i
[cos(ωT

i ∆i)] (7)

.

For the second case, with fixed ω and the pre-processing techniques used in Section 3.2, E∆i
∥
√

k∆i∥2
2 =

∥∆u∥2
2, i.e. ∥∆i∥2

2 is asymptotically normal. We therefore consider the approximation with error analysis
given in Theorem 4.1

∥∆u∥2
2 ≈ ∥

√
k∆i∈[1,k/2]∥2

2 ∼ N (µ∆2 , σ2
∆2) (8)

and let ∥∆∥2
2 = ∥

√
k∆i∥2

2. For each i ∈ [1, k/2], ∥∆i∥2
2 is asymptotically normal due to the central limit

theorem and also techniques used in Section 3.2 to make each chi-square normalized and independent.
The only assumption here is normality with dependent features justified later in Section 4.2 using fea-
ture shuffling, the Shapiro-Wilk test and the central limit theorem for weakly dependent random variables.
E∥∆∥2

2∼N (µ∆2 ,σ2
∆2 )[cos(ωT ∆)] = E[K(∥∆∥2

2)] where K(∥∆∥2
2) becomes exp(−γX) with the Gaussian kernel

for example.

For the rest of the analysis, we, formally, bound errors with both ω and ∆ as random variables using the
total expectation and the total variance. We have E∥ωT

i (
√

k∆i)∥2
2 = ∥∆u∥2

2 because
√

k∆i√
∥∆u∥2

2
∼ N (0, 1).

We found, in the analysis, that the expectation of the approximate kernel with our new method using
Equation 13 is

Eω,∆[cos(ωT ∆)] = E∆[K(∆)] =
∑

i

K(∆i)

where
∑k/2

i=1 K(∆i) is the expectation E∆[K(∆)] by definition.
Theorem 4.1. With ∥∆∥2

2, ∥
√

k∆i∥2
2 ∼ N (µ∆2 , σ2

∆2) following the normal distribution for any i, the expec-
tation and the variance for random Fourier features with our method are

Eω,∆

[
1

k/2

k/2∑
i=1

cos(ωT
i (

√
k∆i))

]
= E∆[K(∆)]

V arω,∆

[
1

k/2

k/2∑
i=1

cos(ωT
i (

√
k∆i))

]
= 1

k/2

(
1
2 + 1

2E∆[K(2∆)] + E∆[K(∆)]2
)

where the density function p(ωi) is the Fourier transform of the kernel K(δ).
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Proposition 4.2. The unbiased estimator for the Gaussian kernel approximation is

ϕT (x)ϕ(y)
[

exp(−γµ∆2)
exp(−γµ∆2 + γ2σ2

∆2/2)

]

where γ is the parameter of the Gaussian kernel K(∆) = exp(−γ∥∆∥2
2) and the bias correction term is

exp(−γµ∆2)
exp(−γµ∆2 + γ2σ2

∆2/2) ≈ 1

if µ∆2/σ∆2 >> 1.

Proposition 4.3. For the Gaussian kernel K(∆) = exp(−γ∥∆∥2
2) also called the Radial Basis Function

kernel and the squared exponential kernel, using Theorem 4.1 with ∥∆∥2
2, ∥

√
k∆i∥2

2 ∼ N (µ∆2 , σ2
∆2) following

the normal distribution for any i with the density function p(ωi) being the Fourier transform of the kernel
K(δ),

Eω,∆

[
1

k/2

k/2∑
i=1

cos(ωT
i (

√
k∆i))

]
= exp(−γµ∆2 + γ2σ2

∆2/2),

V arω,∆

[
1

k/2

k/2∑
i=1

cos(ωT
i (

√
k∆i))

]
= 1

k/2

(
1
2 + 1

2exp(−2γµ∆2 + 2γ2σ2
∆2) + exp(−γµ∆2 + γ2σ2

∆2/2)2
)

where both the expectation and the variance are functions of µ∆2 and σ∆2 .

Proposition 4.4. For the spherical kernel,

K(∆) = 1 − 3
2

∥∆∥
θ

+ 1
2

(∥∆∥
θ

)3

if ∥∆∥ < θ. 0 otherwise. With ∥∆∥2
2, ∥

√
k∆i∥2

2 ∼ N (µ∆2 , σ2
∆2) following the normal distribution for any i,

the expectation and the variance for the kernel are respectively

Eω,∆

[
1

k/2

k/2∑
i=1

cos(ωT
i (

√
k∆i))

]
= E∆[K(∆)] = 1 − 3µ∆

2θ
+ µ3

∆ + 3µ∆σ2
∆

2θ3 ,

V arω,∆

[
1

k/2

k/2∑
i=1

cos(ωT
i (

√
k∆i))

]
= 1

k/2

(
1 − 9µ∆

2θ
+ 9µ2

∆
4θ2 + 3µ3

∆ + 9µ∆σ2
∆

θ3 −
3µ4

∆ + 9µ2
∆σ2

∆
2θ4 + 6µ4

∆σ2
∆ + µ6

∆ + 9µ2
∆σ4

∆
4θ6

)
where the density function p(ωi) is the Fourier transform of the kernel K(δ).

Lemma 4.5. With C ∈ Rk×(D/k), a random matrix with k × (D/k) = D elements, and each element
following the normal distribution N (0, 1) where D is the original dimensionality and k is the dimension-
ality after projection, the expectation of ∥v∥2 is E{

∑k
i [diag(CU)]2i } = ∥u∥2, and, for each element of v,

(v)j√∑
l
(U)2

l,j

∼ N (0, 1).

Note that E{
∑k

i [diag(CU)]2i } = ∥u∥2 while we have E(∥ 1√
k

Ru∥2) = ∥u∥2 for traditional random projection.
However, now ∥v∥2

2 follows the generalized chi-squared distribution with non-unit variances.

Lemma 4.6. With probability 1 − 2e−(ϵ2−ϵ3)k/4,

(1 − ϵ)(m/M)∥u1 − u2∥2 ≤ ∥v1 − v2∥2 ≤ (1 + ϵ)(M/m)∥u1 − u2∥2
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(a) AR Face Dateset (b) Natural Dataset (c) Gene Dataset

Figure 1: Comparison of feature correlations matrices before and after shuffling. Darker colors denote higher cor-
relations. In a sub-figure, the matrix on the left is obtained before shuffling. Shuffling can significantly reduce the
features correlation.

where ∥u1∥ =
∑

l

∑
m(U1)2

l,m and

m = min{
√∑

l

(U)2
l,1,

√∑
l

(U)2
l,2, . . . ,

√∑
l

(U)2
l,k}

M = max{
√∑

l

(U)2
l,1,

√∑
l

(U)2
l,2, . . . ,

√∑
l

(U)2
l,k}

Theorem 4.7. The expectation and the variance for fast random projection with our method are

Eω,∆[
∑

i

(ωT
i ∆i)2] = µ∆2 , and V arω,∆[

∑
i

(ωT
i ∆i)2] = (2µ∆2 + σ2

∆2)/k

where ∥∆i∥2
2 ∼ N (µ∆2 , σ2

∆2) and ωi ∼ N (0, 1).

4.1 Other Kernels

wT x is exactly what we compute for random projections. Thus, we can use the same method to compute
wT x with diag(CU) because all elements in [w1; w2; . . . ; wD] follow the normal distribution if we use the
Gaussian kernel. Otherwise, other distributions can be used to generate w for other kernels.

4.2 The Central Limit Theorem for Weakly Dependent Random Variables

In this sub-section, we first study the effect of the shuffling operation on reducing the correlations between
features, the actual speed-ups and the approximation quality using the three datasets which are used for all
other experiments as well. Moreover, we investigate whether the value of ∆i is normally distributed or close
to normality Fleermann & Kirsch (2022), Ermakov & Ostrovskii (1986), Serfling (1968).

The comparison of feature corrections is shown in Figure 1. For all datasets, we randomly pick two
examples and evaluate their feature correlation matrices before and after shuffling. To visualize correlations,
the correlation matrices with the first 50 features of the examples are shown. Darker colors denote higher
correlations. It can be observed the shuffling operation can significantly reduce correlations between features
with feature correlation matrices on the left in Sub-figures 1(a) and 1(b) much lighter than those on the right.
In Sub-figure 1(c), both matrices are light since the feature correlations for gene expression are relatively
low.

The Shapiro-Wilk test is used to examine whether the value of ∆i is normal distribution or not. The results
from the Shapiro-Wilk test are shown in Table 1 with the dimensionality of projected features kmulti (see
Section 3.1). On the AR dataset and the natural-image dataset with shuffling, the test suggests that ∆i is
normal distributed. As the dimensionality of the gene data is only 17,000, when kmulti equal to 1,000, there
are only 17 elements for the calculation of ∆i. Hence, in this experiment, we set the values of kmulti to 200
and 1,000. In Table 1, with shuffling and normalization, the values of ∆i on all three datasets are normally
distributed when kmulti = 200, i.e. the p-value higher than 0.05 and the W value close to 1.

9



Under review as submission to TMLR

Table 1: Results of Shapiro-Wilk test on three datasets. This test is to verify whether the value of ∆i is normal
distribution or not.

Operation
kmulti

AR Dataset Natural Dataset Gene Dataset
Shuff. Norm. W p-value W p-value W p-value

- - 200 0.91 1.3E-07 0.98 0.003 0.98 0.003
1000 0.87 2.2E-16 0.99 1.93E-06 0.95 2.2E-16

√
- 200 0.99 0.552 0.99 0.571 0.98 0.010

1000 0.99 0.590 0.99 0.800 0.95 2.2E-16
√ √ 200 0.99 0.582 0.99 0.820 0.99 0.783

1000 0.99 0.544 0.99 5.12E-01 0.99 1.89E-06

-
√ 200 0.96 1.09E-05 0.96 0.008 0.98 0.037

1000 0.93 2.2E-16 0.99 1.93E-06 0.98 2.82E-11

5 Experiments

In this section, we first demonstrate the speed improvements of the proposed kernel approximation and
random projection method. In addition, we conduct a comparative analysis against state-of-the-art tech-
niques to highlight the fact that our method not only speeds up traditional approaches but also preserves
comparable approximation quality by assessing the quality of our method with classification and regression
tasks. The empirical evidence supports that our approach to kernel approximation allows the linear SVM
to reach classification and regression performance on par with that of the non-linear SVM using the radial
basis function (RBF) kernel. We implement our method and RKS. They are trained with the same protocol.
For Fastfood, we use the code provide on the scikit-learn-extra website3.

5.1 The Actual Speed-up

The real-world time efficiency of the proposed method is evaluated on synthesized datasets and public
datasets4 including the AR face image dataset, a natural image dataset, and a gene dataset. The AR face
dataset Martinez & Benavente (1998) contains 3,276 images with 126 people, and the resolution of the images
is 576×768. By following Le et al. (2013); Li et al. (2006a), each image with all pixel values is flattened into
a vector. For a grey image of the AR dataset, the dimensionality of its vector is 442,368. Face images in
the AR dataset are different from general images because there is always a completely white background in
the image. Therefore, a popular natural image dataset Weber (2018) is also used for our evaluation. There
are images in three different resolutions in this dataset. To fairly compare with the results on face images,
only images in the 512×512 resolution are chosen in our experiments with this dataset. The images are first
converted into gray-scale images meaning that the vectors obtained for the images are 262,144-dimensional.
Finally, a biomedical dataset with genes for breast cancer called TCGA (BC-TCGA) Xie et al. (2016) is
used to evaluate our method using gene expression bio-sequences. This dataset contains 590 examples with
17,814 genes. All the 590 examples are used in the experiments.

The proposed method is assessed with both random projection and kernel approximation in terms of compu-
tational efficiency. The runtime improvement of our method relative to vanilla random projection is shown in
Table 2. We make synthesized datasets with various dimensionalities to evaluate the speed improvement of
the proposed method. Here, the reduced dimensionality kmulti is equal to k which is set from 1,000 to 5,000.
When k = 1, 000, the real-world runtime of our method is 0.31, 0.05, and 0.079 seconds on the three public
datasets, while it is 0.023, 0.031, and 0.1 seconds on the synthesized dataset. As the value of kmulti = k
increases, the running time of vanilla random projection increases quickly, because its complexity is O(kDn).
The kmulti = k is not a important factor affecting the running time of our method with O(Dn). Hence, the
proposed method is faster than vanilla random projection, and the actual speed-up of our method is up to
1226 times.

3https://scikit-learn-extra.readthedocs.io/en/stable/index.html.
4Available at http://www2.ece.ohio-state.edu/aleix/ARdatabase.html/, http://sipi.usc.edu/database/

and https://data.mendeley.com/datasets/ respectively.
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Table 2: Speed-up of the proposed method for random projection. Our method speeds up traditional random
projection from O(kDn) to O(Dn) when D is larger than the dimensionality after projection kmulti = k. The actual
speed-up of our method is up to 1226 times with D as the dimensionality of input data. k is a hyper-parameter of
Algorithm 1.

Datasets D k = 1,000 k = 2,000 k = 3,000 k = 4,000 k = 5,000

Synth. Dataset
D = 5,000 23.9x 40.0x 65.2x 74.1x 100.0x
D = 10,000 32.3x 58.8x 93.9x 120.6x 150.0x
D = 100,000 106.0x 193.6x 316.0x 405.0x 462.7x

AR dataset D = 440,000 142.9x 265.9x 389.1x 559.7x 672.0x
Nat. dataset D = 260,000 264.0x 408.3x 768.0x 941.6x 1226.6x
Gene dataset D = 17500 67.1x 123.3x 203.7x 241.6x 331.0 x

Table 3: For kernel approximation, the proposed method and Fastfood are faster than RKS. The runtime improve-
ments of the two approaches relative to RKS are listed.

Datasets D Methods k = 103 k = 5 ∗ 103 k = 104 k = 5 ∗ 104 k = 105 k = 2 ∗ 105

Synthesized
Dataset

D = 5,000 Ours 8.9x 45x 44.6x 48.3x 48.8x 52.8x
Fastfood 2.6x 12x 13.3x 17.9x 20.5x 21.7x

D = 10,000 Ours 9.5x 50.6 x 95.5 x 109.3 x 109.4 x 109.4 x
Fastfood 2.4x 10x 21.8x 32.6x 41.3x 40.3x

D = 100,000 Ours 9.2x 50.6x 95.2x 602x 1300x 1139x
Fastfood 2.7x 13.6x 29.3x 162.1x 352.8x 355.2x

AR
Dataset D = 440,000 Ours 13.4x 72.1x 153.2x 767.8x 1585x 3361x

Fastfood 2.6x 12.6x 28.9x 141.9x 267.7x 554.7x
Nat.

Dataset D = 260,000 Ours 32.3x 168.5x 432.6x 2800x 4943x 11716x
Fastfood 3.2x 16.4x 32.7x 175.7x 345.6x 794.5x

Gene
Dataset D = 17500 Ours 6.5x 31.3x 65.1x 63.5x 66.5x 66.1x

Fastfood 0.6x 3.0x 6.1x 15.7x 16.1x 16.0x

For kernel approximation, the proposed method is compared with other two state-of-the-art kernel approx-
imation approaches, RKS (Rahimi & Recht, 2008) and Fastfood (Le et al., 2013). We vary the parameter
kmulti = k from 1, 000 to 200, 000 to assess performance disparities. Both our method and Fastfood outper-
form RKS in speed (see Table 2 detailing the speed-up factors of our method and Fastfood in comparison
to RKS). Specifically, when k = 1, 000, the real-world runtime of our method is respectively 4.6, 0.49, and
0.88 seconds on the three public datasets, while it is 0.062, 0.11, and 1.18 seconds on the synthesized dataset
(with three different feature dimensionalities D). It is encouraging to see that , when kmulti = k = 200, 000,
the speed improvement of our method significantly increases to up to 11,716 times compared to RKS, and it
also achieves a 14.7 times speed advantage over Fastfood. These results show that our method is moderately
more efficient than Fastfood and significantly more efficient than RKS.

Results in Table 2 and Table 3 demonstrate that our method can significantly improve real-world time
efficiency for random projection and kernel approximation. Calculating diag(AB) can be very expensive, in
R or Matlab for example, as the product matrix AB is computed first and the diagonal elements are then
taken. In our implementation, it is much more efficient to find diag(A*B) with sum(A.*B’,2) in Matlab or
R.

5.2 Approximation Quality

The approximation quality of the proposed method is very close to that of RKS, while our method can
significantly improve the runtime (see Section 5.1).

In random projection, approximation quality is measured to see how well the pairwise Euclidean distances
among projected vectors can approximate the corresponding distances with the original vectors. The averaged
absolute difference between pairwise Euclidean distances before and after projection are used to quantify
the approximation quality. These pairwise distances are computed over all example pairs, and the averaged
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absolute difference gives us the error. For a dataset with n examples, the average absolute error over all
(

n
2
)

pairs is obtained with

Errrp = 1(
n
2

) n−1∑
i=1

n∑
j=i+1

∣∣∥ui − uj∥2 − ∥vi − vj∥2∣∣ , (9)

where ui, uj are two data points, and vi, vj are the projected points of them. In kernel approximation,
approximation quality is quantified using the average absolute error between the approximated kernel values
using dot products obtained by the proposed method and the original kernel values over all data point pairs.
For a dataset with n examples, the average absolute error over all

(
n
2
)

pairs is given by

Errrff = 1(
n
2

) n−1∑
i=1

n∑
j=i+1

|⟨vi, vj⟩ − K (ui, uj)| , (10)

where ⟨vi, vj⟩ = vi · vj .

For random projection, the left sub-figure of Figure 2 shows approximation error (see Equation 9) against the
dimensionality after projection. Comparing with the vanilla method (red), which shows the state-of-the-art
approximation quality, the error (y-axis) from our method (green) is very close on all datasets. It indicates
that the approximation quality of these two methods is indistinguishable.

Figure 2: Comparison of approximation error in random projection and kernel approximation. The error is obtained
with Equation 9 and Equation 10. It shows the error from the proposed method on the y-axis is close to that from
previous methods in all cases. The approximation quality of our method is close to that of previous methods, while
the proposed method can significantly speed-up them.

Table 4: Comparison with four SVM variants. Experimental results show that the classification accuracies and
regression performance of the linear SVM with our method are very close to the SVM with RBF.

Datasets Classification (Accuracy) Regression (RMSE)
ADULT CIFAR-10 CENSUS

Reduced Dim. 1000 2000 3000 1000 2000 3000 1000 2000 3000
Linear SVM (Ours) 59.4% 62.2% 64.5% 75.9% 75.8% 76.3% 3.1% 2.9% 2.8%
Linear SVM (RKS) 58.6% 62.0% 63.7% 75.1% 76.2% 76.2% 2.9% 2.8% 2.8%

Linear SVM (Fastfood) 59.1% 62.2% 64.3% 75.1% 75.6% 75.7% 3.1% 2.7% 2.8%
SVM with RBF 64.7% 76.3% 1.1%

For kernel approximation, the right sub-figure of Figure 2 shows the error calculated using Equation 10
against the dimensionality of Fourier features. On the AR dataset and the natural dataset, the error from
the proposed method (blue) is on par with that of RKS Rahimi & Recht (2008) and Fastfood (Le et al.,
2013). The approximation quality of our method is close to that of RKS. In the gene dataset, the error of
our method and Fastfood are higher than that of RKS. This is due to the relatively low dimensionality of
the gene dataset. Table 1 shown that the ∆i is not a normal distribution when kmulti = 1000. This affects
the approximation quality of our method. In Section 5.3, we further investigate the effect of this errors on
SVMs for classification and regression.

5.3 Performance with the SVM

In this subsection, we further evaluate the actual performance of SVMs with the proposed method. It
is found that our approach not only significantly accelerates the speed of traditional methods but also
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achieves approximation quality that is comparable to conventional methods. The primary objective of
kernel approximation is to enhance the efficiency of kernel method computations without compromising on
quality. To this end, we compare the non-linear SVM with the RBF kernel against the linear SVM using
three different kernel approximation techniques: the proposed method, RKS(Rahimi & Recht, 2008), and
Fastfood(Le et al., 2013). We follow Rahimi & Recht (2008) to apply SVMs to classification and regression on
the adult dataset, the census dataset, and the CIFAR-10 dataset 5. Moreover, the datasets are pre-processed
with the same techniques as in Rahimi & Recht (2008).

The classification accuracies and the root-mean-square errors (RMSE) are given with different methods in
Table 4. As shown in Table 4, the performance of the linear SVM with the proposed method is on par
with that of the non-linear SVM with the RBF. The approximation quality of our proposed method with
classification is also found to be encouraging. Our method can significantly speed-up the previous methods.

6 Conclusion

In this work, a simple and efficient approach to sparse random projection and efficient computation of random
Fourier features is proposed with complexity O(max{k, D}n). The novel method does not rely on specialized
libraries for sparse matrix computation or fast WHT. It can be easily implemented. In addition, no Gaussian
assumption has been made to the random entries of the projection matrix for random projections and random
Fourier features with any shift-invariant kernels with the bias, the variance and error bounds provided. It is
shown that the speed-up of our method is up to 10,000 times on real-world datasets compared to RKS and
up to 15 times compared to Fastfood (Le et al., 2013).
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A Appendix

A.1 Analysis for Fast Random Features with Our Method

Theorem 4.1. With ∥∆∥2
2, ∥

√
k∆i∥2

2 ∼ N (µ∆2 , σ2
∆2) following the normal distribution for any i, the expec-

tation and the variance for random Fourier features with our method are

Eω,∆

[
1

k/2

k/2∑
i=1

cos(ωT
i (

√
k∆i))

]
= E∆[K(∆)]

V arω,∆

[
1

k/2

k/2∑
i=1

cos(ωT
i (

√
k∆i))

]
= 1

k/2

(
1
2 + 1

2E∆[K(2∆)] + E∆[K(∆)]2
)

where the density function p(ωi) is the Fourier transform of the kernel K(δ).

Proof. One can obtain, for each pair of data points, µ̂ and σ̂ using cos(ωT ∆) (Sutherland & Schneider (2015))
for any given ∆:

E[cos(ωT ∆)] = K(∆) (11)

V ar[cos(ωT ∆)] = 1
2 + 1

2K(2∆) − K(∆)2 (12)

For the total expectation or the unconditional expectation, EY [EX [X|Y ]] = EX [X] for any two random
variables X and Y . We have

Eω,∆[cos(ωT ∆)] = E∆[Eω[cos(ωT ∆)|∆]] = E∆[K(∆)] (13)

For the total variance with the law of total variance V arY (Y ) = EX(V arY (Y |X)) + V arX(EY (Y |X)), it is
the sum of the expected value of the conditional variance and the variance of the conditional means.

V arω,∆[cos(ωT ∆)] =E∆[V arω[cos(ωT ∆)|∆]] + V ar∆[Eω[cos(ωT ∆)|∆]]

Using Equation 12 and V ar(X) = E[X2] − (E[X])2,

V arω[cos(ωT ∆)]

= E∆[ 12 + 1
2K(2∆) − K(∆)2] + V ar∆[K(∆)]

= 1
2 + 1

2E∆[K(2∆)] − (V ar∆[K(∆)] − E∆[K(∆)]2) + V ar∆[K(∆)]

= 1
2 + 1

2E∆[K(2∆)] + E∆[K(∆)]2 (14)

As the expectation and the variance of the average, E[X̄] = µX and V ar[X̄] = 1
n σ2

X , with random variables
X1, X2, . . . , Xn, using Equation 13, we have

Eω,∆

[
1

k/2

k/2∑
i=1

cos(ωT
i ∆i)

]
= Eω,∆[cos(ωT ∆) = E∆[K(∆)]

and, using Equation 14,

V arω,∆

[
1

k/2

k/2∑
i=1

cos(ωT
i ∆i)

]
= 1

k/2V arω[cos(ωT ∆)]

16
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= 1
k/2

(
1
2 + 1

2E∆[K(2∆)] + E∆[K(∆)]2
)

Proposition 4.2. The unbiased estimator for the Gaussian kernel approximation is

ϕT (x)ϕ(y)
[

exp(−γµ∆2)
exp(−γµ∆2 + γ2σ2

∆2/2)

]

where γ is the parameter of the Gaussian kernel K(∆) = exp(−γ∥∆∥2
2) and the bias correction term is

exp(−γµ∆2)
exp(−γµ∆2 + γ2σ2

∆2/2) ≈ 1

if µ∆2/σ∆2 >> 1.

Proof. The bias can be found with

Eω,∆[cos(ωT ∆)] = E∆[K(∆)]

from Theorem 4.1 and
EX∼N [exp(−γX)] =

∑
i

exp(−γ∥∆i∥2
2).

exp(−γ∥∆i∥2
2) following the log-normal distribution can be approximated by the normal distribution when

µ∆2/σ∆2 >> 1 and the summation
∑

i exp(−γ∥∆i∥2
2) makes the sum of log-normal random variables follow

more closely to the normal distribution due to the central limit theorem. As the expectation of the summation∑
i exp(−γ∥∆i∥2

2) is just the expectation of the log-normal distribution, we have∑
i

exp(−γ∥∆i∥2
2) = exp(−γµ∆2 + (γσ∆2)2/2).

The unbiased estimator for our kernel approximation becomes

ϕT (x)ϕ(y)[exp(−γµ∆2)/exp(−γµ∆2 + (γσ∆2)2/2)].

Proposition 4.3. For the Gaussian kernel K(∆) = exp(−γ∥∆∥2
2) also called the Radial Basis Function

kernel and the squared exponential kernel, using Theorem 4.1 with ∥∆∥2
2, ∥

√
k∆i∥2

2 ∼ N (µ∆2 , σ2
∆2) following

the normal distribution for any i with the density function p(ωi) being the Fourier transform of the kernel
K(δ),

Eω,∆

[
1

k/2

k/2∑
i=1

cos(ωT
i (

√
k∆i))

]
= exp(−γµ∆2 + γ2σ2

∆2/2),

V arω,∆

[
1

k/2

k/2∑
i=1

cos(ωT
i (

√
k∆i))

]
= 1

k/2

(
1
2 + 1

2exp(−2γµ∆2 + 2γ2σ2
∆2) + exp(−γµ∆2 + γ2σ2

∆2/2)2
)

where both the expectation and the variance are functions of µ∆2 and σ∆2 .

Proof. E∆[K(∆)] and V ar∆[K(∆)] in Theorem 4.1 are the variance and the expectation of the log-normal
distribution. With ∥∆∥2

2 ∼ N , exp(−c∥∆i∥2
2) follows the log-normal distribution giving us

E[exp(X)] = exp(µx + σ2
x/2), (15)

17
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and
V ar[exp(X)] = [exp(σ2

x) − 1]exp(2µx + σ2
x) (16)

for any normal random variable X ∼ N (µx, σ2
x). Thus, with Equation 13,

Eω,∆[cos(ωT ∆)] = E∆[K(∆)]

= E∆[exp(−c∥∆∥2
2)] = exp(−γµ∆2 + γ2σ2

∆2/2)

and the variance of the log-normal distribution is

V ar∆[exp(−c∥∆∥2
2)] = [exp(γ2σ2

∆2) − 1]exp(−2γµ∆2 + γ2σ2
∆2).

We have
V arω,∆[cos(ωT ∆)] = 1

2 + 1
2exp(−2γµ∆2 + 2γ2σ2

∆2) + exp(−γµ∆2 + γ2σ2
∆2/2)2.

Proposition 4.4. For the spherical kernel,

K(∆) = 1 − 3
2

∥∆∥
θ

+ 1
2

(∥∆∥
θ

)3

if ∥∆∥ < θ. 0 otherwise. With ∥∆∥2
2, ∥

√
k∆i∥2

2 ∼ N (µ∆2 , σ2
∆2) following the normal distribution for any i,

the expectation and the variance for the kernel are respectively

Eω,∆

[
1

k/2

k/2∑
i=1

cos(ωT
i (

√
k∆i))

]
= E∆[K(∆)] = 1 − 3µ∆

2θ
+ µ3

∆ + 3µ∆σ2
∆

2θ3 ,

V arω,∆

[
1

k/2

k/2∑
i=1

cos(ωT
i (

√
k∆i))

]
= 1

k/2

(
1 − 9µ∆

2θ
+ 9µ2

∆
4θ2 + 3µ3

∆ + 9µ∆σ2
∆

θ3 −
3µ4

∆ + 9µ2
∆σ2

∆
2θ4 + 6µ4

∆σ2
∆ + µ6

∆ + 9µ2
∆σ4

∆
4θ6

)
where the density function p(ωi) is the Fourier transform of the kernel K(δ).

Proof. To use Theorem 4.1, we need to obtain E[K(∆)] and E[K(2∆)].

E∆[K(∆)] = 1 − 3E[∥∆∥]
2θ

+ E[∥∆∥3]
2θ3 (17)

E∆[K(2∆)] = 1 − 3E[∥∆∥]
θ

+ 4E[∥∆∥3]
θ3 (18)

We let µ∆ = E[∥∆∥] and σ∆ =
√

V ar[||∆||]. The third non-central moment of a Gaussian is

E[∥∆∥3] = µ3
∆ + 3µ∆σ2

∆ (19)

where µ∆ =
∫ ∞

θ
xfN (x)dx =

∫ ∞
θ

xfT N (x)dx ×
∫ ∞

θ
fN (x)dx and σ∆ =

∫ ∞
θ

(x − µ∆)2fN (x)dx =
∫ ∞

θ
(x −

µ∆)2fT N (x)dx ×
∫ ∞

θ
fN (x)dx. fN (.) is the density function of the normal distribution and fT N (.) is the

density function of the truncated normal distribution.

Eω,∆[cos(ωT ∆)] = E∆[K(∆)] = 1 − 3µ∆

2θ
+ µ3

∆ + 3µ∆σ2
∆

2θ3

V arω,∆[cos(ωT ∆)] = 1
2 + 1

2E∆[K(2∆)] + E∆[K(∆)]2 (20)

18
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With a little bit of algebra using Equations 17 and 19,

E∆[K(∆)]2 = 1 − 3µ∆

θ
+ 9µ2

∆
4θ2 + µ3

∆ + 3µ∆σ2
∆

θ3 −
3µ4

∆ + 9µ2
∆σ2

∆
2θ4 + 6µ4

∆σ2
∆ + µ6

∆ + 9µ2
∆σ4

∆
4θ6

And, with Equations 18 and 20,

V arω,∆[cos(ωT ∆)] = 1 − 9µ∆

2θ
+ 9µ2

∆
4θ2 + 3µ3

∆ + 9µ∆σ2
∆

θ3 −
3µ4

∆ + 9µ2
∆σ2

∆
2θ4 + 6µ4

∆σ2
∆ + µ6

∆ + 9µ2
∆σ4

∆
4θ6

A.2 Analysis for The Proposed Fast Random Projection

Lemma 4.5. With C ∈ Rk×(D/k), a random matrix with k × (D/k) = D elements, and each element
following the normal distribution N (0, 1) where D is the original dimensionality and k is the dimension-
ality after projection, the expectation of ∥v∥2 is E{

∑k
i [diag(CU)]2i } = ∥u∥2, and, for each element of v,

(v)j√∑
l
(U)2

l,j

∼ N (0, 1).

Proof.

E{
k∑
i

[diag(CU)]2i }

= E{
k∑
i

[
D∑

j=1
(C)i,j(U)j,i]2}

= E{
k∑
i

∑
j,j′

(C)i,j(C)i,j′(U)j,i(U)j′,i}

= E{
k∑
i

∑
j

(C)2
i,j(U)2

j,i}

=
∑

i

∑
j

(U)2
j,i = ∥u∥2

As there are only D non-zero elements in C and E{
∑k

i [diag(CU)]2i } = ∥u∥2, we have normally distributed

(v)i√∑
l(U)2

l,i

∼ N (0, 1)

after projection v = ∥diag(CU)∥2 instead of traditional random projection 1√
k

Ru with

(v)i√
∥u∥/k

∼ N (0, 1).

Lemma 4.6. With probability 1 − 2e−(ϵ2−ϵ3)k/4,

(1 − ϵ)(m/M)∥u1 − u2∥2 ≤ ∥v1 − v2∥2 ≤ (1 + ϵ)(M/m)∥u1 − u2∥2

where ∥u1∥ =
∑

l

∑
m(U1)2

l,m and

m = min{
√∑

l

(U)2
l,1,

√∑
l

(U)2
l,2, . . . ,

√∑
l

(U)2
l,k}
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M = max{
√∑

l

(U)2
l,1,

√∑
l

(U)2
l,2, . . . ,

√∑
l

(U)2
l,k}

Proof. The main difference from the proof of the JL lemma (Vempala, 2004) is that, now in our formulation,
we have a generalized chi-square distribution for vi with

k∑
i

(
(v)i√∑

l(U)2
l,i

)2

instead of the χ2-distribution ∥v1∥2

∥u1∥2/k ∼ χ2
k with the JL lemma because the denominator depends on i now.

Let us consider the following two inequalities for the i-th term of ∥diag(CU)∥:

(m/M)k
∑

l

(U)2
l,i ≤ ∥u∥2 ≤ (M/m)k

∑
l

(U)2
l,i (21)

(v)2
i

(m/M)∥u∥2 ≤ (v)2
i

k
∑

l(U)2
l,i

≤ (v)2
i

(M/m)∥u∥2 (22)

With Inequality 22, one can obtain

Pr(∥diag(CU)∥2 > (1 + ϵ)(M/m)∥u∥2) ≤ Pr(χ2
k > (1 + ϵ)k)

Pr(∥diag(CU)∥2 < (1 − ϵ)(m/M)∥u∥2) ≤ Pr(χ2
k < (1 − ϵ)k)

It is shown in (Vempala, 2004) that

Pr(χ2
k > (1 + ϵ)k) = Pr(χ2

k < (1 − ϵ)k) = e−(ϵ2−ϵ3)k/4

With the union bound, the probability that Inequality 4.6 is satisfied is

1 − 2e−(ϵ2−ϵ3)k/4

Theorem 4.7. The expectation and the variance for fast random projection with our method are

Eω,∆[
∑

i

(ωT
i ∆i)2] = µ∆2 , and V arω,∆[

∑
i

(ωT
i ∆i)2] = (2µ∆2 + σ2

∆2)/k

where ∥∆i∥2
2 ∼ N (µ∆2 , σ2

∆2) and ωi ∼ N (0, 1).

Proof. From Li et al. (2006a) for fixed ∆, we have

Eω[
∑

i

(ωT
i ∆)2] = ∥∆∥2

2

Thus, again with the law of total expectation EY [EX [X|Y ]] = EX [X],

Eω,∆[
∑

i

(ωT
i ∆i)2] = E∆[Eω[

∑
i

(ωT
i ∆i)2|∆i]] = µ∆2

Using the law of total variance V arY (Y ) = EX(V arY (Y |X)) + V arX(EY (Y |X)), we have

V arω,∆[
∑

i

(ωT
i ∆i)2] = E∆[V arω[

k∑
i=1

(ωT
i ∆i)2|∆i]] + V ar∆[Eω[

k∑
i=1

(ωT
i ∆i)2|∆i]]
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= E∆[V arω[
k∑

i=1
(ωT

i ∆i)2|∆i]] + V ar∆[
k∑

i=1
Eωi

[(ωT
i ∆i)2|∆i]]

= E[ 2
k

∥∆i∥2
2] + V ar[

k∑
i=1

∥∆i∥2
2] = 2µ∆2

k
+

σ2
∆2

k
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